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ABSTRACT

Algorithmic recourse offers users recommendations for actions that can help al-
ter unfavorable outcomes in practical decision-making systems. Although many
methods have been proposed to design easily implementable recourses, model up-
dates or shifts may render previously generated recourses invalid. To assess the
robustness of recourses against model shifts, we propose an uncertainty quantifi-
cation method to calculate a theoretical upper-bound of the recourse invalidation
rate for any counterfactual plan and any prediction model, without requiring dis-
tributional assumptions about the feature space. Furthermore, given the inherent
trade-off between recourse cost and recourse robustness, users should be empow-
ered to manage the implementation cost versus robustness trade-off. To this end,
we propose a novel framework that leverages the derived invalidation rate bounds
to generate model-agnostic recourses that satisfy the user’s specified invalidation
needs. Numerical results on multiple datasets demonstrate the effectiveness of the
derived theoretical bounds and the efficacy of the proposed algorithms.

1 INTRODUCTION

Predictive models are being increasingly deployed in diverse consequential decision-making ap-
plications across a variety of contexts, such as loan applications (Moscato et al., Mar. 2021), job
applications (Schumann et al., May 2020), and criminal justice (Brayne & Christin, Aug. 2021) etc.
Consequently, designing models that can provide individuals with explanations and recommenda-
tions to change their situation favorably is crucial, and even considered a legal necessity (Voigt &
Von dem Bussche, Aug. 2017). For example, consider that there is an individual seeking a mort-
gage to purchase a home and the loan-granting institution uses a binary classifier and denies the
loan application based on his/her attributes. It is important to provide recommendation of actions so
that the user can improve his/her chance of loan being approved next time. Motivated by this, there
are many interesting methods proposed to generate recourses for adversely affected individuals that
are easy for users to implement (Wachter et al., Nov. 2017; Ustun et al., Jan. 2019; Karimi et al.,
Aug. 2020). For instance, (Wachter et al., Nov. 2017) proposes a gradient-based approach to find
the closest counterfactual to any negatively-predicted sample that results in a favorable prediction
result. (Ustun et al., Jan. 2019) proposes an efficient integer programming approach (AR) to gen-
erate a list of actionable recourses for linear classifiers. (Karimi et al., Dec. 2020;M) have taken
the causal relationships between features into account to investigate the nearest recourse from the
perspective of minimal intervention.

These approaches work well if the underlying predictive models do not change. However, in prac-
tice, underlying predictive models often change for various reasons. For example, in the context of
loan application, the underlying distribution of the population seeking loans may shift over time due
to changes in economic conditions or shifts in consumer behavior. Moreover, as the data distribution
shifts over time, some decision making institutions regularly retrain their models and/or use online
learning frameworks to continuously adapt to new patterns in the data (as shown in Figure 1). This
raises concerns about robustness and reliability of the generated recourse as previously prescribed
recourse may no longer be valid once the model is updated. Recent studies have demonstrated the
vulnerability of the generated recourse to minor distribution shifts or small model changes (Rawal
et al., Jun. 2021). To address this issue, one strategy, coming from adversarial robustness and ro-
bust optimization literature, is to apply the classic minimax objective functions to design robust
recourses that can withstand distributional perturbations or model changes (Upadhyay et al., Dec.
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2021). These approaches use gradient-based methods to solve proposed minimax problems. Nev-
ertheless, in order to generate a recourse that always leads to a positive outcome, the recourse cost
is usually higher and it is more difficult for the user to implement such recourse. Specifically, it
has been observed that the recourse can only achieve one of low cost or robustness to model shifts
(Pawelczyk et al., May 2023).

To design recourses that are robust to model shifts while maintaining lower costs, there are two
main challenges that need to be addressed: 1) determining how to measure the robustness of a
given recourse under an unknown shifted model; and 2) devising a method to generate a model-
agnostic recourse with the smallest possible cost while satisfying the user’s robustness constraint.
To tackle these challenges, we introduce the concept of the recourse invalidation rate under model
shift, which represents the conditional probability that a given recourse becomes invalid under a
potential shifted model. To bound the invalidation rate, we utilize conformal predictive inference
techniques (Romano et al., Dec. 2019; Tibshirani et al., Dec. 2019) that can produce prediction
set (almost exactly) for any given coverage level. In the context of algorithmic recourse, instead
of setting a coverage level, we treat the coverage parameter as a variable and obtain a probability
inequality for any given recourse, which will help measure the recourse robustness.

The second challenge in generating model-agnostic recourses lies in accommodating users with
different levels of tolerance for recourse invalidation under model shifts. While some users may
prioritize low invalidation rates, others may be willing to accept a higher rate in exchange for lower
implementation costs. Existing approaches fail to provide users with the ability to navigate the
trade-off between cost and robustness. To address this issue, we leverage our bounds on the re-
course invalidation rate to produce recourses tailored to user’s needs. In particular, we consider
cases where users desire recourses with specific invalidation rates (as shown in Figure. 2). To design
algorithms that guide recourse search towards regions of low cost while satisfying the invalidation
rate constraint, we formulate a constrained optimization problem. However, the constraint of the
proposed optimization problem is simulation-based and traditional optimization methods cannot be
applied directly. To address such difficulty, we propose an extended alternating direction method of
multipliers (ADMM) approach to efficiently find the minimal cost recourse that satisfies the invali-
dation rate constraint.

The main contributions of this paper are summarized as:
(1) Characterization of recourse invalidation rate: In Section 3, we introduce a novel approach to
characterize the recourse invalidation rate in the context of potential model shifts.
(2) Recourse invalidation estimation: In Section 4, we propose a method for uncertainty quantifica-
tion that calculates a theoretical upper bound for the recourse invalidation rate.
(3) Cost-efficiency and robustness trade-off: In Section 5, we tackle the trade-off between cost and
robustness in the design of algorithmic recourses. Utilizing the derived bounds on the recourse in-
validation rate, our method empowers users to tailor this trade-off to meet their specific needs.
(4) Practical implications: In Section 6, we present numerical results using multiple datasets to
validate the effectiveness of our theoretical bounds and the efficiency of our proposed algorithms.

2 BACKGROUND AND RELATED WORK

In this section, we provide related work on robust recourse as well as the user-involved recourse
design. Background information regarding algorithm recourse and conformal predictive inference
that are relevant to this work can be found in Appendix A.

Robust recourse: The robustness of algorithm recourse/counterfactual explanation has been stud-
ied in different settings, such as adversarial robustness, robustness to distributional shifts or model
shifts. Adversarial robustness considers small uncertainty in the features of users and it has been
shown that recourse methods that aim to offer recourses with minimal costs may not be adversari-
ally robust (Dominguez-Olmedo et al., Jul. 2022). Then different methods have been proposed to
generate counterfactual explanations with lower cost under a slight perturbation (Slack et al., Dec.
2021a; Guyomard et al., Sep 2023). For the robustness under distributional shifts, Rawal et al. (Jun.
2021) makes the first attempt to understand how model updates resulting from data distribution shifts
impact the recourses generated by state-of-the-art algorithms based on empirical analysis. Pawel-
czyk et al. (Aug. 2020) studies counterfactual explanations under predictive multiplicity, followed
by Black et al. (Oct. 2021) which shows that recourses can even be invalid for models retrained
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with different initial conditions. To address these challenges, Upadhyay et al. (Dec. 2021) proposes
a novel framework, Robust Algorithmic Recourse (ROAR), that leverages adversarial training for
finding recourses that are robust to model shifts. However, ROAR’s applicability is limited to linear
classifiers. For nonlinear models, it approximates them with a linear model using LIME (Ribeiro
et al., Aug. 2016), with robustness represented by perturbations of the parameters of the linear
surrogate. Recent research has highlighted some limitations of the locally linear model of LIME,
including fidelity (White & d’Avila Garcez, Aug. 2020) and robustness (Slack et al., Dec. 2021b).
Similarly, Bui et al. (Apr. 2022) also focuses on linear classification settings and proposes the Coun-
terfactual Plan under Ambiguity (COPA) framework, which constructs a counterfactual plan by
minimizing a weighted sum to account for the model’s uncertainty. However, the limitation of these
methods to linear models or linear approximations is apparent, and several approaches have been
proposed to address this limitation. For instance, Nguyen et al. (Aug. 2022) proposes a method to
generate Bayesian recourse that is robust to data perturbations in a Gaussian mixture ambiguity set.
Nguyen et al. (May 2023) presents the Distributionally Robust Recourse Action (DiRRAc) frame-
work, which formulates a min-max optimization problem to generate recourse actions that have a
high probability of being valid under a mixture of model shifts. Recently, Jiang et al. (Sep. 2023)
introduces a robust optimization problem for computing counterfactual explanations with proximity
property as the objective, and robustness and plausibility properties as constraints.

User-involved recourse design: User-involved recourse design refers to the process of incorpo-
rating user preferences or feedback when generating recourses. Pawelczyk et al. (Oct. 2022) and
Pawelczyk et al. (May 2023) address the problem of enabling users to balance the trade-offs be-
tween the cost of generating recourses and their robustness to noisy implementations. Unlike our
paper, which focuses on the robustness of recourses to model shifts, it investigates the robustness
of recourses to noisy human responses. Specifically, the model allows users to select the proba-
bility of recourse invalidation when implementing the recourse with some level of noise. Under
this setting, the paper proposes a measure of recourse invalidation based on the expected difference
between the prediction value of the prescribed recourses and their implemented counterparts. The
authors demonstrate that generating robust recourses in the face of noisy human response requires
an additional cost. Furthermore, assuming that the distribution of the human response noise is Gaus-
sian, Pawelczyk et al. (May 2023) provides a theoretical upper-bound for the proposed measure of
recourse invalidation using a first-order approximation. DE TONI et al. (Feb. 2023) proposes a
human-in-the-loop approach for generating recourses using preference elicitation. The authors use
a polynomial procedure to maximize the expected utility of selection and refine cost estimates itera-
tively in a Bayesian fashion. DE TONI et al. (Feb. 2023) demonstrates empirically that it can lower
intervention costs with a handful of queries compared to user-independent alternatives.

3 PROBLEM FORMULATION

Consider a binary classification problem of predicting labels y ∈ Y = {0, 1} from features x ∈
X ⊂ Rd. Here, 0 is the unfavorable outcome and 1 is the favorable outcome. Given a dataset
D, we randomly split it into a training fold Dtrain and a calibration fold Dcalib = {(Xi, Yi)}ni=1.
From the training fold Dtrain, we derive the current (t = 0) classifier f(x) = g(h(x)), which uses
a differentiable scoring function h : X → [0, 1]. Examples of such scoring functions include those
used in logistic regression, random forests with class probabilities, or deep models with a softmax
top layer. It is worth noting that such scoring functions are often interpreted as estimating the
probability of a positive outcome given the input data, i.e. P(Y = 1|X = x). g : [0, 1] → Y is
an activation function that maps scores to binary labels. Throughout the remainder of the paper, we
will use g(t) = It≥η , in which η is the decision threshold with respect to the given scoring function
h and we assume η > 1/2. In addition to its use as a probability scoring function, the function
h(·) can be utilized to define the nonconformity score function (Johansson et al., May 2017). We
present the definition of the nonconformity function below, accompanied by a remark to clarify its
underlying intuition.
Definition 1. The nonconformity score function s(x, y) is defined as

s(x, y = 0) = h(x), s(x, y = 1) = 1− h(x).

Remark 2. The nonconformity score, denoted by an arbitrary function s : X × Y → R, quantifies
the degree of strangeness of an example (x, y) (Johansson et al., May 2017). In predictive mod-
eling, nonconformity functions are often constructed using the prediction error of a classification
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Now

t=0

Current classifier: f(x)=g(h(x))
Input: x0 with f(x0)=0

Counterfactual: xCF with f(xCF)=1

Future

Future classifier: f'(x)=g(h'(x))
Prediction for counterfactual xCF: f'(xCF)=0 or f'(xCF)=1
Recourse invalidation rate for xCF: P(f'(xCF)=0|f(xCF)=1)

t=t1
Model changesData shifts

Figure 1: Setup of recourse action under distributional and model shifts

model. For instance, s(x, y) = ∆[f(x, y)], where ∆ is an error metric. This is based on the idea
that uncommon or unusual examples tend to have larger prediction errors than common or normal
examples. For classification problems, one can define the nonconformity function as an error func-
tion ∆ applied to the probability estimates h provided by the model f , i.e. ∆[f(x, y)] = 1−h(y|x)
(Johansson et al., May 2017). The resulting definitions are provided in Definition 1.

As shown in Figure 1, when data shifts over time, the predictive model changes correspondingly
from f(·) = g(h(·)) to f ′(·) = g(h′(·)) (at t = t1), where the activation function g(·) remains the
same, h′ and f ′ are unknown. To constrain the model variations, we make the following assumption.
Assumption 3. We assume that the scoring function of the model before and after change exhibits a
small perturbation captured by a small number τ , such that h(x)− τ ≤ h′(x) ≤ h(x) + τ,∀x ∈ X .
The value of τ can be set based on the magnitude of the expected shifts and the sensitivity of the
deployed model to distributional shifts.

We now compare our assumption with the assumptions made in (Upadhyay et al., Dec. 2021) and
(Nguyen et al., May 2023). In Upadhyay et al. (Dec. 2021), M represents the current predictive
model, andMδ denotes the shifted model resulting from applying an operation δ to either the pa-
rameter space or the gradient space. When δ operates on the parameter space, it corresponds to small
model shifts within a limited range of the parameter space. When δ operates on the gradient space,
it restricts model shifts within a norm-ball. Nguyen et al. (May 2023) also considers parametric pre-
dictive models and proposes a framework for handling stochastic changes in the parameters of the
considered models. Specifically, the shifted parameters are represented by a random vector θ̃ that
follows from a finite mixture of distributions with K components, i.e., θ̃ ∼ (θ̂k, σ̂k, p̂k)k∈[K]. Each
component in the mixture represents one specific type of model shift, and the weight p̂k reflects the
proportion of the k-th shift type. Although Gaussian mixture models have been shown to be effective
approximators of densities, the proposed mixture model in Nguyen et al. (May 2023) only performs
well against a large number of distributional perturbations when the number of components is large
enough. Furthermore, selecting appropriate components for different application scenarios can also
be a challenging task. Unlike the assumptions in these two papers, our constraint on model shifts
relies solely on the value of the scoring function, and applies to both parametric and non-parametric
models.

As the predictive model changes, we can express the updated nonconformity function associated
with the new model f ′ as s′(x, y), where s′(x, y = 0) = h′(x), s′(x, y = 1) = 1− h′(x).

We now introduce the concept of recourse invalidation rate to quantify the probability that a recourse
becomes invalid under model shifts. Let x0 be an instance with an unfavorable prediction by the
current model, i.e. f(x0) = 0 and h(x0) < η. Let xCF be a recourse for x0 generated by any state-
of-the-art algorithmic recourse framework such that f(xCF) = 1 and h(xCF) ≥ η. The robustness
of xCF under model shift is measured by the recourse invalidation rate.
Definition 4. The recourse invalidation rate is defined as rivd(xCF) = P(f ′(xCF) = 0|f(xCF) = 1).

Using this metric, this paper aims to answer two questions: 1) Recourse invalidation rate estimation:
For a given recourse xCF, can we provide a reasonable estimate of rivd(xCF) under a shifted model
f ′?; 2) Recourse generation with given invalidation rate constraint: Suppose a user provides a
tolerance on recourse invalidation rate, how can we generate a minimal cost recourse that satisfies
such constraint?

To answer the first question, we provide an upper-bound for the recourse invalidation rate rivd(xCF).
More precisely, we aim to characterize ru(·) so that rivd(xCF) ≤ ru(xCF).
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              Applicant information
   Age: 20                              Family income: $50,000
    Loan amount: $50,000      Open credit lines: 5
    Gender: Male                    Savings: $5,000               
    Yearly income: $30,000    Late payments in 6Mths: 4 

 Application
denied 

Interested target:
0.05,0.20Invalidation

target setup

Application
submitted

Recommendation
 requested

Suggestions
Invalidation target: 0.05    Invalidation target: 0.20

+$30,000 family income
+$15,000 savings
-1 credit lines
-2 late payments in 6Mths

+$20,000 family income
+$5,000 savings

Low cost 
medium robustness

High cost 
high robustness

Figure 2: Loan application example: a practical view on the cost-robustness trade-off.

For the recourse generation with constrained invalidation rate problem, we define a cost function
c : Rd → R+ that measures the cost of a given recourse (Rawal et al., Jun. 2021; Upadhyay et al.,
Dec. 2021; Mothilal et al., 2020). To satisfy the user’s preference on the invalidation rate, we aim
to solve the optimization problem

min
xCF∈A

c(x0,x
CF), s.t. f(xCF) = 1, ru(xCF) ≤ γt, (1)

where γt is the maximum allowed invalidation rate determined by the user. In particular, the ob-
jective function encourages the implementation cost to be lower, the first constraint ensures that the
recourse is valid under the current model and the second constraint upper-bounds the recourse in-
validation probability as model shifts. For example, in the context of loan applications, as shown in
Figure 2, the user may request recommendations from the bank upon being denied. Once invalida-
tion targets are set, recommendations with varying levels of cost and robustness will be provided.

4 RECOURSE INVALIDATION ESTIMATION FOR A GIVEN RECOURSE

In this section, for a pre-computed recourse xCF, we propose an uncertainty quantification method
to calculate theoretical upper-bounds of the invalidation rate rivd(xCF) under potential model shifts.

We first provide the formula of the upper-bound for rivd(xCF).
Lemma 5. For the recourse invalidation rate, we have

rivd(xCF) = P(f ′(xCF) = 0|f(xCF) = 1) ≤ 1− P(s′(xCF, 1) ≤ 1− η)

P(s′(xCF, 1) ≤ 1− η + τ)
.

To compute this upper-bound, we need to analyze the value of s′(xCF, 1), which quantifies the degree
to which the counterfactual sample (xCF, 1) conforms to calibration samples in Dcalib. However,
the nonconformity scores {s(Xi, Yi)}ni=1 for samples in Dcalib are calculated based on the current
model. As such, we must establish a connection between s and s′ to proceed with our analysis.

We conceptualize the nonconformity function s(·, ·) as a nonconformity random variable S ∈ [0, 1].
Under the current model, for samples (X, Y ) in D, we assume that S = s(X, Y )∼P with p(·) as
the probability density function (pdf). As the model shifts to f ′, we assume that S = s′(X, Y )∼P ′,
with p′(·) as the pdf. To constrain the perturbation of P ′ from P within a certain bounded distance,
we introduce the following definitions.

Definition 6. Define point-wise likelihood ratio between P and P ′ as v(s) = p′(s)
p(s) . Define the

identification set as P(P,L, U) = {P ′ : L(s) ≤ v(s) ≤ U(s) P -almost surely}, where L(·) and
U(·) are pre-specified functions serving as point-wise lower and upper-bounds for likelihood ratio.

In light of Assumption 3 that limits the deviation of the scoring function value between the current
and potential future models, we can convert the conditions in Assumption 3 to conditions on P and
P ′ and specify the identification set P(P,L, U) based on samples in Dtrain. The specifics of how
L̂(·) and Û(·) are constructed are detailed in Appendix B. Subsequently, we utilizeDcalib to quantify
the nonconformity of s′(xCF, 1). For samples in Dcalib, let Si = s(Xi, Yi), and denote [1], · · · , [n]

as a permutation of {1, · · · , n} such that S[1] ≤ · · · ≤ S[n]. Let Li = L̂(Si), Ui = Û(Si). For
xCF, denote LCF = min{L̂(s(xCF, 0)), L̂(s(xCF, 1))}, UCF = max{Û(s(xCF, 0)), Û(s(xCF, 1))}.

Define F̂ (k) =

k∑
i=1

L[i]

k∑
i=1

L[i]+
n∑

i=k+1

U[i]+UCF
, Ê(t) =

t∑
i=1

U[i]

t∑
i=1

U[i]+
n∑

i=t+1
L[i]+LCF

. In the following two propo-
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sitions, we will establish both lower and upper bounds on the coverage probability of s′(xCF, yCF),
where yCF = f ′(xCF), ‖Z‖r = (E[|Z|r])1/r is the Lr norm for any random variable Z with r ≥ 1.

Proposition 7. For a given α, we have P(s′(xCF, yCF) ≤ S[k∗]) ≥ 1−α−∆̂F , where k∗ = min{k :

F̂ (k) ≥ 1− α}, ∆̂F =
∥∥∥ 1
L̂(S)

∥∥∥
q
·
∥∥∥max{0, L̂(S)− v(S)}

∥∥∥
p

with 1
p + 1

q = 1.

Remark 8. F̂ is an increasing function of k, which indicates that a lot of search methods can be
applied to find k∗ given a target level α (an algorithm is provided in the Appendix C.1). If L̂(s) ≤
v(s) a.s., then ∆̂F = 0 and P(s′(xCF, yCF) ≤ S[k∗]) ≥ 1− α.

Proposition 9. For a given β, we have P(s′(xCF, yCF) ≤ S[t∗]) ≤ 1−β+∆̂E , where t∗ = max{t :

Ê(t) ≤ 1−β}, ∆̂E =
∥∥∥ 1
Û(S)

∥∥∥
q
·(
∥∥∥max{0, L̂(S)− v(S)}

∥∥∥
p
+ 1
n‖v(S)1/p max{L̂(S)−v(S), 0}‖p).

Remark 10. If L̂(s) ≤ v(s) a.s., then ∆̂E = 0 and P(s′(xCF, yCF) ≤ S[t∗]) ≤ 1− β.

We then provide two upper-bounds for rivd(xCF). By using Propositions 7 and 9, we can derive
the upper-bound in Lemma 5. We start by introducing a more accessible bound that only needs the
computation of L̂(S) and leverages Proposition 7, thus simplifying the calculation process.

Theorem 11. Based on the assumed shift parameter τ , we have the following two cases.
1. If τ is small s.t. τ < 2η − 1, then we have rivd(xCF) ≤ α1 + ∆̂F , where α1 = 1 − F̂ (k∗1) with
k∗1 = max{k1 : S[k1] ≤ 1− η}. The procedure for finding α1 and k∗1 is summarized in Algorithm 1.
2. If τ ≥ 2η − 1, then as long as h(xCF) > 1− η + τ , we still have rivd(xCF)≤α1 + ∆̂F .

Next, we present an alternative bound that integrates both inequalities from Propositions 7 and9 and
is tighter than the previous one. This bound, while providing greater precision, comes with increased
computational complexity as it involves calculations for both L̂(S) and Û(S).

Theorem 12. The upper-bound in Theorem 11 can be refined as rivd(xCF)≤1 − 1−α1−∆̂F

1−α2+∆̂E
, where

α2 = 1− Ê(k∗2) with k∗2 = min{k2 : S[k2] ≥ 1− η + τ}.

Compared to the lower-bound analysis presented in Upadhyay et al. (Dec. 2021), which aims to
demonstrate the likelihood of invalidation of recourses generated without accounting for model
shifts, our approach involves an upper-bound on rivd, thereby providing a threshold for the acceptable
level of invalidation and facilitating the design of recourses with limited invalidation rates. Addi-
tionally, the lower bound analysis in Upadhyay et al. (Dec. 2021) assumes a Gaussian distribution
for xCF, which is unlikely to hold in real-world scenarios, as well as a strong assumption regarding
the model shift parameter with respect to the proposed Gaussian distribution. On the contrary, in
Theorems 11 and 12, we do not make any distributional assumptions on X/xCF and the constraint
on the model shift parameter is less restrictive.

Bui et al. (Apr. 2022) also proposes an uncertainty quantification tool to compute the lower and
upper-bounds of the validation probability. However, the bounds derived in Bui et al. (Apr. 2022)
are restricted to linear classifiers and require knowledge of the first- and second-moment information
of the nominal distribution assumed for the model parameter. Furthermore, they rely on the use of
Gelbrich distances to define the set of model uncertainties in order to efficiently obtain the bounds by

Algorithm 1 Procedure of finding α1, k
∗
1 in ru(xCF)

Input: Dtrain, Dcalib, recourse xCF, nonconformity score function s(·, ·), model shift parameter τ .
1: Use Dtrain to construct the point-wise bounds L̂(·) and Û(·) for likelihood ratio v.
2: For samples in Dcalib, compute Si = s(Xi, Yi), Li = L̂(Si), Ui = Û(Si).
3: For recourse xCF, compute LCF and UCF.
4: For 1 ≤ k ≤ n, compute F̂ (k).
5: Derive the value of k∗1 from k∗1 = max{k1 : S[k1] ≤ 1− η}.
6: Compute α1 = 1− F̂ (k∗1).

Output: The value of α1, k
∗
1 .
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solving semidefinite programs. In contrast, our proposed invalidation upper-bounds can be applied
to any model, including non-parametric models, and can be efficiently computed using Algorithm 1.

5 RECOURSE GENERATION WITH INVALIDATION RATE CONSTRAINT

Arming with the ability to upper-bound the recourse invalidation rates, in this section, we propose
an algorithm for users to manage the trade-off between recourse cost and the risk of the recourse
being invalidated under model shifts.

Suppose the user-specified invalidation rates are γ1, γ2, · · · , γm. For one specific invalidation rate
γt, the goal is to find a recourse xCF whose probability of becoming invalid under potential model
shifts is at most γt. To bound the recourse invalidation rate, we require γt ≥ ru(xCF), and that the
recourse should be valid under the current model, i.e. f(xCF) = 1.

To design an algorithm that guides the recourse search towards regions of low cost while satis-
fying the invalidation constraint, we solve the optimization problem in (1). Here, the constraint
about recourse invalidation rate relies on the value of α1 (and α2 for the tighter bound), which is
simulation-based. To address this, we apply iterative optimization approaches that do not rely on
derivatives. In the following, we provide an outline of the proposed method. We name our algorithm
probabilistic invalidation based robust recourse (PiRR) generation algorithm.

For our proposed optimization problem (1), it is a nonconvex problem with both equality and in-
equality constraints. We will use extended ADMM algorithms that can be applied to solve con-
strained nonconvex problems efficiently (Wang et al., Jan. 2019; Themelis & Patrinos, Jan. 2020).
First use the penalty function and variable substitution to replace the inequality constraint. Then (1)
can be rewritten as

min
xCF∈A,z

c(x0,x
CF) + I(z), s.t.f ′(xCF) = f(xCF)− 1 = 0, r′(xCF, z) = ru(xCF)− z = 0, (2)

where l(z) =∞·1z>γt . The equality constrained problem (2) can be further transformed to its Aug-
mented Lagrangian problem: Lρ(xCF, z, µ1, µ2) = c(x0,x

CF)+I(z)+µ1f
′(xCF)+µ2r

′(xCF, z)+
ρ
2

[
f ′(xCF)2 + r′(xCF, z)2

]
, where µ1, µ2 are Lagrangian multipliers, and ρ > 0 is a penalty con-

stant. Using ADMM, there are 3 update steps:
1. xCF update: (xCF)k+1 = arg min

xCF∈A
Lρ(xCF, zk, µk1 , µ

k
2);

2. z update: zk+1 = max{0,min{γt, arg min
z
Lρ((xCF)k+1, z, µk1 , µ

k
2)}};

3. multipliers update: µk+1
1 = µk1 + ρf ′((xCF)k+1), µk+1

2 = µk2 + ρr′((xCF)k+1, zk+1).
In particular, for the sub-problem on xCF, since ru(xCF) can only be evaluated based on simula-
tions, its gradient information can only be obtained by numerical differentiation. Thus, we apply
derivative-free optimization methods (Larson et al., May 2019; Shi et al., Feb. 2021) as this kind of
approaches only require the objective function value and constraint function values to be evaluated.
For the sub-problem on z, we note that on the interval [0, γt], it is a quadratic optimization problem
on z and can be easily solved. Since ADMM takes the form of a decomposition-coordination proce-
dure, the solutions to small local subproblems are coordinated to find a solution to the large global
problem. The proposed ADMM based PiRR procedure is summarized in Algorithm 2.

Algorithm 2 PiRR: Probabilistic Invalidation based Robust Recourse Generation
Input: x0, current model f , model shift parameter τ , invalidation rate γt, penalty constant ρ.

1: initialize: (xCF)0 = x0, z
0 = γt, µ

0
1 = 0, µ0

2 = 0, k = 0;
2: repeat
3: (xCF)k+1 = arg minxCF∈A Lρ(xCF, zk, µk1 , µ

k
2);

4: zk+1 = max{0,min{γt, arg minz Lρ(xk+1, z, µk1 , µk2)}};
5: µk+1

1 = µk1 + ρf ′((xCF)k+1);
6: µk+1

2 = µk2 + ρr′((xCF)k+1, zk+1);
7: k = k + 1;
8: until convergence

Output: (xCF)∗ = (xCF)k.

7
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6 NUMERICAL RESULTS

This section presents numerical examples to provide empirical validation of our proposed theoretical
framework. In Section 6.1, we demonstrate the efficacy of our approach for estimating the recourse
invalidation rate based on state-of-the-art recourse generating algorithms. In Section 6.2, we evaluate
the effectiveness of our proposed algorithms in finding recourses that satisfy prescribed invalidation
targets. Additional numerical results are available in Appendix D.

Datasets: To evaluate the effect of distributional shifts on the validity of generated recourses, we
analyze three datasets from distinct domains, namely the Criminal justice dataset (Lakkaraju et al.,
Aug. 2016), the Student performance dataset (Amrieh et al., Aug. 2016) and the German credit
dataset (Dua et al., 2017). Each dataset consists of two parts, initial data D1 and shifted data D2,
and exhibits various types of distributional shifts. Details can be found in Appendix D.

Predictive models: We consider two predictive models: neural network (NN) and logistic regres-
sion (LR). In particular, for NN models, we train the ReLu-based models with 50 hidden layers.

Cost functions: We use two cost functions to measure the recourse implementation cost, `1 distance
and a cost function learned from pairwise feature comparison inputs (PFC) (Rawal et al., Jun. 2021).

Baseline recourse algorithms: We consider three baseline recourse generating methods to validate
the theoretical bounds on recourse invalidation rate: counterfactual explanations (CF) framework
outlined by (Wachter et al., Nov. 2017), actionable recourse (AR) in linear classification (Ustun
et al., Jan. 2019), and causal recourse framework (MINT) proposed by Karimi et al. (Aug. 2020). In
addition, we compare our proposed robust recourse generating methods with several other methods
that utilize robustness. These include ROAR, which generates recourses that are robust to model
updates (Upadhyay et al., Dec. 2021); ARAR, which finds recourses robust to uncertainty in the
inputs (Dominguez-Olmedo et al., Jul. 2022); PROBE, which allows users to choose the invalidation
rate if small changes are made to the recourse (Pawelczyk et al., May 2023); DiRRAc, which handles
stochastic changes in the model parameters (Nguyen et al., May 2023).

Experimental setting: We use 5-fold cross validation throughout the experiments. On D1, we use
4 folds (training fold) to train predictive models and the remaining fold (validation/calibration fold)
to generate recourses. On D2, we train the shifted models. The retrained model is applied on the
validation fold to obtain the empirical recourse invalidation rate.

6.1 VALIDATING THE RECOURSE INVALIDATION BOUNDS

Since the generated recourse for each negatively-predicted sample is different, the derived bounds
on the recourse invalidation rate are also different. To evaluate the theoretical bounds, we compute
the average upper-bounds as well as the standard deviation. For `1 cost, the results are provided

Table 1: Theoretical and empirical recourse invalidation (`1 cost, ε = min{s∈Strain} p̂(s)).

Algorithm Dataset Predictive Upper-bound Upper-bound Empirical
model in Theorem 11 in Theorem 12 invalidation rate

CF

Criminal justice LR 0.81± 0.04 0.75± 0.05 0.70
NN 0.66± 0.05 0.59± 0.10 0.49

Student performance LR 0.82± 0.07 0.79± 0.09 0.72
NN 0.70± 0.08 0.62± 0.11 0.53

German credit LR 0.63± 0.04 0.57± 0.09 0.44
NN 0.63± 0.05 0.60± 0.07 0.54

AR

Criminal justice LR 0.91± 0.03 0.89± 0.04 0.85
NN 0.54± 0.10 0.45± 0.14 0.34

Student performance LR 0.70± 0.08 0.67± 0.10 0.59
NN 0.28± 0.03 0.19± 0.04 0.16

German credit LR 0.56± 0.08 0.54± 0.11 0.46
NN 0.78± 0.05 0.74± 0.05 0.68

MINT German credit LR 0.18± 0.04 0.13± 0.05 0.09
NN 0.53± 0.04 0.44± 0.07 0.38
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Table 2: PiRR compared to existing robust recourse generating methods (LR model).

Dataset Algorithm Invalidation rate Invalidation rate Average cost
before shift after shift

Criminal justice

ROAR 0.00± 0.00 0.02± 0.02 3.14± 0.25
ARAR 0.00± 0.00 0.03± 0.02 2.07± 0.31
PROBE 0.00± 0.00 0.02± 0.02 1.76± 0.35
DiRRAc 0.00± 0.00 0.02± 0.02 1.68± 0.32
PiRR(0.10) 0.00± 0.00 0.07± 0.02 1.03± 0.25
PiRR(0.05) 0.00± 0.00 0.03± 0.01 1.27± 0.32

Student performance

ROAR 0.00± 0.00 0.06± 0.10 2.02± 0.38
ARAR 0.00± 0.00 0.05± 0.10 1.54± 0.40
PROBE 0.00± 0.00 0.09± 0.08 1.37± 0.35
DiRRAc 0.00± 0.00 0.05± 0.09 1.55± 0.34
PiRR(0.10) 0.00± 0.00 0.08± 0.02 1.29± 0.35
PiRR(0.05) 0.00± 0.00 0.04± 0.01 1.43± 0.42

German credit

ROAR 0.00± 0.00 0.06± 0.15 3.88± 0.54
ARAR 0.00± 0.00 0.04± 0.08 2.27± 0.36
PROBE 0.00± 0.00 0.03± 0.07 1.54± 0.37
DiRRAc 0.00± 0.00 0.01± 0.06 1.62± 0.30
PiRR(0.10) 0.00± 0.00 0.07± 0.02 1.34± 0.36
PiRR(0.05) 0.00± 0.00 0.03± 0.02 1.57± 0.39

in Table 1. For the PFC cost, the results are provided in Appendix D,Table 7. Our analysis shows
that as the predictive model shifts, the generated recourses have a high probability of becoming in-
valid. The invalidation rate depends on various factors such as the choice of predictive model, the
shifts in the dataset, and the recourse generating algorithms used. Among the three baseline meth-
ods, MINT is shown to have better robustness when the model shifts because it leverages the causal
graph to generate recourse. Regarding the derived theoretical bounds on the recourse invalidation
rate, our results demonstrate that the empirical invalidation rates always lie below the theoretical
upper-bounds, and that the upper-bound obtained from Theorem 12 is tighter with a slightly larger
deviation than that obtained from Theorem 11. Furthermore, we observe that for a given recourse
generating method, the theoretical bounds for recourses of different samples do not deviate signifi-
cantly. The reason for this is that all considered baseline algorithms aim to find low-cost recourses,
which are likely to lie on the decision boundary and have similar robustness to model changes.

6.2 EFFECTIVENESS OF PROPOSED ALGORITHMS

We evaluate the performance of PiRR against other existing robust recourse generating methods
from the literature, using both `1 and PFC costs. Table 2 presents the results for `1 cost, while
the results for PFC cost are provided in Appendix D, Table 8. In our experiments, we assume that
the invalidation targets specified by the user are 0.10 and 0.05 for PiRR. The results show that
PiRR generates more robust recourse solutions that meet the user’s invalidation targets compared to
existing baselines. Moreover, PiRR generates solutions that are easier to implement compared to
other methods. Additional comparisons between PiRR and other methods, as well as the impact of
ε on the performance of PiRR, can be found in Appendix D.

7 CONCLUSION

In this paper, we have defined a recourse invalidation rate under model shifts and proposed an un-
certainty quantification method to provide theoretical upper-bounds on the invalidation rate for a
given recourse generated by any state-of-the-art algorithm. To generate recourses with different lev-
els of robustness according to users’ needs, a nonconvex constrained simulation-based optimization
problem has been formulated and an iterative approach has been proposed to solve the optimization
problem. Numerical results have been provided to illustrate the derived theoretical bounds on the
recourse invalidation rate and show the efficacy of the proposed algorithms on multiple real datasets.
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A PRELIMINARIES

A.1 BACKGROUND ON ALGORITHM RECOURSE

Suppose f : X → Y is a classifier that maps features x ∈ X ⊂ Rd to labels Y = {0, 1}, where
0 is the unfavorable outcome and 1 is the favorable outcome. Define f(x) = g(h(x)), where h
is the scoring function and the activation function is g(t) = It≥η . For ease of illustration, we
adopt the setting of loan approval as an example, i.e., h(x) ≥ η denotes that a loan is granted and
h(x) < η denotes that it is denied. For an individual x0 that was denied by the loan-granting institu-
tion, counterfactual explanation methods could provide the individual with a recourse by identifying
which attributes to change for reversing the unfavorable prediction result. Given a cost function
c : Rd → R+, the counterfactual explanation xCF can be found by solving (Wachter et al., Nov.
2017; Ustun et al., Jan. 2019)

min
x′∈A

l(f(x′), 1) + λc(x,x′), (3)

where A is the set of actionable counterfactuals, λ is the trade-off parameter, and l is the loss for
invalid recourse. The first term in the objective function guarantees that the prediction result of the
counterfactual x′ is close to the favorable outcome 1. The second term in the objective function
encourages the recourse to have lower cost.

A.2 BACKGROUND ON CONFORMAL PREDICTIVE INFERENCE

Conformal inference framework provides a generic methodology for transforming the outputs of
any black box prediction algorithm into a prediction set (Gibbs & Candes, Dec. 2021). The
algorithms from conformal inference provide a prediction set that has valid marginal coverage
P(Yi ∈ Ĉ(Xi)) ≥ 1 − α based on standard properties of quantiles, if the training and test data
are exchangeable (Cauchois et al., Aug. 2020; Gibbs & Candes, Dec. 2021).

To produce the prediction set, a conformal predictor uses a nonconformity function, an arbitrary
function s : X × Y → R, that measures the strangeness of a sample (x, y) (Johansson et al., May
2017). Based on the nonconformity scores of examples with known output labels, and the noncon-
formity score of a tentatively labels test pattern (xn+1, ỹ), a p-value statistic can be calculated to
reject the hypothesis that ỹ corresponds with the true label yn+1. Then all labels ỹ ⊂ Y that are not
rejected at the chosen significance level α constitute the final prediction set, which contains the true
label yn+1 with a probability of 1− α.

In particular, for a given confidence level (1 − α), one can define a confidence set Ĉ(x) based on
the validation set Dval = {(Xi, Yi)}ni=1, i.e.

Ĉ(x) = {y ∈ Y|s(x, y) ≤ Q̂n,1−α}, (4)
where

Q̂n,1−α = Quantile
((

1 +
1

n

)
α; {s(Xi, Yi)}ni=1

)
.

Then as long as {(Xi, Yi)}n+1
i=1 are exchangeable, the confidence set Ĉ(Xn+1) satisfies (Romano

et al., Dec. 2019)

P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α. (5)
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In the algorithmic recourse scenario, we view the counterfactual sample (xCF, yCF) as the (n + 1)-
th test sample. Then the nonconformity score s(xCF, yCF) measures the degree of nonconformity
between the counterfactual sample and samples inD. Different from the above-mentioned inference
problem, we do not have a prescribed value of α, but have some observed properties on the value
of s(xCF, yCF). Thus, by transforming equation 4, equation 5 and applying them to (xCF, yCF), we
have

P(s(xCF, yCF) ≤ Q̂n,1−α) ≥ 1− α, (6)

where the value of α can be derived based on the known properties of s(xCF, yCF). Moreover,
equation 6 provides a probability inequality on the value of s(xCF, yCF), which is useful in measuring
the robustness of xCF.

However, the above mentioned results are limited by the exchangeable data assumption. Recently,
there are works extending the conformal inference beyond the case of exchangeable data. In par-
ticular, a weighted version of conformal inference has been proposed to compute distribution-free
prediction intervals for problems in which the test and training covariant distributions differ, but the
likelihood ratio between the two distributions is known (Tibshirani et al., Dec. 2019).

Assume that {(Xi, Yi)}ni=1
i.i.d.∼ P and the independent test sample (Xn+1, Yn+1) ∼ P ′. Then the

likelihood ratio between P and P ′ is defined as

v(x, y) =
dP ′

dP
(x, y), (7)

and v(x, y) is assumed to be known exactly in (Tibshirani et al., Dec. 2019). For any new data
sample (x, y) ∈ X ×Y (e.g. the generated counterfactual sample (xCF, yCF)), assign weights to the
sample as

pi(x, y) =
v(Xi, Yi)

n∑
j=1

v(Xj , Yj) + v(x, y)
, i = 1, 2, · · · , n,

pn+1(x, y) =
v(x, y)

n∑
j=1

v(Xj , Yj) + v(x, y)
. (8)

Then we have

P′(Yn+1 ∈ D̂(Xn+1)) ≥ 1− α,

where the prediction interval D̂(Xn+1) is given by

D̂(Xn+1) = {y : s(Xn+1, y) ≤ Ŝ1−α(y)},

with

Ŝ1−α(y) = Quantile

(
1− α,

n∑
i=1

pi(Xn+1, y)δvn+1(Si) + pn+1(Xn+1, y)δ∞

)
,

and δ denotes the point mass.

In the algorithm recourse scenario, since the distribution of nonconformity score variable s changes,
we can leverage the concept of weighted conformal inference by assigning weights to the validation
samples based on their similarity to the counterfactual example to provide probability bounds on the
nonconformity score of (xCF, yCF).
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B CONSTRUCTION OF L(·) AND U(·)

In this section, we provide details for constructing the point-wise lower and upper bounds for the
likelihood ratio. Based on the definition of the identification set, it can be observed that when
P ′ is constrained to be similar to P , L(·) and U(·) can be close. Conversely, if P ′ is allowed to
deviate significantly from P , L(·) and U(·) must be far apart. In light of Assumption 3 that limits
the deviation of the scoring function value between the current and potential future models, we
convert the conditions in Assumption 3 to conditions on P and P ′ and specify the identification set
P(P,L, U) based on samples in the training set Dtrain.

Lemma 13. Under Assumption 3, we have
∫ s+δ
s−δ p

′(t)dt ≤
∫ s+τ+δ

s−τ−δ p(t)dt.

Using this lemma, we construct L̂ and Û with L̂(s) ≤ Û(s),∀s ∈ [0, 1] and use them as the
pointwise lower and upper-bounds for the unknown likelihood ratio v(s). It is worth noting that
the proposed theoretical guarantee does not require perfect bounds and is valid even when there are
expectations (as we can see in Propositions 7 and 9). We can construct L̂ and Û as follows:

• derive the empirical probability mass function p̂ of P and denote the support of p̂ as Strain;

• choose a parameter ε such that ε ≤
∑

{s′∈Strain:s−τ≤s′≤s+τ}
p̂(s′),∀s ∈ Strain (which

guarantees L̂(s) ≤ Û(s)), e.g. we can set ε = min
{s∈Strain}

p̂(s);

• let L̂(s) = ε
p̂(s) , Û(s) =

∑
{s′∈Strain:s−τ≤s′≤s+τ}

p̂(s′)

p̂(s) .

Let ∆̂l = ‖max{L̂(s) − v(s), 0}‖p and ∆̂u = ‖max{v(s) − Û(s), 0}‖p be the measures of
bounding violation. For the construction method described above, we observe that the formula for
Û(·) is motivated by Lemma 13 and ensures that ∆̂u = 0. For L̂(·), ∆̂l can be minimized if L̂(s)

is always below v(s) and since p′ is a pdf, theoretically there always exists ε0 such that ∆̂l = 0. In
numerical examples, to mitigate extreme values of L̂, we don’t examine each possible value of s in
isolation. Instead, we can divide the range [0, 1] into multiple bins, calculate the probability mass in
each bin, and use this as p̂ for calculating L̂ and Û . This approach ensures that the ratio between Û
and L̂ typically remains below 10 for all s, making these bounds both practical and informative.
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C ADDITIONAL ALGORITHMS

C.1 ALGORITHM FOR FINDING k∗ GIVEN A TARGET LEVEL α

Algorithm 3 Procedure of finding k∗ given a target level α
Input: training data Dtrain, calibration data Dcalib, recourse xCF, nonconformity score function

s(·, ·), model shift parameter τ , target level α ∈ (0, 1).
1: Use Dtrain to construct the point-wise bounds L̂(·) and Û(·) for likelihood ratio v.
2: For samples in Dcalib, compute Si = s(Xi, Yi), Li = L̂(Si), Ui = Û(Si).
3: For the recourse xCF, compute LCF and UCF.
4: For 1 ≤ k ≤ n, compute F̂ (k).
5: Derive k∗ = min{k : F̂ (k) ≥ 1− α}.

Output: The value of k∗.

C.2 RECOURSES WITH VARIOUS CHOICES OF λ

In this subsection, we provide an additional algorithm for finding recourses with different robustness
levels. The performance of this algorithm can be found in Figure 5.

In state-of-the-art recourse algorithms (Wachter et al., Nov. 2017; Ustun et al., Jan. 2019; Karimi
et al., Aug. 2020), the low-cost recourse for an adversely predicted sample x0 is found by solving

xCF = arg min
x∈A

[l(f(x), 1) + λc(x0,x)], (9)

where the trade-off parameter λ is considered given. However, we note that as the value of λ
changes, the generated recourse xCF varies, and the recourse cost as well as the recourse invalidation
rate also change accordingly. Thus, a natural way to find different recourses with different robustness
levels is to vary the value of λ. For each choice of λ (e.g. λ = λj), we can generate a recourse xCF

j

by any recourse generating algorithm and derive the corresponding recourse cost cj = c(x0,x
CF
j ).

Based on Theorem 11 or Theorem 12, we are able to derive the upper-bound ru,j = ru(xCF
j ) on

the recourse invalidation rate, which measures the robustness of xCF
j to model changes. Then all

generated recourses and their corresponding recourse costs as well as robustness metrics (bounds on
the recourse invalidation rates), i.e. {(xCF

j , cj , ru,j)}j , can be provided to users. We summarize the
procedure in Algorithm 4.

Algorithm 4 Recourses with various choices of λ
Input: negatively predicted sample x0, current model f , model shift parameter τ , maximum trade-

off parameter λm, increment parameter dλ of λ.
1: j = 1
2: for λ = 0 : dλ : λm do
3: solve equation 9 by a recourse generating algorithm and the generated recourse is xCF

j ;
4: calculate the recourse cost cj = c(x0,x

CF
j );

5: derive the upper-bound ru,j = ru(xCF
j ) (according to Theorems 11 or 12) on the invalidation

rate;
6: j = j + 1;
7: end for

Output: {(xCF
j , cj , ru,j)}j .
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D ADDITIONAL DETAILS ON NUMERICAL RESULTS

All experiments were run on a 2.8 GHz Quad-Core Intel Core i7.

D.1 DETAILS ABOUT THE DATASETS

We conduct our analysis using three real datasets: Criminal justice dataset (Lakkaraju et al., Aug.
2016), Student performance dataset (Amrieh et al., Aug. 2016) and German credit dataset (Dua
et al., 2017). Each dataset contains two parts, initial data (D1) and shifted data (D2).

1. Criminal justice dataset (Lakkaraju et al., Aug. 2016): It contains proprietary data from
1978 (D1) and 1980 (D2), with 8395 and 8595 samples, respectively. It includes demo-
graphic features such as race, sex, age, time-served, and employment, and a target attribute
related to bail decisions. Furthermore, the dataset exhibits an inherent temporal shift, as
the data characteristics in 1980 differ from those in 1978.

2. Student performance dataset (Amrieh et al., Aug. 2016): It comprises publicly available
data collected from schools in Jordan (D1) and Kuwait (D2), with 129 and 122 samples, re-
spectively. The problem of predicting grades is viewed as a binary classification task, with
numerical grades transformed into pass and fail. Predictors such as grade, holidays-taken,
and class-participation are included, and the dataset demonstrates an inherent geospatial
distribution shift as the data characteristics of students vary across countries. The fea-
tures we use are: “sex”, “age”, “address”, “famsize”, “Pstatus”, “Medu”, “Fedu”, “Mjob”,
“Fjob”, “reason”, “guardian”, “traveltime”, “studytime”, “failures”, “schoolsup”, “fam-
sup”, “paid”, “activities”, “nursery”, “higher”, “internet”, “romantic”, “famrel”, “free-
time”, “goout”, “Dalc”, “Walc”, “health”, “absences”.

3. German credit dataset (Dua et al., 2017): It contains 900 samples from two versions each.
The applicants’ loan amount, employment history, and age are used to predict their credit
score. Additionally, the data exhibits a data correction-based distribution shift, as the data’s
characteristics differ due to a change in the data preprocessing step. The features we use
are: “duration”, “amount”, “age”, “personal-status-sex”.

D.2 CLASSIFICATION MODELS

This subsection outlines the fitting process for the classification models. A standard 4 : 1 train-
test split was employed for model training and evaluation. Identical architectures were used for all
models across the datasets, as shown in Table 3. The model performance is evaluated based on the
accuracy as shown in Table 4.

Table 3: Classification models architecture
LR NN

Units [Input dimension, 2] [Input dimension, 50, 2]
Type Fully connected Fully connected
Intermediate activation NA ReLu
Last layer activation Softmax Softmax

Table 4: Average test accuracy for classification models

Criminal justice Student performance German credit
LR 1.00± 0.00 0.92± 0.01 0.70± 0.01
NN 1.00± 0.00 0.95± 0.01 0.75± 0.02
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D.3 IMPLEMENTATION DETAILS

For a given dataset, a particular predictive model (NN or LR), and a specific baseline recourse
generating method, to validate the theoretical bounds on the recourse invalidation rate, we

1. train predictive modelM1 on the training fold of D1;
2. useM1 to obtain prediction result for each sample in the validation fold of D1;
3. select samples that have negative prediction results;
4. generate recourses for those negatively-predicted samples based onM1 by using the spec-

ified recourse generating method;
5. derive the updated modelM2 on the shifted data D2;
6. verify Assumption 3 and derive the value of τ based onM2;
7. for each recourse, compute bounds on the recourse invalidation rate according to Theo-

rems 11 and 12 (since the bounds are also derived through simulation, we need to run
Algorithm 1 when computing the bounds);

8. use M2 to obtain prediction result for each recourse and evaluate the empirical recourse
invalidation rate;

9. compare the empirical invalidation rate and the theoretical bounds.

D.4 ADDITIONAL EXPERIMENTAL RESULTS

In Table 5 and Table 6, we provide empirical invalidation rates of recourses generated by baseline
algorithms. We report the averaged empirical invalidation rate as well as its standard deviation.

Table 5: Empirical invalidation rate of recourses under model shifts (`1 cost)

Algorithm Dataset Predictive model Empirical invalidation rate

CF

Criminal justice LR 0.69± 0.09
NN 0.48± 0.09

Student performance LR 0.71± 0.09
NN 0.52± 0.09

German credit LR 0.46± 0.27
NN 0.53± 0.06

AR

Criminal justice LR 0.84± 0.06
NN 0.35± 0.17

Student performance LR 0.57± 0.14
NN 0.17± 0.10

German credit LR 0.47± 0.21
NN 0.69± 0.06

MINT German credit LR 0.07± 0.07
NN 0.37± 0.11

In Table 7, we provide the theoretical and empirical recourse invalidation by the considered baseline
algorithms with PFC cost.

The effectiveness of Algorithm 2 (PiRR) is demonstrated by Table 8, which reports the performance
of PiRR and four other baseline robust recourse generating methods in terms of invalidation rates
before and after the model shift, along with the average cost computed under the PFC cost. Fig-
ure 3 compares the performance of PiRR with baseline methods in generating recourse under 3
different prescribed invalidation rates: 0.05, 0.10, 0.15. Figure 4 investigates the impact of ε on the
performance of PiRR.

For Algorithm 4, we use the considered three baseline recourse generating methods to generate
recourses for negatively-predicted samples in the validation fold. To obtain recourses with different
costs and robustness, we vary the value of the trade-off parameter λ. In particular, we choose
λ = {0.1, 0.5, 0.9, 1.3, 1.7}. The results are shown in Figure 5.
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Table 6: Empirical invalidation rate of recourses under model shifts (PFC cost)

Algorithm Dataset Predictive model Empirical invalidation rate

CF

Criminal justice LR 0.74± 0.11
NN 0.50± 0.13

Student performance LR 0.82± 0.10
NN 0.70± 0.14

German credit LR 0.44± 0.33
NN 0.49± 0.12

AR

Criminal justice LR 0.91± 0.05
NN 0.65± 0.17

Student performance LR 0.76± 0.11
NN 0.18± 0.11

German credit LR 0.46± 0.27
NN 0.44± 0.15

MINT German credit LR 0.05± 0.08
NN 0.36± 0.15
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Figure 3: Recourse invalidation rate v.s. recourse cost plot. For any given invalidation rate, PiRR
could generate recourses that satisfy the invalidation requirement while maintaining low recourse
costs. The average recourse costs of robust recourses generated by PiRR are smaller than other
methods under the same invalidation rate constraint.
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Figure 4: Impact of ε on the performance of PiRR, where ε0 = min
{s∈Strain}

p̂(s), εmax =∑
{s′∈Strain:s−τ≤s′≤s+τ}

p̂(s′). PiRR consistently generates recourses that meet the invalidation re-

quirements across different values of ε, while maintaining similar overall performance.

0 1 2 3 4 5 6 7 8 9

Average cost

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
c
o
u
rs

e
 i
n
v
a
lid

a
ti
o
n
 r

a
te

German credit, LR model, l
1
 cost

CF(empirical)

CF(average upper bound)

AR(empirical)

AR(average upper bound)

MINT(empirical)

MINT(average upper bound)

Figure 5: Recourse invalidation rate v.s. recourse cost plot for Algorithm 4. As λ varies, the recourse
cost changes, while the recourse invalidation rate changes only slightly. The theoretical bounds on
the recourse invalidation rates are valid.
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Table 7: Theoretical and empirical recourse invalidation (PFC cost,ε = min{s∈Strain} p̂(s))

Algorithm Dataset Predictive Upper-bound Upper-bound Empirical
model in Theorem 11 in Theorem 12 invalidation rate

CF

Criminal justice LR 0.85± 0.04 0.79± 0.05 0.73
NN 0.67± 0.06 0.58± 0.10 0.51

Student performance LR 0.91± 0.08 0.88± 0.09 0.82
NN 0.83± 0.08 0.78± 0.11 0.69

German credit LR 0.64± 0.06 0.59± 0.06 0.43
NN 0.66± 0.06 0.64± 0.07 0.50

AR

Criminal justice LR 0.93± 0.04 0.92± 0.04 0.90
NN 0.77± 0.03 0.69± 0.04 0.65

Student performance LR 0.85± 0.08 0.81± 0.09 0.76
NN 0.28± 0.04 0.22± 0.04 0.19

German credit LR 0.64± 0.08 0.56± 0.11 0.50
NN 0.59± 0.04 0.54± 0.05 0.42

MINT German credit LR 0.25± 0.07 0.16± 0.08 0.06
NN 0.51± 0.08 0.45± 0.09 0.37

Table 8: The performance of PiRR is compared with other robust recourse generating methods,
using LR model and the PFC cost function. In PiRR, the invalidation targets specified by the user
are assumed to be 0.10 and 0.05. The results show that PiRR generates recourse solutions that
always meet the user’s invalidation targets. For the recourse cost, when compared with existing
baselines, the recourse solutions generated by PiRR are easier to implement by users.

Dataset Algorithm Invalidation rate Invalidation rate Average cost
before shift (M1) after shift (M2)

Criminal justice

ROAR 0.00± 0.00 0.02± 0.01 0.44± 0.12
ARAR 0.00± 0.00 0.02± 0.02 0.36± 0.10
PROBE 0.00± 0.00 0.02± 0.01 0.25± 0.09
DiRRAc 0.00± 0.00 0.01± 0.02 0.28± 0.12
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.16± 0.06
PiRR(0.05) 0.00± 0.00 0.03± 0.01 0.25± 0.08

Student performance

ROAR 0.00± 0.00 0.09± 0.07 1.20± 0.10
ARAR 0.00± 0.00 0.06± 0.07 0.92± 0.09
PROBE 0.00± 0.00 0.04± 0.07 0.74± 0.10
DiRRAc 0.00± 0.00 0.04± 0.06 0.81± 0.08
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.85± 0.08
PiRR(0.05) 0.00± 0.00 0.03± 0.02 0.72± 0.10

German credit

ROAR 0.00± 0.00 0.00± 0.00 0.36± 0.08
ARAR 0.00± 0.00 0.02± 0.02 0.27± 0.06
PROBE 0.00± 0.00 0.02± 0.01 0.27± 0.07
DiRRAc 0.00± 0.00 0.01± 0.02 0.32± 0.08
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.21± 0.06
PiRR(0.05) 0.00± 0.00 0.02± 0.02 0.26± 0.07
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E PROOFS

E.1 PROOF OF LEMMA 5

rivd(xCF) = P(f ′(xCF) = 0|f(xCF) = 1)

= 1− P(h′(xCF) ≥ η|h(xCF) ≥ η)

(a)
= 1− P(h′(xCF) ≥ η|h(xCF) ≥ η, h′(xCF) ≥ η − τ)

= 1− P(h′(xCF) ≥ η, h(xCF) ≥ η|h′(xCF) ≥ η − τ)

P(h(xCF) ≥ η|h′(xCF) ≥ η − τ)

= 1− P(h′(xCF) ≥ η|h′(xCF) ≥ η − τ)P(h(xCF) ≥ η|h′(xCF) ≥ η, h′(xCF) ≥ η − τ)

P(h(xCF) ≥ η|h′(xCF) ≥ η − τ)

= 1− P(h′(xCF) ≥ η|h′(xCF) ≥ η − τ)
P(h(xCF) ≥ η|h′(xCF) ≥ η, h′(xCF) ≥ η − τ)

P(h(xCF) ≥ η|h′(xCF) ≥ η − τ)

(b)
= 1− P(h′(xCF) ≥ η|h′(xCF) ≥ η − τ)

·P(h(xCF) ≥ η|h′(xCF) ≥ η, h(xCF) ≥ η − τ, h′(xCF) ≥ η − τ)

P(h(xCF) ≥ η|h′(xCF) ≥ η − τ)

≤ 1− P(h′(xCF) ≥ η|h′(xCF) ≥ η − τ)

= 1− P(h′(xCF) ≥ η, h′(xCF) ≥ η − τ)

P(h′(xCF) ≥ η − τ)

= 1− P(h′(xCF) ≥ η)

P(h′(xCF) ≥ η − τ)
(10)

= 1− P(s′(xCF, 1) ≤ 1− η)

P(s′(xCF, 1) ≤ 1− η + τ)
,

where (a) is true as h(xCF) ≥ η implies h′(xCF) ≥ η − τ based on Assumption 3. Similarly, (b)
holds because h′(xCF) ≥ η implies h(xCF) ≥ η − τ based on Assumption 3.

E.2 PROOF OF LEMMA 13

Under Assumption 3, we have h(x)− τ ≤ h′(x) ≤ h(x) + τ,∀x ∈ X , which implies

s(x, y = 0)− τ ≤ s′(x, y = 0) ≤ s(x, y = 0) + τ,

as well as

s(x, y = 1)− τ = 1− h(x)− τ ≤ 1− h′(x) = s′(x, y = 1) ≤ 1− h(x) + τ = s(x, y = 1) + τ.

Then we have

s(x, y)− τ ≤ s′(x, y) ≤ s(x, y) + τ,

which indicates that to derive p′ from p, only density in the τ -neighborhood of s can be moved to s.
Then for any neighborhood of s with radius δ, the cumulative probability under the distribution p′
over this neighborhood is always upper-bounded by the cumulative probability under the distribution
p over a larger neighborhood of radius τ + δ around s. Specifically, we have∫ s+δ

s−δ
p′(t)dt ≤

∫ s+τ+δ

s−τ−δ
p(t)d(t).

E.3 PROOF OF PROPOSITION 7

In the following, we denote the random variables Si and realized values si, i = 1, 2, · · · , n. For no-
tation simplicity, we denote sn+1 = s′(xCF, yCF). From Tibshirani et al. (Dec. 2019), we know that
independent draws are always weighted exchangeable, with weight functions given by likelihood
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ratios. Thus, according to Definition 1 and Lemma 2 in Tibshirani et al. (Dec. 2019), we have that
random variables S1, · · · , Sn+1 are weighted exchangeable and

f(s1, · · · , sn+1) = Πn+1
i=1 vi(si)g(s1, · · · , sn+1), (11)

where f represents the joint pdf, vi(si) = 1, i = 1, · · ·n, vn+1(sn+1) = v(s′(xCF, yCF)) and g is a
permutation-invariant function.

For a set of values s1, · · · , sn+1 where there might be repeated elements, we denote the unordered
set s = [s1, · · · , sn+1] and denote an event Es = {[S1, S2, · · · , Sn+1] = [s1, s2, · · · , sn+1]}. Let
Πn+1 be the set of all permutations of {1, · · · , n+ 1}. Then we have

P(Sn+1 = si|Es)

=

∑
π∈Πn+1:π(n+1)=i

f(sπ(1), sπ(2), · · · , sπ(n+1))∑
π∈Πn+1

f(sπ(1), sπ(2), · · · , sπ(n+1))

(a)
=

∑
π∈Πn+1:π(n+1)=i

Πn+1
i=1 vi(sπ(i))g(sπ(1), sπ(2), · · · , sπ(n+1))∑

π∈Πn+1

Πn+1
i=1 vi(sπ(i))g(sπ(1), sπ(2), · · · , sπ(n+1))

=

∑
π∈Πn+1:π(n+1)=i

vn+1(si)g(sπ(1), sπ(2), · · · , sπ(n+1))∑
π∈Πn+1

vn+1(sπ(n+1))g(sπ(1), sπ(2), · · · , sπ(n+1))

=
vn+1(si)

n+1∑
j=1

vn+1(sj)

=
v(si)

n+1∑
j=1

v(sj)

:= pi,

where (a) is due to equation 11.

Then for any unordered set s, we have

P(Sn+1 ≤ s[k∗]|Es) =

n+1∑
i=1

pi1si≤s[k∗] =

n+1∑
i=1

v(si)1si≤s[k∗]

n+1∑
j=1

v(sj)

. (12)

Recall that F̂ is defined as

F̂ (k) =

k∑
i=1

L[i]

k∑
i=1

L[i] +
n∑

i=k+1

U[i] + UCF

.

Since k∗ = min{k : F̂ (k) ≥ 1− α}, we have

S[k∗] = inf

s :

n∑
i=1

Li1Si≤s

n∑
i=1

Li1Si≤s +
n∑
i=1

Ui1Si>s + UCF
≥ 1− α

 ,

which indicates that

E


n∑
i=1

Li1Si≤S[k∗]

n∑
i=1

Li1Si≤S[k∗] +
n∑
i=1

Ui1Si>S[k∗] + UCF

 ≥ 1− α. (13)
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In the meantime, we apply the power property on equation 12 and have

P(Sn+1 ≤ s[k∗]) = E[P(Sn+1 ≤ s[k∗]|ES)] = E


n+1∑
i=1

v(Si)1Si≤S[k∗]

n+1∑
j=1

v(Si)

 . (14)

By combining equation 13 and equation 14, we have

P(Sn+1 ≤ s[k∗])− (1− α)

≥ E


n+1∑
i=1

v(Si)1Si≤S[k∗]

n+1∑
i=1

v(Si)

− E


n∑
i=1

Li1Si≤S[k∗]

n∑
i=1

Li1Si≤S[k∗] +
n∑
i=1

Ui1Si>S[k∗] + UCF



≥ E


n∑
i=1

v(Si)1Si≤S[k∗]

n+1∑
i=1

v(Si)

− E


n∑
i=1

Li1Si≤S[k∗]

n∑
i=1

Li1Si≤S[k∗] +
n∑
i=1

Ui1Si>S[k∗] + UCF



= E

 q(S1, · · · , Sn+1)[
n+1∑
i=1

v(Si)

] [
n∑
i=1

Li1Si≤S[k∗] +
n∑
i=1

Ui1Si>S[k∗] + UCF

]
 , (15)

where

q(S1, · · · , Sn+1)

=

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

Li1Si≤S[k∗]

]
+

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

Ui1Si>S[k∗]

]

+

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
UCF −

[
n+1∑
i=1

v(Si)

]
·

[
n∑
i=1

Li1Si≤S[k∗]

]

=

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

Li1Si≤S[k∗]

]
−

[
n+1∑
i=1

v(Si)

]
·

[
n∑
i=1

Li1Si≤S[k∗]

]

+

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

Ui1Si>S[k∗]

]
+

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
UCF

=

{[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

Ui1Si>S[k∗]

]
−

[
n∑
i=1

v(Si)1Si>S[k∗]

]
·

[
n∑
i=1

Li1Si≤S[k∗]

]}

+

{
UCF

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
− v(Sn+1)

[
n∑
i=1

Li1Si≤S[k∗]

]}
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(b)

≥

{[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

v(Si)1Si>S[k∗]

]

−

[
n∑
i=1

v(Si)1Si>S[k∗]

]
·

[
n∑
i=1

(v(Si) + max{0, Li − v(Si)})1Si≤S[k∗]

]}

+

{
UCF

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
− v(Sn+1)

[
n∑
i=1

(v(Si) + max{0, Li − v(Si)})1Si≤S[k∗]

]}

=

{[
n∑
i=1

v(Si)1Si≤S[k∗]

]
·

[
n∑
i=1

v(Si)1Si>S[k∗]

]

−

[
n∑
i=1

v(Si)1Si>S[k∗]

]
·

[
n∑
i=1

v(Si)1Si≤S[k∗]

]

−

[
n∑
i=1

v(Si)1Si>S[k∗]

]
·

[
n∑
i=1

max{0, Li − v(Si)}1Si≤S[k∗]

]}

+

{
UCF

[
n∑
i=1

v(Si)1Si≤S[k∗]

]
− v(Sn+1)

[
n∑
i=1

v(Si)1Si≤S[k∗]

]

−v(Sn+1)

[
n∑
i=1

max{0, Li − v(Si)}1Si≤S[k∗]

]}

≥ −

[
n∑
i=1

v(Si)1Si>S[k∗]

]
·

[
n∑
i=1

max{0, Li − v(Si)}1Si≤S[k∗]

]

−v(Sn+1)

[
n∑
i=1

max{0, Li − v(Si)}1Si≤S[k∗]

]

≥ −

[
n+1∑
i=1

v(Si)

]
·

[
n∑
i=1

max{0, Li − v(Si)}

]
, (16)

in which (b) is due to the fact that Û(s) ≥ v(s) almost surely since the formula for Û(·) is motivated
by Lemma 13.

Then we come back to equation 15 and have

E

 q(S1, · · · , Sn+1)[
n+1∑
i=1

v(Si)

] [
n∑
i=1

Li1Si≤S[k∗] +
n∑
i=1

Ui1Si>S[k∗] + UCF

]


≥ E

−
[
n∑
i=1

v(Si)

]
·
[
n∑
i=1

max{0, Li − v(Si)}
]

[
n+1∑
i=1

v(Si)

] [
n∑
i=1

Li

]


≥ −E


n∑
i=1

max{0, Li − v(Si)}
n∑
i=1

Li

 .
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By Hölder’s Inequality, we have

E


n∑
i=1

max{0, Li − v(Si)}
n∑
i=1

Li



≤

∥∥∥∥∥ 1

n

n∑
i=1

max{0, Li − v(Si)}

∥∥∥∥∥
p

·

∥∥∥∥∥∥∥∥
n

n∑
i=1

Li

∥∥∥∥∥∥∥∥
q

(b)

≤ ‖max{0, Li − v(Si)}‖p ·

∥∥∥∥∥∥∥∥
n

n∑
i=1

Li

∥∥∥∥∥∥∥∥
q

≤ ‖max{0, Li − v(Si)}‖p ·

∥∥∥∥∥ 1

n

n∑
i=1

1

Li

∥∥∥∥∥
q

(c)

≤ ‖max{0, Li − v(Si)}‖p ·
∥∥∥∥ 1

Li

∥∥∥∥
q

,

where (b) and (c) follow from the Minkowski’s inequality. Thus, we have

P(Sn+1 ≤ s[k∗])− (1− α) ≥ −‖max{0, Li − v(Si)}‖p ·
∥∥∥∥ 1

Li

∥∥∥∥
q

.

Since Si is a random variable and Li = L̂(Si), in general, we have

P(Sn+1 ≤ s[k∗])− (1− α) ≥ −

∥∥∥∥∥ 1

L̂(S)

∥∥∥∥∥
q

·
∥∥∥max{0, L̂(S)− v(S)}

∥∥∥
p
.

Proposition 9 can be proved by following similar process.

E.4 PROOF OF THEOREM 11

Given the definition of k∗1 , we have P(s′(xCF, yCF) ≤ s[k∗1 ]) ≤ P(s′(xCF, yCF) ≤ 1 − η). Then if
s′(xCF, yCF) ≤ 1− η, we have

1− η ≥ s′(xCF, yCF = 1) = 1− h′(xCF)

or
1− η ≥ s′(xCF, yCF = 0) = h′(xCF). (17)

However, according to Assumption 3, we have

h′(xCF) ≥ η − τ
(a)
> 1− η,

where (a) is true because 2η − τ > 1. Then we see a contradiction in equation 17 and conclude that
as long as s′(xCF, yCF) ≤ 1− η and 2η − τ > 1, we have yCF = 1. Thus, we have

rivd(xCF)
(b)

≤ 1− P(h′(xCF) ≥ η)

P(h′(xCF) ≥ η − τ)

≤ 1− P(h′(xCF) ≥ η)

= 1− P(s′(xCF, 1) ≤ 1− η)

≤ 1− P(s′(xCF, yCF) ≤ s[k∗1 ])

≤ α1 + ∆̂F ,

where (b) is from equation 10.

Similarly, if h(xCF) > 1−η+τ , according to Assumption 3, we have h′(xCF) ≥ h(xCF)−τ>1−η,
which also causes a contradiction in equation 17. Thus, we have yCF = 1 and rivd(xCF)≤α1 + ∆̂F .
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E.5 PROOF OF THEOREM 12

rivd(xCF) ≤ 1− P(h′(xCF) ≥ η)

P(h′(xCF) ≥ η − τ)

= 1− P(s′(xCF, 1) ≤ 1− η)

P(s′(xCF, yCF) ≤ 1− η + τ)

≤ 1− P(s′(xCF, 1) ≤ 1− η)

P(s′(xCF, yCF) ≤ s[k∗2 ])

≤ 1−
P(s′(xCF, yCF) ≤ s[k∗1 ])

P(s′(xCF, yCF) ≤ s[k∗2 ])

≤ 1− 1− α1 − ∆̂F

1− α2 + ∆̂E

,

where α2 = 1− Ê(k∗2) with k∗2 = min{k2 : s[k2] ≥ 1− η + τ}.

26


	Introduction
	Background and Related Work
	Problem Formulation
	Recourse Invalidation Estimation for a Given Recourse
	Recourse Generation with Invalidation Rate Constraint
	Numerical Results
	Validating the recourse invalidation bounds
	Effectiveness of proposed algorithms

	Conclusion
	Preliminaries
	Background on algorithm recourse
	Background on conformal predictive inference

	Construction of L() and U()
	Additional Algorithms
	Algorithm for finding k* given a target level 
	Recourses with various choices of 

	Additional Details on Numerical Results
	Details about the datasets
	Classification models
	Implementation details
	Additional experimental results

	Proofs
	Proof of Lemma 5
	Proof of Lemma 13
	Proof of Proposition 7
	Proof of Theorem 11
	Proof of Theorem 12


