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Abstract
Graph Domain Adaptation (GDA) transfers
knowledge from labeled source graphs to unla-
beled target graphs, addressing the challenge of
label scarcity. In this paper, we highlight the
significance of graph homophily, a pivotal fac-
tor for graph domain alignment, which, however,
has long been overlooked in existing approaches.
Specifically, our analysis first reveals that ho-
mophily discrepancies exist in benchmarks. More-
over, we also show that homophily discrepancies
degrade GDA performance from both empirical
and theoretical aspects, which further underscores
the importance of homophily alignment in GDA.
Inspired by this finding, we propose a novel ho-
mophily alignment algorithm that employs mixed
filters to smooth graph signals, thereby effectively
capturing and mitigating homophily discrepancies
between graphs. Experimental results on a vari-
ety of benchmarks verify the effectiveness of our
method.

1. Introduction
In the era of massive graph data collection, graphs often
integrate both structural topology and node attributes, pro-
viding rich contexts for numerous real-world applications.
However, they are often constrained by label scarcity, as an-
notating structured data remains challenging and costly (Xu
et al., 2022; 2024b; Zeng et al., 2024; 2023). To address this
challenge, Graph Domain Adaptation (GDA) has emerged
as an effective paradigm to transfer knowledge from la-
beled source graphs to unlabeled target graphs (Chen et al.,
2019; Shi et al., 2024). Conventional GDA methods pri-
marily focus on aligning graph structures across domains
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by leveraging deep domain adaptation techniques (Shen
et al., 2020b; Wu et al., 2020). While these approaches have
achieved promising results in GDA (Yan & Wang, 2020;
Shen et al., 2023), their efforts are centered on mitigating
the discrepancy in structural and attribute distributions.

(a) Airport dataset (b) ACM dataset

Figure 1. This represents node homophily distibution in two bench-
mark. The dotted line represents the overall node homophily ratio
of the entire graph. This shows the local node homophily dis-
tibution shift is existing in various levels of homophilic groups.
Homophily means that similar nodes are prone to connect to each
other.

In this work, we highlight the role of graph homophily dis-
crepancies and their impact on GDA performance. Specif-
ically, we investigate the local homophily distribution of
graph on two GDA benchmarks, as shown in Figure 1. It
can be observed that while the overall homophily distribu-
tion discrepancy of the graph is relatively small, the dis-
crepancy within homophilic and heterophilic subgroups is
more substantial. For example, as shown in Figure 1 (a),
the overall graph node homophily ratio between ACM3 and
ACM4 appears relatively similar, and the distribution of
homophilic and heterophilic groups varies more substan-
tially. To further investigate its impact on GDA, we conduct
another experiment to explore how the homophilic ratio
affects the cross-network performances, as shown in Fig-
ure 2. It can be observed that the classification accuracy
of target graph nodes exhibits a negative correlation with
homophily divergence across different homophily ratios
in datasets, which indicates the importance of separately
dealing with heterophilic and homophilic groups. Besides,
this observation also suggests that the discrepancies in ho-
mophilic distributions between source and target graphs
may significantly impact target node classification perfor-
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mance, thereby highlighting the importance of mitigating
homophily divergence.

To further justify this implication, we theoretically investi-
gate the generalization performance of GDA from the PAC-
Bayes perspective. Specifically, we show that the target loss
can be upper bounded in terms of homophilic signal shift,
heterophilic signal shift, attribute signal shift and graph node
heterophily distribution shift. This aligns with our empiri-
cal findings, suggesting that discrepancies in graph signals
should be addressed separately. To this end, we propose a
novel cross-channel graph homophily enhanced alignment
(HGDA) algorithm for cross-network node classification, as
shown in Figure 3. HGDA utilizes homophilic, full-pass,
and heterophilic filters to separately extract and align the
homophily signal, heterophily signal, and attribute signal
for both the source and target domains.

Our contributions are summarized as follows:

• Empirical insights: We first highlight the significance
of homophily distribution discrepancy in GDA and
empirically examine its impact on GDA performance.

• Theoretical justification: We theoretically justify the
impact of homophily distribution shift on GDA and
demonstrate that this discrepancy can be mitigated by
addressing homophilic and heterophilic groups sepa-
rately.

• Algorithmic framework: Inspired by theoretical in-
sights, we propose HGDA, which mitigates homophily
distribution shifts by aligning and capturing homophily,
heterophily, and attribute signals.

2. Related Work
2.1. Heterophilic Graph Learning

Heterophilic structure is prevalent in practice, from personal
relationships in daily life to chemical and molecular scien-
tific study (Fang et al., 2022; He et al., 2025). Developing
powerful heterophilic GNN models is a hot research topic.
(Lim et al., 2021; Qian et al., 2024; Yang et al., 2024a;
2023b; Zhuo et al., 2024c; Li et al., 2025b) provide general
benchmarks for heterophilic graph learning. In addition,
many methods have been proposed to revise GNNs for het-
erophilic graphs. (Yang et al., 2021) specifies propagation
weight for each attribute to make GNNs fit heterophilic
graphs and (Li et al., 2022a) explores the underlying ho-
mophilic information by capturing the global correlation
of nodes. (Zhu et al., 2020a) enlarges receptive field via
exploring high-order structure. (Chien et al., 2021) adap-
tively combines the representation of each layer and (Chen
et al., 2020) integrates embeddings from different depths
with residual operation. Recent studies (Mao et al., 2024a;

Liu et al., 2025; Li et al., 2024a; 2025a; Luan et al., 2022;
Huang et al., 2023; 2024; Zhuo et al., 2025; 2024b) reveal
that graph homophilc and heterophilic patterns impact graph
clustering performance between the test and training sets.
However, the above methods failed to explore the role of
homophily in GDA and minimize their discrepancy in many
aspects (Kang et al., 2024; Pu et al., 2025; Xu et al., 2025;
Xie et al., 2024; 2025).

2.2. Graph Domain Adaptation

Recent Domain Adaptation works have differences from
GDA methods (Li et al., 2024b; Chen et al., 2024; Li et al.,
2025c; 2024c; 2025b; Zeng et al., 2025; Xu et al., 2024a).
Identifying the differences between the target and source
graphs in GDA is crucial. For graph-structured data, sev-
eral studies have explored cross-graph knowledge transfer
using graph domain adaptation (GDA) methods (Shen &
Chung, 2019; Dai et al., 2022; Shi et al., 2024). Some
graph information alignment-based methods (Shen et al.,
2020a;b; Yan & Wang, 2020; Shen et al., 2023; Yang et al.,
2023a) adapt graph source node label information by in-
tegrating global and local structures from both nodes and
their neighbors. UDAGCN (Wu et al., 2020) introduces
a dual graph convolutional network that captures both lo-
cal and global knowledge, adapting it through adversarial
training. Furthermore, ASN and GraphAE (Zhang et al.,
2021; Guo et al., 2022) consider extracting and aligning
graph specific information like node degree and edge shift,
enabling the extraction of shared features across networks.
SOGA (Mao et al., 2024b) is the first to incorporate dis-
criminability by promoting structural consistency between
target nodes of the same class, specifically for source-free
domain adaptation (SFDA) on graphs. SpecReg (You et al.,
2022) applies an optimal transport-based GDA bound and
demonstrates that revising the Lipschitz constant of GNNs
can enhance performance through spectral smoothness and
maximum frequency response. JHGDA (Shi et al., 2023)
tackles hierarchical graph structure shifts by aggregating
domain discrepancies across all hierarchy levels to provide
a comprehensive discrepancy measure. ALEX (Yuan et al.,
2023) creates a label-shift-enhanced augmented graph view
using a low-rank adjacency matrix obtained through sin-
gular value decomposition, guided by a contrasting loss
function. SGDA (Qiao et al., 2023) incorporates trainable
perturbations (adaptive shift parameters) into embeddings
via adversarial learning, enhancing source graphs and min-
imizing marginal shifts. PA (Liu et al., 2024c) mitigates
structural and label shifts by recalibrating edge weights to
adjust the influence among neighboring nodes, addressing
conditional structure shifts effectively.
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(a) U ↔ E (b) U ↔ B (c) E ↔ B (d) A3 ↔ A4

Figure 2. Performance of cross-network classification tasks in different homophilic ratio ranges. For a fair comparison, we use a two-layer
GCN with standard unsupervised GDA settings as our evaluation model. The X-axis represents node subgroups categorized by specific
ranges of homophily ratios. The bars in the vertical bar chart represent the proportion of nodes in each subgroup, defined by a specific
homophily ratio range relative to the total number of nodes in the graph (left Y-axis). The line chart in the figure above represents the
difference in the proportion of nodes in each subgroup between the corresponding upper and lower graphs (upper right Y-axis). The line
graph in the figure below represents the target node classification accuracy for two corresponding tasks in each subgroup with different
homophily ratios (lower right Y-axis). We observe that homophily divergence has a negative correlation with target node classification
accuracy across various homophily ratios.

3. Empirical and Theoretical Study
3.1. Notation

An undirected graph G = {V, E , A,X, Y } consists of a
set of nodes V and edges E , along with an adjacency ma-
trix A, a feature matrix X , and a label matrix Y . The
adjacency matrix A ∈ RN×N encodes the connections be-
tween N nodes, where Aij = 1 indicates an edge between
nodes i and j, and Aij = 0 means the nodes are not con-
nected. The feature matrix X ∈ RN×d represents the node
features, with each node described by a d-dimensional fea-
ture vector. Finally, Y ∈ RN×C contains the labels for
the N nodes, where each node is classified into one of C
classes. Thus, the symmetric normalized adjacency matrix
is Ã = (D + I)−

1
2 (A + I)(D + I)−

1
2 and the normal-

ized Laplacian matrix is L̃ = I − Ã. In this work, we
explore the task of node classification in a unsupervised
setting, where both the node feature matrix X and the graph
structure A are given before learning. Now we can de-
fine source graph GS =

{
VS , ES , AS , XS , Y S

}
and target

graph GT =
{
VT , ET , AT , XT

}
.

Local node homophily ratio is a widely used metric for
quantifying homophilic and heterophilic patterns. It is de-
fined as the proportion of a node’s neighbors that share the
same label as the node (Pei et al.; Zhu et al., 2020b; Li et al.,
2022b; Miao et al., 2024). It is formally defined as

Hv
node =

|{u | u ∈ Nv, yu = yv}|
|Nv|

(1)

where where Nv denotes the set of one-hop neighbors of

node v and yi is the node i label.

3.2. Empirical Insight

To futher explore node homophily ratio distribution shifts
on the aforementioned datasets in Figure1, we evaluate the
effectiveness of GDA on different homophily subgroups.
To evaluate the homophily divergence effect to GDA, we
conduct an examination of node subgroups with different
homophilic and heterophilic groups. The following exper-
iments are conducted on two common graph benchmark
airport datasets with unsupervised GDA node classcification
task. Specifically, we focus on how the homophily discrep-
ancy between the source and target graphs affects the per-
formance of node classification on the target graph. Figure
2 shows the classification accuracy for different homophily
ratio subgroups. Experimental results on four datasets are
presented in Figure 2. It can be observed that the classi-
fication accuracy of target graph nodes negatively corre-
lates with homophily divergence across heterophilic and
homophilic groups in the datasets. For example, as shown
in Figure 2 (d), subgroups within homophily divergence in
the 0.0–0.1 (heterophilic groups) and 0.9–1.0 (homophilic
groups) ranges exhibit high discrepancies in terms of differ-
ence in the proportion (orange line), which leads to low node
classification accuracies on the corresponding target sub-
groups (red and purple lines). Our observations suggest that
the homophily discrepancy between the source and target
graphs in corresponding subgroups has a significant impact
on GDA performance. This highlights the importance of
mitigating the homophily divergence in both homophilic and
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heterophilic groups for GDA. Additional results on more
datasets are shown in Appendix C.

3.3. Theoretical Analysis

In this subsection, we will propose theoretical evidence
based on the PAC-Baysian framework to verify the ho-
mophily divergence effect on GDA performance and demon-
strate the effectiveness of our proposed method. To effec-
tively evaluate the performance of a deterministic GDA
classifier on structured graph data, we introduce the notion
of margin loss.

Margin loss on each domain. We can define the empirical
and expected margin loss of a classifier ϕ ∈ Φ on source
graph GS and target graph GT . Given Y S , the empirical
margin loss of ϕ on GS for a margin γ ≥ 0 is defined as:

L̂γ
S(ϕ) :=

1

NS

∑
i∈VS

1

[
ϕi(X

S , GS)[Yi] ≤ γ +max
c̸=Yi

ϕi(X
S , GS)[c]

]
.

(2)

where 1 [·] is the indicator function, c represents node label-
ing . The expected margin loss is then defined as

Lγ
S(ϕ) := EYi∼Pr(Y |Zi),i∈VS L̂γ

S(ϕ) (3)

Definition 1 (Graph-Level Node Heterophily Distribution).
Given a graph G, and for any node v ∈ V , the node-level
heterophily is defined as hG(v) =

1
|N (v)|

∑
u∈N (v) I(Yu ̸=

Yv), where N (v) denotes the set of neighbors of v. The
graph-level heterophily distribution is then defined as the
empirical distribution of the random variable hG(v):

PH
G (h) =

|{v ∈ V | hG(v) = h}|
|V|

, h ∈ [0, 1]. (4)

Here, PH
G (h) represents the proportion of nodes in G that

have a heterophily value of h, forming a probability distri-
bution over possible node heterophily values.

For a source domain GS and a target domain GT , we de-
note their respective graph-level heterophily distribution as
PH
S (h) and PH

T (h).
Definition 2 (Kullback-Leibler Divergence). For continu-
ous probability distributions with probability density func-
tions p(x) and q(x), the KL divergence is given by:

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx. (5)

KL divergence measures the relative entropy or information
loss when using Q to approximate P . It is always non-
negative, and DKL(P∥Q) = 0 if and only if P = Q.

Definition 3 (KL Divergence Between Graph Heterophily
Distributions). Let GS and GT be two graphs from different
domains with heterophily distributions: PH

S (h), PH
T (h) >

0 for all h . The Kullback-Leibler (KL) divergence between
PH
S and PH

T is defined as:

DKL(P
H
S ∥PH

T ) =
∑
h∈H

PH
S (h) log

PH
S (h)

PH
T (h)

, (6)

where H is the set of possible node heterophily values.

Theorem 1 (Domain Adaptation Bound for Deterministic
Classifiers). Let Φ be a family of classification functions.
For any classifier ϕ in Φ, and for any parameters λ > 0
and γ ≥ 0, consider any prior distribution P over Φ that is
independent of the training data VS . With a probability of
at least 1 − δ over the sample Y S , for any distribution Q
on Φ such that the following inequality holds:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ

]
+

λ

4NS

+
λρCC0√

2πσ ·NS ·NT

[√
DKL(ASXS∥ATXT )

+
√
DKL(XS∥XT ) +

√
DKL(LSXS∥LTXT )

+
√

DKL(PH
S ∥PH

T )

]
. (7)

where f is the unspecified operator of first-order aggrega-
tion, C is the number of classes, and ρ, σ are constants con-
trolled by the node feature distribution of different classes.
Proof details and additional analysis are in Appendix A.

How could theory further drive practice? In Theorem
1 reveals four critical factors that may affect the GDA per-
formance. (I) DKL(A

SXS∥ATXT ) represents the graph
homophily signal, capturing graph attributes modulated by
the adjacency matrix between the source and target graphs.
(II) DKL(X

S∥XT ) represents the divergence in graph at-
tribute distributions between the source and target. (III)
DKL(L

SXS∥LTXT ) represents the distribution divergence
of graph heterophilc signal between the source and target
graphs, where the graph attribute signal is modulated by
the graph Laplacian matrix indicating. (IV) DKL(P

H
S ∥PH

T )
is a fixed intrinsic graph parameter that quantifies the het-
erophily distribution shift between the source and target
graphs. In other words, to effectively align source and target
graphs, one should consider the homophily, attribute, and
heterophily signals.

4. Methology
Motivated by the aforementioned analysis, our framework
needs to capture AX , X and LX of both source and target
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Figure 3. An overview of HGDA. HGDA optimizes heterophily, at-
tribute, and homophily graph signals while minimizing homophily
distribution shifts between the source and target graphs.

graph. In practice, we can treat A as homophilc filter and L
as heterophilic filter (Nt & Maehara, 2019). Thus, as shown
in Figure 3, we introduce a mixed filter to effectively cap-
ture information across different homophilic groups while
minimizing various levels homophily shift.

4.1. Homophily, Full-pass and Heterophily Filter

Homophilic Filter To extract meaningful features from
graphs, we utilize HL that can capture homophilc node
pattens information. With the input graph G, the l-th layer’s
output H l

L can be represented as:

H l
L = ReLU

(
αl · ÃH l−1W l−1

L

)
(8)

where HLH
l−1W l−1

L applies homophilic filtering to the
node features from the previous layer H l−1, weight matrix
W l−1

L is a layer-specific trainable weight matrix, αl is a
learnable scalar parameter for the homophilic filtering, H l

L

is the activation matrix in the l-th layer and H0 = X . After
applying the homophily filter to capture homophilc node
signal, the output node embedding for the source graph is
denoted as ZS

L . Similarly, the output target homophilc node
embedding is denoted as ZT

L .

Full-pass Filter To obtain comprehensive graph attribute
information, we introduce a full-pass filter to extract node
attributes. In practice, the full-pass filter is defined as HF =
Ã+ L̃ = I , which is consistent with capturing all attribute
information. With the input graph G, the l-th layer’s output
H l

F can be represented as:

H l
F = ReLU

(
αf · IH l−1W l−1

F

)
(9)

where HFH
l−1W l−1

F applies full-pass filtering to the node
features from the previous layer H l−1, weight matrix W l−1

F

is a layer-specific trainable weight matrix, αf is a learnable
scalar parameter for the full-pass filtering, H l

F is the activa-
tion matrix in the l-th layer and H0 = X . After applying
the full-pass filter to extract attribute information, the output
node embedding for the source graph is denoted as ZS

F and
output target attribute node embedding is denoted as ZT

F .

Heterophilic Filter Similarly, we utilize HH that can cap-
ture heterophilic node pattens information. With the input
graph G, the l-th layer’s output H l

L can be represented as:

H l
H = ReLU

(
αh · L̃H l−1W l−1

H

)
(10)

where HHH l−1W l−1
H applies heterophilic filtering to the

node features from the previous layer H l−1, weight matrix
W l−1

H is a layer-specific trainable weight matrix, αh is a
learnable scalar parameter for the heterophilic filtering, H l

H

is the activation matrix in the l-th layer and H0 = X . After
applying the heterophilic filter to extract heterophilic signal,
the output node embedding for the source graph is denoted
as ZS

H and output target node embedding is denoted as ZT
H .

4.2. Homophily Alignemnt Loss

The proposed framework follows the transfer learning
paradigm, where the model minimizes the divergence of
the two graphs. The homophily alignment method captures
and aligns various homophily signals, improving target node
classification performance. According to Theorem 7, the dis-
crepancy between the source and target graphs is bounded
by KL divergence. To this end, LH utilizes the KL diver-
gence loss between the source graph embeddings ZS

L , ZS
F

and ZS
H and the target graph ZT

L , ZT
F and the target graph

embeddings ZT
H , which can be formulated as:

LH = KL
(
ZS
L∥ZT

L

)
+KL

(
ZS
H∥ZT

H

)
+KL

(
ZS
F ∥ZT

F

)
,

(11)
We adapt the embeddings after applying the three filters to
enforce graph node alignment across different homophily
ratios. Specifically, KL(ZS

L∥ZT
L ) aligns the homophilic

signal, corresponding to the term DKL(A
SXS∥ATXT ).

Similarly, KL(ZS
H∥ZT

H) directly aligns the graph at-
tributes, corresponding to the term DKL(X

S∥XT ). Finally,
KL(ZS

F ∥ZT
F ) aligns the heterophilic signal, which is con-

sistent with the term DKL(L
SXS∥LTXT ) in Theorem 7.

4.3. Target Node Classification

The source classifier loss LS

(
fS

(
ZS

)
, Y S

)
is to minimize

the cross-entropy for the labeled data node in the source
domain:

LS

(
fS

(
ZS

)
, Y S

)
= − 1

NS

NS∑
i=1

ySi log
(
ŷSi

)
(12)

where ZS = ZS
L + ZS

H + ZS
F , ySi denotes the label of the

i-th node in the source domain and ŷSi are the classification

5



Homophily Enhanced Graph Domain Adaptation

prediction for the i-th source graph labeled node vSi ∈ VS .

To utilize the data in the target domain, we use entropy loss
for the target classifier fT :

LT

(
fT

(
ZT

))
= − 1

NT

NT∑
i=1

ŷTi log
(
ŷTi

)
(13)

where ZT = ZT
L + ZT

H + ZT
F , ŷTi are the classification

prediction for the i-th node in the target graph vTi . Finally,
by combining LH , LS , LD and LT , the overall loss function
of our model can be represented as:

L = LH + αLS + βLT (14)

where α and β are trade-off hyper-parameters. The param-
eters of the framework are updated via backpropagation.
A detailed description of our algorithm is provided in Ap-
pendix 14.

5. Experiment
We evaluate three variants of Homophily Alignemnt to un-
derstand how its different components deal with the ho-
mophilic distribution shift on 5 real-word GDA benchmarks.
These variants include HGDAL, which uses only the ho-
mophilic filter to obtain and align node embeddings, specif-
ically addressing distribution shifts in homophilic groups.
Similarly, HGDAF and HGDAH only utlize the full-pass
filter and heterophilic filter to obtain and align node em-
beddings. The detailed experimental setup can be found in
Appendix B.

5.1. Datasets

To demonstrate the effectiveness of our approach on do-
main adaptation node classification tasks, we evaluate it
on four types of datasets, including Airport (Ribeiro et al.,
2017), Citation (Wu et al., 2020), Social (Liu et al., 2024a),
ACM (Shen et al., 2024), and MAG datasets (Wang et al.,
2020). The Airport dataset represents airport networks from
three countries and regions: the USA (U), Brazil (B), and
Europe (E). In this dataset, nodes correspond to airports, and
edges denote flight routes. The Citation dataset comprises
three citation networks: DBLPv8 (D), ACMv9 (A), and
Citationv2 (C), where nodes represent articles and edges
indicate citation relationships. As for social networks, we
choose Twitch gamer networks, which are collected from
Germany(DE), England(EN) and France(FR). We also use
two blog networks, Blog1 (B1) and Blog2 (B2), both ex-
tracted from the BlogCatalog dataset. To further evaluate
the significance of the homophily distribution effect, we
curate a real-world dataset with a significant homophily dis-
tribution shift. We utilize two commonly referenced ACM
datasets. The dataset ACM3(A3) is derived from the ACM

Paper-Subject-Paper (PSP) network (Fan et al., 2020), while
ACM4(A4) is extracted from the ACM2 Paper-Author-Paper
(PAP) network (Fu et al., 2020). These datasets inherently
differ in their distributions, making them suitable for eval-
uating domain adaptation. For a comprehensive overview,
refer to Appendix Table 6. We also provide other datasets
homophily distibution in Appendix C Figure 7.

5.2. Baselines

We choose some representative methods to compare. GCN
(Kipf & Welling, 2016) further solves the efficiency prob-
lem by introducing first-order approximation of ChebNet.
DANN (Ganin et al., 2016) use a 2-layer perceptron to
provide features and a gradient reverse layer (GRL) to learn
node embeddings for domain classification. DANE (Zhang
et al., 2019) shared distributions embedded space on differ-
ent networks and further aligned them through adversarial
learning regularization. UDAGCN (Wu et al., 2020) is
a dual graph convolutional network component learning
framework for unsupervised GDA, which captures knowl-
edge from local and global levels to adapt it by adversarial
training. ASN (Zhang et al., 2021) use the domain-specific
features in the network to extract the domain-invariant
shared features across networks. EGI (Zhu et al., 2021)
through Ego-Graph Information maximization to analyze
structure-relevant transferability regarding the difference
between source-target graph. GRADE-N (Wu et al., 2023)
propose a graph subtree discrepancy to measure the graph
distribution shift between source and target graphs. JHGDA
(Shi et al., 2023) explore information from different levels of
network hierarchy by hierarchical pooling model. SpecReg
(You et al., 2022) achieve improving performance regular-
ization inspired by cross-pollinating between the optimal
transport DA and graph filter theories. PA (Liu et al.,
2024c) counter graph structure shift by mitigating condi-
tional structure shift and label shift by using edge weights
to recalibrate the influence among neighboring nodes. The
aforementioned work does not investigate the impact of
homophily distribution shift, which is an essential graph
property on GDA.

5.3. Performance Comparison

The results of experiments are summarized in Table 1, Table
2 and Table 3, where highest scores are highlighted in bold,
and the second-highest scores are underlined. Some results
are directly taken from (Shi et al., 2023; Pang et al., 2023;
Liu et al., 2024b; Zhang et al., 2025). We have the following
findings: It can be seen that our proposed method boosts the
performance of SOTA methods across most evaluation met-
rics on four group datasets, which proves its effectiveness.
HGDA outperforms other optimal methods, achieving state-
of-the-art (SOTA) performance across all datasets. Specifi-
cally, HGDA achieves an average improvement of 1.10%
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Methods U → B U → E B → U B → E E → U E → B A3 → A4 A4 → A3 B1 → B2 B2 → B1

GCN 0.366 0.371 0.491 0.452 0.439 0.298 0.373 0.323 0.408 0.451
DANN 0.501 0.386 0.402 0.350 0.436 0.538 0.362 0.325 0.409 0.419

DANE 0.531 0.472 0.491 0.489 0.461 0.520 0.392 0.404 0.464 0.423
UDAGCN 0.607 0.488 0.497 0.510 0.434 0.477 0.404 0.380 0.471 0.468
ASN 0.519 0.469 0.498 0.494 0.466 0.595 0.418 0.409 0.732 0.524
EGI 0.523 0.451 0.417 0.454 0.452 0.588 0.511 0.449 0.494 0.516
GRADE-N 0.550 0.457 0.497 0.506 0.463 0.588 0.449 0.461 0.567 0.541
JHGDA 0.695 0.519 0.511 0.569 0.522 0.740 0.516 0.537 0.619 0.643
SpecReg 0.481 0.487 0.513 0.546 0.436 0.527 0.526 0.518 0.661 0.631
PA 0.621 0.547 0.543 0.516 0.506 0.670 0.619 0.610 0.662 0.654

HGDAL 0.683 0.547 0.533 0.496 0.547 0.687 0.709 0.683 0.651 0.647
HGDAF 0.709 0.560 0.541 0.538 0.550 0.691 0.701 0.660 0.665 0.655
HGDAH 0.714 0.538 0.524 0.569 0.545 0.690 0.713 0.679 0.656 0.664
HGDA 0.721 0.572 0.569 0.584 0.570 0.721 0.718 0.698 0.683 0.677

Table 1. Cross-network node classification on the Airport, ACM and Blog network.

Methods A → D D → A A → C C → A C → D D → C DE → EN EN → DE DE → FR FR → EN

GCN 0.632 0.578 0.675 0.635 0.666 0.654 0.523 0.534 0.514 0.568
DANN 0.488 0.436 0.520 0.518 0.518 0.465 0.512 0.528 0.581 0.562

DANE 0.664 0.619 0.642 0.653 0.661 0.709 0.642 0.644 0.591 0.574
UDAGCN 0.684 0.623 0.728 0.663 0.712 0.645 0.624 0.660 0.545 0.565
ASN 0.729 0.723 0.752 0.678 0.752 0.754 0.550 0.679 0.517 0.530
EGI 0.647 0.557 0.676 0.598 0.662 0.652 0.681 0.589 0.537 0.551
GRADE-N 0.701 0.660 0.736 0.687 0.722 0.687 0.749 0.661 0.576 0.565
JHGDA 0.755 0.737 0.814 0.756 0.762 0.794 0.766 0.737 0.590 0.539
SpecReg 0.762 0.654 0.753 0.680 0.768 0.727 0.719 0.705 0.545 0.555
PA 0.752 0.751 0.804 0.768 0.755 0.780 0.677 0.760 0.521 0.538

HGDAL 0.756 0.739 0.794 0.770 0.739 0.757 0.765 0.747 0.532 0.548
HGDAF 0.769 0.747 0.811 0.758 0.759 0.782 0.751 0.749 0.560 0.539
HGDAH 0.752 0.738 0.804 0.767 0.761 0.789 0.769 0.751 0.578 0.544
HGDA 0.791 0.756 0.829 0.787 0.779 0.799 0.781 0.763 0.594 0.571

Table 2. Cross-network node classification on the Citation and Twitch network.

Methods US → CN US → DE US → JP US → RU US → FR CN → US CN → DE CN → JP CN → RU CN → FR

GCN 0.042 0.168 0.219 0.147 0.182 0.193 0.064 0.160 0.069 0.067
DANN 0.242 0.263 0.379 0.218 0.207 0.302 0.134 0.214 0.119 0.107

DANE 0.272 0.250 0.280 0.210 0.186 0.279 0.108 0.228 0.170 0.184
UDAGCN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
ASN 0.290 0.272 0.291 0.222 0.199 0.268 0.121 0.207 0.189 0.190
EGI OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRADE-N 0.304 0.299 0.306 0.240 0.217 0.258 0.137 0.210 0.178 0.199
JHGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SpecReg 0.237 0.267 0.377 0.228 0.218 0.317 0.134 0.199 0.109 116
PA 0.400 0.389 0.474 0.371 0.252 0.452 0.262 0.383 0.333 0.242

HGDAL 0.463 0.442 0.498 0.400 0.314 0.447 0.379 0.418 0.368 0.330
HGDAF 0.449 0.457 0.502 0.416 0.329 0.441 0.401 0.395 0.388 0.307
HGDAH 0.488 0.468 0.494 0.429 0.330 0.426 0.410 0.409 0.326 0.288
HGDA 0.510 0.497 0.531 0.442 0.347 0.476 0.438 0.435 0.392 0.339

Table 3. Cross-network node classification on MAG datasets.

on Airport, 6.50% on ACM, 1.40% on Citation, and 2.20%
on Blog. Notably, HGDA achieves a maximum average im-
provement of 8.49% for ACC on MAG datasets. This illus-
trates that our proposed model can effectively aligns varies
node homophilic information. Our HGDA variants achieves
second-highest than other optimal methods on some of the
metrics in various benchmarks. This can be attributed to
the varying homophilic pattern distributions across datasets,
which are captured by our method’s variants. For instance,

in the ACM dataset, HGDAL and HGDAH generally out-
perform HGDAF , indicating that effectively balancing both
homophilic and heterophilic information is crucial for this
dataset. This observation aligns well with the design of our
method. In all cases, HGDA produces better performance
than PA (Liu et al., 2024c), which were published in 2024.
This verifies the advantage of our approach. Our Model
efficient experiment can be seen in Appendix D
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(a) UDAGCN (b) JHGDA (c) SepcReg (d) PA (e) HGDA

Figure 4. Visualizing source and target node embeddings via T-SNE. Each color represents a class, while dark and light shades of the
same color correspond to nodes of the same class from the source and target domains, respectively.

(a) U → E (b) U → B

(c) B → E (d) A4 → A3

Figure 5. Classification accuracy of HGDA, HGDAL, HGDAF ,
and HGDAL across different subgroups in Airport and ACM
datasets.
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Figure 6. The influence of parameters α and β on Citation, Airport,
ACM and MAG datasets.

5.4. Ablation Study

Among the four variants of HGDA, HGDA performs the
best in most cases. HGDAL, HGDAF , and HGDAH

achieve varying performance levels across different groups
of datasets, indicating that their effectiveness is closely re-
lated to the node homophilic distribution of the datasets.
HGDA is consistently better than all variants, indicating
each component boosts the performance. Moreover, we in-
vestigate all HGDA variant’s classification accuracy across
different homophilic subgroup. As shown in Figure 5, We
observe that HGDA performs well across all subgroups, in-
dicating that homophily alignment effectively addresses the
shortcomings of GCN in handling various homophily dis-
crepancies. In addition, HGDA variants effectively address
homophily discrepancies at different levels. Specifically,
HGDAL performs well in homophilic subgroups, while
HGDAH excels in heterophilic subgroups, demonstrating
the robustness of our model.

5.5. Visualization

In this section, we visualize node embeddings generated by
competitive GDA models in the task A → D. We observe
from Figure 4. Firstly, the nodes belonging to different
classes are well-separated from each other. This shows
that HGDA is effective in distinguishing between different
classes in the embedding space. Secondly, nodes belong-
ing to the same class from different domains are mostly
overlapping, which indicates that HGDA could significantly
reduce domain discrepancy. The first observation indicates
good classification, while the latter suggests good domain
alignment.

5.6. Parameter Analysis

In this section, we analyze the sensitivity of hyper-
parameters α and β of our method on Citation, Airport,
ACM, and MAG datasets. First, we test the performance
with different α and β. As shown in Figure 6, HGDA has
competitive performance on a large range of values, which
suggests the stability of our method. For a more detailed
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analysis and result, refer to the Appendix E.

6. Conclusion
In this paper, we propose HGDA framework to solve the
GDA problem in cross-network node classification tasks.
We reveal the importance of the homophily shift in GDA
through both empirical and theoretical analysis. Our ap-
proach minimizes homophily distribution shifts by optimiz-
ing homophilic, heterophilic, and attribute signals. Compre-
hensive experiments verify the superiority of our approach.
We will also delve deeper into graph domain adaptation
theory to develop more powerful models by considering
different architectures (Zhuo et al., 2023; 2024a; Yang et al.,
2025; 2024b).
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A. Proof
Definition 4 (1-Wasserstein Distance of Node Heterophily Distributions). Let G = (V, E , A,X, Y ) and G′ =
(V ′, E ′, A′, X ′, Y ′) be two graphs with node heterophily distributions:

hG ∼ PV , hG′ ∼ PV ′ . (15)

We define their 1-Wasserstein Distance as:

W1(hG, hG′) = inf
γ∈Π(PV ,PV ′ )

E(h,h′)∼γ [|h− h′|], (16)

where:

• Π(PV , PV ′) denotes the set of all joint distributions γ(h, h′) whose marginal distributions are PV and PV ′ , respectively.

• This distance measures the minimum transportation cost required to transform the distribution PV into PV ′ , where the
transportation cost is given by |h− h′|.

This metric characterizes the optimal transport distance between the node heterophily distributions of two graphs and
enables the comparison of their overall heterophily structures. Specifically:

• If W1(hG, hG′) ≈ 0, the two graphs have very similar heterophily distributions.

• If W1(hG, hG′) is large, the heterophily structures of the two graphs are significantly different.

Corollary 2 (Wasserstein-1 Distance for Feature Distributions). Let PF
S and PF

T be the empirical distributions of node
features f in the source graph GS and target graph GT , respectively. The 1-Wasserstein distance between these distributions
is given by:

W1(P
F
S , PF

T ) = inf
γF∈Π(PF

S ,PF
T )

E(i,j)∼γF [∥fi − fj∥], (17)

where Π(PF
S , PF

T ) is the set of all joint distributions γF (i, j) with marginals PF
S and PF

T . This measures the minimum
transportation cost required to transform the feature distribution of GS into that of GT .

Corollary 3 (Wasserstein-1 Distance for Node Heterophily Distributions). Let PH
S and PH

T be the empirical distributions
of node heterophily values h in the source graph GS and target graph GT , respectively. The 1-Wasserstein distance between
these distributions is given by:

W1(P
H
S , PH

T ) = inf
γH∈Π(PH

S ,PH
T )

E(i,j)∼γH [|hi − hj |], (18)

where Π(PH
S , PH

T ) is the set of all joint distributions γH(i, j) with marginals PH
S and PH

T . This quantifies the minimum
transportation cost to align the heterophily distribution between the two graphs.

Lemma 1 (Upper Bound on 1-Wasserstein Distance via KL Divergence). (Bobkov & Götze, 1999) Let P and Q be two
probability distributions on a metric space (X , d), where P ≪ Q (i.e., P is absolutely continuous with respect to Q).
Assume that:

• X has bounded support with diameter D, i.e., d(x, y) ≤ D for all x, y ∈ X ,

• There exists a constant C0 > 0 such that all 1-Lipschitz functions f : X → R satisfy the concentration inequality:

sup
f∈FL

∣∣∣Ex∼P [f(x)]− Ex∼Q[f(x)]
∣∣∣ ≤ C0

√
DKL(P∥Q). (19)

Then, the 1-Wasserstein distance satisfies the following upper bound:

W1(P,Q) ≤ C0

√
DKL(P∥Q). (20)

The constant C depends on the geometry of the space X and the metric d.
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Definition 5 (Expected Loss Discrepancy). Given a distribution P over a function family H, for any λ > 0 and γ ≥ 0, for

any GS and GT , define the expected loss discrepancy between VS and VT as Dγ
S,T (P ;λ) := lnEϕ∼P e

λ
(
Lγ/2

T (ϕ)−Lγ
S(ϕ)

)
,

where Lγ/2
T (ϕ) and Lγ

S(ϕ) follow the definition of Eq. (3).

Lemma 2 (Adaptation from (Ma et al., 2021)). Let Φ be a family of classification functions. For any classifier ϕ in
Φ, and for any parameters λ > 0 and γ ≥ 0, consider any prior distribution P over Φ that is independent of the
training data VS . With a probability of at least 1 − δ over the sample Y S , for any distribution Q on Φ such that
Prϕ∼Q

[
maxi∈VS∪VT ∥ϕi(X,G)− ϕi(X,G)∥∞ < γ

8

]
> 1

2 , the following inequality holds:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4NS
+D

γ/2
S,T (P ;λ)

]
.

Proposition 1 (Bound for Dγ
S,T (P ;λ), Adaptation from (Ma et al., 2021; Mao et al., 2024a; Fang et al., 2025)). For

any γ ≥ 0, and under the assumption that the prior distribution P over the classification function family Φ is defined, we
establish a bound for the domain discrepancy measure D

γ/2
S,T (P ;λ). Specifically, we have the following inequality:

D
γ/2
S,T (P ;λ) ≤ 1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

[
ln 3 +

λρC√
2πσ

(∥fi − fj∥+ |hi − hj | · ρ)
]

≤ λρC√
2πσ ·NS ·NT

·W1(P
F
S , PF

T ) +W1(P
H
S , PH

T )

≤ λρCC0√
2πσ ·NS ·NT

·
[√

DKL(PF
S ∥PF

T ) +
√
DKL(PH

S ∥PH
T )

] (21)

where f is the unspecified operator of first-order aggregation ( considering f = AX and f = LX two easy cases), C is
the number of classes, and ρ, σ are constants controlled by the node feature distribution of different classes.

Proof. We will prove the proposition by establishing the two key inequalities in the given equation.

Proof of the First Inequality (Using Prior Works):
From the cited works (Ma et al., 2021; Mao et al., 2024a; Fang et al., 2025), it follows that the expected loss discrepancy
measure D

γ/2
S,T (P ;λ) can be bounded by:

D
γ/2
S,T (P ;λ) ≤ 1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

[
ln 3 +

λCρ√
2πσ

(∥fi − fj∥+ |hi − hj | · ρ)
]
. (22)

This follows from existing domain adaptation literature, where the domain discrepancy measure can be controlled by a sum
over pairwise differences of node features and heterophily values.

Proof of the Second Inequality:
We now show that:

1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

[
ln 3 +

λCρ√
2πσ

(∥fi − fj∥+ |hi − hj | · ρ)
]

(23)

≤ λCρ√
2πσ ·NS ·NT

(
W1(P

F
S , PF

T ) + ρW1(P
H
S , PH

T )
)
. (24)

From Corollary 2, we know that the Wasserstein-1 distance between the node feature distributions is:

W1(P
F
S , PF

T ) = inf
γF∈Π(PF

S ,PF
T )

E(i,j)∼γF [∥fi − fj∥]. (25)

Since the sum over all node pairs approximates an expectation over a joint coupling of the distributions, we approximate:∑
i∈VS

∑
j∈VT

∥fi − fj∥ ≈ NSNTW1(P
F
S , PF

T ). (26)
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Substituting this into our sum, we obtain:∑
i∈VS

∑
j∈VT

1

NT
∥fi − fj∥ ≤ NSW1(P

F
S , PF

T ). (27)

Similarly, from Corollary 3, we have:

W1(P
H
S , PH

T ) = inf
γH∈Π(PH

S ,PH
T )

E(i,j)∼γH [|hi − hj |]. (28)

Following the same argument as before, we approximate:∑
i∈VS

∑
j∈VT

|hi − hj | ≈ NSNTW1(P
H
S , PH

T ). (29)

Thus: ∑
i∈VS

∑
j∈VT

1

NT
|hi − hj | ≤ NSW1(P

H
S , PH

T ). (30)

Now substituting these bounds into our sum:∑
i∈VS

∑
j∈VT

[
ln 3 +

λCρ√
2πσ

(∥fi − fj∥+ |hi − hj | · ρ)
]

(31)

≤
∑
i∈VS

∑
j∈VT

ln 3 +
λCρ√
2πσ

NS(W1(P
F
S , PF

T ) + ρW1(P
H
S , PH

T )). (32)

Dividing by max(NS , NT ), we obtain:

1

max(NS , NT )

∑
i∈VS

∑
j∈VT

[
ln 3 +

λCρ√
2πσ

(∥fi − fj∥+ |hi − hj | · ρ)
]

(33)

≤ λCρ√
2πσ ·NS ·NT

(W1(P
F
S , PF

T ) + ρW1(P
H
S , PH

T )). (34)

Proof of the Third Inequality:
From Lemma 1 (Bobkov-Götze Inequality) (Bobkov & Götze, 1999), we have:

W1(P
F
S , PF

T ) ≤ C0

√
DKL(PF

S ∥PF
T ), (35)

W1(P
H
S , PH

T ) ≤ C0

√
DKL(PH

S ∥PH
T ). (36)

Using these bounds in:
λρC√

2πσ ·NS ·NT

·W1(P
F
S , PF

T ) + ρW1(P
H
S , PH

T ), (37)

we obtain:
λρCC0√

2πσ ·NS ·NT

·
[√

DKL(PF
S ∥PF

T ) +
√

DKL(PH
S ∥PH

T )

]
. (38)

Combining both inequalities, we establish the bound:

D
γ/2
S,T (P ;λ) ≤ λρCC0√

2πσ ·NS ·NT

·
[√

DKL(PF
S ∥PF

T ) +
√

DKL(PH
S ∥PH

T )

]
(39)

This completes the proof.
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Corollary 4 (KL Divergence Decomposition of Feature Distributions). Let PF
S and PF

T be the feature distributions in the
source and target domains, respectively. Suppose that node features X undergo transformations defined by the adjacency
matrix A and Laplacian matrix L, i.e.,

PF
S = P (ASXS , LSXS |XS)P (XS), PF

T = P (ATXT , LTXT |XT )P (XT ). (40)

Then, the KL divergence between the feature distributions satisfies:

DKL(P
F
S ∥PF

T ) ≤ DKL(A
SXS∥ATXT ) +DKL(X

S∥XT ) +DKL(L
SXS∥LTXT ). (41)

Proof. Using the chain rule for KL divergence, we decompose:

DKL(P
F
S ∥PF

T ) = DKL(P (ASXS , LSXS |XS)P (XS)∥P (ATXT , LTXT |XT )P (XT )). (42)

Applying the chain rule:

DKL(P
F
S ∥PF

T ) = DKL(P (XS)∥P (XT )) + EP (XS)DKL(P (ASXS , LSXS |XS)∥P (ATXT , LTXT |XT )). (43)

Assuming conditional independence between adjacency and Laplacian transformations:

DKL(P (ASXS , LSXS |XS)∥P (ATXT , LTXT |XT )) ≤ DKL(A
SXS∥ATXT ) +DKL(L

SXS∥LTXT ). (44)

Thus, combining the results:

DKL(P
F
S ∥PF

T ) ≤ DKL(A
SXS∥ATXT ) +DKL(X

S∥XT ) +DKL(L
SXS∥LTXT ). (45)

This completes the proof.

Lemma 3. [Domain Adaptation Bound for Deterministic Classifiers] Let Φ be a family of classification functions. For any
classifier ϕ in Φ, and for any parameters λ > 0 and γ ≥ 0, consider any prior distribution P over Φ that is independent of
the training data VS . With a probability of at least 1− δ over the sample Y S , for any distribution Q on Φ such that the
following inequality holds:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ

]
(46)

+
λ

4NS
+D

γ/2
S,T (P ;λ) (47)

Theorem 5. Let Φ be a family of classification functions. For any classifier ϕ ∈ Φ, and for any parameters λ > 0 and
γ ≥ 0, consider any prior distribution P over Φ that is independent of the training data VS . With probability at least 1− δ
over the sample Y S , for any distribution Q on Φ, we have:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ

]
+

λ

4NS
+

λρCC0√
2πσ ·NS ·NT

·[√
DKL(ASXS∥ATXT ) +

√
DKL(XS∥XT ) +

√
DKL(LSXS∥LTXT ) +

√
DKL(PH

S ∥PH
T )

]
.

(48)

Proof. By Lemma 3, the domain adaptation bound is given by:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ

]
+

λ

4NS
+D

γ/2
S,T (P ;λ). (49)

From Proposition 1, we substitute the bound on D
γ/2
S,T (P ;λ):

D
γ/2
S,T (P ;λ) ≤ λρCC0√

2πσ ·NS ·NT

[√
DKL(PF

S ∥PF
T ) +

√
DKL(PH

S ∥PH
T )

]
. (50)
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Applying Corollary 4 to decompose DKL(P
F
S ∥PF

T ), we obtain:

DKL(P
F
S ∥PF

T ) ≤ DKL(A
SXS∥ATXT ) +DKL(X

S∥XT ) +DKL(L
SXS∥LTXT ). (51)

Similarly, for the heterophily-based KL divergence:

DKL(P
H
S ∥PH

T ) ≤ DKL(A
SXS∥ATXT ) +DKL(X

S∥XT ) +DKL(L
SXS∥LTXT ). (52)

Thus, we obtain:

D
γ/2
S,T (P ;λ) ≤ λρCC0√

2πσ ·NS ·NT

[√
DKL(ASXS∥ATXT ) +

√
DKL(XS∥XT ) +

√
DKL(LSXS∥LTXT )

]
. (53)

Substituting this into the original bound for L0
T (ϕ), we conclude:

L0
T (ϕ) ≤ L̂γ

S(ϕ) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ

]
+

λ

4NS

+
λρCC0√

2πσ ·NS ·NT

[√
DKL(ASXS∥ATXT ) +

√
DKL(XS∥XT ) +

√
DKL(LSXS∥LTXT )

]
.

(54)

This completes the proof.

B. Experimental Setup
The experiments are implemented in the PyTorch platform using an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, and
GeForce RTX A5000 24G GPU. Technically, two layers GCN is built and we train our model by utilizing the Adam (Kingma
& Ba, 2015) optimizer with learning rate ranging from 0.0001 to 0.0005. In order to prevent over-fitting, we set the dropout
rate to 0.5. In addition, we set weight decay ∈ {1e− 4, · · · , 5e− 3}. For fairness, we use the same parameter settings for
all the cross-domain node classification methods in our experiment, except for some special cases. For GCN, UDA-GCN,
and JHGDA the GCNs of both the source and target networks contain two hidden layers (L = 2) with structure as 128− 16.
The dropout rate for each GCN layer is set to 0.3. We repeatedly train and test our model for five times with the same
partition of dataset and then report the average of ACC.

(a) MAG (b) Citation (c) Blog (d) Twitch

Figure 7. This shows the local node homophily distibution shift is existing in MAG, Citation, Blog and Twitch datasets.

C. Empirical Study: Homophily Divergence Effect to Target classification Performance
In this appendix, we extend our analysis by presenting the homophily distributions and performance results for additional
datasets, including Blog, Citation, Twitch, and MAG. As shown in Figure 7, these datasets exhibit clear shifts in homophily
distributions between the source and target graphs, further underlining the necessity of our proposed GDA method. The
experiments focus on assessing the impact of homophily divergence on target node classification performance. Using a
standard two-layer GCN with unsupervised GDA settings, we evaluated classification accuracy across varying homophily
ratio subgroups. The following detail observations are drawn from the analysis:

Homophily Distribution Differences: Similar to the Airport dataset discussed in the main text, the Blog, Citation, Twitch,
and MAG datasets show significant divergence in homophily ratios between the source and target graphs. These shifts result
in node subgroups with varying levels of homophilic and heterophilic groups, as illustrated in Figure 7.
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(a) CN ↔ FR (b) CN ↔ US (c) CN ↔ JP (d) CN ↔ RU

(e) US ↔ FR (f) US ↔ DE (g) US ↔ RU (h) US ↔ JP

(i) DE ↔ EN (j) DE ↔ FR (k) EN ↔ FR (l) B1 ↔ B2

Figure 8. GCN performance on cross-network classification tasks across different homophily ratio ranges for the MAG, Twitch, and Blog
datasets.
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Dataset Method Training Time (Normalized w.r.t. UDAGCN) Memory Usage (Normalized w.r.t. UDAGCN) Accuracy(%)

U→B

UDAGCN 1 1 0.607
JHGDA 1.314 1.414 0.695

PA 0.498 0.517 0.481
SpecReg 0.463 0.493 0.621
HGDA 0.514 0.314 0.721

U→E

UDAGCN 1 1 0.472
JHGDA 1.423 1.513 0.519

PA 0.511 0.509 0.547
SpecReg 0.517 0.503 0.487
HGDA 0.307 0.310

¯
0.572

B→E

UDAGCN 1 1 0.497
JHGDA 1.311 1.501 0.569

PA 0.502 0.497 0.516
SpecReg 0.407 0.503 0.546
HGDA 0.309 0.313 0.584

A→D

UDAGCN 1 1 0.510
JHGDA 1.311 1.501 0.569

PA 0.502 0.497 0.562
SpecReg 0.407 0.503 0.536
HGDA 0.309 0.313 0.791

A→C

UDAGCN 1 1 0.510
JHGDA 1.311 1.501 0.569

PA 0.502 0.497 0.562
SpecReg 0.407 0.503 0.536
HGDA 0.309 0.313 0.326

C→D

UDAGCN 1 1 0.510
JHGDA 1.311 1.501 0.570

PA 0.502 0.497 0.562
SpecReg 0.407 0.503 0.536
HGDA 0.309 0.313 0.326

Table 4. Comparison of Training Time, Memory Usage, and Accuracy on Airport datset.

Impact on Classification Accuracy: we use a two-layer GCN with standard unsupervised GDA settings as our evaluation
model. After completing model training, we report the classification accuracy for different homophily ratio subgroups. In
the figure, the x-axis represents different node subgroups, where each subgroup consists of nodes within specified homophily
ratios range. The left y-axis denotes the proportion of nodes in the entire graph, while the upper-right y-axis shows the
percentage difference in homophily ratios between the source and target graphs for each subgroup. The lower-right y-axis
indicates the GDA node classification accuracy on the target graph for each subgroup. As shown in Figure 8, classification
accuracy on the target graph depends on the proportion difference of nodes belonging to subgroups with varying homophily
ratios. The figure illustrates that subgroups with lower homophily ratio differences achieve better classification performance,
while those that deviate more from the source graph tend to exhibit lower accuracy. Experimental results reveal a negative
correlation between homophily divergence and GDA performance. More significant disparities in homophily ratios between
the source and target graphs lead to lower classification accuracy on the target graph. This trend underscores the importance
of GDA in accounting for homophily discrepancies across domains.

D. Model Efficient Experiment
Model Complexity: Here, we analyze the computational complexity of the proposed HGDA. The computational complexity
primarily depends on the three filter layers. For a given graph G, let N represent the total number of nodes in the graph and
d the feature dimension. For the three filters: Homophilic Filter HL: Includes matrix multiplication with W l−1

L (O(N2 · d))
. Heterophilic Filter HH : O(N2 · d). Full-pass Filter HF : O(N2 · d). Thus, the total complexity of HGDA is: O(N2 · d).
Since HGDA does not introduce complex modules, its model complexity remains low, comparable to that of MLP or GCN.

Model Efficient Experiment: To further evaluate the efficiency of HGDA, Table 4 presents a running time comparison
across various algorithms. We also compared the GPU memory usage of common baselines, including UDAGCN and
the recent state-of-the-art methods JHGDA, PA, and SpecReg, which align graph domain discrepancies through different
ways. As shown in Table, the evaluation results on airport and citation dataset further demonstrate that our method achieves
superior performance with tolerable computational and storage overhead.
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E. Parameter Analysis
The effectiveness of Graph Domain Adaptation (GDA) is highly influenced by the homophily distribution differences
between the source and target graphs. Homophily ratios, defined as the likelihood of connected nodes sharing similar
attributes or labels, play a crucial role in determining how well embeddings align across domains. To address these
variations, the hyperparameters α and β are selected from the set {0.01, 0.05, 0.1, 0.5, 1}, providing flexibility in balancing
the contributions of source label supervision, domain alignment, and target graph adaptation.

Airport Dataset: The Airport dataset represents transportation networks, typically characterized by a smaller number of
nodes with complex edge relationships and sparse connectivity. The homophily ratio in this dataset is relatively low, which
highlights the importance of capturing key node alignment information and homophilic relationships to maintain meaningful
structure. The sparsity of connections and low homophily ratios require higher α and β values to emphasize alignment
between source and target graphs. This ensures that even sparse but critical homophilic relationships are preserved. α and β
are chosen from {0.05, 0.1, 0.5} to prioritize node alignment and structural consistency.

Citation Dataset (Citation and ACM Datasets): The Citation dataset often exhibits diverse structural homophily patterns
across different distributions, with varying levels of similarity between source and target graphs. These variations necessitate
a careful balance between domain alignment and label information from the source graph. The diversity in homophily
ratios between the source and target graphs requires moderate α and β values to balance domain alignment loss (LH ) and
source classifier loss (LS). Misalignment in homophily patterns can negatively impact the knowledge transfer process if not
adequately addressed. α and β are selected from {0.1, 0.5}, ensuring an effective trade-off between domain alignment and
label supervision.

Social Network Dataset (Blog and Twitch Datasets): Social networks are characterized by a large number of nodes
with rich attribute information and high variability in structural patterns. These datasets often feature distinct attribute
distributions, making attribute alignment crucial for successful domain adaptation.Social networks typically exhibit higher
variance in homophily ratios across source and target domains. This makes alignment particularly sensitive to changes in
α and β. Lower values are recommended to prevent overfitting to either homophily and heterophilic patterns.α and β are
chosen from {0.05, 0.1} to focus on attribute alignment while maintaining flexibility for homophily shifts.

MAG Dataset: The MAG dataset is large and diverse, containing numerous classes with intricate relationships and rich
metadata. Both homophily and heterophily alignment play critical roles in ensuring effective knowledge transfer across
domains. Due to its diverse nature, the MAG dataset exhibits a mix of homophily and heterophily patterns. Alignment
must consider both structural consistency and attribute-based adaptation to account for this diversity. Misalignment in
either homophily or heterophily can lead to suboptimal performance. α and β are selected from {0.1, 0.5} to balance
the importance of both homophily and heterophily alignment, ensuring robust performance across diverse classes and
relationships.

F. Description of Algorithm HGDA
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Figure 9. The influence of hyper-parameters α and β on Citation, Airport, ACM and MAG datasets.
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Homophily Enhanced Graph Domain Adaptation

Algorithm 1 The proposed algorithm HGDA
Input: Source node feature matrix XS ; source original graph adjacency matrix AS ; Target node feature matrix XT ; Target

original graph adjacency matrix AT source node label matrix Y S ; maximum number of iterations η
1 Compute the Ã and L̃ according to GS and GT by running .
2 for it = 1 to η do
3 ZS

L = HL(ÃS , XS)
4 ZS

F = HF (IS , XS)
5 ZS

H = HH (L̃S , XS)
// embedding of source graph

6 ZT
L = HL(ÃT , XT )

7 ZT
F = HF (IT , XT )

8 ZT
H = HH (L̃T , XT )

// embedding of target graph
9 Homophily enhanced domain adaptive between ZS

L and ZT
L , ZS

F and ZT
F and ZS

H and ZT
H

// adaptive in three views
10 Source graph classification ZS and Y S

11 Domain Adaptive Learning between ZS and ZT

12 Calculate the overall loss with Eq.(14)
13 Update all parameters of the framework according to the overall loss

14 Predict the labels of target graph nodes based on the trained framework.
Output: Classification result Ŷ T

Types Datasets α β

Airport

U→B 0.5 0.5
U→E 0.05 0.1
B→U 0.1 0.1
B→E 0.5 0.1
E→U 0.5 0.5
E→B 0.5 0.5

Citation

A→D 0.1 0.1
D→A 0.1 0.1
A→C 0.5 0.5
C→A 0.1 0.1
C→D 0.1 0.1
D→C 0.1 0.1

Blog B1→B2 0.1 0.1
B2→B1 0.1 0.1

Twitch DE→EN 0.1 0.1
EN→DE 0.1 0.5
DE→FR 0.5 0.5
FR→EN 0.1 0.1

Blog B1→B2 0.1 0.1
B2→B1 0.1 0.1

MAG

US→CN 0.5 0.1
US→DE 0.1 0.1
US→JP 0.1 0.5
US→RU 0.1 0.1
US→FR 0.1 0.1
CN→US 0.5 0.1
CN→DE 0.1 0.1
CN→JP 0.1 0.1
CN→RU 0.5 0.1
CN→FR 0.1 0.01

Table 5. Experiment hyperparameter setting Value.
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Homophily Enhanced Graph Domain Adaptation

Types Datasets #Node #Edge #Label

Airport
USA 1,190 13,599

4Brazil 131 1,038
Europe 399 5,995

Citation
ACMv9 9,360 15,556

5Citationv1 8,935 15,098
DBLPv7 5,484 8,117

Blog Blog1 2,300 33,471 6Blog2 2,896 53,836

Twitter Germany 9,498 153,138
2England 7,126 35,324

France 6,549 112,666

ACM ACM3 3,025 2,221,699 3ACM4 4019 57,853

MAG

US 132,558 697,450

20

CN 101,952 285,561
DE 43,032 126,683
JP 37,498 90,944
RU 32,833 67,994
FR 29,262 78,222

Table 6. Dataset Statistics.

23


