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Abstract

Neural network compression has been an increasingly important subject, due to its
practical implications in terms of reducing the computational requirements and its
theoretical implications, as there is an explicit connection between compressibility
and the generalization error. Recent studies have shown that the choice of the
hyperparameters of stochastic gradient descent (SGD) can have an effect on the
compressibility of the learned parameter vector. Even though these results have
shed some light on the role of the training dynamics over compressibility, they
relied on unverifiable assumptions and the resulting theory does not provide a
practical guideline due to its implicitness. In this study, we propose a simple
modification for SGD, such that the outputs of the algorithm will be provably
compressible without making any nontrivial assumptions. We consider a one-
hidden-layer neural network trained with SGD and we inject additive heavy-tailed
noise to the iterates at each iteration. We then show that, for any compression rate,
there exists a level of overparametrization (i.e., the number of hidden units), such
that the output of the algorithm will be compressible with high probability. We
illustrate our approach on experiments, where the results suggest that the proposed
approach achieves compressibility with a slight compromise from the training and
test error.

1 Introduction

Obtaining compressible neural networks has become an increasingly important task in the last decade,
and it has essential implications from both practical and theoretical perspectives. From a practical
point of view, as the modern network architectures might contain an excessive number of parameters,
compression has a crucial role in terms of deployment of such networks in resource-limited environ-
ments [O’N20, BOFG20]. On the other hand, from a theoretical perspective, several studies have
shown that compressible neural networks should achieve a better generalization performance due to
their lower-dimensional structure [AGNZ18, SAM+20, SAN20, HJTW21, BSE+21, SGRS22].

Despite their evident benefits, it is still not yet clear how to obtain compressible networks with
provable guarantees. In an empirical study [FC18], introduced the ‘lottery ticket hypothesis’, which
indicated that a randomly initialized neural network will have a sub-network that can achieve
a performance that is comparable to the original network; hence, the original network can be
compressed to the smaller sub-network. This empirical study has formed a fertile ground for
subsequent theoretical research, which showed that such a sub-network can indeed exist (see e.g.,
[MYSSS20, BLMG21, dCNV22]); yet, it is not clear how to develop an algorithm that can find it in
a feasible amount of time.
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Another line of research has developed methods to enforce compressibility of neural networks by
using sparsity enforcing regularizers, see e.g., [PRSE18, ACA19, CJS+20, Led23, KW23]. While
they have led to interesting algorithms, the resulting algorithms typically require higher computational
needs due to the increased complexity of the problem. On the other hand, due to the nonconvexity of
the overall objective, it is also not trivial to provide theoretical guarantees for the compressibility of
the resulting network weights.

Recently it has been shown that the training dynamics can have an influence on the compressibility
of the algorithm output. In particular, motivated by the empirical and theoretical evidence that heavy-
tails might arise in stochastic optimization (see e.g., [MM19, SSG19, ŞGN+19, ŞZTG20, ZFM+20,
ZKV+20, CWZ+21]), [BSE+21, Shi21] showed that the network weights learned by stochastic
gradient descent (SGD) will be compressible if we assume that they are heavy-tailed and there exists
a certain form of statistical independence within the network weights. These studies illustrated that,
even without any modification to the optimization algorithm, the learned network weights can be
compressible depending on the algorithm hyperparameters (such as the step-size or the batch-size).
Even though the tail and independence conditions were recently relaxed in [LAJ+22], the resulting
theory relies on unverifiable assumptions, and hence does not provide a practical guideline.

In this paper, we focus on single-hidden-layer neural networks with a fixed second layer (i.e., the
setting used in previous work [DBDFS20]) trained with vanilla SGD, and show that, when the iterates
of SGD are simply perturbed by heavy-tailed noise with infinite variance (similar to the settings
considered in [Şim17, NSR19, ŞZTG20, HMW21, ZZ23]), the assumption made in [BSE+21] in
effect holds. More precisely, denoting the number of hidden units by n and the step-size of SGD by
η, we consider the mean-field limit, where n goes to infinity and η goes to zero. We show that in this
limiting case, the columns of the weight matrix will be independent and identically distributed (i.i.d.)
with a common heavy-tailed distribution. Then, we focus on the finite n and η regime and we prove
that for any compression ratio (to be precised in the next section), there exists a number N , such
that if n ≥ N and η is sufficiently small, the network weight matrix will be compressible with high
probability. Figure 1 illustrates the overall approach and precises our notion of compressibility.

Figure 1: The illustration of the overall approach. We
consider a one-hidden-layer neural network with n hid-
den units, which results in a weight matrix of n columns
(first layer). We show that, when SGD is perturbed with
heavy-tailed noise, as n→ ∞, each column will follow
a multivariate heavy-tailed distribution in an i.i.d. fash-
ion. This implies that a small number of columns will
have significantly larger norms compared to the others;
hence, the norm of the overall weight matrix will be
determined by such columns [GCD12]. As a result, the
majority of the columns can be removed (i.e., set to
zero), which we refer to as compressibility.

After deriving the Euler-Maruyama-type
guarantee for approximation SGD by
its mean-field limit, we prove a high-
probability compression bound by invok-
ing [GCD12, AUM11], which essentially
shows that an i.i.d. sequence of heavy-
tailed random variables will have a small
proportion of elements that will domi-
nate the whole sequence in terms of ab-
solute values (to be stated formally in
the next section). Here, we shall note
that similar mean-field regimes have al-
ready been considered in machine learning
(see e.g., [MMN18, CB18, RVE18, JŠS19,
MMM19, DBDFS20, SS22]). However,
these studies all focused on particle SDE
systems that either converge to determin-
istic systems or that are driven by Brown-
ian motion. While they have introduced
interesting analysis tools, we cannot di-
rectly benefit from their analysis in this pa-
per, since the heavy-tails are crucial for ob-
taining compressibility, and the Brownian-
driven SDEs cannot produce heavy-tailed
solutions in general.

To validate our theory, we conduct experiments on single-hidden-layer neural networks on different
datasets. Our results show that, even with a minor modification to SGD (i.e., injecting heavy-tailed
noise), the proposed approach can achieve compressibility with a negligible computational overhead
and with a slight compromise from the training and test error. For instance, on a classification task
with the MNIST dataset, when we set n = 10K, with vanilla SGD, we obtain a test accuracy of
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94.69%, whereas with the proposed approach, we can remove 44% of the columns of the weight
matrix, while maintaining a test accuracy of 94.04%. We provide all the proofs in the appendix.

2 Preliminaries

Notation. For a vector u ∈ Rd, denote by ∥u∥ its Euclidean norm, and by ∥u∥p its ℓp norm. For a
function f ∈ C(Rd1 ,Rd2), denote by ∥f∥∞ := supx∈Rd1 ∥f(x)∥ its L∞ norm. For a family of n
(or infinity) vectors, the indexing ·i,n denotes the i-th vector in the family. In addition, for random

variables,
(d)
= means equality in distribution, and the space of probability measures on Rd is denoted by

P(Rd). For a matrix A ∈ Rd1×d2 , its Frobenius norm is denoted by ∥A∥F =
√∑d1

i=1

∑d2

j=1 |ai,j |2.
Without specifically mentioning, E denotes the expectation over all the randomness taken into
consideration.

2.1 Alpha-stable processes

A random variable X ∈ Rd is called α-stable with the stability parameter α ∈ (0, 2], if X1, X2, . . .

are independent copies ofX , then n−1/α
∑n

j=1Xj
(d)
= X for all n ≥ 1 [Sam17]. Stable distributions

appear as the limiting distribution in the generalized central limit theorem (CLT) [gne54]. In the
one-dimensional case (d = 1), we call the variable X a symmetric α-stable random variable if its
characteristic function is of the following form: E[exp(iωX)] = exp(−|ω|α) for ω ∈ R.

For symmetric α-stable distributions, the case α = 2 corresponds to the Gaussian distribution, while
α = 1 corresponds to the Cauchy distribution. An important property of α-stable distributions is that
in the case α ∈ (1, 2), the p-th moment of an α-stable random variable is finite if and only if p < α;
hence, the distribution is heavy-tailed. In particular, E[|X|] <∞ and E[|X|2] = ∞, which can be
used to model phenomena with heavy-tailed observations.

There exist different types of α-stable random vectors in Rd. In this study we will be interested in the
following three variants, whose characteristic functions (for u ∈ Rd) are given as follows:

• Type-I. Let Z ∈ R be a symmetric α-stable random variable. We then construct the random
vector X such that all the coordinates of X is equated to Z. In other words X = 1dZ, where
1d ∈ Rd is a vector of ones. With this choice, X admits the following characteristic function:
E [exp(i⟨u,X⟩] = exp(−|⟨u,1d⟩|α);

• Type-II. X has i.i.d. coordinates, such that each component of X is a symmetric α-stable ran-
dom variable in R. This choice yields the following characteristic function: E [exp(i⟨u,X⟩] =
exp(−

∑d
i=1 |ui|α);

• Type-III. X is rotationally invariant α-stable random vector with the characteristic function
E [exp(i⟨u,X⟩] = exp(−∥u∥α).

Note that the Type-II and Type-III noises reduce to a Gaussian distribution when α = 2 (i.e., the
characteristic function becomes exp(−∥u∥2)).
Similar to the fact that stable distributions extend the Gaussian distribution, we can define a more
general random process, called the α-stable Lévy process, that extends the Brownian motion. For-
mally, α-stable processes are stochastic processes (Lα

t )t≥0 with independent and stationary α-stable
increments, and have the following definition:

• Lα
0 = 0 almost surely,

• For any 0 ≤ t0 < t1 < · · · < tN , the increments Lα
tn − Lα

tn−1
are independent,

• For any 0 ≤ s < t, the difference Lα
t − Lα

s and (t− s)1/αLα
1 have the same distribution,

• Lα
t is stochastically continuous, i.e. for any δ > 0 and s ≥ 0, P(∥Lα

t − Lα
s ∥ > δ) → 0 as t→ s.

To fully characterize an α-stable process, we further need to specify the distribution of Lα
1 . Along

with the above properties, the choice for Lα
1 will fully determine the process. For this purpose, we

will again consider the previous three types of α-stable vectors: We will call the process Lα
t a Type-I

process if Lα
1 is a Type-I α-stable random vector. We define the Type-II and Type-III processes
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analogously. Note that, when α = 2, Type-II and Type-III processes reduce to the Brownian motion.
For notational clarity, occasionally, we will drop the index α and denote the process by Lt.

3 Problem Setting and the Main Result

We consider a single hidden-layer overparametrized network of n units and use the setup provided
in [DBDFS20]. Our goal is to minimize the expected loss in a supervised learning regime, where
for each data z = (x, y) distributed according to π(dx, dy);1 the feature x is included in X ⊂ Rd

and the label y is in Y . We denote by θi,n ∈ Rp the parameter for the i-th unit, and the parametrized
model is denoted by hx : Rp → Rl. The mean-field network is the average over models for n units:

fΘn(x) =
1

n

n∑
i=1

hx(θ
i,n),

where Θn = (θi,n)ni=1 ∈ Rp×n denotes the collection of parameters in the network and x ∈ X is the
feature variable for the data point. In particular, the mean-field network corresponds to a two-layer
neural network with the weights of the second layer are fixed to be 1/n and Θn is the parameters of
the first layer. While this model is less realistic than the models used in practice, nevertheless, we
believe that it is desirable from theoretical point of view, and this defect can be circumvented upon
replacing hx(θi,n) by hx(ci,n, θi,n) = ci,nhx(θ

i,n), where ci,n and θi,n are weights corresponding
to different layers. However, in order to obtain similar results in this setup as in our paper, stronger
assumptions are inevitable and the proof should be more involved, which are left for future work.

Given a loss function ℓ : Rl × Y → R+, the goal (for each n) is to minimize the expected loss

R(Θn) = E(x,y)∼π [ℓ (fΘn(x), y)] . (1)

Let us set the notation for the proposed algorithm. Let θ̂i,n0 , i = 1, . . . , n, be the initial values of the
iterates, which are n random variables in Rd distributed independently according to a given initial
probability distribution µ0. Then, we consider the gradient descent updates with stepsize ηn, which
is perturbed by i.i.d. α-stable noises σ · η1/αXi,n

k for each unit i = 1, . . . , n and some σ > 0:{
θ̂i,nk+1 = θ̂i,nk − ηn [∂θi,nR(Θn

k )] + σ · η1/αXi,n
k

θ̂i,n0 ∼ µ0 ∈ P(Rd),
(2)

where the scaling factor η1/α in front of the stable noise enables the discrete dynamics of the system
homogenize to SDEs as η → 0. At this stage, we do not have to determine which type of stable noise
(e.g., Type-I, II, or III) that we shall consider as they will all satisfy the requirements of our theory.
However, our empirical findings will illustrate that the choice will affect the overall performance.

We now state the assumptions that will imply our theoretical results. The following assumptions are
similar to [DBDFS20, Assumption A1].
Assumption 1. • Regularity of the model: for each x ∈ X , the function hx : Rp → Rl is

two-times differentiable, and there exists a function Ψ : X → R+ such that for any x ∈ X ,

∥hx(·)∥∞ + ∥∇hx(·)∥∞ + ∥∇2hx(·)∥∞ ≤ Ψ(x).

• Regularity of the loss function: there exists a function Φ : Y → R+ such that

∥∂1ℓ(·, y)∥∞ + ∥∂21ℓ(·, y)∥∞ ≤ Φ(y)

• Moment bounds on Φ(·) and Ψ(·): there exists a positive constant B such that

E(x,y)∼π[Ψ
2(x)(1 + Φ2(y))] ≤ B2.

Let us remark that these are rather standard smoothness assumptions that have been made in the
mean field literature [MMN18, MMM19] and are satisfied by several smooth activation functions,
including the sigmoid and hyper-tangent functions.

1Note that for finite datasets, π can be chosen as a measure supported on finitely many points.
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We now proceed to our main result. Let Θ̂n
k ∈ Rp×n be the concatenation of all parameters θ̂i,nk ,

i = 1, . . . , n obtained by the recursion (2) after k iterations. We will now compress Θ̂n
k by pruning

its columns with small norms. More precisely, fix a compression ratio κ ∈ (0, 1), compute the norms
of the columns of Θ̂n

k , i.e., ∥θ̂i,nk ∥. Then, keep the ⌊κn⌋ columns, which have the largest norms, and
set all the other columns to zero, in all their entirety. Finally, denote by Θ̂

(κn)
k ∈ Rp×n, the pruned

version of Θ̂n
k .

Theorem 3.1. Suppose that Assumption 1 holds. For any fixed t > 0, κ ∈ (0, 1) and ϵ > 0
sufficiently small, with probability 1− ϵ, there exists N ∈ N+ such that for all n ≥ N and η such
that η ≤ n−α/2−1, the following upper bound on the relative compression error for the parameters
holds: ∥∥∥Θ̂(κn)

⌊t/η⌋ − Θ̂n
⌊t/η⌋

∥∥∥
F∥∥∥Θ̂n

⌊t/η⌋

∥∥∥
F

≤ ϵ.

This bound shows that, thanks to the heavy-tailed noise injections, the weight matrices will be
compressible at any compression rate, as long as the network is sufficiently overparametrized and
the step-size is sufficiently small. We shall note that this bound also enables us to directly obtain a
generalization bound by invoking [BSE+21, Theorem 4].

4 Empirical Results

In this section, we validate our theory with empirical results. Our goal is to investigate the effects of
the heavy-tailed noise injection in SGD in terms of compressibility and the train/test performance.
We consider a single-hidden-layer neural network with ReLU activations and the cross entropy loss,
applied on classifications tasks. We chose the Electrocardiogram (ECG) dataset [YE] and the MNIST
datasets. By slightly streching the scope of our theoretical framework, we also train the weights of the
second layer instead of fixing them to 1/n. All the experimentation details are given in Appendix D
and we present additional experimental results in Appendix E.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 0.974 0.957 11.45 0.97 0.954
1.75 0.97± 0.007 0.955± 0.003 48.07± 7.036 0.944± 0.03 0.937± 0.022
1.8 0.97± 0.007 0.955± 0.003 44.68± 5.4 0.95± 0.025 0.963± 0.016
1.9 0.966± 0.008 0.959± 0.01 39.37± 2.57 0.962± 0.012 0.953± 0.005

Table 1: ECG5000, Type-I noise, n = 2K.

In our first experiment, we consider the ECG500 dataset and choose the Type-I noise. Our goal
is to investigate the effects α and n over the performance. Tables 1-2 illustrate the results. Here,
for different cases, we monitor the training and test accuracies (over 1.00), the pruning ratio: the
percentage of the weight matrix that can be pruned while keeping the 90% of the norm of the original
matrix2, and training/test accuracies after pruning (a.p.) the network with the specified pruning ratio.

The results show that, even for a moderate number of neurons n = 2K, the heavy-tailed noise results
in a significant improvement in the compression capability of the neural network. For α = 1.9, we
can see that the pruning ratio increases to 39%, whereas vanilla SGD can only be compressible with
a rate 11%. Besides, the compromise in the test accuracy is almost negligible, the proposed approach
achieves 95.3%, whereas vanilla SGD achieves 95.7% accuracy. We also observe that decreasing α
(i.e., increasing the heaviness of the tails) results in a better compression rate; yet, there is a tradeoff
between this rate and the test performance. In Table 2, we repeat the same experiment for n = 10K.
We observe that the previous conclusions become even clearer in this case, as our theory applies to
large n. For the case where α = 1.75, we obtain a pruning ratio of 52% with test accuracy 95.4%,
whereas for vanilla SGD the ratio is only 11% and the original test accuracy is 96.3%.

In our second experiment, we investigate the impact of the noise type. We set n = 10K and use
the same setting as in Table 2. Tables 3-4 illustrate the results. We observe that the choice of the

2The pruning ratio has the same role of κ, whereas we fix the compression error to 0.1 and find the largest κ
that satisfies this error threshold.
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α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 0.978 0.963 11.46 0.978 0.964
1.75 0.978± 0.001 0.964± 0.001 52.59± 6.55 0.95± 0.03 0.954± 0.022
1.8 0.978± 0.001 0.964± 0.001 52.59± 6.55 0.95± 0.03 0.954± 0.022
1.9 0.978± 0.001 0.964± 0.001 40.85± 2.89 0.96± 0.021 0.958± 0.013

Table 2: ECG5000, Type-I noise, n = 10K.

noise type can make a significant difference in terms of both compressibility and accuracy. While
the Type-III noise seems to obtain a similar accuracy when compared to Type-I, it achieves a worse
compression rate. On the other hand, the behavior of Type-II noise is perhaps more interesting: for
α = 1.9 it both increases compressibility and also achieves a better accuracy when compared to
unpruned, vanilla SGD. However, we see that its behavior is much more volatile, the performance
quickly degrades as we decrease α. From these comparisons, Type-I noise seems to achieve a better
tradeoff.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
1.75 0.986± 0.003 0.982± 0.005 52.13± 27.78 0.865± 0.261 0.866± 0.251
1.8 0.985± 0.003 0.980± 0.005 39.9± 21.55 0.971± 0.025 0.972± 0.023
1.9 0.982± 0.003 0.976± 0.006 20.95± 6.137 0.982± 0.004 0.977± 0.006

Table 3: ECG5000, Type-II noise, n = 10K.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
1.75 0.97± 0.007 0.957± 0.005 33.48± 7.33 0.969± 0.008 0.957± 0.011
1.8 0.97± 0.007 0.956± 0.007 26.81± 4.72 0.963± 0.008 0.952± 0.008
1.9 0.97± 0.005 0.955± 0.005 17.59± 1.56 0.968± 0.004 0.954± 0.96

Table 4: ECG5000, Type-III noise, n = 10K.

In our next experiment, we consider the MNIST dataset, set n = 10K and use Type-I noise. Table 5
illustrates the results. Similar to the previous results, we observe that the injected noise has a visible
benefit on compressibility. When α = 1.9, our approach doubles the compressibility of the vanilla
SGD (from 10% to 21%), whereas the training and test accuracies almost remain unchanged. On
the other hand, when we decrease α, we observe that the pruning ratio goes up to 44%, while only
compromising 1% of test accuracy. To further illustrate this result, we pruned vanilla SGD by using
this pruning ratio (44%). In this case, the test accuracy of SGD drops down to 92%, where as our
simple noising scheme achieves 94% of test accuracy with the same pruning ratio.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 0.95 0.9487 10.59 0.9479 0.9476
1.75 0.95± 0.0001 0.9454± 0.0005 44.42± 7.16 0.944± 0.0025 0.9409± 0.0019
1.8 0.95± 0.0001 0.9457± 0.0007 34.49± 5.07 0.9453± 0.0015 0.9397± 0.0036
1.9 0.95± 0.0001 0.9463± 0.0004 21.31± 1081 0.9478± 0.0008 0.9444± 0.0009

Table 5: MNIST, Type-I noise, n = 10K until reaching 95% training accuracy.

5 Conclusion

We provided a methodological and theoretical framework for provably obtaining compressibility
in mean-field neural networks. Our approach requires minimal modification for vanilla SGD and
has the same computational complexity. We showed that the resulting algorithm is guaranteed to
provide compressible parameters. We illustrated our approach on several experiments, where we
showed that, in most cases, the proposed approach achieves a high compressibility ratio, while slightly
compromising from the accuracy.

The limitations of our approach are as follows: (i) we consider mean-field networks, it would
be of interest to generalize our results to more sophisticated architectures, (ii) we focused on the
compressibility; yet, the noise injection also has an effect on the train/test accuracy. Finally, due to
the theoretical nature of our paper, it does not have a direct negative social impact.
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Implicit Compressibility of Overparametrized Neural Networks
via Heavy-Tailed Noisy Gradient Descent

APPENDIX

The Appendix is organized as follows.

• In Section A, we point out the intermediate results established for proving 3.1.

• In Section B, we provide technical lemmas for proving Theorem 3.1, Theorem A.1 and
Theorem A.2.

• In Section C, we give the proofs to the theorems in the main paper.

• In Section D and E, we present experimental details and results of additional experiments.

• In Section F, implications of our compressibility studies on federated learning are discussed.

A Intermediate Results

In this section, we gather the main technical contributions with the purpose of demonstrating
Theorem 3.1. We begin by rewriting (2) in the following form:{

θ̂i,nk+1 − θ̂i,nk = ηb(θ̂i,nk , µ̂n
k ) + σ · η1/αXi,n

k

θ̂i,n0 ∼ µ0 ∈ P(Rd),
(3)

where µ̂n
k = 1

nδθ̂i,n
k

is the empirical distribution of parameters at iteration k and δ is the Dirac

measure, and the drift is given by b(θi,nk , µn
k ) = −E[∂1ℓ(µn

k (hx(·), y)∇hx(θ
i,n
k )], where ∂1 denotes

the partial derivative with respect to the first parameter and

µn
k (hx(·)) :=

∫
hx(θ)dµ

n
k (θ) =

n∑
i=1

hx(θ
i,n
k ) = fΘn

k
(x).

It is easy to check that b(θi,nk , µn
k ) = −n∂θi,nR(Θn

k ). By looking at the dynamics from this perspec-
tive, we can treat the evolution of the parameters as a system of evolving probability distributions µn

k :
the empirical distribution of the parameters during the training process will converge to a limit as η
goes to 0 and n goes to infinity.

We start by linking the recursion (2) to its limiting case where η → 0. The limiting dynamics can be
described by the following system of SDEs:{

dθi,nt = b(θi,nt , µn
t )dt+ σdLi,n

t

θi,n0 ∼ µ0 ∈ P(Rd),
(4)

where µn
t = 1

nδθi,n
t

and (Li,n
t )t≥0 are independent α-stable processes such that Li,n

1

(d)
= Xi,n

1 . We
can now see the original recursion (2) as an Euler discretization of (4) and then we have the following
strong uniform error estimate for the discretization.

Theorem A.1. Let (θi,nt )t≥0 be the solutions to SDE (4) and (θ̂i,nk )k∈N+ be given by SGD (2) with
the same initial condition θi,n0 and α-stable Lévy noise Li,n

· , i=1,. . . ,n. Under Assumption 1, for any
T > 0, if ηk ≤ T , there exists a constant C depending on B, T, α such that the approximation error

E
[
sup
i≤n

∥θi,nηk − θ̂i,nk ∥
]
≤ C(ηn)1/α.

In comparison to the standard error estimates in the Euler-Maruyama scheme concerning only the
stepsize η, the additional n-dependence is due to the fact that here we consider the supremum of the
approximation error over all i ≤ n, which involves the expectation of the supremum of the modulus
of n independent α-stable random variables.
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Next, we start from the system (4) and consider the case where n→ ∞. In this limit, we obtain the
following McKean-Vlasov-type stochastic differential equation:{

dθ∞t = b(θ∞t , [θ
∞
t ])dt+ dLt

[θ∞0 ] = µ ∈ P(Rd),
(5)

where (Lt)t≥0 is an α-stable process and [θ∞t ] denotes the distribution of θ∞t . The existence
and uniqueness of a strong solution to (5) are given in [Cav23]. Moreover, for any positive T ,
E
[
supt≤T ∥θ∞t ∥α

]
< +∞. This SDE with measure-dependent coefficients turns out to be a useful

mechanism for analyzing the behavior of neural networks and provides insights into the effects of
noise on the learning dynamics.

In this step, we will link the system (4) to its limit (5), which is a strong uniform propagation of
chaos result for the weights. The next result shows that, when n is sufficiently large, the trajectories
of weights asymptotically behave as i.i.d. solutions to (5).

Theorem A.2. Following the existence and uniqueness of strong solutions to (4) and (5), let (θi,∞t )t≥0

be solutions to the McKean-Vlasov equation (5) and (θi,nt )t≥0 be solutions to (4) associated with
same realization of α-stable processes (Li

t)t≥0 for each i. Suppose that (Li
t)t≥0 are independent.

Then there exists C depending on T,B such that

E
[
sup
t≤T

sup
i≤n

|θi,nt − θi,∞t |
]
≤ C√

n

Our result differs from the existing literature by taking the supremum over the indices i before taking
the expectation, which is obviously stronger than taking the supremum over i outside the expectation.
It is also worth mentioning that the O(n−1/2) decreasing rate here is better, if α < 2, than the state
of the art [Cav23] with classical Lipschitz assumptions on the coefficients of SDEs. The reason is
that here, thanks to Assumption 1, we can take into account the specific structure of the one-hidden
layer neural networks.

Finally, we are interested in the distributional properties of the McKean-Vlasov equation (5). The
following result establishes that the marginal distributions of (5) will have diverging second-order
moments, hence, they will be heavy-tailed.

Theorem A.3. Let (Lt)t≥0 be an α-stable process. For any time t, let θt be the solution to (5) with
initialization θ0 which is independent of (Lt)t≥0 such that E [∥θ0∥] <∞, then the following holds

E
[
∥θ∞t ∥2

]
= +∞.

We remark that the result is weak in the sense that details on the tails of θt with respect to α and t are
implicit. However, it renders sufficient for our compressibility result in Theorem 3.1.

Now, having proved all the necessary ingredients, Theorem 3.1 is obtained by accumulating the
error bounds proven in Theorems A.1 and A.2, and applying [GCD12, Proposition 1] along with
Theorem A.3.

B Technical Lemmas

Lemma B.1. Under Assumption 1,

∥b(θ1, µ1)− b(θ2, µ2)∥ ≤ B ·
(
∥θ1 − θ2∥+ Ex∼π

[
|µ1(hx(·))− µ2(hx(·))|2

] 1
2
)
.

Moreover, ∥b(·, ·)∥∞ ≤ B, and if µ1 = 1
n

∑n
i=1 δθi

1
, µ2 = 1

n

∑n
i=1 δθi

2
,

∥b(θ1, µ1)− b(θ2, µ2)∥ ≤ B∥θ1 − θ2∥+
B

n

n∑
i=1

∥θi1 − θi2∥.

Proof. Recall that
b(θ, µ) = −E [∂1l(µ(hx(·)), y)∇hx(θ)] .
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Then it follows from triangular inequality that

∥b(θ1, µ1)− b(θ2, µ2)∥ ≤ ∥b(θ1, µ1)− b(θ2, µ1)∥+ ∥b(θ2, µ1)− b(θ2, µ2)∥ (6)

The first term is upper bounded by

∥b(θ1, µ1)− b(θ2, µ1)∥ ≤ E
[
∥∂1l(·, y)∥∞ · ∥∇2hx∥∞

]
· ∥θ2 − θ1∥

≤ E [Φ(y)Ψ(x)] · ∥θ1 − θ2∥

≤
(
E
[
Φ2(y)Ψ2(x)

])1/2 · ∥θ1 − θ2∥
≤ B · ∥θ1 − θ2∥

(7)

The second term is upper bounded by

∥b(θ2, µ1)− b(θ2, µ2)∥ ≤ E
[
∥∂21 l(·, y)∥∞ · ∥∇hx(·)∥∞ · |µ1(hx(·))− µ2(hx(·))|

]
≤
(
E
[
Φ2(y)Ψ2(x)

])1/2 E [|µ1(hx(·))− µ2(hx(·))|2
]1/2

≤ B · E
[
|µ1(hx(·))− µ2(hx(·))|2

]1/2 (8)

We conclude the first inequality by combining (6), (7) and (8).

For the boundedness of b in the norm infinity, it is not hard to observe that

b(θ, µ) = −E[∂1l(µ(hx(·)), y)∇hx(θ)] ≤ E [Φ(y)Ψ(x)] ≤ B.

For the last one, it follows from the first bound and Cauchy-Schwarz inequality that

∥b(θ1, µ1)− b(θ2, µ2)∥ ≤ B∥θ1 − θ2∥+
1

n
Ex∼π

( n∑
i=1

hx(θ
i
1)− hx(θ

i
2)

)2
1/2

≤ B∥θ1 − θ2∥+
1

n
Ex∼π

∥∇hx∥∞( n∑
i=1

∥θi1 − θi2∥

)2
1/2

≤ B∥θ1 − θ2∥+
1

n
Ex∼π[Ψ

2(x)]1/2 ·
n∑

i=1

∥θi1 − θi2∥

≤ B∥θ1 − θ2∥+
B

n

n∑
i=1

∥θi1 − θi2∥.

Then the proof is completed.

B.1 Propagation of Chaos

Lemma B.2. Let (Lt)t≥0 be an α-stable Lévy process and let (Ft)t≥0 be the filtration generated by
(Lt)t≥0. Then under Assumption 1, given the initial condition X0 = ξ, there exists a unique adapted
process (Xt)t∈[0,T ] for all integrable datum ξ ∈ L1(Rp) such that

Xt = ξ +

∫ t

0

b(Xt, [Xt])dt+ Lt.

Moreover the first moment of the supremum of the process is bounded

E
[
sup
t≤T

∥Xt∥
]
< +∞.

Proof. It follows from Theorem 1 in [Cav23] by Lemma B.1 where β is taken to be 1.
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B.2 Compression

Lemma B.3. Consider a non-integrable probability distribution µ taking values in R+ such that
EX∼µ[X] = +∞. Let X1, . . . , Xn be n i.i.d. copies distributed according to µ. Then for any C
positive,

P

[
1

n

n∑
i=1

Xi ≤ C

]
n→∞−−−−→ 0.

Proof. Using the assumption that µ is non-integrable, let K be a cutoff level for µ such that

EX∼µ[max(X,K)] = C + 1.

Therefore by the law of large numbers, when goes to infinity,

lim
n→∞

1

n

n∑
i=1

max(Xi,K) = C + 1 almost surely.

To conclude, we remark that

1

n
lim inf
n→∞

n∑
i=1

Xi ≥
1

n
lim
n→∞

n∑
i=1

max(Xi,K),

which is lower bounded by C + 1 almost surely. Thus the probability that 1
n

∑n
i=1Xi ≤ C goes to 0

when n goes to infinity.

C Proofs

C.1 Proof of Theorem A.3

Proof. Recall that θt = θ0 +
∫ t

0
b(θs, [θs])ds+ Lt, then

E
[
∥θt∥2

]
= E

[〈
θ0 +

∫ t

0

b(θs, [θs])ds+ Lt, θ0 +

∫ t

0

b(θs, [θs])ds+ Lt

〉]
= E

[∥∥∥∥θ0 + ∫ t

0

b(θs, [θs])ds

∥∥∥∥2
]
+ 2E

[〈
θ0 +

∫ t

0

b(θs, [θs])ds,Lt

〉]
+ E

[
∥Lt∥2

]
≥ E

[
∥Lt∥2

]
− 2E [∥θ0∥ · ∥Lt∥]− 2E [t∥b(·)∥∞ · ∥Lt∥]

≥ E
[
∥Lt∥2

]
− 2E [∥θ0∥]E [∥Lt∥]− 2Bt · E [·∥Lt∥] ,

where the last relation follows from the independence between the initialization θ0 and the difusion
noise (Lt)t≥0 and Lemma B.1. The proof is completed by noting that

E
[
∥Lt∥2

]
= ∞ and E [∥θ0∥] ,E [∥Lt∥] <∞.

C.2 Proof of Theorem A.2

Proof. By identification of the diffusion process (Li,n
t )t≥0 in (4) and (5), the difference of their

solutions θi,nt and θi,∞t for all t ∈ [0, T ] satisfies

θi,nt − θi,∞t =

∫ t

0

[b(θi,ns , µn
s )− b(θi,∞s , [θi,∞s ])]ds,
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where µt =
1
n

n∑
i=1

δθi,n
t

and [θi,∞t ] denotes the distribution of θi,∞t . Using Lemma B.1,

∥θi,nt − θi,∞t ∥

≤B
∫ t

0

∥θi,ns − θi,∞s ∥ds+B

∫ t

0

Ex∼π

[
|µn

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

≤B
∫ t

0

sup
i≤n

∥θi,ns − θi,∞s ∥ds+B

∫ t

0

Ex∼π

[
|µn

s (hx(·))− µ̄n
s (hx(·))|2

]1/2
ds

+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

(9)

where µ̄n
s := 1

n

n∑
i=1

δθi,∞
s

, the empirical measure of θi,∞s for i = 1, . . . , n. the last inequality follows

from Cauchy-Schwarz inequality. Moreover we have

Ex∼π[|µn
s (hx(·)− µ̄n

s (hx(·))|2]1/2 ≤ Ex∼π

∣∣∣∣∣∥∇hx∥∞n

n∑
i=1

∥θi,ns − θi,∞s ∥

∣∣∣∣∣
2
1/2

≤ Ex∼π[Ψ
2(x)]1/2 · 1

n

n∑
i=1

∥θi,ns − θi,∞s ∥

≤ B sup
i≤n

∥θi,ns − θi,∞s ∥.

Plug the estimate above into (9):

∥θi,nt − θi,∞t ∥ ≤B(1 +B)

∫ t

0

sup
i≤n

∥θi,ns − θi,∞s ∥ds

+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

(10)

By taking the supremum over i = 1, . . . , n and t, and using the fact that

sup

∫
·
(·) ≤

∫
·
sup(·),

we arrive at

sup
t≤T

sup
i≤n

∥θi,nt − θi,∞t ∥ ≤ B(1 +B)

∫ T

0

sup
t≤s

sup
i≤n

∥θi,nt − θi,∞t ∥ds

+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

(11)

Let us now estimate E
[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2|x
]1/n

, the expectation under the stable diffu-
sion, rather than the expectation over the data distribution, where the 1/

√
n convergence rate comes

from. In deed for fixed x, hx(θi,∞s ), i = 1, . . . , n are bounded i.i.d. random variables with mean
[θi,∞s ](hx(·)). Therefore

E
[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2|x
]1/2

= E

∣∣∣∣∣ 1n
n∑

i=1

hx(θ
i,∞
s )− [θi,∞s ](hx(·))

∣∣∣∣∣
2
∣∣∣∣∣∣x
1/2

≤ 1√
n
∥hx(·)∥∞ ≤ Ψ(x)√

n
.

(12)

Finally, combining (11), (12), the integrability condition Lemma B.2 and using Fubini’s theorem, we
arrive at

E
[
sup
r≤t

sup
i≤n

∥θi,nr − θi,∞r ∥
]
≤ B(1 +B)

∫ t

0

E
[
sup
r≤s

sup
i≤n

∥θi,nr − θi,∞r ∥
]
ds+

BtEx∼π[Ψ(x)]√
n

.

14



We conclude by Gronwall’s inequality that

E
[
sup
t≤T

sup
i≤n

∥θi,nt − θi,∞t ∥
]
≤ (1 +B)

(
BT√
n
+
B2T 2 exp(BT (1 + Ex∼π[Ψ(x)]))

2
√
n

)
.

Then the proof of Theorem A.2 is completed.

C.3 Proof of Theorem A.1

Proof. Similarly as in the proof above, we have

sup
i≤n

∥θi,nη − θ̂i,n1 ∥ ≤ sup
i≤n

∫ η

0

∥b(θi,nt , µi,n
t )− b(θ̂i,n0 , µi,n

0 )∥dt

≤ B

∫ η

0

sup
i≤n

∥θi,nt − θi,n0 ∥+ 1

n

n∑
j=1

∥θj,nt − θj,n0 ∥dt

≤ B

∫ η

0

2∥b∥∞ · t+ sup
i≤n

∥Li,n
t ∥+ 1

n

n∑
j=1

∥Lj,n
t ∥dt

Recall that ∥b∥∞ ≤ B, therefore by taking the expectation and the scaling of the stable process Li,n
t ,

E
[
sup
i≤n

∥θi,nη − θ̂i,n1 ∥
]
≤ B

∫ η

0

2Bt+ 2t1/α · E

sup
i≤n

∥Li,n
1 ∥+ 1

n

n∑
j=1

∥Lj,n
1 ∥

dt

≤ B2η2 +
Bα · E

[
supi≤n ∥L

i,n
1 ∥+ ∥Lα

1 ∥
]

α+ 1
η1+1/α.

(13)

Denote by C ′ := E
[
supi≤n ∥L

i,n
1 ∥+ ∥Lα

1 ∥
]
, and ψt(ξ) the solution of (4) at time t with initial

condition ξ ∈ Rp×n, which is the concatenation of n vectors ψi,n
t (ξ) ∈ Rp, i = 1, . . . , n. At time T

which is a multiple of η,

θi,nT − θ̂i,nT/η =

T/η−1∑
k=0

ψi,n
T−ηk(Θ̂

n
k )− ψi,n

T−η(k+1)(Θ̂
n
k+1), (14)

where Θ̂n
k is the concatenation of θ̂i,nk . Similarly, for each of the term inside the summation above,

ψi,n
T−ηk(Θ̂

n
k )− ψi,n

T−η(k+1)(Θ̂
n
k+1)

=

[∫ η(k+1)

ηk

bi,n(ψt−ηk(Θ̂
n
k ))dt+ dLi,n

t − (θ̂i,nk+1 − θ̂i,nk )

]

−
∫ T

η(k+1)

(
bi,n(ψt−ηk(Θ̂

n
k ))− bi,n(ψt−η(k+1)(Θ̂

n
k+1))

)
dt,

(15)

where if no confusion arises, we write bi,n(Θn) = −n∂θi,nR(Θn). Note that the first term in the big
bracket is the difference of one-step increment started from Θ̂n

k . Then, it follows from (13) that

E

[
sup
i≤n

∥∥∥∥∥
∫ η(k+1)

ηk

bi,n(ψt(Θ̂
n
k ))dt+ dLi,n

t − (θ̂i,nk+1 − θ̂i,nk )

∥∥∥∥∥
]
≤ B2η2 +

Bα · C ′

α+ 1
η1+1/α. (16)

The second integral term similarly,

E
[
sup
i≤n

∥bi,n(ψt−ηk(Θ̂
n
k ))− bi,n(ψt−η(k+1)(Θ̂

n
k+1))∥

]
≤B · E

[
sup
i≤n

∥ψi,n
t−ηk(Θ̂

n
k )− ψi,n

t−η(k+1)(Θ̂
n
k+1)∥

]
+
B

n

n∑
j=1

E
[
∥ψj,n

t−ηk(Θ̂
n
k )− ψj,n

t−η(k+1)(Θ̂
n
k+1)∥

]
(17)
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If we combine (15), (16), (17):

E
[
sup
i≤n

∥ψj,n
T−ηk(Θ̂

n
k )− ψj,n

T−η(k+1)(Θ̂
n
k+1)∥

]
≤B2η2 +

2Bα · C ′

α+ 1
η1+1/α + 2B ·

∫ T

η(k+1)

E
[
sup
i≤n

∥ψi,n
t−ηk(Θ̂

n
k )− ψi,n

t−η(k+1)(Θ̂
n
k+1)∥

]
dt.

Next it follows from Gronwall’s inequality that

E
[
sup
i≤n

∥ψj,n
T−ηk(Θ̂

n
k )− ψj,n

T−η(k+1)(Θ̂
n
k+1)∥

]
≤ exp(2BT )

(
B2η2 +

2Bα · C ′

α+ 1
η1+1/α

)
.

Finally, combined with (14), we obtain

E
[
sup
i≤n

∥θi,nT − θ̂i,nT/η∥
]
≤ T exp(2BT )

(
B2η +

2Bα · C ′

α+ 1
η1/α

)
.

Then the result follows by Lemma C.1 that

C ′ = E
[
sup
i≤n

∥Li,n
1 ∥+ ∥Lα

1 ∥
]
≤ (8Cα + 1)(n1/α + 1).

The proof of Theorem A.1 is therefore completed.

Lemma C.1. Take n i.i.d. α-stable random variables Xi (rmk:distributed as Lα
1 . there exists

Cα > 0 such that for t sufficiently large and any i = 1, . . . , n, P[∥Xi∥ ≥ t] ≥ Cαt
−α.) such that

E
[
exp(itXi)

]
= exp (−|t|α) then

E
[
sup
i≤n

∥Xi∥
]
≤ (8Cα + 1)n1/α

Proof. It is not hard to see from the condition P[∥Xi∥ ≥ t] ≥ Cαt
−α that

P
[
sup
i≤n

∥Xi∥ ≥ t

]
= 1−

n∏
i=1

P[∥Xi∥ < t] ≤ 1−
(
1− Cαt

−α
)n

E
[
sup
i≤n

∥Xi∥
]
=

∫ ∞

0

P
[
sup
i≤n

∥Xi∥ ≥ t

]
dt

=

−∞∑
k=0

∫ (n/2k)1/α

(n/2k+1)1/α
P
[
sup
i≤n

∥Xi∥ ≥ t

]
dt+

∫ n1/α

0

P
[
sup
i≤n

∥Xi∥ ≥ t

]
dt

≤ 2n1/α
−∞∑
k=0

P
[
sup
i≤n

∥Xi∥ ≥ (n/2k+1)1/α
]
+ n1/α

≤ 2Cαn
1/α

−∞∑
k=0

2k+1 + n1/α

≤ (8Cα + 1)n1/α.

The proof of Lemma C.1 is completed.

C.4 Proof of Theorem 3.1

Definition C.1 (k-term approximation error [GCD12]). The best k-term approximation error σk(x)
of a vector x is defined by

σk(x) = inf
∥y∥0≤k

∥x− y∥,

where ∥y∥0 is the l0-norm of y, which counts the non-zero coefficients of y. Without mentioned
explicitly, ∥x∥ denotes the square norm of x.
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Proof. Denote by ŵn
t = (∥θ̂1,n⌊t/η⌋∥, . . . , ∥θ̂

n,n
⌊t/η⌋∥) and w∗

t = (∥θ1,∞t ∥, . . . , ∥θn,∞t ∥), where the

components θi,∞t are independent solutions to (5) in Theorem A.2. Note that the definition of
Frobenius matrix norm ∥ · ∥F gives that

∥Θ̂{κn}
⌊t/η⌋ − Θ̂n

⌊t/η⌋∥F = ∥σ⟨κn⟩(ŵn
t )∥, ∥Θ̂n

⌊t/η⌋∥F = ∥w⋆
t ∥, (18)

Therefore it suffices to prove Theorem 3.1 for ŵn
t . It follows from Theorem A.2 and Theorem A.1

that there exists a constant C independent of n such that

E
[
sup
i≤n

∥θ̂i,n⌊t/η⌋ − θi,∞t ∥
]
≤ C√

n

Then by Markov’s inequality,

P
[
sup
i≤n

∥θ̂i,n⌊t/η⌋ − θi,∞t ∥ > C

ϵ
√
n

]
≤ ϵ/3. (19)

Denote by E the event E :=
{
supi≤n ∥θ̂

i,n
⌊t/η⌋ − θi,∞t ∥ ≤ C

ϵ
√
n

}
. If supi≤n ∥θ̂

i,n
⌊t/η⌋ − θi,∞t ∥ ≤ C

ϵ
√
n

and ∥σ⌊κn⌋(ŵn
t )∥ ≥ ϵ∥ŵn

t ∥, then

∥σ⌊κn⌋(w⋆
t )∥ ≥ ∥σ⌊κn⌋(ŵn

t )∥ − κn
C

ϵ
√
n

≥ ϵ∥ŵn
t ∥ − C

√
nκ/ϵ

≥ ϵ(∥w⋆
t ∥ − C

√
n/ϵ)− C

√
nκ/ϵ

= ϵ∥w⋆
t ∥ − C

√
n(1 + κ/ϵ)

Therefore plugging in (19),

P
[
∥σ⌊κn⌋(ŵn

t )∥ ≥ ϵ∥σ⌊κn⌋(ŵn
t )∥
]

≤P
[
∥σ⌊κn⌋(ŵn

t )∥ ≥ ϵ∥σ⌊κn⌋(ŵn
t )∥, Ec

]
+ P

[
∥σ⌊κn⌋(ŵn

t )∥ ≥ ϵ∥σ⌊κn⌋(ŵn
t )∥, E

]
≤P
[
sup
i≤n

∥θ̂i,n⌊t/η⌋ − θi,∞t ∥ > C

ϵ
√
n

]
+ P

[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ∥w⋆
t ∥ − C

√
n(1 + κ/ϵ)

]
≤ϵ/3 + P

[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ∥w∗
t ∥ − C

√
n(1 + κ/ϵ)

]
(20)

Moreover, there exists N ′ > 0 such that for all n ≥ N ′,

P
[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ∥w∗
t ∥ − C

√
n(1 + κ/ϵ)

]
≤P
[
∥w⋆

t ∥ ≤ 2C
√
n(1 + κ/ϵ)

]
+ P

[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ

2
∥w⋆

t ∥
]

=P
[
1

n
∥w⋆

t ∥2 ≤ 4C2(1 + κ/ϵ)2
]
+ P

[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ

2
∥w⋆

t ∥
]

≤ϵ/3 + P
[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ

2
∥w⋆

t ∥
]
,

(21)

where the last inequality follows from Lemma B.3. By the independence of the n coordinates of the
vetor w⋆

t , Theorem A.3 and [GCD12, Proposition 1, Part 2], there exists N ′′ > 0, for all n ≥ N ′′,

P
[
∥σ⌊κn⌋(w⋆

t )∥ ≥ ϵ

2
∥w⋆

t ∥
]
≤ ϵ/3. (22)

We conclude the proof by combining (18), (20), (21) and (22).

D Experimental Details

For SGD, we fix the batch-size to be one tenth of the number of training data points, the step-size is
chosen to be small enough to approximate the continuous dynamics given by the McKean-Vlasov
equation in order to stay close to the theory, but also not too small so that SGD converges in a
reasonable amount of time. As for the noise level σ, we have tried a range of values for each dataset
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and n, and we chose the largest σ such that the perturbed SGD converges. Intuitively, we can expect
that smaller α with heavier tails will lead to lower relative compression error. However, it does not
guarantee better test performance: one has to fine tune the parameters appropriately to achieve a
favorable trade-off between compression error and the test performance. We repeat all the experiment
5 times and report and average and the standard deviation. For the noiseless case (vanilla SGD), the
results of the different runs were almost identical, hence we did not report the standard deviations.

The code, implemented in PyTorch, takes about 90 hours to run on the MNIST dataset with five
different seeds for n = 2K, 5K, 10K on a NVIDIA Tesla P100 GPU. With the same system
configuration, it takes 5 minutes to run on ECG5000 with Type-I noise; 3 hours with Type II noise
and 30 minutes with Type-III noise.

The ECG5000 dataset consists of 5000 20-hour long electrocardiograms interpolated by sequences
of length 140 to discriminate between normal and abnormal heart beats of a patient that has severe
congestive heart failure. After random shuffling, we use 500 sequences for the training phase and 4500
sequences for the test phase. The hyperparameters used in the ECG5000 classification experiments
are summarized in Table 6 and Table 7 that follow.

n stepsize noise level σ batch size number of epochs
2K 3e-4 0.5 500 600
5K 1e-4 0.5 500 1500
10K 5e-5 0.5 500 3000

Table 6: ECG5000 classification with Type-I and Type-III noises for n = 2K, 5K and 10K.

n stepsize noise level σ batch size number of epochs
2K 3e-4 0.15 500 600
5K 1e-4 0.15 500 1500
10K 5e-5 0.15 500 3000

Table 7: ECG5000 classification with Type-II noise for n = 2K, 5K and 10K.

The MNIST database of handwritten digits consists of a training set of 60,000 examples and a test
set of 10,000 examples of dimension 784. The hyperparameters used in the MNIST classification
experiments until 95% training accuracy are specified in Table 8.

n stepsize noise level σ batch size
2K 1e-2 5e-4 5000
5K 5e-3 4e-4 5000
10K 5e-3 6e-4 5000

Table 8: MNIST classification with Type-I noise for n = 2K, 5K and 10K.

E Additional Experiments

In this section, we provide additional experiments for the classification task with the one hidden-layer
neural network trained using the ECG5000 and MNIST datasets. We conducted prunability tests
further for various values of the number of neurons n, the index α and the noise type.

E.1 Further results for the ECG5000 classification

For the classification of the ECG5000 dataset using the one hidden-layer neural network, we conducted
prunability tests for the following values of parameters: number of neurons, n = 2K, 5K and 10K,
index α = 1.75, 1.8 and 1.9 and noises Type-I, II and III. The results, which complement those in
Tables 1, 2, 3, 4, are reported in Tables 9, 10, 11, 12, 13 that follow.
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α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 0.974 0.957 11.46 0.974 0.958
1.75 0.974± 0.001 0.959± 0.002 46.6± 5.22 0.959± 0.016 0.951± 0.014
1.8 0.974± 0.001 0.959± 0.002 42.72± 3.78 0.96± 0.017 0.952± 0.013
1.9 0.974± 0.001 0.959± 0.002 36.84± 1.51 0.969± 0.005 0.956± 0.003

Table 9: ECG5000 with Type-I noise and n = 5K.

α train acc test acc pruning ratio train acc a.p. test acc a.p.
1.75 0.979± 0.003 0.970± 0.003 39.51± 12.18 0.959± 0.031 0.957± 0.024
1.8 0.975± 0.003 0.967± 0.003 30.33± 7.93 0.9692± 0.01 0.9618± 0.008
1.9 0.974± 0.004 0.962± 0.003 18.37± 2.54 0.974± 0.004 0.963± 0.007

Table 10: ECG5000 with Type-II noise and n = 2K.

α train acc test acc pruning ratio train acc a.p. test acc a.p.
1.75 0.984± 0.004 0.978± 0.005 46.23± 30.14 0.945± 0.073 0.943± 0.072
1.8 0.982± 0.002 0.976± 0.005 38.1± 27.23 0.948± 0.072 0.946± 0.069
1.9 0.98± 0.002 0.971± 0.005 20.79± 8.57 0.976± 0.003 0.972± 0.006

Table 11: ECG5000 with Type-II noise and n = 5K.

α train acc test acc pruning ratio train acc a.p. test acc a.p.
1.75 0.98± 0.004 0.973± 0.005 35.39± 7.42 0.932± 0.033 0.934± 0.022
1.8 0.981± 0.004 0.971± 0.005 27.98± 4.82 0.956± 0.024 0.960± 0.02
1.9 0.978± 0.004 0.968± 0.005 17.83± 1.59 0.976± 0.003 0.97± 0.004

Table 12: ECG5000 with Type-III noise and n = 2K.

α train acc test acc pruning ratio train acc a.p. test acc a.p.
1.75 0.971± 0.004 0.96± 0.005 30.67± 2.78 0.965± 0.012 0.954± 0.008
1.8 0.971± 0.004 0.959± 0.005 24.92± 1.75 0.970± 0.004 0.959± 0.003
1.9 0.972± 0.002 0.957± 0.005 16.9± 0.001 0.973± 0.001 0.958± 0.002

Table 13: ECG5000 with Type-III noise and n = 5K.

E.2 Further results for the MNIST classification

For the classification of the MNIST dataset using the one hidden-layer neural network, we conducted
prunability tests for the following values of parameters: number of neurons, n = 2K, 5K and 10K,
index α = 1.75, 1.8 and 1.9 and noises Type-I, II and III. The results for smaller n = 2K and 5K are
reported in Tables 14 and 15 that follow; and they complement those for n = 10K in Table 5 in the
main body of the text.

α no noise 1.9 1.8 1.75
pruning ratio 10.85 15.95± 0.788 23.17± 4.26 30.58± 7.91

train accuracy a.p. 0.9486 0.9482± 0.0008 0.9468± 0.0004 0.9449± 0.0018
test accuracy a.p. 0.9474 0.9474± 0.0008 0.946± 0.0012 0.9439± 0.0022
Table 14: MNIST with Type-I noise and n = 2K until reaching 95% training accuracy.
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α no noise 1.9 1.8 1.75
pruning ratio 10.64 14.91± 1.56 24.16± 8.9 42.77± 21.88

train accuracy a.p. 0.9485 0.9486± 0.0003 0.9467± 0.0012 0.939± 0.008
test accuracy a.p. 0.9473 0.9462± 0.0004 0.9448± 0.002 0.938± 0.007
Table 15: MNIST with Type-I noise and n = 5K until reaching 95% training accuracy.

In Tables 16, 17 and 18 we report train and test accuracies that are obtained in the following way: (i)
the one-hidden-layer neural network is first trained on the MNIST dataset using vanilla SGD, i.e.,
SGD with no noise injection; (ii) then we perform pruning with the same pruning ratios as those
given in Tables 14 and 15; and (iii) finally we evaluate the accuracy after pruning on both train and
test sets of the used MNIST dataset. It can be observed that the larger the value of n (the size of the
neural network), the less compressible is the neural network trained with vanilla SGD, especially for
n = 10K. In the latter case the test accuracy of the neural network trained using vanilla SGD drops
down to 92%, while the noising scheme achieves 94% of test accuracy with the same pruning ratio,
as can be seen from Table 5.

Pruning ratio 15.95 23.17 30.58
train acc a.p. 0.9481 0.9468 0.9455
test acc a.p. 0.9484 0.9455 0.9447

Table 16: MNIST accuracies for n = 2K, after pruning.

Pruning ratio 14.91 24.16 42.77
train acc a.p. 0.9464 0.9455 0.9332
test acc a.p. 0.9466 0.9447 0.9323

Table 17: MNIST accuracies for n = 5K, after pruning.

Pruning ratio 21.31 34.49 44.42
train acc a.p. 0.9452 0.9380 0.9221
test acc a.p. 0.9436 0.9385 0.9223

Table 18: MNIST accuracies for n = 10K, after pruning.

E.3 Effect of heavy-tailed noise injection during SGD on the performance after pruning

Table 19 reports accuracy results for the two-layer neural network trained on the CIFAR10 dataset
with heavy-tailed SGD (α = 1.8), for various levels of the variance of the added Type-I noise. In
this case, the effect of pruning seems to require a larger value of n to start to be visible – the results
reported in the table, which suggest that the noise injection may have a non-negligible effect on the
train/test accuracy after pruning especially for large values of the noise variance, are obtained with
relatively small n = 5K for CIFAR10 dataset with samples of dimension 3072.

σ 10−5 2× 10−5 3× 10−5

pruning ratio 16.32 23.86 33.94
train accuracy a.p. 0.9236 0.8713 0.7265
test accuracy a.p. 0.5606 0.5302 0.4779

Table 19: CIFAR10 with n = 5K and Type-I 1.8-stable noise for various noise levels.

F Implications on Federated Learning

The federated learning (FL) setting [MMR+17, RM17] is one in which there are a number of devices
or clients, say n; all equipped with the same neural network model and each holding an independent
own dataset. Every client learns an individual (or local) model from its own dataset, e.g., via
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Stochastic Gradient Descent (SGD). The individual models are aggregated by a parameter server (PS)
into a global model and then sent back to the devices, possibly over multiple rounds of communication
between them. The rationale is that the individually learned models are refined progressively by
taking into account the data held by other devices; and, at the end the training process, all relevant
features of all devices’ datasets are captured by the final aggregated model.

The results of this paper are useful towards a better understanding of the compressibility of the models
learned by the various clients in this FL setting. Specifically, viewing each neuron of the hidden layer
of the setup of this paper as if it were a distinct client, the results that we establish suggest that if the
local models are learned via heavy-tailed SGD this would enable a better compressibility of them.
This is particularly useful for resource-constrained applications of FL, such as in telecommunication
networks where bandwidth is scarce and latency is important.
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