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ABSTRACT

We study the problem of length generalization (LG) in transformers: the ability
of a model trained on shorter sequences to maintain performance when evaluated
on much longer, previously unseen inputs. Prior work by Huang et al. (2025)
established that transformers eventually achieve length generalization once the
training sequence length exceeds some finite threshold, but left open the question
of how large it must be. In this work, we provide the first quantitative bounds
on the required training length for length generalization to occur. Motivated by
previous empirical and theoretical work, we analyze LG in several distinct problem
settings: ℓ∞ error control vs. average error control over an input distribution,
infinite-precision softmax attention vs. finite-precision attention (which reduces to
an argmax) in the transformer, as well as for one- or two-layer transformers. In all
scenarios, we prove that LG occurs when the internal behavior of the transformer
on longer sequences can be “simulated” by its behavior on shorter sequences seen
during training. Our bounds give qualitative estimates for the required length of
training data required for a transformer to generalize, and we verify these insights
empirically. These results sharpen our theoretical understanding of the mechanisms
underlying extrapolation in transformers, and formalize the intuition that richer
training data is required for generalization on more complex tasks.

1 INTRODUCTION

An important problem in the training of large language models (LLMs) is length generalization (LG),
which is the ability of a model to generalize to input sequences longer than those encountered during
training. Prior works have studied the ability of transformers to length generalize on simple testbed
tasks (Anil et al., 2022; Kazemnejad et al., 2023), yet the success of LG varies widely from task to
task. Recent theoretical work has thus sought to characterize which tasks admit LG. In particular,
Zhou et al. (2023) introduced the RASP-L conjecture, which states that transformers can length
generalize on tasks which are expressible by a “simple” RASP-L program (a variant of the RASP
language introduced in Weiss et al. (2021)). Huang et al. (2025) later formalized and partially proved
this conjecture, showing that tasks expressible by a limiting object called a “limit transformer,” which
includes tasks expressible by a C-RASP program (Yang & Chiang, 2024), admit LG at some finite
training length. These results, however, are asymptotic in nature and rely on “identification in the
limit” (Gold, 1967; Angluin, 1980) style arguments, where the inference procedure can eventually
rule out all hypotheses except for the ground truth. In particular, for a fixed task f on which LG is
possible, it is not specified what the minimum training length is for LG to occur.

Our goal in this paper is to characterize how long training sequences need to be in order for a
transformer to generalize to sequences of arbitrary length. Specifically, we adopt the limit transformer
formulation from Huang et al. (2025), and aim to provide quantitative bounds on the minimum N
such that two limit transformers f, g which agree on inputs of length ≤ N approximately agree on
inputs of arbitrary length.

We study this question in two distinct regimes. In Section 4, we consider limit transformers operating
at finite-precision, which matches the setting of Huang et al. (2025). This results in a hard attention
pattern for sequences of a certain length. Our main results are that for one-layer limit transformers,
for both worst-case error control (Theorem 4.1) and average error control over a distribution (Theo-
rem 4.2) the minimum such N scales monotonically with the parameter norms of the transformer, the
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positional embedding periodicity ∆, “locality” parameter τ , token vocabulary size |Σ|, and inverse
error ε−1. In Section 5, we additionally study the setting where the parameters and forward pass are
computed at infinite precision. This allows us to establish results independent of the model precision,
and is a more suitable model for multi-layer transformers where the inputs to later layers “mix” the
first-layer inputs, and hence can be treated as continuous. In Theorem 5.2, we establish a quantitative
LG bound for two-layer transformers, which scales with the transformer weight norms.

The proofs of our main results in both the finite- and infinite-precision settings rely on the following
high-level “simulation argument.” Given two limit transformers f, g and a long input string x, we
construct a string z of length at most N such that f(x) ≈ f(z) and g(x) ≈ g(z); if f and g agree
on all inputs of length ≤ N , then they must satisfy f(x) ≈ g(x). The key step in this simulation
argument is to construct z which approximately preserves various sufficient statistics which are
necessary for computing the forward pass of the model. The proof of Theorem 4.1 does this explicitly,
by ensuring that z approximates the empirical frequencies of each token in the hard attention pattern,
while the proof of Theorem 5.2 does this randomly, sampling z from a specially defined distribution
and invoking the probabilistic method. Nevertheless, the unifying principle in both settings is that LG
is possible whenever the internal behavior of a transformer on a larger sequence can be simulated by
its behavior on a shorter sequence.

Altogether, our results make progress towards both characterizing a natural hierarchy of “difficulty”
amongst length-generalizable tasks, and more practically speaking, developing a better understanding
of how to scale training context length for LLMs.

2 RELATED WORK

A number of works have empirically studied the ability of transformers to length generalize on
various tasks. Bhattamishra et al. (2020) studies the ability of transformers to length generalize on
various formal language tasks. Anil et al. (2022) show that transformers fail to generalize on certain
reasoning tasks, unless certain scratchpad prompting techniques are used. Kazemnejad et al. (2023)
study the role of various positional encoding schemes on LG. Zhou et al. (2023) study LG on various
algorithmic tasks, and observe that tasks with a short RASP program (Weiss et al., 2021) have better
LG, leading to their RASP-L conjecture. This is supported by works such as Jelassi et al. (2024),
who observe that for the string copying task, transformers can length generalize when there are no
repeated tokens, but fail once the string has repeats. LG has also been studied outside the context of
transformers. For instance, Nerem et al. (2025) showed that trained graph neural networks can learn
the Bellman-Ford algorithm which generalizes to shortest paths of arbitrary length. Buitrago & Gu
(2025) studied LG in the context of recurrent models such as state-space models or linear attention.

In light of these LG challenges, recent works have designed specific positional encoding schemes,
such as Alibi (Press et al., 2021) or Abacus (McLeish et al., 2024) to improve LG. Other works have
also considered modifying the input with a scratchpad, extra positional information, or alternative
training techniques to improve LG on arithmetic tasks (Lee et al., 2023; Shen et al., 2023; Cho
et al., 2025; Lee et al., 2025; Cai et al., 2025). Most recently, architectural modifications such as
looping (Fan et al., 2024) or recurrence (McLeish et al., 2024) have led to LG improvements. Other
approaches by Li et al. (2025); Anson et al. (2025); Hashemi et al. (2025) have considered making
modifications to the attention mechanism to improve LG.

On the theoretical front, Huang et al. (2025) partially resolves the RASP-L conjecture for tasks
expressible by limit transformers. Yang et al. (2025) shows the equivalence of a class of transformers
to the C-RASP programming language and provide empirical evidence that their theory predicts the
depth of a transformer which is required for LG to occur in practice. Wang et al. (2024) proves that
1-layer transformers trained with gradient descent length generalize on a sparse token selection task.
Ahuja & Mansouri (2024) show that a model resembling a self-attention head can length generalize.
Golowich et al. (2025) show that an abstraction of the self-attention head can length generalize on
tasks which depend on a sparse subset of input tokens. Veitsman et al. (2025) studied transformer
LG related to copy and retrieval operations, and find that theoretical limitations do indeed transfer
to practice. The work of Chen et al. (2025) is at first glance the most similar to ours, as the authors
give nonasymptotic bounds for LG. However, they focus on general models of computation with
variable-length input rather than on transformers, offering complementary insights.
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3 PROBLEM FORMULATION

3.1 LIMIT TRANSFORMERS

We are interested in the ability of transformers to generalize to sequences of arbitrary length, but
real transformer architectures are limited by a bounded context length. To address this issue, Huang
et al. (2025) introduced the concept of a limit transformer. These objects have an infinite context
length and generalized positional embeddings, allowing them to distinguish between arbitrarily many
positions in their context. The computation of a limit transformer proceeds as follows:

y
(0)
i = Exi

+ pi, i = 1, . . . , |x|,

a
(l,h)
i,j = (y

(l−1)
j )⊤K⊤

l,hQl,hy
(l−1)
i + ϕl,h(j, i),

Y
(l)
i = y

(l−1)
i +

H∑
h=1

∑i
j=1 exp

(
log |x| · a(l,h)i,j

)
V l,hy

(l−1)
j∑i

j=1 exp
(
log |x| · a(l,h)i,j

) ,

y
(l)
i = Y

(l)
i +Bl · ψl(AlY

(l)
i + bl),

T (x)i = Uy
(L)
i .

Here x is the input sequence with token xi ∈ Σ in the i-th position, Exi
∈ Rd is the embedding

of the i-th token, pi is the i-th (absolute) positional embedding vector. The super- and sub-scripts
(l, h) denote the l-th layer of the transformer and the h-th attention head. a(l,h)i,j is the (l, h) attention
logit between token i and j, Kl,h, Ql,h, and V l,h are the the (l, h) key, query, and value embedding
matrices, respectively. The functions ϕl,h(j, i) denote allow for modifications to the attention pattern
which cannot be captured by positional embedding vectors alone. Y

(l)
i denote the pre-activation

features for layer l at position i, and y
(l)
i denote the post-activation features which have been passed

through a single-hidden-layer MLP with 1-Lipschitz activation ψl, plus a residual connection; Al

and bl denote the hidden layer weights and bias term for this MLP, and Bl denotes the output
layer weights. Finally, T (x)i denotes the output logits at position i which are computed via the
unembedding matrix U .

Without additional constraints, a limit transformer cannot be recovered without seeing arbitrarily
long input sequences. Thus, Huang et al. (2025) also make two additional assumptions. First, the
limit transformers in question are assumed to be ∆-periodic, defined as pi = pi+∆ for all i. Second,
the limit transformers are also translation-invariant, defined as ϕl,h(j, i) = ϕl,h(j + t, i+ t) for all t,
and τ -local, defined as ϕl,h(j, i) = 0 whenever i > j + τ .

3.2 FINITE-PRECISION ATTENTION

Huang et al. (2025) assume that all of the transformer parameters, as well as the softmax attention,
are computed at p finite bits of precision. This is motivated by Merrill & Sabharwal (2023), and
indeed, finite precision is a real constraint when LLMs are implemented in practice.

For our analysis, the precise instantiation of this assumption is that we will assume that all quantities of
absolute value ≤ 2−p are rounded to 0 during each intermediate computation of the limit transformer.
Even this definition requires further clarification, particularly for the computation of the softmax.
This is because the softmax (at infinite precision) is invariant to a constant shift in all of the logits;
thus, in principal, the softmax may be computed as a collection of terms each of which has absolute
value less than 2−p, in which case it is unclear what to do. To avoid this problem, we take the usual
step for improving the numerical stability of softmax and perform computations with the largest logit
shifted to 0. Equivalently, we subtract the largest logit from every logit in the softmax. After this
standardization, all terms in the softmax (post exponentiation) with absolute value at most 2−p are
rounded to 0, then the computation proceeds as usual.

The impact of this assumption is as follows. Let f be a single-layer limit transformer which
is τ -local, ∆-periodic, and translation invariant as defined above. We can define the attention
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matrix A ∈ R∆|Σ|×∆|Σ| indexed by pairs (y, i) for y ∈ Σ and i ∈ Z/∆, where A(y,i),(z,j) :=

(Ez + pi)
⊤K⊤Q(Ey + pj). For y ∈ Σ and i ∈ Z/∆, define

A(y,i) := {A(y,i),(z,i−k) + ϕ(1, k + 1) | z ∈ Σ, k = 0, . . . , τ}.
Note that Ay contains all of the possible attention logits that we can observe when processing a token
xi = y. We then define the logit margin γ(f) of f by

γ(f) := min
y∈Σ

i∈Z/∆

min
a,a′∈A(y,i)

a−a′>0

a− a′,

where the minimum over an empty set is defined as +∞. The quantity γ(f) is the smallest nonzero
gap we can observe between a maximal attention logit and any non-maximal logit.

Now let x be any input sequence and suppose that N = |x| ≥ 2p/γ(f). Consider an individual term
in the softmax, post-exponentiation but before the rounding procedure. These have the form

sj = exp
(
logN · [(A(xN ,N),(xj ,j) + ϕ(j,N))− (A(xN ,N),(xj∗ ,j∗) + ϕ(j∗, N))]

)
= exp

(
logN · [(A(xN ,N),(xj ,j) + ϕ(1, N − j + 1))− (A(xN ,N),(xj∗ ,j∗) + ϕ(1, N − j∗ + 1))]

)
= exp(logN · (a− a∗)),

where j∗ ∈ argmaxj′=1,...,iA(xN ,N),(xj′ ,j
′) + ϕ(j′, N) is an index with the largest attention logit

and a, a∗ ∈ A(xN ,N) are simply a renaming of the logits to emphasize that these are quantities in
A(xN ,N). The second equation follows by the translation invariance of ϕ.

There are now two cases. If a = a∗ (i.e., the j-th position attains maximal attention for the input
sequence), then sj = exp(0) = 1 and this contribution to the softmax will not be affected by the
rounding procedure. On the other hand, if a ̸= a∗ (i.e., the j-th position attains strictly sub-maximal
attention for the input sequence), then by definition of γ(f), a− a∗ ≤ −γ(f) and we have

sj = exp(logN · (a− a∗)) ≤ exp

(
−p log 2
γ(f)

γ(f)

)
= 2−p.

Thus, this term will be rounded to 0. It follows that for sequences x of length N ≥ 2p/γ(f), softmax
attention acts as a hardmax and the computation is performed as a uniform average over the tokens
with argmax attention.

As can be seen from this analysis, while these design choices may seem like minutiae, they have
outsized effects on the analysis, and this fact has been observed in previous work (Jerad et al., 2025).
There is also empirical evidence that attention does indeed concentrate on only a few tokens (Bietti
et al., 2023; Rogers et al., 2021) and that finite precision does have a noticeable impact on LLM
behaviors (He & Lab, 2025).

3.3 INFINITE-PRECISION ATTENTION

Deviating from previous works, we also provide results when the transformer’s attention computations
(and indeed, all internal computations) are performed at infinite precision. In this case, we do not
need to make careful assumptions about rounding. Instead, however, there is an additional subtlety
about the scaling of the attention logits. In particular, given infinite precision and bounded weight
matrices, the effect of the τ -suffix on the LT’s computation must always decay to 0 as the length
of the input sequence diverges to infinity. This is undesirable as it precludes important functions
which transformers are empirically capable of learning, e.g., the induction head. To alleviate this
shortcoming, we propose scaling only the τ -suffix logits by a logarithmic factor:

a
(l,h)
i,j = (y

(l−1)
j )⊤K⊤

l,hQl,hy
(l−1)
i + log i · ϕl,h(j, i),

Y
(l)
i = y

(l−1)
i +

H∑
h=1

∑i
j=1 exp

(
a
(l,h)
i,j

)
V l,hy

(l−1)
j∑i

j=1 exp
(
a
(l,h)
i,j

) .
(1)

Depending on the size of the τ -suffix positional embeddings, this scaling increases the expressivity
of LTs to give three different possible behaviors. Consider the computation of the hth attention
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head in the first layer. For j < i − τ , the contribution of the jth token will be proportional to
exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
. Therefore for any s ∈ Σ, the total contribution of all tokens equal to s

will be exp
(
E⊤

s K
⊤
1,hQ1,hExi

)
· µ(x≤i)si, where µ(x≤i)s =

1
i

∑i
j=1 1(xj = s) is the empirical

frequency of s in the first i tokens of x. On the other hand, the contribution of the jth token for
i− τ ≤ j ≤ i is exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
· iϕ1,h(j,i). This yields the following three regimes:

1. Token Dominant (maxt≤τ ϕ1,h(i − t, i) < 1). For typical sequences, the empirical
frequences µ(x≤i)s will be Θ(1) for large i. Therefore if ϕ is bounded below 1, as i→ ∞
the contribution of the τ -suffix will grow negligible.

2. Balanced (maxt≤τ ϕ1,h(i− t, i) = 1). Both the total contribution of all tokens equal to s,
as well as tokens in the τ -suffix with ϕ1,h(j, i) = 1, will be proportional to i, and thus affect
the output of self-attention in a constant fashion as i→ ∞.

3. Position Dominant (maxt≤τ ϕ1,h(i− t, i) > 1). The contribution of the τ -suffix dominates
that of the rest of the sequence, with the self-attention weights concentrating on those tokens
j which maximize ϕ1,h(j, i).

Thus, the proposed scaling allows us to consider the full range of possible relative importance for the
local information (found in the τ -suffix) and global information (found in the τ -prefix) of the input.
In spite of these three qualitatively different regimes, we are able to provide a unified analysis which
addresses LG in all three scenarios simultaneously.

We will operate in the infinite precision setting for our results on multi-layer transformers (Theo-
rem 5.2). Intuitively, in the first layer, the tokens are in fact discrete and hard attention to a subset of
these tokens may be desirable. Beyond the first layer, however, the token representations become
continuous mixtures of these discrete objects and are in some sense more “inherently” continuous.
This makes the infinite precision setup more suitable for this setting.

Lastly, we remark that the while the details of the finite- and infinite-precision analysis are quite
different, the fundamental analysis technique is the same. Namely, we show that it is possible to
simulate the behavior of the transformer on longer sequences using strings of bounded length. The
implications of the theory for the data requirement vs. various parameters of the target function also
align qualitatively for both precision regimes, and these insights match with our empirical results.

4 LENGTH GENERALIZATION WITH FINITE PRECISION

In this section, we give upper bounds on the length of training data required for a single-layer limit
transformer to generalize to sequences of arbitrary length in the finite precision setting.

Let f and g be two single-layer limit transformers which are τ -local, ∆-periodic, translation invariant,
and operate at p finite bits of precision as described in Section 3. Let V f ,E

f
s , (Af ,Bf ) be the value

matrix, token embedding, and MLP weights for f (and analogously defined for g), and define

Lf = max{∥Uf∥(1 + ∥Af∥∥Bf∥∥ψf∥)(∥V f (E
f
s + pi)∥+ ∥Ef

s + pi∥+ ∥bf∥) : s ∈ Σ},
Lg similarly for g, and L = Lf + Lg. Finally, let γ = min{γ(f), γ(g)}, with γ(f) and γ(g) as
defined in Section 3.2. We first establish LG for single-layer transformers in an ℓ∞ setting.

Theorem 4.1. There exists an N = O
(
max

{
2p/γ , L2∆7|Σ|6τ2

ε2

})
such that ∥f(x) − g(x)∥ ≤ ε

for all |x| ≤ N implies that ∥f(x)− g(x)∥ = O(ε) for any sequence x.

Proof sketch. As discussed in Section 3.2, the output of each limit transformer depends roughly on
the ratios between each token type entering hardmax attention. We construct a “simulation map” from
a string x of arbitrary length to a string z of length |z| ≤ N which preserves these ratios up to O(ε)
error simultaneously for the tokens in attention in both f and g. Since f(z) ≈ g(z) by assumption,
this in turn implies that f(x) ≈ g(x). The complete proof is given in Appendix A.2.

Remarks. Theorem 4.1 shows that, assuming that the input sequences are sufficiently long (N ≳
2p/γ), the desired training length scales polynomially in the periodicity parameter ∆, the parameter

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

norms L, the vocabulary size |Σ|, and the inverse accuracy ε−1. The N ≳ 2p/γ constraint ensures
that the softmax attention behaves as a hardmax as discussed in Section 3.2. Indeed, it is possible for
this hardmax behavior to occur at smaller training lengths, implying that the training length N need
only scale with τ∆L2/ε2. See Section 6 for empirical support of this claim.

Theorem 4.1 bounds the test error when we have an ℓ∞ bound on the error, i.e., when the error on
every sequence of length at least N is bounded by ε. In practice, it is more common to have a bound
on the average error. The following theorem establishes that we can still achieve LG with respect to
average error for a certain class of sequence distributions.
Theorem 4.2. For any probability distribution P = (ps)s∈Σ over the token vocabulary Σ, define

∥f − g∥n,P =
∑
|x|=n

PP(x)∥f(x)− g(x)∥,

where PP(x) =
∏|x|

i=1 pxi
is the probability of the sequence x when the tokens are drawn i.i.d. from

P . Let P = (ps)s∈Σ ∼ Dir((αs)s∈Σ) be drawn from a Dirichlet distribution, and define

∥f − g∥n = EP∼Dir((αs)s∈Σ)[∥f − g∥n,P ].
Let α0 = mins∈Σ αs. Then there exists

N0 = O

(
max

{
2p/γ ,

16
α∗
α0 L2+2α−1

0 |Σ|4+2α−1
0 ∆5

α
2α−1

0
0 ε2+2α−1

0

log
|Σ|∆L
ε

})
= Õ(ε−2−2α−1

0 )

such that if ∥f − g∥N ≤ ε for all N ≤ N0, we have that ∥f − g∥T = O(ε1/2) for any T .

Proof sketch. We show that with high probability over the draw of (ps)s∈Σ and the resulting sequence
x, the fraction of (token, positional embedding) pairs is close to its mean. For such sequences, we
further show that the output of the limit transformer is approximately constant. This allows us to
define a simulation map sim : ΣT → ΣN from longer sequences to shorter ones which (1) satisfies
f(x) ≈ f(sim(x)) and (2) does not transfer a large probability mass of long sequences in ΣT to a
low-probability subset of short sequences in ΣN . These two features of the simulation map allow us to
control ∥f − g∥T in terms of ∥f − g∥N for any T ≥ N . The full proof is given in Appendix A.3.

Remarks. We make two remarks on this result. First, the form of the sequence distribution is meant
to ensure some regularity between sequences of longer and shorter lengths. The need for some
such regularity assumption is inevitable. For instance, an obvious example would be where the
distribution over shorter sequences has support only on sequences with tokens in Σshort ⊊ Σ, while
the distribution over longer sequences has support Σ \ Σshort. The switch can occur at an arbitrarily
large sequence length, so a bound on the required training length cannot exist in such a setting. This
counterexample can also be approximated without requiring the probability of certain sequences to
be exactly equal to 0. We expect a similar result to hold for sequences with some form of regularity
in terms of token ratios between shorter and longer sequences; e.g., if the sequences are drawn from a
Markov chain, concentration of the token ratios to the stationary distribution may be sufficient. It is
an interesting direction for future work to establish minimal conditions on the sequence distribution
for LG to occur in the average case. Second, as a corollary to our proof technique, we can strengthen
the error dependence of our bound when ∥f − g∥N,P is controlled conditional on mins∈Σ ps = Ω(1).
In this case, the LG error does not suffer from the quadratic increase from ε to ε1/2 as in Theorem 4.2,
but the required training length to achieve O(ε) error is longer. The proof for this setting can also
easily be extended to the case where the tokens are drawn from a fixed categorical distribution and
the probability ps for each token is at least a constant.

5 SOFT ATTENTION TRANSFORMERS WITH INFINITE PRECISION

In this section, we provide upper bounds on the length of training sequences required for two-layer
limit transformers operating at infinite precision to generalize to sequences of arbitrary length. Recall
that we have made the assumption that transformers which operate at infinite precision only have the
τ -suffix logits scaled by log(token index), and thus have forward pass given by (1). The key quantity
which governs the minimum training length is the following complexity measure.
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Definition 5.1 (Complexity and positional margin). Let Fτ be the class of depth 2 transformers
transformers which are τ -local, translation invariant, operate at infinite precision, use no positional
information in the second layer, and have nonnegative ϕl,h1. For a transformer f ∈ Fτ , with
key, query and value matrices {(K1,h,Q1,h,V 1,h)}h∈[H] ∪ {(K2,1,Q2,1,V 2,1)}, MLP weights
{(Al,Bl)}l∈{1,2}, embeddings ∥Es∥ ≤ 1, and unembedding U , define the complexity C(f) as

C(f) := exp

(
poly

({
∥V 1,h∥op,

∥∥∥K⊤
1,hQ1,h

∥∥∥
op

}
h∈[H]

, ∥A1∥op, ∥B1∥op,
∥∥∥K⊤

2,1Q2,1

∥∥∥
op

))
· poly

(
∥V 2∥op, ∥A2∥op, ∥B2∥op, ∥U∥op, τ, |Σ|

)
Moreover, define the positional margin γ(f) by

γ(f) := min
h∈H

(maxPh −max{p ∈ Ph : p ̸= maxPh})

where Ph := {ϕ1,h(i− t, i)}0≤t≤τ ∪ {1} is the set of positional embedding values in the hth head.

Theorem 5.2. Let f, g ∈ Fτ . There exists N ≲
(
max(C(f), C(g))ε−1

)max(γ(f)−1,γ(g)−1,3)
such

that ∥f(x)− g(x)∥ ≤ ε for all |x| ≤ N implies that ∥f(x)− g(x)∥ = O(ε) for any sequence x.

Proof sketch. Similar to before, our goal is to, given an arbitrary string x, construct a simulation z
which satisfies f(x) ≈ f(z) and g(x) ≈ g(z). Our first observation is that Y (1)

i , the output of the
first layer of the transformer in the ith position, can be written as a Lipschitz and bounded function
of both the τ -suffix xi−τ :i and the empirical histogram up to token i, µ(x≤i) :=

1
i

∑i
j=1 exj

. 2 As
such, the output of the two-layer transformer depends continuously on the empirical joint distribution
of {(xi−τ :i, µ(x≤i)}i∈[|x|]. We would thus like for the simulation z to approximately preserve this
distribution. To do so, we construct a random simulation z by randomly sampling a subset of the
tokens in x, show in expectation that the outputs are preserved, and invoke the probabilistic method.
In particular, the following “key simulation lemma” shows that such a subset does indeed exist.

Lemma 5.3. Let p : [S]τ+1 × ∆S → Rm be a fixed function, which is L Lipschitz in its second
argument and uniformly bounded by G. Then, there exists a subset I ⊂ [T ] such that, if z = xI , then
||I| − n| ≤ τ + 1 + n1/3 and∥∥∥∥∥∥ 1T

T∑
t=1

p(xt−τ :t, µ(x≤t))−
1

|z|

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥ ≲
(G+ L)(τ + 1)

n1/3
.

The proof of Lemma 5.3 proceeds as follows. In order to preserve the empirical distribution over
τ -suffices, we would like for the simulation z to include large (i.e., ω(1) in size) contiguous blocks
of x. To do so, we consider a Markov chain (i1, . . . , iT ) on the state space {0, 1}, with stationary
distribution P(ij = 1) = n/T and transition P(ij+1 = 0 | ij = 1) ≪ 1. Letting I = {j : ij = 1},
one can show that the choice z = xI yields a good simulation in expectation. The proof of Lemma 5.3,
as well as the full proof of Theorem 5.2, are deferred to Appendix B.

Remarks. The complexity measure in Definition 5.1 scales exponentially in the first layer weight
norms. This is unavoidable, as the Lipschitz constant of the first layer softmax scales exponentially
in ∥K⊤

1,hQ1,h∥op. Moreover, for certain tasks which can be naturally expressed by a two-layer
transformer, the complexity is mild. Consider the following in-context k-gram task, which is a
generalization of the induction head (Olsson et al., 2022):
Definition 5.4. Let Σ = [S]. We say that f∗ is an in-context k-gram estimator if its output on a
sequence x is the empirical distribution of the token following all occurrences of xT−k+1:T

3 i.e

f∗(x1:T ) =

∑T
t=k+1 1(xt−k:t−1 = xT−k+1:T ) · ext∑T

t=k+1 1(xt−k:t−1 = xT−k+1:T )
∈ RS .

1As per the discussion in Section 3.3, all ϕl,h < 1 yield the same “token-dominant” regime, and hence
assuming ϕl,h ≥ 0 does not affect expressivity.

2Infinite precision attention is necessary here to show that this function is indeed Lipschitz.
3If there is no such occurrence within x, the behavior of f∗(x) can be arbitrary.
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Figure 1: Experiments on SimpleTask, for varying values of ω. Left: For fixed training length, as
test length increases, the test loss plateaus at a finite value. Right: The value the test loss plateaus at
decreases monotonically with training length, and increases monotonically with ω.
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Figure 2: Experiments on ModPTask, for varying values of ∆ = p. Left: For fixed training length
and ∆, as test length increases, the test loss plateaus at a finite value. Right: The value the test loss
plateaus at decreases monotonically with training length, and increases monotonically with ∆.

Nichani et al. (2024) show that f∗ can be approximated by a depth two transformer with k − 1
heads in the first layer, and local, translational invariant positional embeddings with τ = k − 1. In
Appendix B.3, we show heuristically that f∗ can be approximated up to error ε by a transformer f
with complexity C(f) = ε−Θ(k2) and γ(f) ≥ 1, so a training length of ε−Θ(k2) suffices for LG.

We also remark that in Theorem 5.2, the training length N scales exponentially with the inverse
margin 1/γ. This mimics the bound in Theorem 4.1, which contains an exp

(
γ−1

)
dependence on

the logit-margin. Whether these margins matter for LG empirically or are simply an artifact of our
analysis is an interesting question for future work.

6 EXPERIMENTS

Single-layer Transformers. We next provide empirical support for the conclusions of Theorem 4.1
and 4.2. We consider the following two synthetic tasks:

SimpleTask: The vocabulary is Σ = {0, 1, 2}. Given an input sequence x1:T = (x1, . . . , xT ) ∈ ΣT ,
define cs(x) =

∑T
t=1 1(xt = s) to count the number of tokens equal to s. The output f∗ is given

by f∗(x1:T ) = σ
(

c0(x)−c1(x)
c0(x)+c1(x)

)
, where σ(z) = sin(ωz) for some ω ∈ R. One observes that f∗ is

expressible by a one-layer limit transformer with no positional embeddings and L = Θ(ω).

ModPTask: The vocabulary is Σ = {0, 1}. Given a period p and index k, the output is the average
of all tokens in positions which are k mod p:

f∗(x1:T ) =

∑T
t=1 1(xt = 1, t ≡ k mod p)∑T

t=1 1(t ≡ k mod p)
.

One observes that f∗ is expressible by a limit transformer with ∆ = p and L = Θ(1).

We train depth 1 transformers (consisting of a single self-attention layer followed by an MLP layer)
on SimpleTask for varying frequencies ω and ModPTask for varying periods p. For a fixed training
length N , we train models on sequences of length T ≤ N , and compute the test loss on sequences
of length T ′ ≥ N . More details on the experimental methodology are presented in Appendix C;
sketches for both constructions are provided in Appendix C.1.

Results for SimpleTask and ModPTask are presented in Figure 1 and Figure 2 respectively. In the
leftmost panes of both figures, we observe that the test loss plateaus as the test length increases. In the
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Figure 4: Experiments on the in-context k-gram task, for varying k and vocabulary size S. Left: For
fixed training length, as test length increases, the test loss plateaus at a finite value. Middle: The
value the test loss plateaus at decreases monotonically with training length, and increases with S.
Right: The value the test loss plateaus at also increases monotonically with k.

rightmost panes of both figures, we observe that the value at which the test loss plateaus at decreases
monotonically with the training length. This provides qualitative support for the conclusions of
Theorem 4.1, in particular that (i) given a target accuracy ε, tasks expressible by a one-layer limit
transformer have a finite N such that a model which fits the task on sequences up to length N
acheives ε error on sequences of all length and (ii) the value of this N increases monotonically
as ε increases. Moreover, the rightmost pane in Figure 1 shows that N scales with the parameter
norm L, while the rightmost pane in Figure 2 shows that N scales with the periodicity parameter ∆.
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Figure 3: For the ModPTask, the soft-
max attention approximates uniform
attention on all positions ≡ k mod p.

The proof of Theorem 4.1 relies on the “hardmax” attention
behavior discussed in Section 3.2. To check the validity
of this assumption, trained on the ModPTask with p = 5
for varying training lengths, and compute the post-softmax
attention probabilities on a batch of test sequences. In Fig-
ure 3, we observe that the positions not equal to k mod p
receive near zero attention probabilities while those in po-
sitions equal to k mod p receive nearly the same attention
probability (the dashed black line). This provides evidence
that, for large enough training length, the models are indeed
operating in the hardmax regime.

Two-layer Transformers. We next provide empirical support for the conclusions of Theorem 5.2.
We train depth 2 transformers on the in-context k-gram synthetic task, as defined in Definition 5.4.
Additional experimental details are given in Appendix C. Results are presented in Figure 4. In the
leftmost pane, we again observe that test loss plateaus as test length increases. Both the middle and
rightmost plots show that as the training length increases, the limiting test loss decreases. Moreover,
the middle plot shows the value of this limiting test loss increases with the alphabet size S (when we
fix k = 2), while the rightmost plot shows that it increases with k (when we fix S = 2). This matches
the qualitative dependence of the complexity measure C(f) on both S and τ .

7 CONCLUSION

In this paper, we provided quantitative bounds on the training length required for LG to occur, in
settings including finite- and infinite-precision attention, one- and two-layer transformers, and ℓ∞ and
average error control. Our results show that this minimum training length scales with the parameter
norms of the transformer, the periodicity ∆, locality τ , alphabet size |Σ|, and inverse error ε−1.
Unifying our analyses is the high level argument that LG occurs whenever the forward pass of a
transformer on a longer string can be “simulated” by that of a shorter string contained in the training
set. Qualitative support for the derived scalings are presented in Section 6.

One interesting direction of future work is to extend our results to transformers with larger depth.
In particular, it would be interesting to relate the minimum training length N to other notions
of complexity such as the length of the corresponding C-RASP program. Moreover, it would be
interesting to extend our average-case analysis in Theorem 4.2 to broader classes of distributions over
sequences. Finally, it is an important question to characterize how different positional embedding
schemes, which empirically improve LG, affect the minimum training length N .
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A OMITTED PROOFS FROM SECTION 4

In all of the proofs and discussions for this section, we will assume that all sequences are of length
at least 2p/min{γ(f),γ(g)}. As discussed in Section 3.2, this means that attention will operate as an
argmax over tokens with maximal logits, and therefore the computations of the transformer will be
performed over a subset of tokens determined by (token, position mod ∆) in the τ -prefix as well as
potentially some tokens in the τ -suffix. As, such, it will be useful to make the following definition.
Definition A.1. Define the token counting function n : Σ× Z× Σ∗ → Z≥0 by

n(s, i, x) = #{j ∈ 1, . . . , |x| − τ | xj = s and j ≡ i (mod ∆)}.
That is, n(s, i, x) counts the number of times that token s appears in a position which is i (mod ∆)
in x before the τ -suffix. In the case where there are no positional embedding vectors, we similarly
define

n(s, x) = #{j ∈ 1, . . . , |x| − τ | xj = s}.

The subset of (token, position mod ∆) pairs which enter the hard attention mechanism is determined
by the final token and its positional embedding vector. Thus, in the constructions which follow, it will
be important that the original long sequence x (|x| = T ) is simulated by a shorter string z (|z| = N )
such that xT = zT and T ≡ N (mod ∆). This will ensure that the hard attention mechanism
considers the same (token, positional embedding) pairs for both strings, and therefore that the output
of the limit transformer can be approximated by preserving the ratios of these quantities.

With these concerns in mind, consider a single-head, single-layer limit transformer f and an input
string x with |x| ≥ 2γ(f). Let A(x) ⊆ Σ × [∆] be the set of (token, position mod ∆) pairs in the
τ -prefix attended to by f when parsing the final token xT , and letAτ (x) be the set of (token, position)
pairs attended to in the τ -suffix. Then the internal state of f immediately after the attention layer is
given by

f̃(x) =

∑
(s,i)∈A(x) n(s, i, x)V f (E

f
s + pi) +

∑
(s,i)∈Aτ (x) V f (E

f
s + pi)∑

(s,i)∈A(x) n(s, i, x) + |Aτ (x)|
, (2)

and the full computation is given by

f(x) = Uf

(
(Ef

xT
+ f̃(x)) +Bfψf (Af (E

f
xT

+ f̃(x)) + bf )
)
. (3)

A.1 HELPER LEMMAS

For both of the finite-precision theorems, the following lemma relating f̃ and f will be useful.
Lemma A.2. Let x and z be two sequences with |x| = T and |z| = N , and suppose that the final
tokens are equal: xT = zN . Then ∥f(x)− f(z)∥ ≤ LMLP

f ∥f̃(x)− f̃(z)∥, where

LMLP
f = ∥Uf∥(1 + ∥Af∥∥Bf∥∥ψf∥)

is a bound on the Lipschitz constant of the transformer MLP.

Proof. We can write

f(x) = Uf

(
(Ef

xT
+ f̃(x)) +Bfψf (Af (E

f
xT

+ f̃(x)) + bf )
)
. (4)

Because xT = zN , we have Ef
xT

= Ef
zN . Straightforward applications of the triangle inequality and

the submultiplicative inequality for operator norms then yield the desired result.

The following lemma bounds the norm of the output of a limit transformer in terms of the norms of
the weight matrices and activation function.
Lemma A.3. Define the following quantities:

LMLP
f = ∥Uf∥(1 + ∥Af∥∥Bf∥∥ψf∥),

MV
f = max

s∈Σ, i∈[∆]
∥V f (E

f
s + pi)∥,
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ME
f = max

s∈Σ,i∈[∆]
∥Ef

s + pi∥.

Then setting
Mf = LMLP

f (ME
f +MV

f + ∥bf∥),
we have ∥f(x)∥ ≤Mf for all x.

Proof. The proof is nearly identical to that of Lemma A.2. We begin by observing that f̃(x) is a
convex combination of terms of the form V f (E

f
s + pi), so in particular ∥f̃(x)∥ ≤MV

f . The results
follows by using the expression for f(x) in terms of f̃(x) given in equation (4), the triangle inequality,
and submultiplicativity of the operator norm.

A.2 PROOF OF THEOREM 4.1

In this section, we give the proof of Theorem 4.1. We will first prove another helper lemma which
will aid in our simulation string constructions.

Lemma A.4. Let {pi}ni=1 be an arbitrary finite probability distribution. For any integer N ≥ 1,
there exist nonnegative integers {mi}ni=1 such that

∑n
i=1mi = N and |mi/N − pi| ≤ 1/N for all

i = 1, . . . , n. In particular, this also implies that the mi satisfy |piN −mi| ≤ 1 for all i.

Proof. Define m̃i = ⌊piN⌋ and let R = N −
∑n

i=1 m̃i. Note that 0 ≤ R ≤ n. For i = 1, . . . , R,
define mi = m̃i + 1 and for i = R + 1, . . . , n, define mi = m̃i. This choice of mi can easily be
seen to have the desired properties.

We are now ready to prove Theorem 4.1, which we restate for convenience.

Theorem 4.1. There exists an N = O
(
max

{
2p/γ , L2∆7|Σ|6τ2

ε2

})
such that ∥f(x) − g(x)∥ ≤ ε

for all |x| ≤ N implies that ∥f(x)− g(x)∥ = O(ε) for any sequence x.

Proof. We will first give a proof assuming there are no positional embedding vectors pi. We will
then show how to easily adapt the result to the case of positional embedding vectors.

Consider two limit transformers f and g and an input string x. Let Pf be the positions attended to by
f and Pg be the positions attended to by g in the τ -prefix of x and assume WLOG that |Pf | ≤ |Pg|.
Let Af = Af (x) = {xi | i ∈ Pf} be the set of tokens which f attends to and define Ag = Ag(x)
similarly.

We construct the auxiliary string z as follows. The τ -suffix of z is always equal to the τ -suffix of x;
in particular, this ensures that the final tokens of x and z are equal.

If |Pf |, |Pg| ≤ 1/ε, then the attention pattern in the τ -prefix of x can be directly recreated simultane-
ously for f and g using at most 2/ε tokens by just copying the union of the tokens in attention for f
and g into z. In this case, by formulas (2) and (3), we will have f(x) = f(z) and g(x) = g(z) and
therefore ∥f(x)− g(x)∥ = ∥f(z)− g(z)∥ ≤ ε. Thus, we will assume that at least |Pg| ≥ 1/ε.

We first recreate the attention pattern of f . To simplify notation, let ns = n(s, x) and ms = n(s, z).
If |Pf | ≤ 1/ε, then we simply set z1:|Pf | = xPf

(i.e., we set the first |Pf | tokens of z equal to the
attention pattern of f on the τ -prefix of x). The tokens which we will add later do not belong to Af ;
thus, we will clearly have f(x) = f(z). Thus, in the following construction, we will assume that
|Pf | ≥ 1/ε.

We first proceed with a slightly more fine-grained construction of Lemma A.4. For each s ∈ Af ,
define

m̃s =

⌊
⌈1/ε⌉
|Pf |

ns

⌋
and let

R =

 ∑
s∈Af∩Ag

⌈1/ε⌉
|Pf |

ns −
∑

s∈Af∩Ag

m̃s

 .
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We must have R ≤ |Af ∩Ag|, so choose I ⊆ Af ∩Ag with |I| = R and define ms = m̃s + 1 for
s ∈ I and ms = m̃s for s ∈ (Af ∩Ag) \ I . This defines ms for all s ∈ Af ∩Ag with the following
two properties:∣∣∣∣ms −

⌈1/ε⌉
|Pf |

ns

∣∣∣∣ ≤ 1 ∀s ∈ Af ∩Ag, 0 ≤ ⌈1/ε⌉
|Pf |

|Pf ∩ Pg| −
∑

s∈Af∩Ag

ms < 1. (5)

We then turn to Af \Ag and define

R′ =

∑
s∈Af

⌈1/ε⌉
|Pf |

ns −
∑

s∈Af\Ag

m̃s −
∑

s∈Af∩Ag

ms

 .
It is clear that 0 ≤ R′ ≤ |Af \ Ag|, so we can similarly choose J ⊆ Af \ Ag with |J | = R′ and
define ms = m̃s + 1 for s ∈ J and ms = m̃s for s ∈ (Af \ Ag) \ J . The ms defined in this way
have the property that∣∣∣∣ms −

⌈1/ε⌉
|Pf |

ns

∣∣∣∣ ≤ 1 ∀s ∈ Af \Ag,

∣∣∣∣∣∣⌈1/ε⌉|Pf |
|Pf \ Pg| −

∑
s∈Af\Ag

ms

∣∣∣∣∣∣ ≤ 1. (6)

Combining results (5) and (6), we have the additional result that∣∣∣∣∣∣⌈1/ε⌉ −
∑
s∈Af

ms

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣⌈1/ε⌉|Pf |

|Pf ∩ Pg| −
∑

s∈Af∩Ag

ms

∣∣∣∣∣∣+
∣∣∣∣∣∣⌈1/ε⌉|Pf |

|Pf \ Pg| −
∑

s∈Af\Ag

ms

∣∣∣∣∣∣ ≤ 2.

(7)

In particular, combining the results of inequalities (5), (6), and (7), we can conclude that the ms

satisfy ∣∣∣∣∣ ms∑
s′∈Af

ms′
− ns

|Pf |

∣∣∣∣∣ = O(ε). (8)

We can use these inequalities to bound the difference between f(x) and f(z). Define

f̃\τ (x) =

∑
s∈Af

nsV fE
f
s∑

s′∈Af
ns′

to be the internal state of f immediately after the attention layer, ignoring the τ -suffix. Letting P τ
f be

the set of positions f attends to in the τ -suffix of x, observe that we can write

f̃(x) = f̃\τ (x) ·
∑

s′∈Af
ns′∑

s′∈Af
ns′ + |P τ

f |
+

∑
i∈P τ

f
V fE

f
xi∑

s′∈Af
ns′ + |P τ

f |
.

It therefore follows that

∥f̃(x)− f̃\τ (x)∥ ≤

∣∣∣∣∣∣∣1−
1

1 +
|P τ

f |∑
s′∈Af

ns′

∣∣∣∣∣∣∣ ∥f̃\τ (x)∥+
τMV

f∑
s′∈Af

ns′
(9)

≤ 2τ∑
s′∈Af

ns′
·MV

f +
τMV

f∑
s′∈Af

ns′
(10)

≤ 3MV
f τε. (11)

Inequalities (9) and (10) both use the fact that |P τ
f | ≤ τ and ∥V fE

f
s∥ ≤ MV

f . Inequality (10)
additionally uses that

1

1 +
|P τ

f |∑
s′∈Af

ns′

≥ 1−
2|P τ

f |∑
s′∈Af

ns′
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provided that |P τ
f |/

∑
s′∈Af

ns′ ≤ 1/2. Since |Pf | =
∑

s∈Af
ns > 1/ε and |P τ

f | ≤ τ , this
inequality holds for ε small enough. The final inequality (35) simply uses the fact that

∑
s∈Af

ns =

|Pf | > 1/ε.

If we then define

f̃\τ (z) =

∑
s∈Af

msV fE
f
s∑

s′∈Af
ms′

,

a similar calculation will then yield

∥f̃(z)− f̃\τ (z)∥ ≤
3τMV

f∑
s∈Af

ms
≤

3τMV
f

⌈1/ε⌉ − 2
≤ 4MV

f τε

for ε small enough. By the triangle inequality, we then have

∥f̃(x)− f̃(z)∥ ≤ ∥f̃(x)− f̃\τ (x)∥+ ∥f̃(z)− f̃\τ (z)∥+ ∥f̃\τ (x)− f̃\τ (z)∥
= ∥f̃\τ (x)− f̃\τ (z)∥+O(MV

f τε). (12)

We can now bound ∥f̃\τ (x)− f̃\τ (z)∥. We have

∥f̃\τ (x)− f̃\τ (z)∥ =

∥∥∥∥∥
∑

s∈Af
nsV fE

f
s

|Pf |
−
∑

s∈Af
msV fE

f
s∑

s′∈Af
ms′

∥∥∥∥∥
≤MV

f

∑
s∈Af

∣∣∣∣∣ ns|Pf |
− ms∑

s′∈Af
ms′

∣∣∣∣∣
= O(MV

f |Σ|ε). (13)

Equation 13 uses the bound from (8) and the fact that |Af | ≤ |Σ|. Plugging (13) into (12), we obtain

∥f̃(x)− f̃(z)∥ = O(MV
f (|Σ|+ τ)ε).

Applying Lemma A.2, we then have

∥f(x)− f(z)∥ = O(LMLP
f MV

f (|Σ|+ τ)ε). (14)

We will refer to the portion of z which has been defined up to now as the f -prefix of z.

It remains to extend z so that it can simulate the behavior of g without adding any tokens in Af so as
to preserve the previous calculations. There are now two cases depending on the size of Pf ∩ Pg.
First, suppose that |Pf ∩ Pg|/|Pg| ≤ ε. By Lemma A.4, there exist m̃s such that∣∣∣∣m̃s −

⌈1/ε2⌉
|Pg|

ns

∣∣∣∣ ≤ 1 ∀s ∈ Ag,
∑
s∈Ag

m̃s = ⌈1/ε2⌉.

We now define ms = m̃s for s ∈ Ag \ Af . Combined with the earlier definitions of ms for
s ∈ Af ∩Ag above, this defines ms for all s ∈ Ag . Furthermore, we have∑

s∈Ag\Af

ms = ⌈1/ε2⌉ −
∑

s∈Af∩Ag

m̃s

≥ ⌈1/ε2⌉ −
∑

s∈Af∩Ag

(
⌈1/ε2⌉
|Pg|

ns + 1)

= ⌈1/ε2⌉ − |Pf ∩ Pg|
|Pg|

⌈1/ε2⌉ − |Af ∩Ag|

≥ ⌈1/ε2⌉(1− ε)− |Σ| (15)

≥ ⌈1/ε2⌉(1− 2ε)
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for ε small enough. (Here, (15) uses the assumption that |Pf ∩ Pg|/|Pg| ≤ ε.) Thus, using similar
logic as the derivation for inequality (8), we obtain∣∣∣∣∣ ms∑

s′∈Sg\Sf
ms′

− ns
|Pg|

∣∣∣∣∣ = O(ε).

We now show that the terms in the τ suffix and in Af ∩Ag do not contribute much to g. Define

g̃\τ,f (x) =
∑

s∈Ag\Af

nsV gE
g
s

|Pg|
.

We have the following bound:

∥g̃(x)− g̃\τ,f (x)∥ =

∥∥∥∥∥∥
∑

s∈Ag
nsV gE

g
s +

∑
i∈P τ

g
V gE

g
xi

|Pg|+ |P τ
g |

−
∑

s∈Ag\Af

nsV gE
g
s

|Pg|

∥∥∥∥∥∥
≤

∑
i∈P τ

g
∥V gE

g
xi
∥

|Pg|+ |P τ
g |

+

∑
s∈Ag∩Af

ns∥V gE
g
xi
∥

|Pg|+ |P τ
g |

+

∑
s∈Ag\Af

ns∥V gE
g
s∥

|Pg|

∣∣∣∣ |Pg|
|Pg|+ |P τ

g |
− 1

∣∣∣∣
≤MV

g τε+
MV

g |Pf ∩ Pg|
|Pg|

+
|Pg \ Pf |MV

g

|Pg|
·
2|P τ

g |
|Pg|

(16)

≤MV
g τε+MV

g ε+ 2MV
g τε

≤ 4MV
g τε. (17)

Inequality (16) used the fact that |Pg| ≥ 1/ε, |P τ
g | ≤ τ , ∥V gE

g
s∥ ≤MV

g , and |Pg|/(|Pg|+ |P τ
g |) ≥

1− 2|P τ
g |/|Pg| whenever |P τ

g |/|Pg| is small enough (which it will be for small enough ε).

If we define

g̃\τ,f (z) =
∑

s∈Ag\Af

msV gE
g
s∑

s′∈Ag\Af
ms′

,

then the same logic as used to derive (17) can be used to show that ∥g̃\τ,f (z)− g̃(z)∥ = O(MV
g ε).

This is because the critical facts that ∑
s∈Ag∩Af

ms∑
s∈Ag\Af

ms
= O(ε),

analogous to |Pf ∩ Pg|/|Pg|; and

|P τ
g |∑

s∈Ag\Af
ms

= O(τε2) = O(ε)

analogous to |P τ
g |/|Pg| = O(τε).

We can now use inequality (17), the triangle inequality, and Lemma A.2 to bound the error for g. We
have

∥g̃(x)− g̃(z)∥ ≤ ∥g̃(x)− g̃\τ,f (x)∥+ ∥g̃\τ,f (z)− g̃(z)∥+ ∥g̃\τ,f (x)− g̃\τ,f (z)∥

≤ O(MV
g τε) +

∑
s∈Ag\Af

∣∣∣∣∣ ms∑
s′∈Ag\Af

ms′
− ns

|Pg|

∣∣∣∣∣MV
g

= O(MV
g (τ + |Σ|)ε).
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Lemma A.2 then gives ∥g(x)− g(z)∥ = O(LMLP
g MV

g (τ + |Σ|)ε). This completes the case when
|Pf ∩ Pg|/|Pg| ≤ ε.

Otherwise we have |Pf ∩ Pg|/|Pg| > ε. In this case, we have |Pg| < |Pf ∩ Pg|/ε ≤ |Pf |/ε. We
now consider two further subcases. Again if |Pf | ≤ 1/ε, we then have |Pg| ≤ 1/ε2. Thus, there are
at most 1/ε + 1/ε2 + τ = O(1/ε2) tokens in the union of the attention patterns of f and g on x.
Thus, by setting z equal to the collection of all tokens in this union of attention patterns, we have
f(x) = f(z), g(x) = g(z), ∥f(x)− g(x)∥ = ∥f(z)− g(z)∥ = O(ε), and |z| = O(1/ε2) as desired.
Thus, we may assume that |Pf | > 1/ε.

Let s∗ = argmaxs∈Af
ns. Note that since |Pf | ≥ 1/ε and |Af | ≤ |Σ|, we must have ns∗ ≥ |Pf |/|Σ|.

For s ∈ Ag \Af , we first define m̃s by

m̃s =

⌊
ms∗

ns∗
· ns
⌋
.

Again similar to Lemma A.4, we define

R = ⌊
∑

s∈Ag\Af

ms∗

ns∗
ns −

∑
s∈Ag\Af

ms⌋.

We again have R ≤ |Ag \ Af |, so we can choose I ⊆ Ag \ Af , |I| = R, and define ms = m̃s + 1
for s ∈ I and ms = m̃s for s ∈ (Ag \Af ) \ I . In this way, we have

∣∣∣∣ms −
ms∗

ns∗
ns

∣∣∣∣ ≤ 1 ∀s ∈ Ag \Af ,

∣∣∣∣∣∣
∑

s∈Ag\Af

ms∗

ns∗
ns −

∑
s∈Ag\Af

ms

∣∣∣∣∣∣ ≤ 1. (18)

Note that in addition, we have

∑
s∈Ag\Af

ms ≤
∑

s∈Ag\Af

ms∗

ns∗
ns + 1 (19)

≤
∑

s∈Ag\Af

⌈1/ε⌉
|Pf | ns

∗ + 1

ns∗
ns + 1 (20)

≤ ⌈1/ε⌉
|Pf |

|Pg \ Pf |+
|Σ|
ns∗

+ 1 (21)

≤ ⌈1/ε⌉ · (1/ε) + |Σ|2/ε+ 1 (22)

= O(1/ε2). (23)

In particular, this implies that this construction can be completed by adding at most O(1/ε2) tokens
to z, so in all cases the length of z is O(1/ε2) as desired.
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We now proceed to bound the approximation error. We first want to extend the bound in (18) to all of
Ag . To this end, we have∣∣∣∣∣∣
∑
s∈Ag

ms∗

ns∗
ns −

∑
s∈Ag

ms

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

s∈Ag\Af

ms∗

ns∗
ns −

∑
s∈Ag\Af

ms

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

s∈Ag∩Af

ms∗

ns∗
ns −

∑
s∈Ag∩Af

ms

∣∣∣∣∣∣
≤ 1 +

ms∗

ns∗
|Pg ∩ Pf | −

⌈1/ε⌉
|Pf |

|Pg ∩ Pf |+ 1 (24)

≤ 2 +

 ⌈1/ε⌉
|Pf | ns

∗ + 1

ns∗
− ⌈1/ε⌉

|Pf |

 |Pg ∩ Pf | (25)

≤ 2 +
|Pg ∩ Pf |
ns∗

≤ 2 + |Σ|. (26)
Inequality (24) uses (18) and (5); (25) again uses (5); and (26) uses the fact that ns∗ ≥ |Pf |/|Σ|.
We can now bound the error of the ratio of ms over all of Ag . We have

ms∑
s′∈Ag

ms′
≥

ms∗
ns∗

ns − 1
ms∗
ns∗

∑
s′∈Ag

ns′ + 2 + |Σ|
(27)

≥ ns∑
s′∈Ag

ns′ +
2+|Σ|

ms∗/ns∗

− 1
ms∗
ns∗

∑
s′∈Ag

ns′

≥ ns∑
s′∈Ag

ns′
−O

 |Σ|
ms∗/ns∗∑
s′∈Ag

ns′

− 1

ms∗
(28)

≥ ns∑
s′∈Ag

ns′
−O

(
|Σ|
ms∗

)

≥ ns∑
s′∈Ag

ns′
−O(|Σ|2ε). (29)

Inequality (27) uses (5) and (26); (28) uses (
∑

s′∈Ag
ns′)/ns∗ ≥ 1; and (29) again uses (5) and

ns∗ ≥ |Pf |/|Σ| to conclude ms∗ = Ω(|Σ|/ε). In a similar fashion, it can be shown that
ms∑

s′∈Ag
ms′

≤ ns∑
s′∈Ag

ns′
+O(|Σ|2ε).

Now we compare g(x) and g(z). As before, the effect of the τ -prefix contributes at most
O(LMLP

g MV
g τε) to ∥g(x)− g(z)∥, so we have

∥g(x)− g(z)∥ ≤ LMLP
g

∑
s∈Sg

∣∣∣∣∣ ms∑
s′∈Sg

ms′
− ns∑

s′∈Sg
ns′

∣∣∣∣∣MV
g +O(LMLP

g MV
g τε)

= O
(
LMLP
g MV

g (|Σ|3 + τ)ε
)
.

Let Mf = LMLP
f MV

f and similarly for g. In every case, we have constructed z such that ∥f(x)−
f(z)∥ = O(Mf (|Σ|+τ)ε) and ∥g(x)−g(z)∥ = O(Mg(|Σ|3+τ)ε), and the length of z is O(1/ε2).
Making the crude bound |Σ|3 + τ ≤ |Σ|3τ for convenience, we therefore have

∥f(x)− g(x)∥ = O((Mf +Mg)|Σ|3τε)
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whenever ∥f(z) − g(z)∥ ≤ ε for all inputs |z| ≤ N , and N = O(1/ε2). Thus, by substituting
ε 7→ ε

(Mf+Mg)|Σ|3τ , we have ∥f(x)− g(x)∥ = O(ε) for any string x provided that f and g differ by
at most ε on inputs up to a length

N = O

(
(Mf +Mg)

2|Σ|6τ2

ε2

)
.

Including positional embedding vectors The setting with positional embedding vectors can be
reduced to the general vocabulary case at the cost of increasing |Σ| → |Σ|∆ and an additional
factor of ∆ by considering each possible (token, position mod ∆) combination as its own token
without positional embedding vectors. (This increases the vocabulary size from |Σ| to |Σ|∆.) The
construction without positional embedding vectors can then be used considering this expanded
vocabulary; however, placing a “token” in the expanded vocabulary Σ× [∆] may require placing up
to ∆ true tokens to ensure that the positional embedding is correct. Thus, this construction requires at
most an additional factor of ∆ tokens. This gives a final bound

N = O

(
(Mf +Mg)

2∆7|Σ|6τ2

ε2

)
.

As discussed in the beginning of the section, it will also be critical that |z| ≡ |x| (mod ∆); this can
always be accomplished by padding z with at most ∆ additional tokens, which does not change the
asymptotic length bound.

A.3 PROOF OF THEOREM 4.2

Lemma A.5. Let x ∈ ΣT and suppose that its constituent tokens xi are drawn i.i.d. from a
categorical distribution, where P(xi = s) = ps for each s ∈ Σ. Then with probability at least 1− ρ,
we have that ∣∣∣∣n(s, i, x)T/∆

− ps

∣∣∣∣ ≤ δ

for all (s, i) simultaneously provided that T ≥ ∆δ−2 log 2|Σ|∆
ρ . We say that x ∈ bulkT when the

above inequality holds for all (s, i) ∈ Σ× [∆] simultaneously.

Proof. Fix i and consider the subset of positions j ≡ i (mod ∆) and let T ′ = T/∆ be the length of
each of these subsequences. (We will ignore the fact that this may not be an integer as it is neither
interesting nor important.) By Hoeffding’s inequality, we have that |n(s, i, x)− psT

′| > c
√
T ′ with

probability at most 2e−c2 . Setting c =
√

log 2|Σ|∆
ρ and taking a union bound over (s, i) ∈ Σ× [∆],

we see that ∣∣∣∣n(s, x)T ′ − ps

∣∣∣∣ ≤
√

log 2|Σ|∆
ρ

T ′

with probability at least 1− ρ. Setting δ =

√
log

2|Σ|∆
ρ

T ′ and solving for T = ∆T ′ yields the desired
result.

Lemma A.6. Let A(x) ⊆ Σ× [∆] be the set of (token, position mod ∆) pairs in the τ -prefix attended
to by f when parsing the final token xT . Furthermore, suppose A(x) ̸= ∅, i.e., some tokens in the
τ -prefix enter hard attention. Define

f̃\τ (x) =

∑
(s,i)∈A(x) n(s, i, x)V f (E

f
s + pi)∑

(s′,i′,x)∈A(x) n(s
′, i′, x)

to be the internal state of f immediately after the attention layer, ignoring the τ -suffix. Furthermore,
define

¯̃
f(x) =

∑
(s,i)∈A(x) psV f (E

f
s + pi)∑

(s′,i′)∈A(x) ps′
.
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Finally suppose that mins∈Σ ps ≥ γ and that δ is small enough such that |Σ|∆δ/γ ≤ 1/2. Then for
any x ∈ bulkT , we have that

∥f̃\τ (x)− ¯̃
f(x)∥ ≤

3MV
f (|Σ|∆)2δ

γ
,

where MV
f = maxs∈Σ,i∈[∆] ∥V f (E

f
s + pi)∥.

Proof. Let A = A(x). Observe that

∥f̃\τ (x)− ¯̃
f(x)∥ ≤

∑
(s,i)∈A

∣∣∣∣∣ n(s, i, x)∑
(s′,i′)∈A n(s

′, i′, x)
− ps∑

(s′,i′)∈A ps′

∣∣∣∣∣MV
f . (30)

We will proceed by bounding the terms in this summation. Let T ′ = T/∆. Observe that for
x ∈ bulkT , we have the following:

n(s, i, x)∑
(s′,i′)∈A n(s

′, i′, x)
≤ (ps + δ)T ′∑

(s′,i′)∈A(ps′ − δ)T ′

≤

(
ps∑

(s′,i′)∈A ps′
+

δ∑
(s′,i′)∈A ps′

) ∑
(s′,i′)∈A ps′∑

(s′,i′)∈A ps′ − δ|Σ|∆
(31)

≤

(
ps∑

(s′,i′)∈A ps′
+
δ

γ

)(
1 +

2|Σ|∆δ
γ

)
(32)

≤ ps∑
(s′,i′)∈A ps′

+
3|Σ|∆δ
γ

.

Inequality (31) holds because |A| ≤ |Σ|∆. Inequality (32) holds because
∑

s′∈A ps′ ≥ γ (since A is
nonempty and all ps′ ≥ γ) and 1/(1− |Σ|∆δ/γ) ≤ 1+2|Σ|∆δ/γ when |Σ|∆δ/γ ≤ 1/2. A similar
argument with δ 7→ −δ and the inequalities reversed also shows that

n(s, x)∑
(s′,i′)∈A n(s

′, i′, x)
≥ ps∑

(s′,i′)∈A ps′
− 3|Σ|∆δ

γ
.

We can therefore bound the terms in (30) and we obtain

∥f̃\τ (x)− ¯̃
f(x)∥ ≤

∑
s∈A

3|Σ|∆δ
γ

MV
f ≤

3(|Σ|∆)2MV
f δ

γ

as desired.

Lemma A.7. Let A(x) be defined as in Lemma A.6 and again suppose A(x) ̸= ∅. Let Aτ (x) be the
set of (token, position) pairs attended to in the τ -suffix. Define

f̃(x) =

∑
(s,i)∈A(x) n(s, i, x)V f (E

f
s + pi) +

∑
(s,i)∈Aτ V f (E

f
s + pi)∑

(s,i)∈A(x) n(s, i, x) + |Aτ |

to be the internal state of f immediately after the attention layer, this time not ignoring the τ -suffix.
Then we have

∥f̃(x)− f̃\τ (x)∥ ≤
3τ∆MV

f

(γ − δ)T

provided that x ∈ bulkT .

Proof. We denote A = A(x) and Aτ = Aτ (x). Observe that we can write

f̃(x) = f̃\τ (x) ·
∑

(s,i)∈A n(s, i, x)∑
(s,i)∈A n(s, i, x) + |Aτ |

+

∑
(s,i)∈Aτ V f (E

f
s + pi)∑

(s,i)∈A n(s, i, x) + |Aτ |
.
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It therefore follows that

∥f̃(x)− f̃\τ (x)∥ ≤

∣∣∣∣∣∣1− 1

1 + |Aτ |∑
(s,i)∈A n(s,i,x)

∣∣∣∣∣∣ ∥f̃\τ (x)∥+ τMV
f∑

(s,i)∈A n(s, i, x)
(33)

≤ 2τ∑
(s,i)∈A n(s, i, x)

·MV
f +

τMV
f∑

(s,i)∈A n(s, i, x)
(34)

≤
3τMV

f

(γ − δ)T/∆
. (35)

Inequalities (33) and (34) both use the fact that |Aτ | ≤ τ and ∥V f (E
f
s+pi)∥ ≤MV

f . Inequality (34)
additionally uses that 1/(1 + |Aτ |/

∑
(s,i)∈A n(s, i, x)) ≥ 1− 2|Aτ |/

∑
(s,i)∈A n(s, i, x) provided

that |Aτ |/
∑

(s,i)∈A n(s, i, x) ≤ 1/2. The final inequality (35) uses the fact that A ̸= ∅; that
x ∈ bulkT so n(s, i, x) ≥ (ps − δ)T/∆; and that ps ≥ γ.

Lemma A.8. Suppose that x ∈ bulkT , z ∈ bulkN , xT−τ+1:T = zN−τ+1:N and N ≡ T (mod ∆)
with N ≤ T , and mins∈Σ ps ≥ γ. Then

∥f(x)− f(z)∥ ≤ 6MV
f L

MLP
f

(
(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
.

Here, LMLP
f is the bound on the MLP Lipschitz constant from Lemma A.2

Proof. Observe that since x and z share a common τ -suffix (and therefore a common final token) as
well as a common positional embedding vector on the final token, A(x) = A(z) and Aτ (x) = Aτ (z).
We may now consider two cases. If A(x) = A(z) = ∅, then f(x) = f(z) exactly (all of the
calculations are performed on the shared τ -suffix) and the desired inequality holds trivially.

Otherwise, we may assume that A(x) = A(z) ̸= ∅. We may then apply Lemmas A.6 and A.7. We
have

∥f̃(x)− ¯̃
f(x)∥ ≤ ∥f̃(x)− f̃\τ (x)∥+ ∥f̃\τ (x)− ¯̃

f(x)∥ ≤
3τ∆MV

f

(γ − δ)T
+

3MV
f (|Σ|∆)2δ

γ
. (36)

The analogous inequality holds for z with T replaced by N . Since ¯̃
f(x) depends on x only via A(x),

we have ¯̃
f(x) =

¯̃
f(z). Thus we can again apply the triangle inequality to write ∥f̃(x) − f̃(z)∥ ≤

∥f̃(x)− ¯̃
f(x)∥+ ∥f̃(z)− ¯̃

f(z)∥. Applying inequality (36) to each of these terms and using the fact
that N ≤ T , we have

∥f̃(x)− f̃(z)∥ ≤ 6MV
f

(
τ∆

(γ − δ)N
+

(|Σ|∆)2δ

γ

)
.

We can then directly apply Lemma A.2 to obtain the final result.

Lemma A.9. Let {ps}s∈Σ ∼ Dirichlet((αs)s∈Σ) be drawn from a Dirichlet distribution with
parameters αs. Define α∗ =

∑
s∈Σ αs and α0 = mins∈Σ αs. Then we have

P(∃s ∈ Σ : ps < γ) ≤ 2|Σ|
α0

4α
∗
γα0 .

Proof. Rather than dealing with the more complex joint distribution of the ps, we will bound
the marginals and apply a union bound. The marginals of the Dirichlet distribution are ps ∼
Beta(αs, α

∗ − αs), so it suffices to provide a lower tail bound for the beta distribution.

Let x ∼ Beta(α, β), so x has density f(x) = 1
B(α,β)x

α−1(1 − x)β−1, where B(α, β) =∫ 1

0
xα−1(1− x)β−1 dx is the beta function. We first give a lower bound on B(α, β). When α, β > 1,
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we have

B(α, β) ≥
∫ 3/4

1/4

xα−1(1− x)β−1 dx

≥ 1

2
·
(
1

4

)α−1(
1

4

)β−1

=
1

22α+2β−3

≥ 1

4α+β
.

When α ≤ 1, we have

B(α, β) ≥
∫ 1

0

(1− x)β−1 dx =
1

β
.

Similarly, when β ≤ 1, we have

B(α, β) ≥
∫ 1

0

xα−1 dx =
1

α
.

In particular, since 4α+β ≥ α, β for α, β > 0, we have that

B(α, β) ≥ min{α−1, β−1, 4−(α+β)} = 4−(α+β).

With this inequality, we can now establish the following bound for t ≤ 1/2:

P(x ≤ t) =
1

B(α, β)

∫ t

0

xα−1(1− x)β−1 dx

≤ 1

B(α, β)

∫ t

0

xα−1(1− x)−1 dx

≤ 1

B(α, β)

∫ t

0

xα−1(1− t)−1 dx

=
tα

α(1− t)B(α, β)

≤ 2

α
· 4α+βtα.

Now that we have established the tail bound for a general beta distribution, we can return to the
original goal of bounding the Dirichlet. The marginal beta distribution for each ps has α = αs and
β = α∗ − αs. Thus, by a union bound, we have

P(∃s : ps < γ) ≤
∑
s∈Σ

P(ps < γ)

≤
∑
s∈Σ

2

αs
· 4αs+α∗−αsγαs

≤ 2|Σ|
α0

4α
∗
γα0 ,

as desired.

Lemma A.10. Suppose that T ≥ N ≥ ∆δ−2 log 2|Σ|∆
ρ and mins ps ≥ γ. Then we have

∥f − g∥T,P = O

(
(Mf +Mg)

(
ρ+

(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
+ ∥f − g∥N ′,P

)
.

Proof. Given an integer N , define the simulation map simN (x) = xT−N ′+1:T = the last N ′ tokens
of x, where N ≤ N ′ < N +∆ is chosen such that N ′ ≡ T (mod ∆). Note that using this definition
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and for N ≥ τ , we have xT−τ+1:T = (simN (x))N−τ+1:τ , i.e., the τ -suffixes coincide. Furthermore,
by definition, N ′ = |simN (x)| ≡ T (mod ∆) and the final tokens match, so A(simN (x)) = A(x).

By Lemma A.5 and a union bound, x ∈ bulkT and simN (x) ∈ bulkN ′ simultaneously with
probability at least 1− 2ρ provided that T ≥ N ≥ ∆δ−2 log 2|Σ|∆

ρ . The token independence means
that

∑
|x|=T,simN (x)=z P(x) = P(z), so we have∑

|x|=T

P(x)∥f(x)− g(x)∥ ≤
∑
|x|=T

x ̸∈bulkT or
simN (x)̸∈bulkN′

P(x) · (Mf +Mg) +
∑
|x|=T

x∈bulkT and
simN (x)∈bulkN′

P(x)∥f(x)− g(x)∥

≤ 2ρ(Mf +Mg) +
∑

z∈bulkN′

 ∑
x∈bulkT

simN (x)=z

P(x)

 (∥f(z)− g(z)∥+ ∥f(x)− f(z)∥+ ∥g(x)− g(z)∥)

≤ 2ρ(Mf +Mg) +
∑

z∈bulkN′

P(z)(∥f(z)− g(z)∥+ ∥f(x)− f(z)∥+ ∥g(x)− g(z)∥)

≤ 2ρ(Mf +Mg) + ∥f − g∥N ′,P + 6(MV
f L

MLP
f +MV

g L
MLP
g )

(
(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
(37)

= O

(
(Mf +Mg)

(
ρ+

(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
+ ∥f − g∥N ′,P

)
. (38)

Inequality (37) follows from Lemma A.8. Inequality (38) uses the fact that MV
f L

MLP
f ≤ Mf and

similarly for g.

We are now ready to prove Theorem 4.2, which we restate here for convenience.
Theorem 4.2. For any probability distribution P = (ps)s∈Σ over the token vocabulary Σ, define

∥f − g∥n,P =
∑
|x|=n

PP(x)∥f(x)− g(x)∥,

where PP(x) =
∏|x|

i=1 pxi
is the probability of the sequence x when the tokens are drawn i.i.d. from

P . Let P = (ps)s∈Σ ∼ Dir((αs)s∈Σ) be drawn from a Dirichlet distribution, and define
∥f − g∥n = EP∼Dir((αs)s∈Σ)[∥f − g∥n,P ].

Let α0 = mins∈Σ αs. Then there exists

N0 = O

(
max

{
2p/γ ,

16
α∗
α0 L2+2α−1

0 |Σ|4+2α−1
0 ∆5

α
2α−1

0
0 ε2+2α−1

0

log
|Σ|∆L
ε

})
= Õ(ε−2−2α−1

0 )

such that if ∥f − g∥N ≤ ε for all N ≤ N0, we have that ∥f − g∥T = O(ε1/2) for any T .

Proof. By Markov’s inequality, EP∼Dir(αs)s∈Σ)∥f − g∥N ′,P ≤ ε implies that ∥f − g∥N ′,P > η
with probability at most ε/η. When P is such that ∥f − g∥N ′,P > η, we can use the bound
∥f − g∥T,P ≤Mf +Mg .

By Lemma A.9, mins ps < γ with probability at most 2|Σ|
α0

4α
∗
γα0 . On this event, we can again

bound ∥f(x)− g(x)∥T,P ≤Mf +Mg .

Conditional on mins ps ≥ γ and ∥f − g∥N ′,P ≤ η, we can use the bound from Lemma A.10.

Thus, by marginalizing P over the previous three cases, we have that

E{ps}∥f − g∥1,T = O

(
(Mf +Mg)

(
|Σ|
α0

4α
∗
γα0 +

ε

η
+ ρ+

(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
+ η

)
(39)
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provided that N ≥ ∆δ−2 log 2|Σ|∆
ρ . To make the entire bound O(ε1/2), we choose the following:

η = ε1/2, ρ =
ε1/2

Mf +Mg
, γ =

(
α0ε

1/2

4α∗ |Σ|(Mf +Mg)

)α−1
0

,

δ =
ε1/2γ

(Mf +Mg)(|Σ|∆)2
=

α
α−1

0
0 ε

1
2 (1+α−1

0 )

4
α∗
α0 (Mf +Mg)1+α−1

0 |Σ|2+α−1
0 ∆2

.

Note that with these settings, we indeed have γ > δ and furthermore τ∆/((γ − δ)N) =

O(ε1+α−1
0 /2) = o(ε1/2). All other terms in (39) are O(ε1/2). Thus, we arrive at an error of

O(ε1/2) with

N = O

(
16

α∗
α0 (Mf +Mg)

2+2α−1
0 |Σ|4+2α−1

0 ∆5

α
2α−1

0
0 ε1+α−1

0

log
|Σ|∆(Mf +Mg)

ε

)

as desired. We make several remarks. First, we actually required that ∥f − g∥N ′ ≤ ε, but since
N ′ < N + ∆ this does not change the final asymptotic bound on sequence length. Second, it is
interesting that up to leading order terms in ε−1, τ does not enter the bound.

A final remark on the proof is that if we strengthen the assumption to ∥f − g∥N ′,P ≤ ε conditionally
on P with mins ps > γ, the resulting error can scale as ε rather than ε1/2, albeit with a larger required
N0. In this case, (39) becomes

E{ps}∥f − g∥1,T = O

(
(Mf +Mg)

(
|Σ|
α0

4α
∗
γα0 + ρ+

(|Σ|∆)2δ

γ
+

τ∆

(γ − δ)N

)
+ ε

)
. (40)

Setting ρ, γ, and δ according to

ρ =
ε

Mf +Mg
, γ =

(
ε

4α∗ |Σ|
α0

(Mf +Mg)

)α−1
0

,

δ =
εγ

(Mf +Mg)(|Σ|∆)2
=

α
α−1

0
0 ε1+α−1

0

4
α∗
α0 (Mf +Mg)1+α−1

0 |Σ|2+α−1
0 ∆2

,

inequality (40) is O(ε) with

N = O

(
16

α∗
α0 (Mf +Mg)

2+2α−1
0 |Σ|4+2α−1

0 ∆5

α
2α−1

0
0 ε2+2α−1

0

log
|Σ|∆(Mf +Mg)

ε

)

= O(ε−(2+2α−1
0 ) log ε−1).

B OMITTED PROOFS FROM SECTION 5

Notation. We will assume WLOG that Σ = [S]. For a string x ∈ [S]|x|, define µ(x) to be the
empirical frequencies of the tokens in x, i.e µ(x) := 1

|x|
∑|x|

i=1 exi
, where ej ∈ RS is the jth standard

basis element. Moreover, let x≤i denote the substring of x containing the first i tokens, and for a set
A, xA the substring of x containing only those indices in A. Finally, for integers a < b, define [a : b]
to be the set of integers {a, a+ 1, . . . , b− 1, b}.

B.1 PROOF OF KEY SIMULATION LEMMA

In this section, we prove Lemma 5.3, which we restate below for convenience.
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Lemma 5.3. Let p : [S]τ+1 × ∆S → Rm be a fixed function, which is L Lipschitz in its second
argument and uniformly bounded by G. Then, there exists a subset I ⊂ [T ] such that, if z = xI , then
||I| − n| ≤ τ + 1 + n1/3 and∥∥∥∥∥∥ 1T

T∑
t=1

p(xt−τ :t, µ(x≤t))−
1

|z|

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥ ≲
(G+ L)(τ + 1)

n1/3
.

Proof. Our proof proceeds via the probabilistic method. Let us sample I as follows. Let p = n/T ,
and let q ∈ (0, 1) be a parameter to be chosen later. Let us define a Markov chain j1, . . . , jT on the
state space {0, 1}, with the following transition probabilities:

P(jt+1 = 0 | jt = 0) = 1− r, P(jt+1 = 1 | jt = 0) = r

P(jt+1 = 0 | jt = 1) = q, P(jt+1 = 1 | jt = 1) = 1− q

Letting r := pq
1−p , the stationary distribution is P(jt = 1) = p.

We will let the subset I be I := {i | ji = 1} ∪ [T − τ : T ]

Computing the variance of |I|. The first step is to compute the variance of |I|. By definition,
E|I| = (T − τ − 1) · p+ (τ + 1) = n+ (τ + 1)(1− p).

Since the k-step transition kernel satisfies

P[jt+k = 1 | jt = 1] = (1− q − r)k(1− p) + p,

we have that

E(|I|)2 = E

(
T∑

t=1

jt

)2

=

T∑
i,i′=1

E[jiji′ ]

= (τ + 1)2 + 2(τ + 1)(T − τ − 1)p+

T−τ−1∑
i,i′=1

(
(1− q − r)|i−i′|(1− p)p+ p2

)
≤ (τ + 1)2 + 2(τ + 1)(T − τ − 1)p+ (T + τ − 1)2p2 + 2(T − τ − 1)(1− p)p

∞∑
i=0

(1− q − r)i

≤ (E|I|)2 + 2T
(1− p)p

q + r

≤ (E|I|)2 + 2Tp

q

= (E|I|)2 + 2n

q
.

Therefore E(|I| − E|I|)2 ≤ 2n/q.

Decomposing the original expression. Next, we bound the quantity

E

∥∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥.
Define Igap to be the set of indices in I such that some index in {i− τ, . . . , i− 1} is not in I, i.e

Igap = {i ∈ I | ∃t ∈ [τ ] : i− t ̸∈ I}.
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We can write, denoting I = {i1, . . . , iI} with i1 < i2 < · · · < i|I|,

1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t)) =
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t)) · 1(it ∈ Igap) +
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t)) · 1(it ̸∈ Igap)

=
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t)) · 1(it ∈ Igap) +
1

n

|z|∑
t=1

p(xit−τ :it , µ(z≤t)) · 1(it ̸∈ Igap)

=
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t)) · 1(it ∈ Igap) +
1

n

T∑
t=1

p(xt−τ :t, µ(x[t]∩I)) · 1([t− τ : t] ⊂ I).

Therefore we can decompose

E

∥∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥
≤ E

∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

n

T∑
t=1

p(xt−τ :t, µ(x≤t)) · 1([t− τ : t] ⊂ I)

∥∥∥∥∥︸ ︷︷ ︸
(I)

+ E

∥∥∥∥∥ 1n
T∑

t=1

p(xt−τ :t, µ(x≤t)) · 1([t− τ : t] ⊂ I)− 1

n

T∑
t=1

p(xt−τ :t, µ(x[t]∩I)) · 1([t− τ : t] ⊂ I)

∥∥∥∥∥︸ ︷︷ ︸
(II)

+
GE|Igap|

n︸ ︷︷ ︸
(III)

.

Bounding (I): Let us begin by defining the random variable

Zt = p(xt−τ :t, µ(x≤t))(1−
T

n
1([t− τ : t] ⊂ I)).

The first term is then

(I) =
1

T
E

∥∥∥∥∥
T∑

i=1

Zi

∥∥∥∥∥
≤ 1

T

τ∑
i=1

∥Zi∥+
1

T

T∑
i=T−τ

∥Zi∥+
1

T
E

∥∥∥∥∥
T−τ−1∑
i=1

Zi

∥∥∥∥∥
≤ G(2τ + 1)

n
+

1

T

E

∥∥∥∥∥
T−τ−1∑
τ+1

Zi

∥∥∥∥∥
2
1/2

=
G(2τ + 1)

n
+

1

T

E
T−τ−1∑
t=τ+1

∥Zi∥2 +
∑
i ̸=j

E⟨Zi, Zj⟩

1/2

First, see that

E∥Zt∥2 ≤ G2E

[(
1− T

n
1([t− τ : t] ⊂ I)

)2
]
≤ G2

(
1− 2T

n
p(1− q)τ +

T 2

n2
p(1− q)τ

)
≤ G2T 2p

n2

=
G2T

n
.
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Next, we have that

|E⟨Zi, Zj⟩| ≤ G2

∣∣∣∣E[(1− T

n
1([i− τ : i] ⊂ I)

)(
1− T

n
1([j − τ : j] ⊂ I)

)]∣∣∣∣
= G2

∣∣∣∣1− 2T

n
· p(1− q)τ +

T 2

n2
P([i− τ : i] ⊂ I, [j − τ : j] ⊂ I)

∣∣∣∣
= G2

∣∣1− 2(1− q)τ + p−2 · P([i− τ : i] ⊂ I, [j − τ : j] ⊂ I)
∣∣

Let’s assume that i < j. First, consider the case where j ≥ i+ τ . Then

P([i− τ : i] ⊂ I, [j − τ : j] ⊂ I) = p(1− q)τ · P(j − τ ∈ I | i ∈ I) · (1− q)τ

= p(1− q)2τ
(
p+ (1− p)(1− q − r)j−i−τ

)
,

and thus

|E⟨Zi, Zj⟩| ≤ G2
∣∣1− 2(1− q)τ + (1− q)2τ + p−1(1− p)(1− q)2τ (1− q − r)j−i−τ

∣∣
≤ G2

(
(1− (1− q)τ )2 + p−1(1− q)j−i+τ

)
≤ G2

(
τ2q2 + p−1(1− q)j−i+τ

)
Next, for j < i+ τ , we have that

P([i− τ : i] ⊂ I, [j − τ : j] ⊂ I) = P([i− τ : j] ⊂ I)
= p(1− q)j−i+τ ,

and thus

|E⟨Zi, Zj⟩| ≤ G2
∣∣1− 2(1− q)τ + p−1(1− q)j−i+τ

∣∣
≤ G2p−1(1− q)j−i+τ .

Altogether, (I) can be bounded as

(I) ≤ G(2τ + 1)

n
+

1

T

(
G2T 2

n
+ T 2G2τ2q2 + 2G2p−1T

∑
k>0

(1− q)k+τ

)1/2

≤ G(2τ + 1)

n
+

1

T

(
G2T 2

n
+ T 2G2τ2q2 + 2G2T 2n−1q−1

)1/2

≲
G(τ + 1)

n
+

G√
n
+Gτq +

G
√
nq
.

Bounding (II): Let’s next consider the (II) term. Since p is L-Lipschitz in its second argument, we
have that

(II) = E

∥∥∥∥∥ 1n
T∑

t=1

p(xt−τ :t, µ(x≤t)) · 1([t− τ : t] ⊂ I)− 1

n

T∑
t=1

p(xt−τ :t, µ(x[t]∩I)) · 1([t− τ : t] ⊂ I)

∥∥∥∥∥
≤ L

n

T∑
t=1

E
[∥∥µ(x≤t)− µ(x[t]∩I)

∥∥ · 1([t− τ : t] ⊂ I)
]

Let’s compute the tth term in this sum, for t ∈ [τ + 1, T − τ − 1] (for t ≤ τ , the quantity is trivially
zero, and for t ≥ T − τ we can bound it by O(1)). We have that

E
[∥∥µ(x≤t)− µ(x[t]∩I)

∥∥ · 1([t− τ : t] ⊂ I)
]

= E

[∥∥∥∥∥µ(x≤t)−
∑t

i=1 exi1(i ∈ I)
|I ∩ [t]|

∥∥∥∥∥ · 1([t− τ : t] ⊂ I)

]

= p(1− q)τE

[∥∥∥∥∥µ(x≤t) · |I ∩ [t]| −
∑t

i=1 exi
1(i ∈ I)

|I ∩ [t]|

∥∥∥∥∥ | 1([t− τ : t] ⊂ I)

]
.
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The denominator is |I ∩ [t]| =
∑t

i=1 1(i ∈ I). We first bound its conditional expectation:

E[|I ∩ [t]| | 1([t− τ : t] ⊂ I)] = τ + 1 +

t−τ−1∑
i=1

P(i ∈ I | t− τ ∈ I)

= τ + 1 + (t− τ − 1)p+ (1− p)

t−τ−1∑
i=1

(1− q − r)i

≥ pt.

Next, we can bound the conditional variance of the denominator:
Var(|I ∩ [t]| | 1([t− τ : t] ⊂ I))

= Var(|I ∩ [t− τ − 1]| | 1([t− τ : t] ⊂ I))

=

t−τ−1∑
i,j=1

Cov(i ∈ I, j ∈ I | t− τ ∈ I)

=

t−τ−1∑
i,j=1

P(j ∈ I | i ∈ I)P(i ∈ I | t− τ ∈ I)− P(j ∈ I | t− τ ∈ I)P(i ∈ I | t− τ ∈ I)

=

t−τ−1∑
i,j=1

(1− p)
(
(1− q − r)i−j − (1− q − r)t−τ−j

)(
(1− q − r)t−τ−i(1− p) + p

)
≤

t−τ−1∑
i,j=1

(1− q)i−j
(
p+ (1− p)(1− q)t−τ−i

)
=

t−τ−1∑
i=1

(
p+ (1− p)(1− q)t−τ−i

) i∑
j=1

(1− q)i−j

≤ q−1
t−τ−1∑
i=1

(
p+ (1− p)(1− q)t−τ−i

)
≤ pq−1(t− τ − 1) + q−2

Altogether, by Chebyshev’s inequality, we can upper bound the conditional probability that the
denominator is too small:

P(|I ∩ [t]| ≤ 1

2
pt | t− τ ∈ I) ≤ P(|I ∩ [t]| ≤ 1

2
E[|I ∩ [t]| | 1([t− τ : t] ⊂ I)] | [t− τ : t] ⊂ I)

≤ 4Var(|I ∩ [t]| | 1([t− τ : t] ⊂ I))
E[|I ∩ [t]| | 1([t− τ : t] ⊂ I)]2

≤ pq−1t+ q−2

p2t2

=
1

pqt
+

1

p2q2t2

≲
1

pqt
∧ 1,

where the last inequality follows from the fact that the probability must be bounded by 1.

Altogether, the tth term in the sum is
E
[∥∥µ(x≤t)− µ(x[t]∩I)

∥∥ · 1([t− τ : t] ⊂ I)
]

≲
E
[∥∥∥µ(x≤t) · |I ∩ [t]| −

∑t
i=1 exi

1(i ∈ I)
∥∥∥ | 1([t− τ : t] ⊂ I)

]
t

+

(
1

qt
∧ p
)
.

The numerator in the above expression can be written as

E

[∥∥∥∥∥
t∑

i=1

(1(i ∈ I)− p)(exi − µ(x≤t))

∥∥∥∥∥ | 1([t− τ : t] ⊂ I)

]
= E

[∥∥∥∥∥
t∑

i=1

Zi

∥∥∥∥∥ | 1([t− τ : t] ⊂ I)

]
,
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where Zi := (1(i ∈ I)− p)(exi
− µ(x≤t)). For i, j < t− τ , we have the bounds (assuming WLOG

j < i)

|E[⟨Zi, Zj⟩ | 1([t− τ : t] ⊂ I)]|
≲ |E[(1(i ∈ I)− p)(1(j ∈ I)− p) | 1([t− τ : t] ⊂ I)]|
=
(
(P(j ∈ I | i ∈ I)− p)P(i ∈ I | t− τ ∈ I)− pP(j ∈ I | t− τ ∈ I) + p2

)
= ((1− p)(1− q − r)i−j

(
(1− q − r)t−τ−i(1− p) + p

)
− p
(
(1− q − r)t−τ−j(1− p) + p

)
+ p2)

=
(
p(1− p)(1− q − r)i−j + (1− p)2(1− q − r)t−τ−j − p(1− p)(1− q − r)t−τ−j

)
≤ p(1− q)i−j .

Therefore,

E

[∥∥∥∥∥
t∑

i=1

Zi

∥∥∥∥∥ | 1([t− τ : t] ⊂ I)

]
≤τ + 1 + E

∥∥∥∥∥
t−τ−1∑
i=1

Zi

∥∥∥∥∥
2

| 1([t− τ : t] ⊂ I)

1/2

≤ τ + 1 +

tp+ p
∑
i̸=j

(1− q)i−j

1/2

≲ τ + 1 +
√
pt/q.

Putting everything together, the tth term in the sum can be bounded by

E
[∥∥µ(x≤t)− µ(x[t]∩I)

∥∥ · 1([t− τ : t] ⊂ I)
]
≲ t−1(τ + 1) + t−1/2p1/2q−1/2 +

(
1

qt
∧ p
)

≲

(
t−1(τ + 1) + t−1/2p1/2q−1/2 +

1

qt

)
∧ p,

where the last line uses the fact that the entire expression can be trivially bounded by O(p). Plugging
back into the original expression for (II), this term can thus be upper bounded as

(II) ≲
L

n

T∑
t=1

(
t−1(τ + 1) + t−1/2p1/2q−1/2 +

1

qt

)
∧ p+ Lτ

n

≲
L

n
·

(√
Tp/q +

T∑
t=1

τ + 1 + q−1

t
∧ p

)
+
Lτ

n

≲
L

n
·
(√

Tp/q + τ + 1 + q−1 + log
(
Tp/(τ + 1 + q−1)

))
≲

L
√
nq

+
L(τ + q−1)

n
+
L log n

n
.

Bounding (III): Finally, for fixed t ∈ [τ +1 : T − τ − 1], we have P(i ∈ Igap) = p− p(1− q)τ ≲
pqτ . Therefore we can bound (III) as

(III) ≤ GE|Igap|
n

≤ G(Tpqτ + 2τ)

n
≤ Gτ(q + 2/n).

Putting everything together. Altogether, we have that

E

∥∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥ ≲
(G+ L)(τ + 1)

n
+
G+ L
√
nq

+Gτq +
L log n

n

≤ (G+ L)(τ + 1)

n1/3
,

where the last inequality follows from choosing q = n−1/3.
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By the probabilistic method, there exists I such that ||I| − E|I|| ≤ 2n1/3 =⇒ ||I| − n| ≤ (τ + 1 +
2n1/3) and

∥∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

n

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥ ≲
(G+ L)(τ + 1)

n1/3
.

For this choice of I, we have that

∥∥∥∥∥∥ 1T
T∑

t=1

p(xt−τ :t, µ(x≤t))−
1

|z|

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥
≲

(G+ L)(τ + 1)

n1/3
+

∥∥∥∥∥∥ 1

|z|

|z|∑
t=1

p(zt−τ :t, µ(z≤t))

∥∥∥∥∥∥
∣∣∣∣1− |z|

n

∣∣∣∣
≲

(G+ L)(τ + 1)

n1/3
,

as desired.

B.2 PROOF OF THEOREM 5.2

The proof begins by showing that the output of the first layer of attention at position i can only depend
on the histogram of the first i tokens µ(x≤i), along with the τ -prefix of x≤i.

Lemma B.1. Let f be a fixed transformer with key, query and value matrices
{(K1,h,Q1,h,V 1,h)}h∈[H] ∪ {(K2,1,Q2,1,V 2,1)}, MLP weights {(Al,Bl)}l∈{1,2}, embeddings
∥Es∥ ≤ 1, and unembedding U . There exists a function qf : [S]τ+1 ×∆S × N → Rd such that

y
(1)
i = qf (xi−τ :i, µ(x≤i), i)

Moreover, f satisfies

qf (w, µ, i) ≲

(
1 +

H∑
h=1

∥V 1,h∥op

)
(1 + ∥B1∥op∥A1∥op) =: Gf

|qf (w, µ, i)− qf (w, µ, j)| ≲
(
1 + ∥B1∥op∥A1∥op

)
(τ2 + 1)min(i, j)−γ

H∑
h=1

exp

(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
=: Hf min(i, j)−γ

∥∇µqf (w, µ, i)∥op ≤ 2S

(
H∑

h=1

∥V 1,h∥op exp
(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

))(
1 + ∥B1∥op∥A1∥op

)
=: Lf

Proof. Recall that the first layer self-attention logits are

a
(1,h)
i,j = E⊤

xj
K⊤

1,hQ1,hExi
+ log i · ϕ1,h(j, i)
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and thus we can rewrite Y
(1)
i as

Y
(1)
i

= Exi +

H∑
h=1

∑i
j=1 exp

(
a
(1,h)
i,j

)
V 1,hExj∑i

j=1 exp
(
a
(1,h)
i,j

)
= Exi

+

H∑
h=1

∑i
j=1 exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
· iϕ1,h(j,i) · V 1,hExj∑i

j=1 exp
(
E⊤

xj
K⊤

1,hQ1,hExi

)
· iϕ1,h(j,i)

= Exi
+

H∑
h=1

∑
s∈[S] i exp

(
E⊤

s K
⊤
1,hQ1,hExi

)
V 1,hEsµ(x≤i)s +

∑i
j=i−τ

(
iϕ1,h(j,i) − 1

)
exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
V 1,hExj∑

s∈[S] i exp
(
E⊤

s K
⊤
1,hQ1,hExi

)
µ(x≤i)s +

∑i
j=i−τ

(
iϕ1,h(j,i) − 1

)
exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
= Exi

+

H∑
h=1

Nh

Dh
,

where for each h, we have

Nh(x) :=
∑
s∈[S]

i1−γh exp
(
E⊤

s K
⊤
1,hQ1,hExi

)
V 1,hEsµ(x≤i)s

+

i∑
j=i−τ

(
iϕ1,h(j,i)−γh − i−γh

)
exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
V 1,hExj

Dh(x) :=
∑
s∈[S]

i1−γh exp
(
E⊤

s K
⊤
1,hQ1,hExi

)
µ(x≤i)s +

i∑
j=i−τ

(
iϕ1,h(j,i)−γh − i−γh

)
exp

(
E⊤

xj
K⊤

1,hQ1,hExi

)
γh := max(1, max

0≤t≤τ
ϕ1,h(i− t, i)) = maxPh

Therefore we can write Y
(1)
i = qSA(xi−τ :i, µ(x≤i), i), where for w0:τ ∈ [S]τ+1, µ ∈ ∆S ,

qSA(w, µ, i) is given by

qSA(w, µ, i) = Ewτ
+

H∑
h=1

Nh(w, µ, i)

Dh(w, µ, i)
,

where

Nh(w, µ, i) :=
∑
s∈[S]

i1−γh exp
(
E⊤

s K
⊤
1,hQ1,hEwτ

)
V 1,hEsµs

+

τ∑
t=0

(
iϕ1,h(i−t,i)−γh − i−γh

)
exp

(
E⊤

wt
K⊤

1,hQ1,hEwτ

)
V 1,hEwt

Dh(w, µ, i) :=
∑
s∈[S]

i1−γh exp
(
E⊤

s K
⊤
1,hQ1,hEwτ

)
µs +

τ∑
t=0

(
iϕ1,h(i−τ,i)−γh − i−γh

)
exp

(
E⊤

wt
K⊤

1,hQ1,hEwτ

)
Each Nh(w, µ, i)/Dh(w, µ, i) term in the above sum is of the form of the expression in Lemma B.2.

First, we see that each denominator can be lower bounded by exp

(
−
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
. Moreover,

we have ∑
k

∥Ak∥ ≲ (τ + 1)∥V 1,h∥op exp
(∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
∑
k

|Bk| ≲ (τ + 1) exp

(∥∥∥K⊤
1,hQ1,h

∥∥∥
op

)
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Altogether, since γ := γ(f) = minh∈H (γh −max{p ∈ Ph : p ̸= γh}), we can bound

|qSA(w, µ, i)− qSA(w, µ, j)| ≲ (τ2 + 1)j−γ
H∑

h=1

exp

(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
.

Next, see that y(1)
i = qMLP (Y

(1)
i ), where

qMLP (x) = x+B1ψ1(A1x+ b1).

Since ψ1 is 1-Lipschitz, qMLP is 1 + ∥B1∥op∥A1∥op Lipschitz. Altogether, since qf (w, µ, i) =

qMLP (qSA(w, µ, i)), we have

|qf (w, µ, i)− qf (w, µ, j)| ≲
(
1 + ∥B1∥op∥A1∥op

)
(τ2 + 1)j−γ exp

(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
.

Next, for the uniform bound, observe that
∥∥∥Y (1)

i

∥∥∥ ≤ 1 +
∑H

h=1 ∥V 1,h∥op, and therefore
∥∥∥y(1)

i

∥∥∥ ≤(
1 +

∑H
h=1 ∥V 1,h∥op

)
(1 + ∥B1∥op∥A1∥op).

Finally, we compute the Lipschitz constant with respect to µ.

Let Mh ∈ Rd×S be the matrix with the sth column being exp
(
E⊤

s K
⊤
1,hQ1,hEwτ

)
V 1,hEs,

let bh be the vector with sth entry exp
(
E⊤

s K
⊤
1,hQ1,hEwτ

)
, and let Ch =∑τ

t=0

(
iϕ1,h(i−τ,i)−γh − i−γh

)
exp

(
E⊤

wt
K⊤

1,hQ1,hEwτ

)
> 0. We have that

∇µqSA(w, µ, i) =

H∑
h=1

i1−γhMh

i1−γh⟨bh, µ⟩+ Ch
−

i2(1−γh)Mhµb
⊤
j

(i1−γh⟨bh, µ⟩+ Ch)
2 ,

and since ⟨bh, µ⟩ ≥ exp

(
−
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
and

∥Mh∥op ≤
√
S∥V 1,h∥op exp

(∥∥∥K⊤
1,hQ1,h

∥∥∥
op

)
and ∥bh∥ ≤

√
S exp

(∥∥∥K⊤
1,hQ1,h

∥∥∥
op

)
,

we have that

∥∇µqSA(w, µ, i)∥op ≤
H∑

h=1

2S∥V 1,h∥op exp
(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

)
.

Altogether,

∥∇µqf (w, µ, i)∥op ≤ 2S

(
H∑

h=1

∥V 1,h∥op exp
(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

))(
1 + ∥B1∥op∥A1∥op

)
.

In order to prove the main theorem, it suffices to apply the key simulation lemma Lemma 5.3.

Proof of Theorem 5.2. Let f, g ∈ Fτ be two transformers. In the forward pass of f , the second layer
logits are given by

a
(2,1)
i,j =

(
y
(1)
j

)⊤
K⊤

2,1Q2,1y
(1)
i = qf (xj−τ :j , µ(x≤j), j)

⊤K⊤
2,1Q2,1qf (xi−τ :i, µ(x≤i), i),

and therefore

Y
(2)
T = qf (xT−τ :T , µ(x≤T ), T )

+ V 2,1

T∑
j=1

exp
(
qf (xj−τ :j , µ(x≤j), j)

⊤K⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

)
qf (xj−τ :j , µ(x≤j), j)∑T

j=1 exp
(
qf (xj−τ :j , µ(x≤j), j)⊤K

⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

) .
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The analogous expression holds for the second layer logits in the forward pass of g.

Let us define the following sequence of functions:

p0(w, µ) = ew−1

pf,1(w, µ) = exp
(
qf (w, µ, T )

⊤K⊤
2,1Q2,1qf (xT−τ,T , µ(x), T )

)
pf,2(w, µ) = pf,1(w, µ)qf (w, µ),

along with the analogous pg,1, pg,2 for the transformer g. We first see that ∥p0∥ ≤ 1 and p0 is constant
in µ.

Next, we have that we can uniformly bound pf,1 by

|pf,1(w, µ)| ≤ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
,

and the Lipschitz bound

∇µpf,1(w, µ) = exp
(
qf (w, µ, T )

⊤K⊤
2,1Q2,1qf (xT−τ,T , µ(x), T )

)
∇µqf (w, µ, T )K

⊤
2,1Q2,1qf (xT−τ,T , µ(x), T )

=⇒∥∇µpf,1(w, µ)∥ ≤ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∥∥∥K⊤
2,1Q2,1

∥∥∥
op
GfLf .

Finally, for pf,2 we have the uniform bound

|pf,2(w, µ)| ≤ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

and the Lipschitz bound

∇µpf,2(w, µ) = pf,1(w, µ)∇µqf (w, µ, T ) +∇µp1(w, µ)qf (w, µ)

=⇒∥∇µpf,2(w, µ)∥ ≤ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∥∥∥K⊤
2,1Q2,1

∥∥∥
op
G2

fLf .

Define the quantity Mf as

Mf := exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∥∥∥K⊤
2,1Q2,1

∥∥∥
op
G2

fLf ,

and analogously for Mg .

Let us define the function p by

p(w, µ) =


MfMg · p0(w, µ)
GfMg · pf,1(w, µ)
Mg · pf,2(w, µ)
MfGg · pg,1(w, µ)
Mf · pg,2(w, µ)


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p is both uniformly bounded by and has a Lipschitz constant of MfMg. Therefore by Lemma 5.3,
we have the following bounds:

∥∥∥∥∥∥ 1T
T∑

j=1

p0(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

p0(zj−τ :j , µ(z≤j))

∥∥∥∥∥∥ ≲
τ + 1

n1/3∣∣∣∣∣∣ 1T
T∑

j=1

pf,1(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

pf,1(zj−τ :j , µ(z≤j))

∣∣∣∣∣∣ ≲ MfG
−1
f (τ + 1)

n1/3∥∥∥∥∥∥ 1T
T∑

j=1

pf,2(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

pf,2(zj−τ :j , µ(z≤j))

∥∥∥∥∥∥ ≲
Mf (τ + 1)

n1/3∣∣∣∣∣∣ 1T
T∑

j=1

pg,1(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

pg,1(zj−τ :j , µ(z≤j))

∣∣∣∣∣∣ ≲ MgG
−1
g (τ + 1)

n1/3∥∥∥∥∥∥ 1T
T∑

j=1

pg,2(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

pg,2(zj−τ :j , µ(z≤j))

∥∥∥∥∥∥ ≲
Mg(τ + 1)

n1/3
.

Let’s first look at p0. Observe that

1

T

T∑
j=1

p0(xj−τ :j , µ(x≤j)) =
1

T

T∑
j=1

exj
= µ(x),

and therefore

∥µ(x)− µ(z)∥ =

∥∥∥∥∥∥ 1T
T∑

j=1

p0(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

p0(zj−τ :j , µ(z≤j))

∥∥∥∥∥∥ ≲
τ + 1

n1/3
.

Next let’s look at pf,1. We have that

∣∣∣∣∣∣ 1T
T∑

j=1

exp
(
qf (xj−τ :j , µ(x≤j), j)

⊤K⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

)
− 1

T

T∑
j=1

pf,1(xj−τ :j , µ(x≤j))

∣∣∣∣∣∣
≤ 1

T

T∑
j=1

∣∣∣ exp(qf (xj−τ :j , µ(x≤j), j)
⊤K⊤

2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )
)

− exp
(
qf (xj−τ :j , µ(x≤j), T )

⊤K⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

)∣∣∣
≤ 1

T

T∑
j=1

exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∥∥∥K⊤
2,1Q2,1

∥∥∥
op
Gf ·Hf j

−γ(f)

= exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∥∥∥K⊤
2,1Q2,1

∥∥∥
op
Gf ·Hfξγ(f)(T ),

where we’re letting ξγ(T ) := 1
T

∑T
j=1 j

−γ
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Next, note that∣∣∣∣∣∣ 1|z|
|z|∑
j=1

exp
(
qf (zj−τ :j , µ(z≤j), j)

⊤K⊤
2,1Q2,1qf (z|z|−τ :|z|, µ(z), |z|)

)
− 1

|z|

|z|∑
j=1

pf,1(zj−τ :j , µ(z≤j))

∣∣∣∣∣∣
≤ 1

|z|

|z|∑
j=1

exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)∣∣∣qf (zj−τ :j , µ(z≤j), j)
⊤K⊤

2,1Q2,1qf (z|z|−τ :|z|, µ(z), |z|)

− qf (zj−τ :j , µ(z≤j), T )
⊤K⊤

2,1Q2,1qf (x|z|−τ :|z|, µ(x), T )
∣∣∣

≤ 1

|z|

|z|∑
j=1

exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
∥qf (zj−τ :j , µ(z≤j), j)− qf (zj−τ :j , µ(z≤j), T )∥

+
∥∥qf (z|z|−τ :|z|, µ(z), |z|)− qf (x|z|−τ :|z|, µ(x), T )

∥∥)
≤ 1

|z|

|z|∑
j=1

exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
Hf j

−γ(f) +Hf |z|−γ(f)
+ Lf∥µ(z)− µ(x)∥

)
≲ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
Hfξγ(f)(|z|) + Lf (τ + 1)n−1/3

)
Altogether,∣∣∣∣∣ 1T

T∑
j=1

exp
(
qf (xj−τ :j , µ(x≤j), j)

⊤K⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

)

− 1

|z|

|z|∑
j=1

exp
(
qf (zj−τ :j , µ(z≤j), j)

⊤K⊤
2,1Q2,1qf (z|z|−τ :|z|, µ(z), |z|)

)∣∣∣∣∣
≲ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
Hfξγ(f)(|z|) + Lf (τ + 1)n−1/3

)
+

∣∣∣∣∣∣ 1T
T∑

j=1

pf,1(xj−τ :j , µ(x≤j))−
1

|z|

|z|∑
j=1

pf,1(zj−τ :j , µ(z≤j))

∣∣∣∣∣∣
≲

exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Lf (τ + 1)

n1/3

≲ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
Gf

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
Hfξγ(f)(n) + Lf (τ + 1)n−1/3

)
.

Similarly, we can bound the numerators by∣∣∣∣∣ 1T
T∑

j=1

exp
(
qf (xj−τ :j , µ(x≤j), j)

⊤K⊤
2,1Q2,1qf (xT−τ :T , µ(x≤T ), T )

)
qf (xj−τ :j , µ(x≤j), j)

− 1

|z|

|z|∑
j=1

exp
(
qf (zj−τ :j , µ(z≤j), j)

⊤K⊤
2,1Q2,1qf (z|z|−τ :|z|, µ(z), |z|)

)
qf (zj−τ :j , µ(z≤j), j)

∣∣∣∣∣
≲ exp

(
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
Hfξγ(f)(n) + Lf (τ + 1)n−1/3

)
Finally, we bound∥∥qf (xT−τ :T , µ(x), T )− qf (z|z|−τ :|z|, µ(z), |z|)

∥∥ ≤ Lf∥µ(x)− µ(z)∥+Hf |z|−γ(f)

≲ Lf (τ + 1)n−1/3 +Hfn
−γ(f).
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Altogether, we can relate Y
(2)
T (x) and Y

(2)
|z| (z) by∥∥∥Y (2)

T (x)− Y
(2)
|z| (z)

∥∥∥ ≲ exp

(
4G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

)
G2

f

∥∥∥K⊤
2,1Q2,1

∥∥∥
op

(
1 + ∥V 2∥op

)(
Hfξγ(f)(n) + Lf (τ + 1)n−1/3

)
.

Finally, we have that

∥f(x)− f(z)∥ ≤ ∥U∥
(
1 + ∥B2∥op∥A2∥op

)∥∥∥Y (2)
T (x)− Y

(2)
|z| (z)

∥∥∥.
Plugging in the expressions for Gf , Lf , Hf , and noting that ξγ(n) ≲ n−(1/3∧γ), yields

∥f(x)− f(z)∥ ≲ C(f)n−(1/3∧γ(f)),

where

C(f) := exp

C(1 + H∑
h=1

∥V 1,h∥op

)2

(1 + ∥B1∥op∥A1∥op)
2
∥∥∥K⊤

2,1Q2,1

∥∥∥
op

(1 + ∥V 2∥op
)

×

(
H∑

h=1

∥V 1,h∥op exp
(
4
∥∥∥K⊤

1,hQ1,h

∥∥∥
op

))(
1 + ∥B2∥op∥A2∥op

)
∥U∥op(τ

2 + 1)S.

Repeating the above argument for the transformer g, we have that

∥g(x)− g(z)∥ ≲ C(g)n−(1/3∧γ(g)).

Combining these together implies the desired result.

B.2.1 HELPER LEMMAS

Lemma B.2. Let f(i) be of the form

f(i) =

∑
k Aki

−γk∑
k Bki−γk

,

where Ak ∈ Rd and
∑

k Bki
−γk ≥ δ for all i. Assume that 0 = γ1 < γ2 < · · · < γK . Then, for

j < i,

∥f(i)− f(j)∥ ≤ δ−2j−γ2

(∑
k

∥Ak∥

)(∑
k

|Bk|

)

Proof. One can write

∥f(i)− f(j)∥ =
∥(
∑

k Aki
−γk)(

∑
k Bkj

−γk)− (
∑

k Akj
−γk)(

∑
k Bki

−γk)∥
|(
∑

k Bki−γk)(
∑

k Bkj−γk)|

≤ δ−2

∥∥∥∥∥∥
∑
l ̸=k

(AlBk −AkBl)i
−γlj−γk

∥∥∥∥∥∥
≤ δ−2j−γ2

(∑
k

∥Ak∥

)(∑
k

|Bk|

)

B.3 IN-CONTEXT k-GRAM CONSTRUCTION

Below, we sketch the in-context k-gram construction, which closely follows Construction 2 in Nichani
et al. (2024).

In the first layer, the h-th head will attend fully to the (i − h)-th token; this is done by setting
ϕ1,h(i− h, i) to be large, and the rest of the entries of ϕ, along with K1,h and Q1,h, equal to 0. By

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

choosing an embedding dimension of d ≥ (τ + 1)S, the value matrices V 1,h can be chosen such
that Y (1)

i = Exi
⊕ Exi−1

⊕ · · · ⊕ Exi−τ
; this is accomplished via V 1,h being a block identity

matrix, which thus satisfies ∥V 1,h∥op = 1. The first layer MLP is then set to identically zero, so that

y(1) = Y (1)

In the second layer, K⊤
2,1Q2,1 is equal to β times another block-identity matrix, which compares the

Exi−1
⊕· · ·⊕Exi−τ

subspace of y(1)
i to the ExT

⊕· · ·⊕ExT−τ+1
subspace of y(1)

T . This places an
attention weight of eτβ on each token i with xi−τ :i−1 = xT−τ+1:T , and a weight of at most eτ(β−1)

on all other tokens. Finally, the second value matrix V 2,1 copies from the Exi subspace of yi, while
the second layer MLP is also zero.

Altogether, the output of the transformer is

f(x1:T )s =
eβτ

∑
i 1(xi−τ :i−1 = xT−τ+1:T , xi = s) + EN,s

eβτ
∑

i 1(xi−τ :i−1 = xT−τ+1:T ) + ED
,

where ∥EN∥, |ED| ≤ Teβ(τ−1). Therefore

∥f(x1:T )− f∗(x1:T )∥ ≲
T

eβ
∑

i 1(xi−τ :i−1 = xT−τ+1:T )

On a “typical” sequence x,
∑

i 1(xi−τ :i−1 = xT−τ+1:T ) = Θ(T ), in which case

∥f(x1:T )− f∗(x1:T )∥ ≲ e−β ≤ ε

whenever β ≍ log(1/ε). Therefore
∥∥∥K⊤

2,1Q2,1

∥∥∥
op

= Θ(log(1/ε)). Plugging in, this yields a

complexity measure of

C(f) = exp
(
Ck2 log(1/ε)

)
k2S = ε−Θ(k2).

C EXPERIMENTAL METHODOLOGY

Data Generation:

• SimpleTask: Each sequence x1:T is generated by first sampling a probability vector p ∈ R3

uniformly at random over the simplex, then sampling each xi i.i.d, where xi = s with
probability ps. This ensures that Var(f∗) = Θ(1). We vary ω between 2 and 5.5 in
intervals of 0.5.

• ModPTask: Each sequence x1:T is generated by first generating q0, . . . , qp−1 i.i.d uniformly
from [0, 1]. Then, each xi is sampled from Bernoulli(pk), where k ≡ i mod p. This
ensures that Var(f∗) = Θ(1), and also that attending to incorrect positions mod p cannot
help the model. We vary ∆ from 3 to 8

• In-context k-gram: The data generation follows that of Nichani et al. (2024). Each sequence
x1:T is generated by first sampling a k-wise transition tensor π ∈ [S]k, where for any
z1:k−1 the distribution π(· | z1:k−1) is sampled uniformly at random over the simplex in S
dimensions. Next, x1:k−1 are sampled uniformly at random. Finally, for i ≥ k, we sample
xi ∼ π(· | xi−k:i−1). To ensure that xT−k+1:T occurs at least once in the sequence, we
randomly select an index i ∈ [k : T − 1], and replace xi−k+1:i with xT−k+1:T . We fix
k = 2 and vary S from 3 to 8, and also fix S = 2 and vary k from 2 to 4.

Training Procedure:

• Single-layer transformers: The model architecture is one layer of a single self-attention
head followed by an MLP. The embedding dimension is d = 16 and the MLP width is 256.
We use the µP initialization Yang et al. (2022), and train using the Adam optimizer with
learning rate η = 10−2/d for the hidden layers and η = 10−2 for the embedding layers. We
train all of the models using online SGD (sampling a fresh batch of size 1024 at each step),
until the training loss crosses below 10−5. All results are averaged over 8 random seeds.
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• Two-layer transformers: The model architecture is a two-layer transformer, with k− 1 heads
in the first layer and one head in the second layer. The embedding dimension is either
d = 32 (when k = 2 is fixed and S ranges from 3 to 8) or d = 16 (when S = 2 and k
ranges from 2 to 4). We use the µP initialization and train using the Adam optimizer with
learning rate η = 3 · 10−2/d for the hidden layers and η = 10−2 for the embedding layers,
on a fresh batch of size 1024 at each step for 215 steps. The k = 2 results are averaged over
8 random seeds, while the S = 2 results are averaged over 14 random seeds.

C.1 EXPRESSIVITY OF SYNTHETIC TASKS

We sketch the constructions for each of the synthetic tasks in Section 6.

SimpleTask: Set pi = 0, and let E0,E1,E2 be orthogonal. Choose K,Q so that ai,j = ∞
when j = 0, 1 and ai,j = 0 when j = 2. The attention probabilities will then be uniform over all
0 and 1 tokens, and thus the output of self-attention becomes Y T = ExT

+ c0(x)
c0(x)+c1(x)

V E0 +
c1(x)

c0(x)+c1(x)
V E1. We can then set V E0 = −V E1. It suffices to approximate the one-dimensional

function z 7→ sin(ωz) with an MLP; it is well known (Barron, 1993) that this can be done with
weight norms Θ(ω), as desired.

ModPTask: Let {qi}i∈[∆] be some fixed set of orthogonal embeddings, and let pi be equal to
qj , where i ̸= j mod p. These are periodic embeddings with periodicity ∆ = p. Choose K,Q
so that ai,j equals ∞ if j ≡ k mod p and 0 otherwise. The attention probabilities will then be
uniform over all positions which are k mod p. Choosing V so that V qj = 0 for all j, the output
of self-attention becomes Y T = yT + f∗(x1:T )V E1 + (1− f∗(x1:T )V E0. Choosing the readout
layer appropriately, we can ensure that T (x)T = f∗(x1:T ), as desired.
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