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Abstract

Combinatorial optimization problems like the Traveling Salesman Problem are criti-1

cal in industry yet NP-hard. Neural Combinatorial Optimization has shown promise,2

but its reliance on online reinforcement learning (RL) hampers deployment and3

underutilizes decades of algorithmic knowledge. We address these limitations by4

applying the offline RL framework, Decision Transformer, to learn superior strate-5

gies directly from datasets of heuristic solutions—aiming not only to imitate but to6

synthesize and outperform them. Concretely, we (i) integrate a Pointer Network7

to handle the instance-dependent, variable action space of node selection, and (ii)8

employ expectile regression for optimistic conditioning of Return-to-Go, which9

is crucial for instances with widely varying optimal values. Experiments show10

that our method consistently produces higher-quality tours than the four classical11

heuristics it is trained on, demonstrating the potential of offline RL to unlock and12

exceed the performance embedded in existing domain knowledge.13

1 Introduction14

Combinatorial optimization problems (COP) have garnered significant attention in various industries,15

including logistics, manufacturing, and communication network design. Many of these problems are16

NP-hard, making it extremely difficult to find exact optimal solutions efficiently [6]. Consequently,17

heuristics and metaheuristics have been studied for many years as practical methods for finding18

approximate solutions [9, 8]. However, these methods suffer from challenges in generalizability and19

scalability, as computational costs increase with problem size and they often require parameter tuning20

[10].21

In recent years, advancements in deep learning have given rise to Neural Combinatorial Optimization22

(NCO) [2, 13, 12, 14, 19, 3, 18]. However, a predominant approach in NCO relies on reinforcement23

learning (RL), which requires collecting data through interaction with an environment. This online24

learning process presents practical challenges for real-world deployment, as it requires either resource-25

intensive data acquisition from real environments, or designing a surrogate virtual environment, a task26

complicated by the implicit knowledge involved [17]. Moreover, leveraging the rich knowledge from27

domain-specific heuristics and human experts remains a significant, yet often unaddressed, challenge28

for these methods.29

To address these challenges, we propose applying the Decision Transformer (DT) [4], an offline30

RL framework proven in other domains [15, 22, 16, 11, 7], to learn from pre-existing datasets of31

heuristic solutions. This approach enables the use of algorithmic and expert domain knowledge32

as valuable data for a neural network to learn solution methods. In this paper, we propose a novel33

formulation for applying the DT to the Traveling Salesman Problem (TSP). As the standard DT is not34
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designed for node-selection tasks whose action spaces lack semantic consistency, we integrate the35

Pointer Network [25] into the action selection mechanism for TSP. We further equip the DT with a36

mechanism, inspired by [15, 26], to predict the highest possible returns for each instance, in order to37

address COP where the optimal reward varies significantly across instances.38

Our contributions are: 1) a novel DT framework for TSP that consistently generates solutions superior39

to the heuristic data it was trained on; 2) a clear demonstration that conditioning the model with40

appropriate Return-to-Go (RTG) is critical for outperforming behavior cloning; and 3) validation that41

optimistic RTG prediction, via expectile regression, enhances solution quality.42

These results suggest that offline RL frameworks like the DT can be a powerful tool for utilizing43

existing domain knowledge to generate innovative solutions for complex COP.44

2 Methods45

2.1 TSP formulation46

This paper focuses on the 2D Euclidean TSP. The problem is defined on an undirected graph47

G = (V,E) consisting of a set of nodes V = {vi}Ni=1 and a set of edges E = {(vi, vj)|i < j, 1 ≤48

i, j ≤ N}. Here, N is the total number of nodes, and the travel cost cost(vi, vj) for each edge is49

given by the Euclidean distance between the nodes. A salesman starts from a special depot node vd,50

visits every node exactly once, and returns to the start, forming a Hamiltonian cycle. The objective is51

to minimize the total cost of this tour, denoted as L(σ), where σ is the tour route. The total cost is52

expressed by the following equation:53

L(σ) =

N−1∑
i=1

cost(σi, σi+1) + cost(σN , σ1) (1)

Here, σi is the i-th node in the tour, and σ1 = vd.54

2.2 Application of DT55

Many constructive NCO studies [2, 13, 12, 14, 19, 3, 18] formulate TSP as a Markov Decision56

Process (MDP) where a node to visit next is selected at each time step. In this approach, the state57

at time t for a TSP instance graph G is defined as a partial tour σ1:t = (σ1, σ2, ..., σt) consisting of58

visited nodes. The action is the selection of the next node σt+1, and this decision is made by a deep59

learning model with parameters θ, πθ(σt+1|σ1:t, G). The model is trained using a RL framework60

with a reward equal to the negative of the total tour cost, −L(σ).61

While many NCO methods formulate TSP as a MDP, we adopt the DT’s sequence modeling approach.62

We model trajectories τ = (. . . , ot, R̂t, at, . . .), where R̂t is the RTG, ot is the observation, and at is63

the action.64

To adapt this framework to TSP, we redefine ot, R̂t, at as follows: ot is the embedding vector fe
t65

computed by the model’s Encoder, corresponding to the node σt visited at time t. This Encoder,66

following the architecture of Kool et al. [13], uses a transformer Encoder with node coordinate67

information as input to compute node embedding vectors. R̂t is the negative of the total cost of the68

completed tour σ at the final time step T , i.e., −L(σ). at represents the index of the next node σt+169

to be visited.70

The overall architecture of the proposed method is shown in Figure 1.71

2.3 Action representation via Pointer Network72

Standard DT actions assume semantic consistency (e.g., "up" or "down"), which does not hold for73

node indices in TSP as their spatial meaning varies per instance. To address this, as shown in Figure 1,74

we introduce a Pointer Network [25] to the output of the causal transformer decoder [24]. A Pointer75

Network generates an output sequence by "pointing" to elements within the input sequence. This76

approach modifies the DT’s action head to output pointers to the graph nodes of the TSP instance,77
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Figure 1: Overview of the proposed method’s architecture. The transformer encoder calculates a
node embedding vector from the coordinates of the graph nodes. As observation ot and action at, the
embedding vectors fe

t and fe
t+1 of the nodes transitioned at time t and t+ 1, respectively, are input

to the causal transformer decoder along with the RTG R̂t. The value R̃t is the RTG prediction by the
causal transformer decoder.

rather than probabilities over a fixed set of actions. In this paper, the pointer is calculated by an78

attention mechanism as follows:79

ut+1
i =

ha
t · f

e
i√

d
(2)

p(vi|σ1:t, G) =

{
0 if vi ∈ σ1:t

softmax(ut+1
i ) otherwise

(3)

Here, fe
i is the node embedding vector for node vi computed by the Encoder, ha

t is the hidden state80

of the action head at time t, and d is the dimension of ha
t .81

Similarly, when providing the action at as input to the DT, we convert the selected node σt+1 to its82

node embedding vector fe
t+1 instead of using its index.83

2.4 RTG prediction84

Methods using the transformer architecture are often applied to tasks where rewards are relatively85

predictable, such as games and robot control. However, in NP-hard COP like TSP, the optimal reward86

varies greatly for each instance. If a uniform RTG is set, the model might treat it as an "extrapolated87

input" outside its learning range. For example, providing a target value of 2.5 for an instance with an88

optimal value of 3.8 could lead to performance degradation.89

To solve this issue, we introduce a mechanism for dynamically predicting the RTG, inspired by90

frameworks like Multi-game DT [15] and Elastic DT [26]. In this approach, the RTG is predicted91

from the graph information of the TSP instance, and this value is then used for predicting the solution.92

Specifically, the predicted RTG value R̃t is output by the DT model as πθ(R̃t+1|τ1:t, G) with the93

graph information G and the partial sequence τ1:t as inputs. This predicted value is then used as the94

RTG for the next action prediction.95

The predicted RTG R̃t should ideally reflect the maximum achievable return. For this reason, we use96

expectile regression [1, 20] to train the predicted value. The loss function for this is defined by the97

following equation:98

L2
α(R̂t, R̃t) = |α− 1(R̂t < R̃t)| · (R̂t − R̃t)

2 (4)

Here, α is a hyperparameter that controls the weighting of the error. Specifically, if α > 0.5, the model99

places more emphasis on under-prediction errors, while if α < 0.5, it emphasizes over-prediction100

errors. When α = 0.5, it becomes equivalent to the squared error.101
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2.5 Learning objective and loss function102

Our model is trained via multi-task learning, minimizing a combined loss Ltotal = LCE + c · L2
α,103

where LCE is the cross-entropy loss for the action prediction (node selection), and L2
α is the expectile104

regression loss for predicting the RTG. The hyperparameter α encourages optimistic RTG prediction,105

while c balances the two tasks.106

3 Experimental results107

3.1 Experimental setup108

In this study, we focus on 2D euclidean TSP to validate the effectiveness of the proposed method.109

For our dataset, we used the 2D Euclidean TSP instances with N = 20, 50, 100, which are available110

from Joshi et al. [12]. In these instances, the coordinates of each node are sampled from a uniform111

distribution over the unit square [0, 1]2. For each node, we prepared 1,000,000 instances for training,112

10,000 for validation, and 10,000 for testing. Since the validation datasets for N = 50, 100 were113

not provided, we generated them anew. Following the methodology of Joshi et al. [12], the solution114

data was generated using four heuristics: Nearest Neighbor (NN), Nearest Insertion (NI), Farthest115

Insertion (FI) [21], and Simulated Annealing (SA) [23].116

For our DT model, we used a 2-layer transformer encoder and a 2-layer causal transformer decoder,117

inspired by the Elastic DT. Each layer was set with a hidden dimension dmodel = 128 and 8 heads.118

We used the Schedule-Free AdamW optimizer [5] with a learning rate of 0.0025 and a batch size of119

1000. For the total loss function Ltotal = LCE + c · L2
α, we set the hyperparameter c to 0.5 and α to120

0.99. The model was trained for 2000 epochs, and we selected the model from the epoch where the121

validation loss was minimal. Further details on the experimental setup are provided in Appendix A.122

To evaluate the performance of our heuristics and model, we calculated the optimality gap (%) against123

the exact optimal solutions provided by Joshi et al. [12] on the test set of 10,000 instances. The124

optimality gap is defined as follows:125

optimality gap(%) =
1

M

M∑
m=1

L(σm
pred)− L(σm

opt)

L(σm
opt)

× 100 (5)

where M denotes the number of test instances and, for instance m, L(σm
opt) and L(σm

pred) denote126

the costs of the optimal solutions and model-predicted solutions, respectively.127

3.2 Prediction performance of the proposed method128

Following the experimental setup described in Section 3.1, we trained our proposed method on each129

training dataset generated by the NN, NI, FI, and SA heuristics. We then evaluated the performance130

of each resulting model by calculating the optimality gap of its predicted solutions. This entire131

procedure was conducted for problem sizes of N = 20, 50, 100.132

Table 1 shows that our method consistently outperformed the solutions from all training heuristics. In133

particular, the most notable improvement, approximately a twofold increase over the original heuristic,134

was observed for the dataset generated from SA. We hypothesize that this is because the stochastic135

nature of SA produces highly diverse solution patterns, which enabled our DT model to better stitch136

together sub-optimal segments from different solution trajectories. The limited improvement on the137

NN dataset will be discussed in detail in the following section.138

3.3 Performance comparison with behavior cloning139

To investigate the importance of appropriate RTG conditioning, we compared our method with140

behavior cloning. In behavior cloning, we used the model of the proposed method and set the RTG to141

0 during both training and inference.142

Table 1 shows that our RTG-conditioned method generally outperformed behavior cloning. This143

confirms that RTG is essential for enabling the exploration required to find superior solutions, rather144
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Table 1: Optimality gap (%) and its standard deviation for each method on the test dataset. The
"Data" column indicates the heuristic method used for training. The "Method" column represents the
original heuristic method (Original), behavior cloning (BC), and our proposed method (DT).

Data Method N = 20 N = 50 N = 100

NN
Original 17.24 ± 10.24 22.73 ± 8.21 24.81 ± 6.47

BC 17.28 ± 10.23 22.74 ± 8.21 24.75 ± 6.50
DT (Ours) 16.73 ± 10.07 22.60 ± 8.17 24.76 ± 6.48

NI
Original 13.24 ± 6.99 19.12 ± 4.78 21.77 ± 3.43

BC 12.26 ± 7.13 18.20 ± 5.44 22.00 ± 5.29
DT (Ours) 6.43 ± 4.86 14.98 ± 4.91 19.84 ± 4.85

FI
Original 2.36 ± 2.91 5.62 ± 3.12 7.62 ± 2.55

BC 1.85 ± 2.55 3.70 ± 2.54 5.22 ± 2.22
DT (Ours) 1.30 ± 2.27 3.14 ± 2.30 4.73 ± 2.12

SA
Original 1.51 ± 2.79 4.41 ± 3.16 12.36 ± 3.66

BC 0.98 ± 1.87 2.93 ± 2.57 10.31 ± 4.74
DT (Ours) 0.83 ± 1.60 2.39 ± 2.10 6.07 ± 3.11

than merely replicating actions from the training data. The slight performance degradation of our145

proposed method compared to behavior cloning in the NN case for N = 100 is likely due to the146

characteristics of NN. NN is a simple greedy algorithm that always selects the nearest neighbor147

node at each step, resulting in a lack of diversity in its action patterns. Consequently, the model148

could only learn a single action pattern from NN and had little opportunity to learn exploratory149

paths to better solutions. Therefore, no significant improvement over behavior cloning was observed.150

Additionally, since the proposed method involves the additional task of RTG prediction, this additional151

complexity may have prevented it from surpassing the performance of behavior cloning, which152

faithfully reproduces the simple action pattern.153

3.4 Effect of expectile regression on RTG154

To evaluate the effect of using expectile regression for RTG prediction, we conducted an ablation155

study. We compared our approach against baselines using fixed RTG targets: 0, used as a sufficiently156

high constant (following [4]), and the average RTG from the training data. Additionally, we analyzed157

the impact of the hyperparameter α from the RTG loss function, testing α = 0.7, 0.99 in addition to158

α = 0.5, which corresponds to standard regression using a squared error loss. Due to computational159

constraints, these experiments were performed exclusively on the datasets for N = 20, 50.160

Table 2 shows that predicting the RTG generally yields superior solutions compared to using fixed-161

value targets. More importantly, the results clearly show that using expectile regression with α > 0.5162

consistently outperforms the squared error case (α = 0.5). Performance also tends to improve as α163

increases. This improvement can be attributed to the mechanism of expectile regression: for α > 0.5,164

under-prediction errors are weighted more heavily, which encourages the model to learn to predict165

higher RTGs. This optimistic prediction, in turn, allows the model to predict achievable, better166

solutions within the policies learned from the training data. This finding emphasizes the importance167

of focusing on the "best trajectories" within the data, rather than merely imitating the data distribution,168

when learning from offline dataset to surpass existing solutions.169

3.5 Exploring optimal RTG170

We investigated whether the RTG predictions of our model were sufficiently optimistic or if they could171

be improved. To this end, we conducted an experiment where a constant offset was systematically172

added to the RTG predictions during inference on the test data. This experiment aimed to determine173

if artificially inflating the RTG targets could compensate for potential underestimation by the model174

and thus lead to superior performance.175
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Table 2: Optimality gap (%) for different RTG targets (Fixed vs. Predicted) and values of α on
N = 20, 50.

Fixed RTG Predicted RTG using expectile regression
N Data 0 mean of data α = 0.50 α = 0.70 α = 0.99

20 NN 67.90 ± 29.58 17.21 ± 10.17 17.22 ± 10.17 17.14 ± 10.13 16.73 ± 10.07
NI 68.39 ± 26.26 13.12 ± 7.62 13.09 ± 6.29 11.02 ± 5.96 6.43 ± 4.86
FI 89.69 ± 31.21 3.33 ± 4.78 1.70 ± 2.33 1.61 ± 2.27 1.30 ± 2.27
SA 106.03 ± 31.37 2.52 ± 4.50 0.97 ± 1.77 0.84 ± 1.50 0.83 ± 1.60

50 NN 213.67 ± 41.84 22.71 ± 8.18 22.69 ± 8.17 22.66 ± 8.17 22.60 ± 8.17
NI 159.85 ± 41.00 18.15 ± 5.27 18.04 ± 5.34 17.69 ± 5.24 14.98 ± 4.91
FI 102.97 ± 34.79 4.16 ± 2.78 3.93 ± 2.48 3.75 ± 2.42 3.14 ± 2.30
SA 258.96 ± 45.99 3.45 ± 2.99 3.17 ± 2.55 2.90 ± 2.39 2.39 ± 2.10

Table 3: Optimality gap (%) with optimal RTG offsets. The applied offset values are shown in
parentheses.

Data N = 20 (offset) N = 50 (offset) N = 100 (offset)

NN 15.82 ± 9.96 (1.00) 22.45 ± 8.14 (1.00) 24.58 ± 6.49 (2.00)
NI 3.94 ± 4.34 (0.50) 10.40 ± 5.10 (2.00) 16.50 ± 5.06 (2.00)
FI 1.29 ± 2.21 (-0.05) 3.07 ± 2.37 (0.20) 4.51 ± 2.20 (0.50)
SA 0.79 ± 1.49 (-0.10) 2.39 ± 2.10 (0.00) 5.32 ± 2.87 (0.50)

Table 3 shows the optimality gaps relative to the original heuristic solutions, achieved by applying176

the optimal offset (value in parentheses) to the model trained on each heuristic. In many cases,177

adding an offset resulted in better solutions than the original proposed method. This suggests that the178

RTGs predicted by our model may still be conservative, underestimating the target values required to179

elicit the best possible solutions. This trend became more pronounced with increasing problem size,180

indicating a greater difficulty in accurately predicting the optimal returns for large-scale instances.181

4 Discussion and Conclusion182

In this study, we proposed a new approach to solve the TSP by applying the offline RL framework DT183

to learn from existing heuristic solutions. Our experimental results demonstrated that the proposed184

method consistently outperform the solutions generated by the NN, NI, FI, and SA heuristics used185

for training. This result validates the fundamental concept of our approach: leveraging existing186

algorithmic knowledge as data to acquire a policy that surpasses it.187

At the core of our method’s success is goal-conditioned learning via RTG, which, unlike behavior188

cloning, learns the relationship between actions and outcomes. This enables the model to explore and189

generate novel, higher-quality solutions. Furthermore, our results with expectile regression show that190

setting optimistic goals—aiming for performance beyond the training data’s average—is a key driver191

for this improvement, emphasizing the importance of focusing on the "best trajectories" within the192

offline dataset.193

Our study also highlights several limitations and avenues for future work. The observation that adding194

a manual offset to the RTG improved performance suggests our prediction mechanism can be refined,195

especially for larger instances. Performance also depends on the training data’s quality and diversity,196

as seen with the simple NN heuristic. Future work could explore training on more diverse datasets197

combining multiple heuristics or expert human solutions to learn a richer policy and tackle implicit198

real-world knowledge.199

In conclusion, this study demonstrates that offline learning with the DT can be a powerful framework200

for effectively utilizing existing domain knowledge (heuristic solutions) and extracting superior201

performance in COP like TSP. This approach holds significant promise for developing new high-202

performance solution methods for real-world problems in logistics, manufacturing, and other fields203

where domain-specific solutions have been accumulated over many years.204
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A Experimental details274

A.1 Dataset generation details275

The TSP instance data were downloaded or generated using the code from the GitHub repository of276

[12] (https://github.com/chaitjo/learning-tsp). The breakdown is provided in Table 4.277

The TSP solutions by the NN, NI, and FI heuristics were also generated using the code from278

the GitHub repository of [12]. The TSP solutions by SA were generated using the code from279

https://github.com/perrygeo/simanneal. The hyperparameters for SA are shown in Table 5.280

Table 4: Details of TSP dataset generation and sources.

Data N = 20 N = 50 N = 100

Training Download Download Download
Validation Download Generate (Seed 9999) Generate (Seed 9999)
Test Download Download Download

Table 5: Hyperparameters for SA used for generating solution data.

Parameter N = 20 N = 50 N = 100

Maximum (starting) temperature 2.5 2.5 2.5
Minimum (ending) temperature 0.025 0.0025 0.0025
Number of iterations 50,000 5,000,000 5,000,000
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A.2 Model architecture details281

The encoder was constructed based on the architecture of Kool et al. [13]. The detailed parameters282

are presented in Table 6.283

The decoder was built based on the implementation of the Elastic DT [26] (https://github.com/284

kristery/Elastic-DT). The detailed parameters are presented in Table 7.285

The parameters used for training are shown in Table 8.286

Table 6: Architectural details of the transformer encoder.

Parameter Value

Number of layers 2
Number of attention heads 8
Embedding dimension 128
Activation function GELU
Normalization method Layer Normalization
Dropout rate 0.0

Table 7: Architectural details of the Causal transformer decoder.

Parameter Value

Number of layers 2
Number of attention heads 8
Embedding dimension 128
Activation function GELU
Normalization method Layer Normalization
Dropout rate 0.0
Context length Same as number of TSP nodes
Reward clipping False
Expectile Regression quantile α 0.99

Table 8: Training hyperparameters.

Parameter Value

Loss balance coefficient c 0.5
Optimizer Schedule-Free AdamW [5]
Learning rate 0.0025
Weight decay 0.0
AdamW betas (0.9, 0.999)
AdamW epsilon 1e-8
Batch size 1000
Maximum Epochs 2000

A.3 Computational environment287

All experiments were conducted on a single server equipped with an NVIDIA GeForce RTX 4090288

(24GB VRAM) and an Intel Xeon Silver 4314 CPU (2.40GHz). The models were implemented using289

PyTorch 2.5.1. The training and inference time for a single model is shown in the Table 9.290
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Table 9: The computational time in training and predicting on NN dataset. The prediction time was
measured as the duration required to predict a single instance.

Parameter N = 20 N = 50 N = 100

Training time 19 hours 1 days 3 hours 1 days 23 hours
Prediction time 0.63 seconds 0.86 seconds 1.10 seconds

B Detailed numerical results291

The actual average costs of the solutions for each method, used to calculate the optimality gaps in292

Tables 1, 2, and 3, are presented below.293

Table 10: Actual average solution costs corresponding to the optimality gaps reported in Table 1. The
first row "Optimal" shows the average cost of the optimal solutions.

Data Method N = 20 N = 50 N = 100

Optimal 3.83 ± 0.30 5.69 ± 0.25 7.76 ± 0.23

NN
Original 4.49 ± 0.55 6.99 ± 0.57 9.69 ± 0.58

IL 4.49 ± 0.54 6.99 ± 0.57 9.69 ± 0.58
DT (Ours) 4.47 ± 0.54 6.98 ± 0.56 9.69 ± 0.58

NI
Original 4.33 ± 0.39 6.78 ± 0.35 9.45 ± 0.33

IL 4.30 ± 0.39 6.73 ± 0.37 9.47 ± 0.44
DT (Ours) 4.07 ± 0.33 6.54 ± 0.33 9.30 ± 0.40

FI
Original 3.92 ± 0.34 6.01 ± 0.32 8.36 ± 0.31

IL 3.90 ± 0.33 5.90 ± 0.30 8.17 ± 0.29
DT (Ours) 3.88 ± 0.33 5.87 ± 0.29 8.13 ± 0.28

SA
Original 3.89 ± 0.33 5.94 ± 0.32 8.72 ± 0.36

IL 3.87 ± 0.32 5.86 ± 0.29 8.56 ± 0.43
DT (Ours) 3.86 ± 0.32 5.83 ± 0.29 8.23 ± 0.31

Table 11: Actual average solution costs corresponding to the optimality gaps reported in Table 2.

Fixed RTG Predicted RTG using expectile regression
N Data 0 mean of data α = 0.50 α = 0.70 α = 0.99

20 NN 6.43 ± 1.25 4.49 ± 0.54 4.49 ± 0.54 4.49 ± 0.54 4.47 ± 0.54
NI 6.44 ± 1.04 4.32 ± 0.23 4.33 ± 0.36 4.25 ± 0.36 4.07 ± 0.33
FI 7.25 ± 1.23 3.95 ± 0.26 3.90 ± 0.33 3.89 ± 0.32 3.88 ± 0.33
SA 7.88 ± 1.27 3.92 ± 0.26 3.87 ± 0.32 3.86 ± 0.32 3.86 ± 0.32

50 NN 17.84 ± 2.38 6.99 ± 0.56 6.98 ± 0.56 6.98 ± 0.57 6.98 ± 0.56
NI 14.78 ± 2.33 6.72 ± 0.32 6.71 ± 0.35 6.69 ± 0.35 6.54 ± 0.33
FI 11.55 ± 2.01 5.93 ± 0.26 5.91 ± 0.28 5.91 ± 0.28 5.87 ± 0.29
SA 20.41 ± 2.60 5.89 ± 0.24 5.87 ± 0.28 5.86 ± 0.28 5.83 ± 0.29
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Table 12: Actual average solution costs corresponding to the optimality gaps reported in Table 3. The
applied offset values are shown in parentheses.

Data N = 20 (offset) N = 50 (offset) N = 100 (offset)

NN 4.44 ± 0.53 (1.00) 6.97 ± 0.56 (1.00) 9.67 ± 0.58 (2.00)
NI 3.98 ± 0.36 (0.50) 6.28 ± 0.38 (2.00) 9.04 ± 0.45 (2.00)
FI 3.88 ± 0.32 (-0.05) 5.87 ± 0.29 (0.20) 8.11 ± 0.28 (0.50)
SA 3.86 ± 0.32 (-0.10) 5.83 ± 0.29 (0.00) 8.18 ± 0.31 (0.50)
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NeurIPS Paper Checklist294

1. Claims295

Question: Do the main claims made in the abstract and introduction accurately reflect the296

paper’s contributions and scope?297

Answer: [Yes]298

Justification: The main claims made in the abstract and introduction accurately and clearly299

reflect the paper’s contributions and scope.300

Guidelines:301

• The answer NA means that the abstract and introduction do not include the claims302

made in the paper.303

• The abstract and/or introduction should clearly state the claims made, including the304

contributions made in the paper and important assumptions and limitations. A No or305

NA answer to this question will not be perceived well by the reviewers.306

• The claims made should match theoretical and experimental results, and reflect how307

much the results can be expected to generalize to other settings.308

• It is fine to include aspirational goals as motivation as long as it is clear that these goals309

are not attained by the paper.310

2. Limitations311

Question: Does the paper discuss the limitations of the work performed by the authors?312

Answer: [Yes]313

Justification: The paper explicitly discusses the limitations of the work in the Section 4.314

Guidelines:315

• The answer NA means that the paper has no limitation while the answer No means that316

the paper has limitations, but those are not discussed in the paper.317

• The authors are encouraged to create a separate "Limitations" section in their paper.318

• The paper should point out any strong assumptions and how robust the results are to319

violations of these assumptions (e.g., independence assumptions, noiseless settings,320

model well-specification, asymptotic approximations only holding locally). The authors321

should reflect on how these assumptions might be violated in practice and what the322

implications would be.323

• The authors should reflect on the scope of the claims made, e.g., if the approach was324

only tested on a few datasets or with a few runs. In general, empirical results often325

depend on implicit assumptions, which should be articulated.326

• The authors should reflect on the factors that influence the performance of the approach.327

For example, a facial recognition algorithm may perform poorly when image resolution328

is low or images are taken in low lighting. Or a speech-to-text system might not be329

used reliably to provide closed captions for online lectures because it fails to handle330

technical jargon.331

• The authors should discuss the computational efficiency of the proposed algorithms332

and how they scale with dataset size.333

• If applicable, the authors should discuss possible limitations of their approach to334

address problems of privacy and fairness.335

• While the authors might fear that complete honesty about limitations might be used by336

reviewers as grounds for rejection, a worse outcome might be that reviewers discover337

limitations that aren’t acknowledged in the paper. The authors should use their best338

judgment and recognize that individual actions in favor of transparency play an impor-339

tant role in developing norms that preserve the integrity of the community. Reviewers340

will be specifically instructed to not penalize honesty concerning limitations.341

3. Theory assumptions and proofs342

Question: For each theoretical result, does the paper provide the full set of assumptions and343

a complete (and correct) proof?344

Answer: [NA]345
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Justification: The paper does not present any novel theoretical results, such as theorems,346

lemmas, or formal proofs. Its contributions are empirical in nature. The work focuses on347

proposing a novel framework by adapting and combining existing methods—namely the DT,348

Pointer Networks, and RTG prediction using expectile regression—and then experimentally349

validating this framework’s effectiveness on the TSP.350

Guidelines:351

• The answer NA means that the paper does not include theoretical results.352

• All the theorems, formulas, and proofs in the paper should be numbered and cross-353

referenced.354

• All assumptions should be clearly stated or referenced in the statement of any theorems.355

• The proofs can either appear in the main paper or the supplemental material, but if356

they appear in the supplemental material, the authors are encouraged to provide a short357

proof sketch to provide intuition.358

• Inversely, any informal proof provided in the core of the paper should be complemented359

by formal proofs provided in appendix or supplemental material.360

• Theorems and Lemmas that the proof relies upon should be properly referenced.361

4. Experimental result reproducibility362

Question: Does the paper fully disclose all the information needed to reproduce the main ex-363

perimental results of the paper to the extent that it affects the main claims and/or conclusions364

of the paper (regardless of whether the code and data are provided or not)?365

Answer: [Yes]366

Justification: The paper provides all necessary information to ensure the reproducibility of367

our experimental results. Specifically, the model architecture is fully described in Section 2,368

and the complete experimental setup, including the data generation process and all model369

hyperparameters, is detailed in Section 3.1. Further implementation details are available in370

Appendix A.371

Guidelines:372

• The answer NA means that the paper does not include experiments.373

• If the paper includes experiments, a No answer to this question will not be perceived374

well by the reviewers: Making the paper reproducible is important, regardless of375

whether the code and data are provided or not.376

• If the contribution is a dataset and/or model, the authors should describe the steps taken377

to make their results reproducible or verifiable.378

• Depending on the contribution, reproducibility can be accomplished in various ways.379

For example, if the contribution is a novel architecture, describing the architecture fully380

might suffice, or if the contribution is a specific model and empirical evaluation, it may381

be necessary to either make it possible for others to replicate the model with the same382

dataset, or provide access to the model. In general. releasing code and data is often383

one good way to accomplish this, but reproducibility can also be provided via detailed384

instructions for how to replicate the results, access to a hosted model (e.g., in the case385

of a large language model), releasing of a model checkpoint, or other means that are386

appropriate to the research performed.387

• While NeurIPS does not require releasing code, the conference does require all submis-388

sions to provide some reasonable avenue for reproducibility, which may depend on the389

nature of the contribution. For example390

(a) If the contribution is primarily a new algorithm, the paper should make it clear how391

to reproduce that algorithm.392

(b) If the contribution is primarily a new model architecture, the paper should describe393

the architecture clearly and fully.394

(c) If the contribution is a new model (e.g., a large language model), then there should395

either be a way to access this model for reproducing the results or a way to reproduce396

the model (e.g., with an open-source dataset or instructions for how to construct397

the dataset).398
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(d) We recognize that reproducibility may be tricky in some cases, in which case399

authors are welcome to describe the particular way they provide for reproducibility.400

In the case of closed-source models, it may be that access to the model is limited in401

some way (e.g., to registered users), but it should be possible for other researchers402

to have some path to reproducing or verifying the results.403

5. Open access to data and code404

Question: Does the paper provide open access to the data and code, with sufficient instruc-405

tions to faithfully reproduce the main experimental results, as described in supplemental406

material?407

Answer: [No]408

Justification: While the specific source code and generated datasets for this study are not409

publicly released, the paper provides a thorough and detailed description of the core method-410

ology, model architecture, and experimental setup, which is sufficient for reimplementation.411

The authors clearly outline the novel components of their approach, such as the integration412

of a Pointer Network and the use of expectile regression for dynamic RTG prediction. Fur-413

thermore, the paper provides precise citations to the public code repositories that were used414

as a basis for the model architecture (e.g., [13, 26]) and for data generation (e.g., [12, 23]),415

offering a clear path for researchers to reproduce the work from foundational, publicly416

available components.417

Guidelines:418

• The answer NA means that paper does not include experiments requiring code.419

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/420

public/guides/CodeSubmissionPolicy) for more details.421

• While we encourage the release of code and data, we understand that this might not be422

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not423

including code, unless this is central to the contribution (e.g., for a new open-source424

benchmark).425

• The instructions should contain the exact command and environment needed to run to426

reproduce the results. See the NeurIPS code and data submission guidelines (https:427

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.428

• The authors should provide instructions on data access and preparation, including how429

to access the raw data, preprocessed data, intermediate data, and generated data, etc.430

• The authors should provide scripts to reproduce all experimental results for the new431

proposed method and baselines. If only a subset of experiments are reproducible, they432

should state which ones are omitted from the script and why.433

• At submission time, to preserve anonymity, the authors should release anonymized434

versions (if applicable).435

• Providing as much information as possible in supplemental material (appended to the436

paper) is recommended, but including URLs to data and code is permitted.437

6. Experimental setting/details438

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-439

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the440

results?441

Answer: [Yes]442

Justification: The paper provides a dedicated and comprehensive Section 3.1 that specifies443

all the necessary details to understand and reproduce the results. Further implementation444

details are available in Appendix A.445

Guidelines:446

• The answer NA means that the paper does not include experiments.447

• The experimental setting should be presented in the core of the paper to a level of detail448

that is necessary to appreciate the results and make sense of them.449

• The full details can be provided either with the code, in appendix, or as supplemental450

material.451
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7. Experiment statistical significance452

Question: Does the paper report error bars suitably and correctly defined or other appropriate453

information about the statistical significance of the experiments?454

Answer: [Yes]455

Justification: The paper consistently reports error bars for the experimental results in Tables 1456

through 3, as well as in Appendix B. The results are presented as mean ± standard deviation,457

which provides information on the variability of outcomes across test instances.458

Guidelines:459

• The answer NA means that the paper does not include experiments.460

• The authors should answer "Yes" if the results are accompanied by error bars, confi-461

dence intervals, or statistical significance tests, at least for the experiments that support462

the main claims of the paper.463

• The factors of variability that the error bars are capturing should be clearly stated (for464

example, train/test split, initialization, random drawing of some parameter, or overall465

run with given experimental conditions).466

• The method for calculating the error bars should be explained (closed form formula,467

call to a library function, bootstrap, etc.)468

• The assumptions made should be given (e.g., Normally distributed errors).469

• It should be clear whether the error bar is the standard deviation or the standard error470

of the mean.471

• It is OK to report 1-sigma error bars, but one should state it. The authors should472

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis473

of Normality of errors is not verified.474

• For asymmetric distributions, the authors should be careful not to show in tables or475

figures symmetric error bars that would yield results that are out of range (e.g. negative476

error rates).477

• If error bars are reported in tables or plots, The authors should explain in the text how478

they were calculated and reference the corresponding figures or tables in the text.479

8. Experiments compute resources480

Question: For each experiment, does the paper provide sufficient information on the com-481

puter resources (type of compute workers, memory, time of execution) needed to reproduce482

the experiments?483

Answer: [Yes]484

Justification: The paper provides sufficient information on the computational resources485

needed to reproduce the experiments. In Appendix A.3, we specify the hardware environ-486

ment, including the CPU and GPU models. Additionally, a table details the required training487

and prediction times, giving a clear indication of the computational cost.488

Guidelines:489

• The answer NA means that the paper does not include experiments.490

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,491

or cloud provider, including relevant memory and storage.492

• The paper should provide the amount of compute required for each of the individual493

experimental runs as well as estimate the total compute.494

• The paper should disclose whether the full research project required more compute495

than the experiments reported in the paper (e.g., preliminary or failed experiments that496

didn’t make it into the paper).497

9. Code of ethics498

Question: Does the research conducted in the paper conform, in every respect, with the499

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?500

Answer: [Yes]501
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Justification: The research presented in this paper conforms to the NeurIPS Code of Ethics.502

It is a foundational algorithmic study focused on the TSP. The work does not involve human503

subjects, and all datasets are synthetically generated, which eliminates concerns related504

to data privacy and consent. The proposed method is a general-purpose optimization tool505

and does not present direct risks of societal harm, such as discrimination, surveillance, or506

deception. Therefore, the research was conducted without ethical concerns regarding its507

process or potential societal impact.508

Guidelines:509

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.510

• If the authors answer No, they should explain the special circumstances that require a511

deviation from the Code of Ethics.512

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-513

eration due to laws or regulations in their jurisdiction).514

10. Broader impacts515

Question: Does the paper discuss both potential positive societal impacts and negative516

societal impacts of the work performed?517

Answer: [Yes]518

Justification: The paper discusses potential positive social impacts. While it does not discuss519

potential negative impacts, this omission is intentional: our work focuses on improving a520

general-purpose tool—a TSP optimization algorithm—for which clear avenues for misuse521

are not evident, and it does not involve decisions that could unfairly affect data, human522

subjects, or specific populations.523

Guidelines:524

• The answer NA means that there is no societal impact of the work performed.525

• If the authors answer NA or No, they should explain why their work has no societal526

impact or why the paper does not address societal impact.527

• Examples of negative societal impacts include potential malicious or unintended uses528

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations529

(e.g., deployment of technologies that could make decisions that unfairly impact specific530

groups), privacy considerations, and security considerations.531

• The conference expects that many papers will be foundational research and not tied532

to particular applications, let alone deployments. However, if there is a direct path to533

any negative applications, the authors should point it out. For example, it is legitimate534

to point out that an improvement in the quality of generative models could be used to535

generate deepfakes for disinformation. On the other hand, it is not needed to point out536

that a generic algorithm for optimizing neural networks could enable people to train537

models that generate Deepfakes faster.538

• The authors should consider possible harms that could arise when the technology is539

being used as intended and functioning correctly, harms that could arise when the540

technology is being used as intended but gives incorrect results, and harms following541

from (intentional or unintentional) misuse of the technology.542

• If there are negative societal impacts, the authors could also discuss possible mitigation543

strategies (e.g., gated release of models, providing defenses in addition to attacks,544

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from545

feedback over time, improving the efficiency and accessibility of ML).546

11. Safeguards547

Question: Does the paper describe safeguards that have been put in place for responsible548

release of data or models that have a high risk for misuse (e.g., pretrained language models,549

image generators, or scraped datasets)?550

Answer: [NA]551

Justification: The paper’s research does not pose a high risk for misuse, and therefore,552

safeguards for responsible release are not applicable.553

Guidelines:554
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• The answer NA means that the paper poses no such risks.555

• Released models that have a high risk for misuse or dual-use should be released with556

necessary safeguards to allow for controlled use of the model, for example by requiring557

that users adhere to usage guidelines or restrictions to access the model or implementing558

safety filters.559

• Datasets that have been scraped from the Internet could pose safety risks. The authors560

should describe how they avoided releasing unsafe images.561

• We recognize that providing effective safeguards is challenging, and many papers do562

not require this, but we encourage authors to take this into account and make a best563

faith effort.564

12. Licenses for existing assets565

Question: Are the creators or original owners of assets (e.g., code, data, models), used in566

the paper, properly credited and are the license and terms of use explicitly mentioned and567

properly respected?568

Answer: [Yes]569

Justification: All foundational concepts, architectures, and methods are appropriately cited.570

The experimental data used in our experiments were obtained from the cited study [12], and571

the procedure for generating our own data also follows [12].572

Guidelines:573

• The answer NA means that the paper does not use existing assets.574

• The authors should cite the original paper that produced the code package or dataset.575

• The authors should state which version of the asset is used and, if possible, include a576

URL.577

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.578

• For scraped data from a particular source (e.g., website), the copyright and terms of579

service of that source should be provided.580

• If assets are released, the license, copyright information, and terms of use in the581

package should be provided. For popular datasets, paperswithcode.com/datasets582

has curated licenses for some datasets. Their licensing guide can help determine the583

license of a dataset.584

• For existing datasets that are re-packaged, both the original license and the license of585

the derived asset (if it has changed) should be provided.586

• If this information is not available online, the authors are encouraged to reach out to587

the asset’s creators.588

13. New assets589

Question: Are new assets introduced in the paper well documented and is the documentation590

provided alongside the assets?591

Answer: [NA]592

Justification: The paper does not introduce or release any new assets (code, datasets, or593

pre-trained models). We generated our own datasets for the experiments but share only the594

data-generation procedure; the datasets themselves are not released. Likewise, we describe595

the proposed model architecture in detail for reproducibility, but we do not release the code596

or trained weights.597

Guidelines:598

• The answer NA means that the paper does not release new assets.599

• Researchers should communicate the details of the dataset/code/model as part of their600

submissions via structured templates. This includes details about training, license,601

limitations, etc.602

• The paper should discuss whether and how consent was obtained from people whose603

asset is used.604

• At submission time, remember to anonymize your assets (if applicable). You can either605

create an anonymized URL or include an anonymized zip file.606
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14. Crowdsourcing and research with human subjects607

Question: For crowdsourcing experiments and research with human subjects, does the paper608

include the full text of instructions given to participants and screenshots, if applicable, as609

well as details about compensation (if any)?610

Answer: [NA]611

Justification: The research described in the paper does not involve crowdsourcing or any612

experiments with human subjects. The entire experimental process is based on synthetically613

generated data.614

Guidelines:615

• The answer NA means that the paper does not involve crowdsourcing nor research with616

human subjects.617

• Including this information in the supplemental material is fine, but if the main contribu-618

tion of the paper involves human subjects, then as much detail as possible should be619

included in the main paper.620

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,621

or other labor should be paid at least the minimum wage in the country of the data622

collector.623

15. Institutional review board (IRB) approvals or equivalent for research with human624

subjects625

Question: Does the paper describe potential risks incurred by study participants, whether626

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)627

approvals (or an equivalent approval/review based on the requirements of your country or628

institution) were obtained?629

Answer: [NA]630

Justification: The paper does not involve any research with human subjects. The work is631

purely computational.632

Guidelines:633

• The answer NA means that the paper does not involve crowdsourcing nor research with634

human subjects.635

• Depending on the country in which research is conducted, IRB approval (or equivalent)636

may be required for any human subjects research. If you obtained IRB approval, you637

should clearly state this in the paper.638

• We recognize that the procedures for this may vary significantly between institutions639

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the640

guidelines for their institution.641

• For initial submissions, do not include any information that would break anonymity (if642

applicable), such as the institution conducting the review.643

16. Declaration of LLM usage644

Question: Does the paper describe the usage of LLMs if it is an important, original, or645

non-standard component of the core methods in this research? Note that if the LLM is used646

only for writing, editing, or formatting purposes and does not impact the core methodology,647

scientific rigorousness, or originality of the research, declaration is not required.648

Answer: [NA]649

Justification: The methodology of this research does not involve the use of LLMs. The paper650

proposes a novel framework by adapting a DT, a Transformer-based architecture for offline651

reinforcement learning, to solve the TSP. No LLMs are used for reasoning, data generation,652

or any other part of the method.653

Guidelines:654

• The answer NA means that the core method development in this research does not655

involve LLMs as any important, original, or non-standard components.656

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)657

for what should or should not be described.658
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