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Abstract

The multi-modality nature of human commu-
nication can be utilized to enhance the per-
formance of computational language models.
However, few studies have explored the non-
verbal channels with finer theoretical lens.
We use multi-modal language models trained
against monologue video data to study how the
non-verbal expression contributes to communi-
cation, by examining two aspects: first, whether
incorporating gesture representations can im-
prove the language model’s performance (per-
plexity), and second, whether the gesture chan-
nel demonstrates the similar pattern of entropy
rate constancy (ERC) found in verbal language,
which is governed by Information Theory. We
have positive results to support both assump-
tions. The conclusion is that speakers indeed
use simple gestures to convey information that
enhances verbal communication, and how this
information is organized is a rational process.

1 Introduction

Communication is a multi-modal process, in which
information from verbal and non-verbal modalities
are mixed into one channel. It has already been
revealed in empirical studies that speakers’ expres-
sion in visual modality, including gestures, body
poses, eye contacts and other types of non-verbal
behaviors, play critical roles in face-to-face com-
munication, as they add subtle information that is
hard to convey in verbal language. However, it
remains an untested idea to view these sparse and
random non-verbal signals as a formal communica-
tion channel that transmits ““serious’ information,
which has seldom been validated by computational
studies. A key missing step is to explore whether
the non-verbal information can be quantified.

The questions that are worth further investigation
include (but are not limited to): How rich is the in-
formation contained in these non-verbal channels?
What are their relationships to verbal information?

Can we understand the meanings of different ges-
tures, poses, and motions embedded in spontaneous
language in a similar way to understanding word
meanings? The goal of this study is to propose a
simple but straight-forward framework to approach
the above questions, under the guidance of Infor-
mation Theory. Some preliminary, yet prospective
results are presented.

2 Related Work

2.1 Non-verbal communication in natural
language

The recent advances of deep neural network-based
machine learning techniques provide new methods
to understand the non-verbal components of human
communication. Many existing works primarily fo-
cus on using multi-modal features as clues for a
variety of inference tasks, including video content
understanding and summarization (Li et al., 2020;
Bertasius et al., 2021), as well as more specific
ones such as predicting the shared attention among
speakers (Fan et al., 2018) and semantic-aware ac-
tion segmentation (Gavrilyuk et al., 2018; Xu et al.,
2019). More recently, models that include mul-
tiple channels have been developed to character-
ize context-situated human interactions (Fan et al.,
2021). Advances in representation learning have
enabled researchers to study theoretical questions
with the tools of multi-modal language models.

2.2 Insights from cognitive science studies

In laboratory-based studies of interactions between
verbal and non-verbal communication, it has been
found the multiple layers of visual and vocal sig-
nals can add semantic and pragmatic information
in face-to-face communication (Holler and Levin-
son, 2019). Visible gestures are more powerful
form of communication than vocalization in dia-
logue object description tasks (Macuch Silva et al.,
2020). In these studies, gestures from human sub-
jects are usually encoded by the hands’ spacial loca-



tions, which provide insights to the gesture extrac-
tion method used in this study. Also, their results
strongly indicate the potentials of building more
comprehensive computational language models by
including simple non-verbal features. However, so
far, few computational studies have attempted to
directly model spontaneous language.

2.3 Information theories

Information theory (Shannon, 1948) has been
broadly applied in computational linguistics as the
theoretic background for the probabilistic models
of language. This also provides philosophical ex-
planations to a broad spectrum of linguistic phe-
nomena. One example that interests researchers
the most is the assumption/principle of entropy
rate constancy (ERC). Under this assumption, hu-
man communication in any form (written, spoken,
etc.) should optimize the rate of information trans-
mission rate by keeping the overall entropy rate
constant.

In natural language, entropy refers to the pre-
dictability of words (tokens, syllables) estimated
with probabilistic language models. Genzel and
Charniak (2002, 2003) first formulated a method to
examine ERC for written language, by decompos-
ing the entropy term into local and global entropy:

H (s|context) = H(s|L) — I(s,C|L) (1)

in which s can be any symbol whose probability
can be estimated, such as a word, punctuation, or
sentence. C' and L refer to the global and local
contexts for s, among which C' is purely concep-
tual and only L can be operationally defined. By
ERC, the left term in eq. (1) should remain an in-
variant against the position of s. It results in an
expectation that the first term on the right H (s|L)
should increase with the position of s, because the
second term I (s, C|L), i.e., the mutual information
between s and itself global context should always
decrease (see Genzel and Charniak (2003)’s paper
for more examples). While they have confirmed
the increase of local entropy in written language,
Xu and Reitter (2016, 2018) also confirmed the pat-
tern in spoken language, relating it to the success
of task-oriented dialogues (Xu and Reitter, 2017).

Now, the goal of this study is to extend the ap-
plication scope of ERC to the non-verbal realm.
More specifically, if the s in eq. (1) represents any
symbol that carries information, for example, a ges-
ture or pose, then the same increase pattern should

be observed within a sequence of gestures. ERC
can be interpreted as a “rational” strategy for the
information sender (speaker) because it requires
less predictable content (higher local entropy) to
occur at a later position within the message, which
maximizes the likelihood for the receiver (listener)
to successfully decode information with the least
effort. The question explored here is whether we
“speak” rationally by gestures.

3 Questions and Hypotheses

In this study, we focus on two specific hypotheses:
Hypothesis 1: Incorporating non-verbal represen-
tations as input will enhance the performance of
language modeling task.

To test Hypothesis 1, we carry out experiments

with data-wise and model-wise manipulations. In
the former manipulation, non-verbal tokens are in-
serted into word sequences and form a hybrid type
input data for the language model. As for the lat-
ter manipulation, the language model is modified
to take in non-verbal and verbal input sequences
simultaneously and compute a fused internal rep-
resentation. In both conditions, we expect the in-
clusion of non-verbal information will increase the
performance of language models measured by per-
plexity.
Hypothesis 2: Non-verbal communication con-
forms to the principle of Entropy Rate Constancy.
To test Hypothesis 2, we will approximate the local
entropy (H (s|L)) of non-verbal sequences using
the perplexity scores from language models, and
correlate it with the utterances’ relative positions
within the monologue data. We expect to discover
an increasing pattern of local entropy that is similar
to verbal language.

4 Methods

4.1 Data collection and pre-processing

The video data that we use is collected from several
YouTube channels. They are manually selected
based on the standards that each video must contain
only one speaker who faces in front of the camera,
and whose hands must be visible. 12 videos from
5 hosts are collected, and the mean duration is 15.0
minutes (SD = 7.0).

The pre-processing step is to extract the full-
body landmark points of the speaker, in prepara-
tion for the next gesture representation step. For
this task, we use BlazePose (Bazarevsky et al.,
2020), which is a lightweight convolutional neural
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Figure 1: Create discrete gesture labels based on land-
mark positions of both hands.

network-based pose estimation model provided in
MediaPipe!. It outputs 33 pose landmarks of the
human body detected in each frame.

4.2 Discretization of gestures

The next step is to represent gestures so that they
can be embedded into language data. There are var-
ious ways of creating continuous representations
for gestures/poses, such as the pose embedding
technique (Mori et al., 2015). However, it is dif-
ficult to obtain a set of gestures that are universal
across speakers using such continuous represen-
tations. Thus, for the exploratory purpose of this
study, we use a simpler way to represent gestures
with discrete labels, using the relative positions of
hand landmarks.

On each frame, we first split the area containing
the body into 9 rectangular regions of the same
size, indicated by integer numbers from 1 to 9.
Each hand is assigned an integer based on which
region it falls into. Then, we use the combination
of both hands to create a unique gesture label for
that frame. For example, as shown in fig. 1b, the
speaker’s left and right hands fall into region 9 and
8, so the gesture label is <9+8>. Because there are
9 possible positions for each hand, the total number
of gesture labels is 9 x 9 = 81. For convenience,
we use one integer ID (instead of the merged ID
connected by a hyphen) to denote each of these 81
gestures: <1>, <2>, ..., <81>. Note that 81 is the
maximum number, and the actual count of unique
gesture labels depends on the data.

4.3 Multi-modal language models

We designed two types of LSTM-based language
models tailored for the multi-modal training task.

'https://google.github.io/mediapipe/

All LSTM models are bi-directional with hidden
layers of 200, and trained with batch size of 20.

Baseline LSTM model

We implemented an LSTM-based language model
to serve as the uni-modal baseline. This model is
trained against three types of data: pure word se-
quence (S,,), pure gesture sequence (Sy), and the
mixed sequence (Sy,;,), with a minimum amount
of gesture information injected. S, is generated
with the following procedure: First, the audio track
of each video is processed with a speech-to-text
API? that returns a sequence of words, with the
start and end timestamps of each word also anno-
tated. Next, the gesture sequence is generated by
sampling one static frame that lies between the du-
ration [start, end] for each word, and then applying
the gesture extraction in section 4.2.

The “minimum injection” mentioned above
means that S,,;, is created by appending one ma-
jority gesture label from S to the beginning of
Sw. For example, as shown in fig. 2, for a sentence
Sw = {There, is, one, thing ...}, its corresponding
gesture sequence S, = {<43>,43, ...}, and the ma-
jority label is <70>. Thus, the mixed sequence is
{<70>, There, is, ...}. This way of creating .S, is
inspired by classical imaging captioning tasks, in
which input image is used as the first time step for
sentence generation.

To verify Hypothesis 1, the perplexity scores of
Sw and Sp,;; will be compared. The perplexity
scores of S, will be used to verify Hypothesis 2.

Mixed-modal LSTM model

We implemented a mixed-modal LSTM-based lan-
guage model, which includes gesture inputs of finer
granularity. A pair of sequences, .S, (words) and
Sy (gestures) are the input, which is then fed into
a modality fusion module, where the embedding
representation for words and gestures at each time
step, i.e., w; and g;, are fused by sum, concat, or a
bilinear modality fusion component. Finally, the
resulting mixed embeddings are inputted into the
LSTM encoder to be trained for the next-word pre-
diction task. The model’s architecture is shown
in fig. 2. Detailed hyper-parameters will be pre-
sented in the Appendix. The purpose of this model
is to further verify Hypothesis 1, and to explore the
optimal modality fusion method.

https://github.com/googleapis/
python-speech
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Figure 3: Validation perplexity vs. training epochs for
the models.
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5 Results

5.1 Examining Hypothesis 1: Comparing
model performance in perplexity

The plots of validation perplexity scores against
training epochs are shown in fig. 3. For the baseline
LSTM plot (fig. 3a), it can be clearly seen that the
mixed input sequence (Sy,ix) has lower perplex-
ity than the word (.5,,) or gesture (S,) sequences,
which supports Hypothesis 1: Gestures do contain
useful information that can improve the language
model’s performance. The mixed-modal LSTM
plot (fig. 3b) shows that among all three modality
fusion methods, sum yields the best performance.

When comparing the perplexity scores of the
baseline (base-) and mixed-modal (mm-) LSTM
models, we have two major findings: First, mm-
LSTM has lower perplexity than base-LSTM with
words input (significant by ¢-test, ¢ = 29.9, p <
0.01), which is expected because the former has
richer inputs (S, and S,,) than the latter (.S, only).
Second, however, mm-LSTM has higher perplexity
than base-LSTM with mixed input ({ = —95.8,
p < 0.01). This is somewhat counter-intuitive
because the mixture of Sy and S,, should encode
more information than S,,ix, which merely con-
tains one gesture token at the sequence head. We
conjecture that this may be due to the lack of
data, which needs be re-verified with finer hyper-
parameter tuning in future work.

5.2 Examining Hypothesis 2: Local entropy
and utterance position relationship

We use linear models to examine the correlations
between the local entropy of sequences (S, or Sy,)
and the relative position of utterances. For ges-
ture sequences, utterance position is a significant
predictor of local entropy with positive coefficient
(F(1,74) = 4.481, adjusted R? = .044, p < .05),
which supports the Hypothesis 2. A visible increas-
ing trend of local entropy is shown in fig. 4. Surpris-
ingly, word sequences yield no significant models,
which contradicts with previous findings. However,
this is likely due to the small data size used and
the inaccurate sentence tokenization results, which
could also be because of the randomness in the
data.
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Figure 4: Local entropy of gesture sequences increases
with utterance position.

6 Conclusions

Based on our results, we conclude that gestures
carry information that can enhance verbal commu-
nication. More importantly, speakers use gestures
in a rational way that conforms with the principle
of Entropy Rate Constancy in Information Theory.
This work is exploratory but the evidence is promis-
ing, as only a small data-set is used and a simplistic
gesture representation method is applied.

For future work, we plan to work with a larger
and more diverse dataset with a higher variety in
genres (public speech, etc.) and examine more ad-
vanced representation methods, such as continuous
embedding and clustering. Another direction to
pursue is to interpret the semantic meanings of ges-
tures and other non-verbal features by examining
their semantic distance from words/utterances in
vector space.
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