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Abstract

The multi-modality nature of human commu-001
nication can be utilized to enhance the per-002
formance of computational language models.003
However, few studies have explored the non-004
verbal channels with finer theoretical lens.005
We use multi-modal language models trained006
against monologue video data to study how the007
non-verbal expression contributes to communi-008
cation, by examining two aspects: first, whether009
incorporating gesture representations can im-010
prove the language model’s performance (per-011
plexity), and second, whether the gesture chan-012
nel demonstrates the similar pattern of entropy013
rate constancy (ERC) found in verbal language,014
which is governed by Information Theory. We015
have positive results to support both assump-016
tions. The conclusion is that speakers indeed017
use simple gestures to convey information that018
enhances verbal communication, and how this019
information is organized is a rational process.020

1 Introduction021

Communication is a multi-modal process, in which022

information from verbal and non-verbal modalities023

are mixed into one channel. It has already been024

revealed in empirical studies that speakers’ expres-025

sion in visual modality, including gestures, body026

poses, eye contacts and other types of non-verbal027

behaviors, play critical roles in face-to-face com-028

munication, as they add subtle information that is029

hard to convey in verbal language. However, it030

remains an untested idea to view these sparse and031

random non-verbal signals as a formal communica-032

tion channel that transmits “serious” information,033

which has seldom been validated by computational034

studies. A key missing step is to explore whether035

the non-verbal information can be quantified.036

The questions that are worth further investigation037

include (but are not limited to): How rich is the in-038

formation contained in these non-verbal channels?039

What are their relationships to verbal information?040

Can we understand the meanings of different ges- 041

tures, poses, and motions embedded in spontaneous 042

language in a similar way to understanding word 043

meanings? The goal of this study is to propose a 044

simple but straight-forward framework to approach 045

the above questions, under the guidance of Infor- 046

mation Theory. Some preliminary, yet prospective 047

results are presented. 048

2 Related Work 049

2.1 Non-verbal communication in natural 050

language 051

The recent advances of deep neural network-based 052

machine learning techniques provide new methods 053

to understand the non-verbal components of human 054

communication. Many existing works primarily fo- 055

cus on using multi-modal features as clues for a 056

variety of inference tasks, including video content 057

understanding and summarization (Li et al., 2020; 058

Bertasius et al., 2021), as well as more specific 059

ones such as predicting the shared attention among 060

speakers (Fan et al., 2018) and semantic-aware ac- 061

tion segmentation (Gavrilyuk et al., 2018; Xu et al., 062

2019). More recently, models that include mul- 063

tiple channels have been developed to character- 064

ize context-situated human interactions (Fan et al., 065

2021). Advances in representation learning have 066

enabled researchers to study theoretical questions 067

with the tools of multi-modal language models. 068

2.2 Insights from cognitive science studies 069

In laboratory-based studies of interactions between 070

verbal and non-verbal communication, it has been 071

found the multiple layers of visual and vocal sig- 072

nals can add semantic and pragmatic information 073

in face-to-face communication (Holler and Levin- 074

son, 2019). Visible gestures are more powerful 075

form of communication than vocalization in dia- 076

logue object description tasks (Macuch Silva et al., 077

2020). In these studies, gestures from human sub- 078

jects are usually encoded by the hands’ spacial loca- 079
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tions, which provide insights to the gesture extrac-080

tion method used in this study. Also, their results081

strongly indicate the potentials of building more082

comprehensive computational language models by083

including simple non-verbal features. However, so084

far, few computational studies have attempted to085

directly model spontaneous language.086

2.3 Information theories087

Information theory (Shannon, 1948) has been088

broadly applied in computational linguistics as the089

theoretic background for the probabilistic models090

of language. This also provides philosophical ex-091

planations to a broad spectrum of linguistic phe-092

nomena. One example that interests researchers093

the most is the assumption/principle of entropy094

rate constancy (ERC). Under this assumption, hu-095

man communication in any form (written, spoken,096

etc.) should optimize the rate of information trans-097

mission rate by keeping the overall entropy rate098

constant.099

In natural language, entropy refers to the pre-100

dictability of words (tokens, syllables) estimated101

with probabilistic language models. Genzel and102

Charniak (2002, 2003) first formulated a method to103

examine ERC for written language, by decompos-104

ing the entropy term into local and global entropy:105

H(s|context) = H(s|L)− I(s, C|L) (1)106

in which s can be any symbol whose probability107

can be estimated, such as a word, punctuation, or108

sentence. C and L refer to the global and local109

contexts for s, among which C is purely concep-110

tual and only L can be operationally defined. By111

ERC, the left term in eq. (1) should remain an in-112

variant against the position of s. It results in an113

expectation that the first term on the right H(s|L)114

should increase with the position of s, because the115

second term I(s, C|L), i.e., the mutual information116

between s and itself global context should always117

decrease (see Genzel and Charniak (2003)’s paper118

for more examples). While they have confirmed119

the increase of local entropy in written language,120

Xu and Reitter (2016, 2018) also confirmed the pat-121

tern in spoken language, relating it to the success122

of task-oriented dialogues (Xu and Reitter, 2017).123

Now, the goal of this study is to extend the ap-124

plication scope of ERC to the non-verbal realm.125

More specifically, if the s in eq. (1) represents any126

symbol that carries information, for example, a ges-127

ture or pose, then the same increase pattern should128

be observed within a sequence of gestures. ERC 129

can be interpreted as a “rational” strategy for the 130

information sender (speaker) because it requires 131

less predictable content (higher local entropy) to 132

occur at a later position within the message, which 133

maximizes the likelihood for the receiver (listener) 134

to successfully decode information with the least 135

effort. The question explored here is whether we 136

“speak” rationally by gestures. 137

3 Questions and Hypotheses 138

In this study, we focus on two specific hypotheses: 139

Hypothesis 1: Incorporating non-verbal represen- 140

tations as input will enhance the performance of 141

language modeling task. 142

To test Hypothesis 1, we carry out experiments 143

with data-wise and model-wise manipulations. In 144

the former manipulation, non-verbal tokens are in- 145

serted into word sequences and form a hybrid type 146

input data for the language model. As for the lat- 147

ter manipulation, the language model is modified 148

to take in non-verbal and verbal input sequences 149

simultaneously and compute a fused internal rep- 150

resentation. In both conditions, we expect the in- 151

clusion of non-verbal information will increase the 152

performance of language models measured by per- 153

plexity. 154

Hypothesis 2: Non-verbal communication con- 155

forms to the principle of Entropy Rate Constancy. 156

To test Hypothesis 2, we will approximate the local 157

entropy (H(s|L)) of non-verbal sequences using 158

the perplexity scores from language models, and 159

correlate it with the utterances’ relative positions 160

within the monologue data. We expect to discover 161

an increasing pattern of local entropy that is similar 162

to verbal language. 163

4 Methods 164

4.1 Data collection and pre-processing 165

The video data that we use is collected from several 166

YouTube channels. They are manually selected 167

based on the standards that each video must contain 168

only one speaker who faces in front of the camera, 169

and whose hands must be visible. 12 videos from 170

5 hosts are collected, and the mean duration is 15.0 171

minutes (SD = 7.0). 172

The pre-processing step is to extract the full- 173

body landmark points of the speaker, in prepara- 174

tion for the next gesture representation step. For 175

this task, we use BlazePose (Bazarevsky et al., 176

2020), which is a lightweight convolutional neural 177
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Figure 1: Create discrete gesture labels based on land-
mark positions of both hands.

network-based pose estimation model provided in178

MediaPipe1. It outputs 33 pose landmarks of the179

human body detected in each frame.180

4.2 Discretization of gestures181

The next step is to represent gestures so that they182

can be embedded into language data. There are var-183

ious ways of creating continuous representations184

for gestures/poses, such as the pose embedding185

technique (Mori et al., 2015). However, it is dif-186

ficult to obtain a set of gestures that are universal187

across speakers using such continuous represen-188

tations. Thus, for the exploratory purpose of this189

study, we use a simpler way to represent gestures190

with discrete labels, using the relative positions of191

hand landmarks.192

On each frame, we first split the area containing193

the body into 9 rectangular regions of the same194

size, indicated by integer numbers from 1 to 9.195

Each hand is assigned an integer based on which196

region it falls into. Then, we use the combination197

of both hands to create a unique gesture label for198

that frame. For example, as shown in fig. 1b, the199

speaker’s left and right hands fall into region 9 and200

8, so the gesture label is <9+8>. Because there are201

9 possible positions for each hand, the total number202

of gesture labels is 9 × 9 = 81. For convenience,203

we use one integer ID (instead of the merged ID204

connected by a hyphen) to denote each of these 81205

gestures: <1>, <2>, ..., <81>. Note that 81 is the206

maximum number, and the actual count of unique207

gesture labels depends on the data.208

4.3 Multi-modal language models209

We designed two types of LSTM-based language210

models tailored for the multi-modal training task.211

1https://google.github.io/mediapipe/

All LSTM models are bi-directional with hidden 212

layers of 200, and trained with batch size of 20. 213

Baseline LSTM model 214

We implemented an LSTM-based language model 215

to serve as the uni-modal baseline. This model is 216

trained against three types of data: pure word se- 217

quence (Sw), pure gesture sequence (Sg), and the 218

mixed sequence (Smix), with a minimum amount 219

of gesture information injected. Sg is generated 220

with the following procedure: First, the audio track 221

of each video is processed with a speech-to-text 222

API2 that returns a sequence of words, with the 223

start and end timestamps of each word also anno- 224

tated. Next, the gesture sequence is generated by 225

sampling one static frame that lies between the du- 226

ration [start, end] for each word, and then applying 227

the gesture extraction in section 4.2. 228

The “minimum injection” mentioned above 229

means that Smix is created by appending one ma- 230

jority gesture label from Sg to the beginning of 231

Sw. For example, as shown in fig. 2, for a sentence 232

Sw = {There, is, one, thing ...}, its corresponding 233

gesture sequence Sg = {<43>,43, ...}, and the ma- 234

jority label is <70>. Thus, the mixed sequence is 235

{<70>, There, is, ...}. This way of creating Smix is 236

inspired by classical imaging captioning tasks, in 237

which input image is used as the first time step for 238

sentence generation. 239

To verify Hypothesis 1, the perplexity scores of 240

Sw and Smix will be compared. The perplexity 241

scores of Sg will be used to verify Hypothesis 2. 242

Mixed-modal LSTM model 243

We implemented a mixed-modal LSTM-based lan- 244

guage model, which includes gesture inputs of finer 245

granularity. A pair of sequences, Sw (words) and 246

Sg (gestures) are the input, which is then fed into 247

a modality fusion module, where the embedding 248

representation for words and gestures at each time 249

step, i.e., wi and gi, are fused by sum, concat, or a 250

bilinear modality fusion component. Finally, the 251

resulting mixed embeddings are inputted into the 252

LSTM encoder to be trained for the next-word pre- 253

diction task. The model’s architecture is shown 254

in fig. 2. Detailed hyper-parameters will be pre- 255

sented in the Appendix. The purpose of this model 256

is to further verify Hypothesis 1, and to explore the 257

optimal modality fusion method. 258

2https://github.com/googleapis/
python-speech
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Figure 3: Validation perplexity vs. training epochs for
the models.
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Figure 2: Architecture of the mixed-modal LSTM lan-
guage model.

5 Results259

5.1 Examining Hypothesis 1: Comparing260

model performance in perplexity261

The plots of validation perplexity scores against262

training epochs are shown in fig. 3. For the baseline263

LSTM plot (fig. 3a), it can be clearly seen that the264

mixed input sequence (Smix) has lower perplex-265

ity than the word (Sw) or gesture (Sg) sequences,266

which supports Hypothesis 1: Gestures do contain267

useful information that can improve the language268

model’s performance. The mixed-modal LSTM269

plot (fig. 3b) shows that among all three modality270

fusion methods, sum yields the best performance.271

When comparing the perplexity scores of the272

baseline (base-) and mixed-modal (mm-) LSTM273

models, we have two major findings: First, mm-274

LSTM has lower perplexity than base-LSTM with275

words input (significant by t-test, t = 29.9, p <276

0.01), which is expected because the former has277

richer inputs (Sg and Sw) than the latter (Sw only).278

Second, however, mm-LSTM has higher perplexity279

than base-LSTM with mixed input (t = −95.8,280

p < 0.01). This is somewhat counter-intuitive281

because the mixture of Sg and Sw should encode282

more information than Smix, which merely con-283

tains one gesture token at the sequence head. We284

conjecture that this may be due to the lack of285

data, which needs be re-verified with finer hyper-286

parameter tuning in future work.287

5.2 Examining Hypothesis 2: Local entropy 288

and utterance position relationship 289

We use linear models to examine the correlations 290

between the local entropy of sequences (Sg or Sw) 291

and the relative position of utterances. For ges- 292

ture sequences, utterance position is a significant 293

predictor of local entropy with positive coefficient 294

(F (1, 74) = 4.481, adjusted R2 = .044, p < .05), 295

which supports the Hypothesis 2. A visible increas- 296

ing trend of local entropy is shown in fig. 4. Surpris- 297

ingly, word sequences yield no significant models, 298

which contradicts with previous findings. However, 299

this is likely due to the small data size used and 300

the inaccurate sentence tokenization results, which 301

could also be because of the randomness in the 302

data. 303
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Figure 4: Local entropy of gesture sequences increases
with utterance position.

6 Conclusions 304

Based on our results, we conclude that gestures 305

carry information that can enhance verbal commu- 306

nication. More importantly, speakers use gestures 307

in a rational way that conforms with the principle 308

of Entropy Rate Constancy in Information Theory. 309

This work is exploratory but the evidence is promis- 310

ing, as only a small data-set is used and a simplistic 311

gesture representation method is applied. 312

For future work, we plan to work with a larger 313

and more diverse dataset with a higher variety in 314

genres (public speech, etc.) and examine more ad- 315

vanced representation methods, such as continuous 316

embedding and clustering. Another direction to 317

pursue is to interpret the semantic meanings of ges- 318

tures and other non-verbal features by examining 319

their semantic distance from words/utterances in 320

vector space. 321
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