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Abstract

Combinatorial optimization problems like the Traveling Salesman Problem are criti-
cal in industry yet NP-hard. Neural Combinatorial Optimization has shown promise,
but its reliance on online reinforcement learning (RL) hampers deployment and
underutilizes decades of algorithmic knowledge. We address these limitations by
applying the offline RL framework, Decision Transformer, to learn superior strate-
gies directly from datasets of heuristic solutions—aiming not only to imitate but to
synthesize and outperform them. Concretely, we (i) integrate a Pointer Network
to handle the instance-dependent, variable action space of node selection, and (ii)
employ expectile regression for optimistic conditioning of Return-to-Go, which
is crucial for instances with widely varying optimal values. Experiments show
that our method consistently produces higher-quality tours than the four classical
heuristics it is trained on, demonstrating the potential of offline RL to unlock and
exceed the performance embedded in existing domain knowledge.

1 Introduction

Combinatorial optimization problems (COP) have garnered significant attention in various industries,
including logistics, manufacturing, and communication network design. Many of these problems are
NP-hard, making it extremely difficult to find exact optimal solutions efficiently [6]]. Consequently,
heuristics and metaheuristics have been studied for many years as practical methods for finding
approximate solutions [9, |8]. However, these methods suffer from challenges in generalizability and
scalability, as computational costs increase with problem size and they often require parameter tuning
[10].

In recent years, advancements in deep learning have given rise to Neural Combinatorial Optimization
(NCO) [2, 113} 112,14} [19L 13 [18]. However, a predominant approach in NCO relies on reinforcement
learning (RL), which requires collecting data through interaction with an environment. This online
learning process presents practical challenges for real-world deployment, as it requires either resource-
intensive data acquisition from real environments, or designing a surrogate virtual environment, a task
complicated by the implicit knowledge involved [17]]. Moreover, leveraging the rich knowledge from
domain-specific heuristics and human experts remains a significant, yet often unaddressed, challenge
for these methods.

To address these challenges, we propose applying the Decision Transformer (DT) [4], an offline
RL framework proven in other domains [[15} 22} [16} [11} [7], to learn from pre-existing datasets of
heuristic solutions. This approach enables the use of algorithmic and expert domain knowledge
as valuable data for a neural network to learn solution methods. In this paper, we propose a novel
formulation for applying the DT to the Traveling Salesman Problem (TSP). As the standard DT is not
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designed for node-selection tasks whose action spaces lack semantic consistency, we integrate the
Pointer Network [25] into the action selection mechanism for TSP. We further equip the DT with a
mechanism, inspired by [[15} 26], to predict the highest possible returns for each instance, in order to
address COP where the optimal reward varies significantly across instances.

Our contributions are: 1) a novel DT framework for TSP that consistently generates solutions superior
to the heuristic data it was trained on; 2) a clear demonstration that conditioning the model with
appropriate Return-to-Go (RTG) is critical for outperforming behavior cloning; and 3) validation that
optimistic RTG prediction, via expectile regression, enhances solution quality.

These results suggest that offline RL frameworks like the DT can be a powerful tool for utilizing
existing domain knowledge to generate innovative solutions for complex COP.

2 Methods

2.1 TSP formulation

This paper focuses on the 2D Euclidean TSP. The problem is defined on an undirected graph
G = (V, E) consisting of a set of nodes V' = {v;}¥.; and a set of edges E = {(v;,v;)|i < j,1 <
1,7 < N}. Here, N is the total number of nodes, and the travel cost cost(v;, vj) for each edge is
given by the Euclidean distance between the nodes. A salesman starts from a special depot node v,
visits every node exactly once, and returns to the start, forming a Hamiltonian cycle. The objective is
to minimize the total cost of this tour, denoted as L(o), where o is the tour route. The total cost is
expressed by the following equation:

N-1

L(o) = Z cost(o;,0i41) + cost(on,01) (1)
i=1

Here, o; is the i-th node in the tour, and oy = vg.

2.2 Application of DT

Many constructive NCO studies [2} [13} [12} [14} 19, [3 [18] formulate TSP as a Markov Decision
Process (MDP) where a node to visit next is selected at each time step. In this approach, the state
at time ¢ for a TSP instance graph G is defined as a partial tour o1, = (071, 03, ..., 0¢) consisting of
visited nodes. The action is the selection of the next node 041, and this decision is made by a deep
learning model with parameters 6, 7y(o¢41|01.¢, G). The model is trained using a RL framework
with a reward equal to the negative of the total tour cost, —L(o).

While many NCO methods formulate TSP as a MDP, we adopt the DT’s sequence modeling approach.

We model trajectories 7 = (..., oy, Rt, at, .. .), where Rt is the RTG, oy is the observation, and a; is
the action.

To adapt this framework to TSP, we redefine oy, ]A%t, ay as follows: o; is the embedding vector fy
computed by the model’s Encoder, corresponding to the node o, visited at time ¢. This Encoder,
following the architecture of Kool et al. [13]], uses a transformer Encoder with node coordinate
information as input to compute node embedding vectors. Ry is the negative of the total cost of the
completed tour o at the final time step 7', i.e., —L(0o). a; represents the index of the next node o441
to be visited.

The overall architecture of the proposed method is shown in Figure I]

2.3 Action representation via Pointer Network

Standard DT actions assume semantic consistency (e.g., "up" or "down"), which does not hold for
node indices in TSP as their spatial meaning varies per instance. To address this, as shown in Figure/[T]
we introduce a Pointer Network [25]] to the output of the causal transformer decoder [24]. A Pointer
Network generates an output sequence by "pointing" to elements within the input sequence. This
approach modifies the DT’s action head to output pointers to the graph nodes of the TSP instance,
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Figure 1: Overview of the proposed method’s architecture. The transformer encoder calculates a
node embedding vector from the coordinates of the graph nodes. As observation o; and action a;, the
embedding vectors f; and f; ; of the nodes transitioned at time ¢ and ¢ + 1, respectively, are input

to the causal transformer decoder along with the RTG Ry. The value R, is the RTG prediction by the
causal transformer decoder.

rather than probabilities over a fixed set of actions. In this paper, the pointer is calculated by an
attention mechanism as follows:

he . ¢
Ut»+1: t fz
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Here, f? is the node embedding vector for node v; computed by the Encoder, h{ is the hidden state
of the action head at time ¢, and d is the dimension of hj'.

Similarly, when providing the action a; as input to the DT, we convert the selected node o1 to its
node embedding vector f{, ; instead of using its index.

2.4 RTG prediction

Methods using the transformer architecture are often applied to tasks where rewards are relatively
predictable, such as games and robot control. However, in NP-hard COP like TSP, the optimal reward
varies greatly for each instance. If a uniform RTG is set, the model might treat it as an "extrapolated
input" outside its learning range. For example, providing a target value of 2.5 for an instance with an
optimal value of 3.8 could lead to performance degradation.

To solve this issue, we introduce a mechanism for dynamically predicting the RTG, inspired by
frameworks like Multi-game DT [15] and Elastic DT [26]. In this approach, the RTG is predicted
from the graph information of the TSP instance, and this value is then used for predicting the solution.
Specifically, the predicted RTG value R; is output by the DT model as 7p(R¢41|71:¢, G) with the
graph information G and the partial sequence 71.; as inputs. This predicted value is then used as the
RTG for the next action prediction.

The predicted RTG R, should ideally reflect the maximum achievable return. For this reason, we use
expectile regression [[1} 20] to train the predicted value. The loss function for this is defined by the
following equation:

L2(Ry, Ry) = |a — 1(Ry < Ry)| - (R — Ry)? 4

Here, o is a hyperparameter that controls the weighting of the error. Specifically, if & > 0.5, the model
places more emphasis on under-prediction errors, while if o < 0.5, it emphasizes over-prediction
errors. When o = 0.5, it becomes equivalent to the squared error.
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2.5 Learning objective and loss function

Our model is trained via multi-task learning, minimizing a combined loss Liotq; = Log + ¢+ L2,
where L is the cross-entropy loss for the action prediction (node selection), and L2 is the expectile
regression loss for predicting the RTG. The hyperparameter o encourages optimistic RTG prediction,
while ¢ balances the two tasks.

3 Experimental results

3.1 Experimental setup

In this study, we focus on 2D euclidean TSP to validate the effectiveness of the proposed method.

For our dataset, we used the 2D Euclidean TSP instances with N = 20, 50, 100, which are available
from Joshi et al. [12]]. In these instances, the coordinates of each node are sampled from a uniform
distribution over the unit square [0, 1]2. For each node, we prepared 1,000,000 instances for training,
10,000 for validation, and 10,000 for testing. Since the validation datasets for N = 50, 100 were
not provided, we generated them anew. Following the methodology of Joshi et al. [12], the solution
data was generated using four heuristics: Nearest Neighbor (NN), Nearest Insertion (NI), Farthest
Insertion (FI) [21]], and Simulated Annealing (SA) [23]].

For our DT model, we used a 2-layer transformer encoder and a 2-layer causal transformer decoder,
inspired by the Elastic DT. Each layer was set with a hidden dimension d,;,,q4¢; = 128 and 8 heads.
We used the Schedule-Free AdamW optimizer [3]] with a learning rate of 0.0025 and a batch size of
1000. For the total loss function Liytq; = Log + - Li, we set the hyperparameter c to 0.5 and « to
0.99. The model was trained for 2000 epochs, and we selected the model from the epoch where the
validation loss was minimal. Further details on the experimental setup are provided in Appendix [A]

To evaluate the performance of our heuristics and model, we calculated the optimality gap (%) against
the exact optimal solutions provided by Joshi et al. [12] on the test set of 10,000 instances. The
optimality gap is defined as follows:

M
1 Lo .q) — Lol

optimality gap(%) = Tprea) ~ LTop) x 100 (5)
M o'g‘pt)

where M denotes the number of test instances and, for instance m, L(ogy,) and L(o]) ) denote
the costs of the optimal solutions and model-predicted solutions, respectively.

3.2 Prediction performance of the proposed method

Following the experimental setup described in Section we trained our proposed method on each
training dataset generated by the NN, NI, FI, and SA heuristics. We then evaluated the performance
of each resulting model by calculating the optimality gap of its predicted solutions. This entire
procedure was conducted for problem sizes of N = 20, 50, 100.

Table [T| shows that our method consistently outperformed the solutions from all training heuristics. In
particular, the most notable improvement, approximately a twofold increase over the original heuristic,
was observed for the dataset generated from SA. We hypothesize that this is because the stochastic
nature of SA produces highly diverse solution patterns, which enabled our DT model to better stitch
together sub-optimal segments from different solution trajectories. The limited improvement on the
NN dataset will be discussed in detail in the following section.

3.3 Performance comparison with behavior cloning

To investigate the importance of appropriate RTG conditioning, we compared our method with
behavior cloning. In behavior cloning, we used the model of the proposed method and set the RTG to
0 during both training and inference.

Table [T] shows that our RTG-conditioned method generally outperformed behavior cloning. This
confirms that RTG is essential for enabling the exploration required to find superior solutions, rather
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Table 1: Optimality gap (%) and its standard deviation for each method on the test dataset. The
"Data" column indicates the heuristic method used for training. The "Method" column represents the
original heuristic method (Original), behavior cloning (BC), and our proposed method (DT).

Data Method N =20 N =50 N =100
Original | 17.24 £ 1024 2273 £821 2481 & 647
NN pc 1728 £ 1023 2274 +821 2475+ 6.50
DT (Ours) | 16.73 + 10.07 22.60 +8.17 24.76 + 6.48
Original | 13244699 1912+£478 2177+ 343
NI B¢ 1226 713 1820 + 544 22.00 + 529
DT (Ours) | 643 +4.86 14.98-491 19.84 + 4.85
Original | 236+291 5624312 7.62+255
FI B¢ 185+255 370+254 5220+222
DT (Ours) | 130 £227 3.14+230 473 +2.12
Original | 1.51£279 441+3.16 1236+ 3.66
SA Bc 098+ 1.87 2934257 1031 +4.74
DT (Ours) | 0.83+1.60 239+210 607 +3.11

than merely replicating actions from the training data. The slight performance degradation of our
proposed method compared to behavior cloning in the NN case for NV = 100 is likely due to the
characteristics of NN. NN is a simple greedy algorithm that always selects the nearest neighbor
node at each step, resulting in a lack of diversity in its action patterns. Consequently, the model
could only learn a single action pattern from NN and had little opportunity to learn exploratory
paths to better solutions. Therefore, no significant improvement over behavior cloning was observed.
Additionally, since the proposed method involves the additional task of RTG prediction, this additional
complexity may have prevented it from surpassing the performance of behavior cloning, which
faithfully reproduces the simple action pattern.

3.4 Effect of expectile regression on RTG

To evaluate the effect of using expectile regression for RTG prediction, we conducted an ablation
study. We compared our approach against baselines using fixed RTG targets: 0, used as a sufficiently
high constant (following [4]]), and the average RTG from the training data. Additionally, we analyzed
the impact of the hyperparameter o from the RTG loss function, testing o = 0.7, 0.99 in addition to
o = 0.5, which corresponds to standard regression using a squared error loss. Due to computational
constraints, these experiments were performed exclusively on the datasets for N = 20, 50.

Table 2] shows that predicting the RTG generally yields superior solutions compared to using fixed-
value targets. More importantly, the results clearly show that using expectile regression with o > 0.5
consistently outperforms the squared error case (o = 0.5). Performance also tends to improve as «
increases. This improvement can be attributed to the mechanism of expectile regression: for o« > 0.5,
under-prediction errors are weighted more heavily, which encourages the model to learn to predict
higher RTGs. This optimistic prediction, in turn, allows the model to predict achievable, better
solutions within the policies learned from the training data. This finding emphasizes the importance
of focusing on the "best trajectories” within the data, rather than merely imitating the data distribution,
when learning from offline dataset to surpass existing solutions.

3.5 Exploring optimal RTG

We investigated whether the RTG predictions of our model were sufficiently optimistic or if they could
be improved. To this end, we conducted an experiment where a constant offset was systematically
added to the RTG predictions during inference on the test data. This experiment aimed to determine
if artificially inflating the RTG targets could compensate for potential underestimation by the model
and thus lead to superior performance.



176
177
178
179
180
181

182

183
184
185
186
187

188
189
190
191
192
193

194
195
196
197
198
199

200
201
202
203
204

Table 2: Optimality gap (%) for different RTG targets (Fixed vs. Predicted) and values of o on
N =20, 50.

\ Fixed RTG Predicted RTG using expectile regression
N  Data 0 mean of data a = 0.50 a=0.70 a=0.99

20 NN 67.90 £29.58 17.21 £10.17 | 17.22 £ 10.17 17.14+10.13 16.73 = 10.07
NI 68.39 £26.26 13.12£7.62 13.09£6.29 11.02+£5.96 6.43 + 4.86
FI 89.69 + 31.21 3.33 £4.78 1.70 £ 2.33 1.61 £2.27 1.30 +=2.27
SA 106.03 £+ 31.37 2.52+4.50 097 £ 1.77 0.84 + 1.50 0.83 £+ 1.60

50 NN | 213.67+41.84 2271 £8.18 | 22.69 £8.17 22.66 +£8.17  22.60 +8.17
NI 159.85 £41.00  18.15 £ 5.27 18.04 £534  17.69 £5.24 1498 £ 491
FI 102.97 £ 34.79 4.16 £2.78 3.93+248 375+242 3.14 £ 2.30
SA 258.96 £+ 45.99 345 £299 3.17 +£2.55 290 £2.39 2.39 +£2.10

Table 3: Optimality gap (%) with optimal RTG offsets. The applied offset values are shown in
parentheses.

Data \ N = 20 (offset) N = 50 (offset) N = 100 (offset)

NN | 15.82 £9.96 (1.00) 22.45+8.14(1.00) 24.58 & 6.49 (2.00)
NI 3.94 +4.34 (0.50) 10.40 + 5.10 (2.00)  16.50 + 5.06 (2.00)
FI 129 £221(-0.05)  3.07+£237(0.20)  4.51 + 2.20 (0.50)
SA | 0.79+1.49(-0.10) 239 +2.10(0.00) 5.32 & 2.87 (0.50)

Table 3] shows the optimality gaps relative to the original heuristic solutions, achieved by applying
the optimal offset (value in parentheses) to the model trained on each heuristic. In many cases,
adding an offset resulted in better solutions than the original proposed method. This suggests that the
RTGs predicted by our model may still be conservative, underestimating the target values required to
elicit the best possible solutions. This trend became more pronounced with increasing problem size,
indicating a greater difficulty in accurately predicting the optimal returns for large-scale instances.

4 Discussion and Conclusion

In this study, we proposed a new approach to solve the TSP by applying the offline RL framework DT
to learn from existing heuristic solutions. Our experimental results demonstrated that the proposed
method consistently outperform the solutions generated by the NN, NI, FI, and SA heuristics used
for training. This result validates the fundamental concept of our approach: leveraging existing
algorithmic knowledge as data to acquire a policy that surpasses it.

At the core of our method’s success is goal-conditioned learning via RTG, which, unlike behavior
cloning, learns the relationship between actions and outcomes. This enables the model to explore and
generate novel, higher-quality solutions. Furthermore, our results with expectile regression show that
setting optimistic goals—aiming for performance beyond the training data’s average—is a key driver
for this improvement, emphasizing the importance of focusing on the "best trajectories”" within the
offline dataset.

Our study also highlights several limitations and avenues for future work. The observation that adding
a manual offset to the RTG improved performance suggests our prediction mechanism can be refined,
especially for larger instances. Performance also depends on the training data’s quality and diversity,
as seen with the simple NN heuristic. Future work could explore training on more diverse datasets
combining multiple heuristics or expert human solutions to learn a richer policy and tackle implicit
real-world knowledge.

In conclusion, this study demonstrates that offline learning with the DT can be a powerful framework
for effectively utilizing existing domain knowledge (heuristic solutions) and extracting superior
performance in COP like TSP. This approach holds significant promise for developing new high-
performance solution methods for real-world problems in logistics, manufacturing, and other fields
where domain-specific solutions have been accumulated over many years.



205

206
207
208

209
210

211
212
213

214
215
216
217

218
219

220
221

222
223
224

225
226

227
228

229
230
231

232
233

234
235
236

237
238

240
241

242
243
244

245
246

247
248

249
250
251

References

[1] D.J. Aigner, Amemiya T., and D. J. Poirier. On the estimation of production frontiers: Maximum
likelihood estimation of the parameters of a discontinuous density function. International
Economic Review, 17(2):377, 06 1976.

[2] Irwan Bello*, Hieu Pham*, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning, 2017.

[3] Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang.
Learning to handle complex constraints for vehicle routing problems. In Neural Information
Processing Systems, 2024.

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In Advances in Neural Information Processing Systems, volume 34,
pages 15084-15097, 2021.

[5] Aaron Defazio, Xingyu Alice Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and
Ashok Cutkosky. The road less scheduled. In Neural Information Processing Systems, 2024.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[7] Lun Ge, Xiaoguang Zhou, Yongqgiang Li, and Yongcong Wang. Deep reinforcement learn-
ing navigation via decision transformer in autonomous driving. Frontiers in Neurorobotics,
18:1338189, 2024.

[8] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics, volume 57. Springer
Science & Business Media, 2003.

[9] Bruce Golden, Lawrence Bodin, T Doyle, and W Stewart Jr. Approximate traveling salesman
algorithms. Operations research, 28(3-part-ii):694—711, 1980.

[10] Essam H Houssein, Mahmoud Khalaf Saced, Gang Hu, and Mustafa M Al-Sayed. Metaheuristics
for solving global and engineering optimization problems: review, applications, open issues and
challenges. Archives of computational methods in engineering, 31(8):4485-4519, 2024.

[11] Vidhi Jain, Yixin Lin, Eric Undersander, Yonatan Bisk, and Akshara Rai. Transformers are
adaptable task planners. In 6th Annual Conference on Robot Learning, 2022.

[12] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
tsp requires rethinking generalization. In International Conference on Principles and Practice
of Constraint Programming, 2021.

[13] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[14] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances
in Neural Information Processing Systems, volume 33, pages 21188-21198, 2020.

[15] Kuang-Huei Lee, Ofir Nachum, Sherry Yang, Lisa Lee, C. Daniel Freeman, Sergio Guadarrama,
Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-game
decision transformers. In Advances in Neural Information Processing Systems, 2022.

[16] Namyeong Lee and Jun Moon. Offline reinforcement learning for automated stock trading.
IEEE Access, 11:112577-112589, 2023.

[17] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, 2020.

[18] Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning Representations, 2025.



252
253
254

255
256

257
258
259

260
261

262

264

265
266
267
268

270
271

272
273

274

275

276

277

278
279

[19] Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian.
H-tsp: Hierarchically solving the large-scale traveling salesman problem. In Association for the
Advancement of Artificial Intelligence, 2023.

[20] James L. Powell and Whitney K. Newey. Asymmetric least squares estimation and testing.
Econometrica, 55(4):819-847, 1987.

[21] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. An analysis of several
heuristics for the traveling salesman problem. SIAM Journal on Computing, 6(3):563-581,
1977.

[22] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

[23] Christopher C. Skiscim and Bruce L. Golden. Optimization by simulated annealing: A pre-
liminary computational study for the tsp. In Proceedings of the 15th Conference on Winter
Simulation - Volume 2, WSC ’83, page 523-535. IEEE Press, 1983.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[25] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28, 2015.

[26] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

A Experimental details

A.1 Dataset generation details

The TSP instance data were downloaded or generated using the code from the GitHub repository of
[12] (https://github.com/chaitjo/learning-tsp). The breakdown is provided in Table

The TSP solutions by the NN, NI, and FI heuristics were also generated using the code from
the GitHub repository of [12]]. The TSP solutions by SA were generated using the code from
https://github.com/perrygeo/simanneal, The hyperparameters for SA are shown in Table[5]

Table 4: Details of TSP dataset generation and sources.

Data | N=20 N =50 N =100
Training Download Download Download
Validation | Download Generate (Seed 9999) Generate (Seed 9999)
Test Download Download Download

Table 5: Hyperparameters for SA used for generating solution data.

Parameter | N=20 N=50 N =100

2.5 2.5 2.5
0.025 0.0025 0.0025
50,000 5,000,000 5,000,000

Maximum (starting) temperature
Minimum (ending) temperature
Number of iterations
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A.2 Model architecture details

The encoder was constructed based on the architecture of Kool et al. [13]. The detailed parameters

are presented in Table [6]

The decoder was built based on the implementation of the Elastic DT [26]] (https://github.com/
kristery/Elastic-DT). The detailed parameters are presented in Table

The parameters used for training are shown in Table[§]

Table 6: Architectural details of the transformer encoder.

Parameter Value
Number of layers 2

Number of attention heads 8
Embedding dimension 128
Activation function GELU
Normalization method Layer Normalization
Dropout rate 0.0

Table 7: Architectural details of the Causal transformer decoder.

Parameter Value

Number of layers 2

Number of attention heads 8

Embedding dimension 128

Activation function GELU
Normalization method Layer Normalization
Dropout rate 0.0

Context length Same as number of TSP nodes
Reward clipping False

Expectile Regression quantile « 0.99

Table 8: Training hyperparameters.

Parameter Value

Loss balance coefficient ¢ 0.5

Optimizer Schedule-Free AdamW [5]
Learning rate 0.0025

Weight decay 0.0

AdamW betas (0.9, 0.999)
AdamW epsilon le-8

Batch size 1000
Maximum Epochs 2000

A.3 Computational environment

All experiments were conducted on a single server equipped with an NVIDIA GeForce RTX 4090
(24GB VRAM) and an Intel Xeon Silver 4314 CPU (2.40GHz). The models were implemented using
PyTorch 2.5.1. The training and inference time for a single model is shown in the Table 9]
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https://github.com/kristery/Elastic-DT
https://github.com/kristery/Elastic-DT
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Table 9: The computational time in training and predicting on NN dataset. The prediction time was

measured as the duration required to predict a single instance.

Parameter

N =20

N =50

N =100

Training time
Prediction time

19 hours
0.63 seconds

1 days 3 hours
0.86 seconds

1 days 23 hours
1.10 seconds

B Detailed numerical results

The actual average costs of the solutions for each method, used to calculate the optimality gaps in

Tables ([T} 2] and[3] are presented below.

Table 10: Actual average solution costs corresponding to the optimality gaps reported in Table[I} The
first row "Optimal" shows the average cost of the optimal solutions.

Data Method N =20 N =50 N =100
Optimal 3834030 5694025 7764023
Original | 449 £0.55 699057 9.69 %058
NN IL 449+ 054 6994057 9.69+0.58
DT (Ours) | 447 +0.54 698+ 056 9.69 + 0.58
Original | 433+ 039 678+ 035 945+ 0.33
NI IL 4304039 673+037 947+ 044
DT (Ours) | 4.07 + 033 6.54+033 930+ 0.40
Original | 3.92+ 034 601 +032 836+ 031
FI IL 390+033 5904030 8.17+029
DT (Ours) | 3.88 + 033 5.87+029 813+ 028
Original | 3.89 £0.33 5.94+032 872+ 0.36
SA IL 3874032 5864029 856+ 043
DT (Ours) | 3.86 + 032 5.83+029 823+ 031

Table 11: Actual average solution costs corresponding to the optimality gaps reported in Table[2]

\ Fixed RTG Predicted RTG using expectile regression

N  Data 0 mean of data ~ a = 0.50 a=0.70 a=0.99
20 NN 643 +£125 449+£054|449+054 4491+054 447+054
NI 644 +1.04 4324+023 |433+£036 4254036 4.07+0.33
FI 725+ 123 3954+0.26 | 390+0.33 3.89+0.32 3.88+0.33
SA 7.88+£ 127 392+026 | 387+032 3.86+0.32 3.86+0.32
50 NN | 17.84+£238 6994056 | 6.98+0.56 698 £0.57 6.98 +0.56
NI 1478 £2.33 6.724+032 | 6.71 £0.35 6.69+0.35 6.54+0.33
FI 11.55+2.01 593+0.26 | 591 +028 591+£028 5.87+0.29
SA 2041 £2.60 5894024 | 5.87+0.28 5.86+0.28 5.834+0.29
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Table 12: Actual average solution costs corresponding to the optimality gaps reported in Table[3| The
applied offset values are shown in parentheses.

Data \ N = 20 (offset) N = 50 (offset) N = 100 (offset)

NN | 4.444+053(1.00) 6.97 £+ 0.56 (1.00) 9.67 % 0.58 (2.00)
NI | 3.9840.36(0.50) 6.28 4+ 0.38(2.00) 9.04 & 0.45 (2.00)
FI | 3.88+0.32(-0.05) 5.8740.29(0.20) 8.11 & 0.28 (0.50)
SA | 3.86+0.32(-0.10) 5.83 +0.29 (0.00) 8.18 = 0.31 (0.50)
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately and clearly
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses the limitations of the work in the Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not present any novel theoretical results, such as theorems,
lemmas, or formal proofs. Its contributions are empirical in nature. The work focuses on
proposing a novel framework by adapting and combining existing methods—namely the DT,
Pointer Networks, and RTG prediction using expectile regression—and then experimentally
validating this framework’s effectiveness on the TSP.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary information to ensure the reproducibility of
our experimental results. Specifically, the model architecture is fully described in Section 2]
and the complete experimental setup, including the data generation process and all model
hyperparameters, is detailed in Section Further implementation details are available in
Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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399 (d) We recognize that reproducibility may be tricky in some cases, in which case

400 authors are welcome to describe the particular way they provide for reproducibility.
401 In the case of closed-source models, it may be that access to the model is limited in
402 some way (e.g., to registered users), but it should be possible for other researchers
403 to have some path to reproducing or verifying the results.

404 5. Open access to data and code

405 Question: Does the paper provide open access to the data and code, with sufficient instruc-
406 tions to faithfully reproduce the main experimental results, as described in supplemental
407 material?

408 Answer:

409 Justification: While the specific source code and generated datasets for this study are not
410 publicly released, the paper provides a thorough and detailed description of the core method-
411 ology, model architecture, and experimental setup, which is sufficient for reimplementation.
412 The authors clearly outline the novel components of their approach, such as the integration
413 of a Pointer Network and the use of expectile regression for dynamic RTG prediction. Fur-
414 thermore, the paper provides precise citations to the public code repositories that were used
415 as a basis for the model architecture (e.g., [13}26]]) and for data generation (e.g., [12,[23]]),
416 offering a clear path for researchers to reproduce the work from foundational, publicly
417 available components.

418 Guidelines:

419 * The answer NA means that paper does not include experiments requiring code.

420 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
421 public/guides/CodeSubmissionPolicy) for more details.

422 * While we encourage the release of code and data, we understand that this might not be
423 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
424 including code, unless this is central to the contribution (e.g., for a new open-source
425 benchmark).

426 * The instructions should contain the exact command and environment needed to run to
427 reproduce the results. See the NeurIPS code and data submission guidelines (https |
428 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

429 * The authors should provide instructions on data access and preparation, including how
430 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
431 * The authors should provide scripts to reproduce all experimental results for the new
432 proposed method and baselines. If only a subset of experiments are reproducible, they
433 should state which ones are omitted from the script and why.

434 * At submission time, to preserve anonymity, the authors should release anonymized
435 versions (if applicable).

436 * Providing as much information as possible in supplemental material (appended to the
437 paper) is recommended, but including URLSs to data and code is permitted.

438 6. Experimental setting/details

439 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
440 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
441 results?

442 Answer: [Yes]

443 Justification: The paper provides a dedicated and comprehensive Section [3.1] that specifies
444 all the necessary details to understand and reproduce the results. Further implementation
445 details are available in Appendix [A]

446 Guidelines:

447 * The answer NA means that the paper does not include experiments.

448 » The experimental setting should be presented in the core of the paper to a level of detail
449 that is necessary to appreciate the results and make sense of them.

450 * The full details can be provided either with the code, in appendix, or as supplemental
451 material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper consistently reports error bars for the experimental results in Tables|[T]
through |3} as well as in Appendix |B} The results are presented as mean =+ standard deviation,
which provides information on the variability of outcomes across test instances.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computational resources
needed to reproduce the experiments. In Appendix [A.3] we specify the hardware environ-
ment, including the CPU and GPU models. Additionally, a table details the required training
and prediction times, giving a clear indication of the computational cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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10.

11.

Justification: The research presented in this paper conforms to the NeurIPS Code of Ethics.
It is a foundational algorithmic study focused on the TSP. The work does not involve human
subjects, and all datasets are synthetically generated, which eliminates concerns related
to data privacy and consent. The proposed method is a general-purpose optimization tool
and does not present direct risks of societal harm, such as discrimination, surveillance, or
deception. Therefore, the research was conducted without ethical concerns regarding its
process or potential societal impact.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential positive social impacts. While it does not discuss
potential negative impacts, this omission is intentional: our work focuses on improving a
general-purpose tool—a TSP optimization algorithm—for which clear avenues for misuse
are not evident, and it does not involve decisions that could unfairly affect data, human
subjects, or specific populations.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper’s research does not pose a high risk for misuse, and therefore,
safeguards for responsible release are not applicable.

Guidelines:

16



555

556
557
558
559

561

562
563
564

565

566
567
568

569

570
571
572

573

574
575

576
577

578

580

581
582
583
584

585
586

587
588
589

590
591

592

593

595
596
597

598

599
600
601
602
603
604
605
606

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All foundational concepts, architectures, and methods are appropriately cited.
The experimental data used in our experiments were obtained from the cited study [12], and
the procedure for generating our own data also follows [12]].

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new assets (code, datasets, or
pre-trained models). We generated our own datasets for the experiments but share only the
data-generation procedure; the datasets themselves are not released. Likewise, we describe
the proposed model architecture in detail for reproducibility, but we do not release the code
or trained weights.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research described in the paper does not involve crowdsourcing or any
experiments with human subjects. The entire experimental process is based on synthetically
generated data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any research with human subjects. The work is
purely computational.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The methodology of this research does not involve the use of LLMs. The paper
proposes a novel framework by adapting a DT, a Transformer-based architecture for offline

reinforcement learning, to solve the TSP. No LLMs are used for reasoning, data generation,
or any other part of the method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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