

000 001 QUANTITATIVE BOUNDS FOR LENGTH 002 GENERALIZATION IN TRANSFORMERS 003

004
005 **Anonymous authors**
006 Paper under double-blind review

007
008
009 **ABSTRACT**
010

011 We study the problem of length generalization (LG) in transformers: the ability
012 of a model trained on shorter sequences to maintain performance when evaluated
013 on much longer, previously unseen inputs. Prior work by Huang et al. (2025)
014 established that transformers eventually achieve length generalization once the
015 training sequence length exceeds some finite threshold, but left open the question
016 of how large it must be. In this work, we provide the first quantitative bounds
017 on the required training length for length generalization to occur. Motivated by
018 previous empirical and theoretical work, we analyze LG in several distinct problem
019 settings: ℓ_∞ error control vs. average error control over an input distribution,
020 infinite-precision softmax attention vs. finite-precision attention (which reduces to
021 an argmax) in the transformer, as well as for one- or two-layer transformers. In all
022 scenarios, we prove that LG occurs when the internal behavior of the transformer
023 on longer sequences can be “simulated” by its behavior on shorter sequences seen
024 during training. Our bounds give qualitative estimates for the required length of
025 training data required for a transformer to generalize, and we verify these insights
026 empirically. These results sharpen our theoretical understanding of the mechanisms
027 underlying extrapolation in transformers, and formalize the intuition that richer
028 training data is required for generalization on more complex tasks.

029 **1 INTRODUCTION**
030

031 An important problem in the training of large language models (LLMs) is length generalization (LG),
032 which is the ability of a model to generalize to input sequences longer than those encountered during
033 training. Prior works have studied the ability of transformers to length generalize on simple testbed
034 tasks (Anil et al., 2022; Kazemnejad et al., 2023), yet the success of LG varies widely from task to
035 task. Recent theoretical work has thus sought to characterize which tasks admit LG. In particular,
036 Zhou et al. (2023) introduced the RASP-L conjecture, which states that transformers can length
037 generalize on tasks which are expressible by a “simple” RASP-L program (a variant of the RASP
038 language introduced in Weiss et al. (2021)). Huang et al. (2025) later formalized and partially proved
039 this conjecture, showing that tasks expressible by a limiting object called a “limit transformer,” which
040 includes tasks expressible by a C-RASP program (Yang & Chiang, 2024), admit LG at some finite
041 training length. These results, however, are asymptotic in nature and rely on “identification in the
042 limit” (Gold, 1967; Angluin, 1980) style arguments, where the inference procedure can eventually
043 rule out all hypotheses except for the ground truth. In particular, for a fixed task f on which LG is
044 possible, it is not specified what the minimum training length is for LG to occur.

045 Our goal in this paper is to characterize how long training sequences need to be in order for a
046 transformer to generalize to sequences of arbitrary length. Specifically, we adopt the limit transformer
047 formulation from Huang et al. (2025), and aim to provide quantitative bounds on the minimum N
048 such that two limit transformers f, g which agree on inputs of length $\leq N$ approximately agree on
049 inputs of arbitrary length.

050 We study this question in two distinct regimes. In Section 4, we consider limit transformers operating
051 at finite-precision, which matches the setting of Huang et al. (2025). This results in a hard attention
052 pattern for sequences of a certain length. Our main results are that for one-layer limit transformers,
053 for both worst-case error control (Theorem 4.1) and average error control over a distribution (Theo-
rem 4.2) the minimum such N scales monotonically with the parameter norms of the transformer, the

054 positional embedding periodicity Δ , “locality” parameter τ , token vocabulary size $|\Sigma|$, and inverse
 055 error ε^{-1} . In Section 5, we additionally study the setting where the parameters and forward pass are
 056 computed at infinite precision. This allows us to establish results independent of the model precision,
 057 and is a more suitable model for multi-layer transformers where the inputs to later layers “mix” the
 058 first-layer inputs, and hence can be treated as continuous. In Theorem 5.2, we establish a quantitative
 059 LG bound for two-layer transformers, which scales with the transformer weight norms.

060 The proofs of our main results in both the finite- and infinite-precision settings rely on the following
 061 high-level “simulation argument.” Given two limit transformers f, g and a long input string x , we
 062 construct a string z of length at most N such that $f(x) \approx f(z)$ and $g(x) \approx g(z)$; if f and g agree
 063 on all inputs of length $\leq N$, then they must satisfy $f(x) \approx g(x)$. The key step in this simulation
 064 argument is to construct z which approximately preserves various sufficient statistics which are
 065 necessary for computing the forward pass of the model. The proof of Theorem 4.1 does this explicitly,
 066 by ensuring that z approximates the empirical frequencies of each token in the hard attention pattern,
 067 while the proof of Theorem 5.2 does this randomly, sampling z from a specially defined distribution
 068 and invoking the probabilistic method. Nevertheless, the unifying principle in both settings is that LG
 069 is possible whenever the internal behavior of a transformer on a larger sequence can be simulated by
 070 its behavior on a shorter sequence.

071 Altogether, our results make progress towards both characterizing a natural hierarchy of “difficulty”
 072 amongst length-generalizable tasks, and more practically speaking, developing a better understanding
 073 of how to scale training context length for LLMs.

074 2 RELATED WORK

075 A number of works have empirically studied the ability of transformers to length generalize on
 076 various tasks. Bhattacharya et al. (2020) studies the ability of transformers to length generalize on
 077 various formal language tasks. Anil et al. (2022) show that transformers fail to generalize on certain
 078 reasoning tasks, unless certain scratchpad prompting techniques are used. Kazemnejad et al. (2023)
 079 study the role of various positional encoding schemes on LG. Zhou et al. (2023) study LG on various
 080 algorithmic tasks, and observe that tasks with a short RASP program (Weiss et al., 2021) have better
 081 LG, leading to their RASP-L conjecture. This is supported by works such as Jelassi et al. (2024),
 082 who observe that for the string copying task, transformers can length generalize when there are no
 083 repeated tokens, but fail once the string has repeats. LG has also been studied outside the context of
 084 transformers. For instance, Nerem et al. (2025) showed that trained graph neural networks can learn
 085 the Bellman-Ford algorithm which generalizes to shortest paths of arbitrary length. Buitrago & Gu
 086 (2025) studied LG in the context of recurrent models such as state-space models or linear attention.
 087

088 In light of these LG challenges, recent works have designed specific positional encoding schemes,
 089 such as Alibi (Press et al., 2021) or Abacus (McLeish et al., 2024) to improve LG. Other works have
 090 also considered modifying the input with a scratchpad, extra positional information, or alternative
 091 training techniques to improve LG on arithmetic tasks (Lee et al., 2023; Shen et al., 2023; Cho
 092 et al., 2025; Lee et al., 2025; Cai et al., 2025). Most recently, architectural modifications such as
 093 looping (Fan et al., 2024) or recurrence (McLeish et al., 2024) have led to LG improvements. Other
 094 approaches by Li et al. (2025); Anson et al. (2025); Hasemi et al. (2025) have considered making
 095 modifications to the attention mechanism to improve LG.

096 On the theoretical front, Huang et al. (2025) partially resolves the RASP-L conjecture for tasks
 097 expressible by limit transformers. Yang et al. (2025) shows the equivalence of a class of transformers
 098 to the C-RASP programming language and provide empirical evidence that their theory predicts the
 099 depth of a transformer which is required for LG to occur in practice. Wang et al. (2024) proves that
 100 1-layer transformers trained with gradient descent length generalize on a sparse token selection task.
 101 Ahuja & Mansouri (2024) show that a model resembling a self-attention head can length generalize.
 102 Golowich et al. (2025) show that an abstraction of the self-attention head can length generalize on
 103 tasks which depend on a sparse subset of input tokens. Veitsman et al. (2025) studied transformer
 104 LG related to copy and retrieval operations, and find that theoretical limitations do indeed transfer
 105 to practice. The work of Chen et al. (2025) is at first glance the most similar to ours, as the authors
 106 give nonasymptotic bounds for LG. However, they focus on general models of computation with
 107 variable-length input rather than on transformers, offering complementary insights.

108

3 PROBLEM FORMULATION

109

3.1 LIMIT TRANSFORMERS

110 We are interested in the ability of transformers to generalize to sequences of arbitrary length, but
 111 real transformer architectures are limited by a bounded context length. To address this issue, Huang
 112 et al. (2025) introduced the concept of a *limit transformer*. These objects have an infinite context
 113 length and generalized positional embeddings, allowing them to distinguish between arbitrarily many
 114 positions in their context. The computation of a limit transformer proceeds as follows:

$$\begin{aligned}
 117 \quad \mathbf{y}_i^{(0)} &= \mathbf{E}_{x_i} + \mathbf{p}_i, \quad i = 1, \dots, |x|, \\
 118 \quad a_{i,j}^{(l,h)} &= (\mathbf{y}_j^{(l-1)})^\top \mathbf{K}_{l,h}^\top \mathbf{Q}_{l,h} \mathbf{y}_i^{(l-1)} + \phi_{l,h}(j, i), \\
 119 \quad \mathbf{Y}_i^{(l)} &= \mathbf{y}_i^{(l-1)} + \sum_{h=1}^H \frac{\sum_{j=1}^i \exp\left(\log |x| \cdot a_{i,j}^{(l,h)}\right) \mathbf{V}_{l,h} \mathbf{y}_j^{(l-1)}}{\sum_{j=1}^i \exp\left(\log |x| \cdot a_{i,j}^{(l,h)}\right)}, \\
 120 \quad \mathbf{y}_i^{(l)} &= \mathbf{Y}_i^{(l)} + \mathbf{B}_l \cdot \psi_l(\mathbf{A}_l \mathbf{Y}_i^{(l)} + \mathbf{b}_l), \\
 121 \quad T(x)_i &= \mathbf{U} \mathbf{y}_i^{(L)}.
 \end{aligned}$$

122 Here x is the input sequence with token $x_i \in \Sigma$ in the i -th position, $\mathbf{E}_{x_i} \in \mathbb{R}^d$ is the embedding
 123 of the i -th token, \mathbf{p}_i is the i -th (absolute) positional embedding vector. The super- and sub-scripts
 124 (l, h) denote the l -th layer of the transformer and the h -th attention head. $a_{i,j}^{(l,h)}$ is the (l, h) attention
 125 logit between token i and j , $\mathbf{K}_{l,h}$, $\mathbf{Q}_{l,h}$, and $\mathbf{V}_{l,h}$ are the the (l, h) key, query, and value embedding
 126 matrices, respectively. The functions $\phi_{l,h}(j, i)$ do not allow for modifications to the attention pattern
 127 which cannot be captured by positional embedding vectors alone. $\mathbf{Y}_i^{(l)}$ denote the pre-activation
 128 features for layer l at position i , and $\mathbf{y}_i^{(l)}$ denote the post-activation features which have been passed
 129 through a single-hidden-layer MLP with 1-Lipschitz activation ψ_l , plus a residual connection; \mathbf{A}_l
 130 and \mathbf{b}_l denote the hidden layer weights and bias term for this MLP, and \mathbf{B}_l denotes the output
 131 layer weights. Finally, $T(x)_i$ denotes the output logits at position i which are computed via the
 132 unembedding matrix \mathbf{U} .

133 Without additional constraints, a limit transformer cannot be recovered without seeing arbitrarily
 134 long input sequences. Thus, Huang et al. (2025) also make two additional assumptions. First, the
 135 limit transformers in question are assumed to be *Δ -periodic*, defined as $\mathbf{p}_i = \mathbf{p}_{i+\Delta}$ for all i . Second,
 136 the limit transformers are also *translation-invariant*, defined as $\phi_{l,h}(j, i) = \phi_{l,h}(j+t, i+t)$ for all t ,
 137 and *τ -local*, defined as $\phi_{l,h}(j, i) = 0$ whenever $i > j + \tau$.

138

3.2 FINITE-PRECISION ATTENTION

139 Huang et al. (2025) assume that all of the transformer parameters, as well as the softmax attention,
 140 are computed at p finite bits of precision. This is motivated by Merrill & Sabharwal (2023), and
 141 indeed, finite precision is a real constraint when LLMs are implemented in practice.

142 For our analysis, the precise instantiation of this assumption is that we will assume that all quantities of
 143 absolute value $\leq 2^{-p}$ are rounded to 0 during each intermediate computation of the limit transformer.
 144 Even this definition requires further clarification, particularly for the computation of the softmax.
 145 This is because the softmax (at infinite precision) is invariant to a constant shift in all of the logits;
 146 thus, in principal, the softmax may be computed as a collection of terms each of which has absolute
 147 value less than 2^{-p} , in which case it is unclear what to do. To avoid this problem, we take the usual
 148 step for improving the numerical stability of softmax and perform computations with the largest logit
 149 shifted to 0. Equivalently, we subtract the largest logit from every logit in the softmax. After this
 150 standardization, all terms in the softmax (post exponentiation) with absolute value at most 2^{-p} are
 151 rounded to 0, then the computation proceeds as usual.

152 The impact of this assumption is as follows. Let f be a single-layer limit transformer which
 153 is τ -local, Δ -periodic, and translation invariant as defined above. We can define the attention

matrix $A \in \mathbb{R}^{\Delta|\Sigma| \times \Delta|\Sigma|}$ indexed by pairs (y, i) for $y \in \Sigma$ and $i \in \mathbb{Z}/\Delta$, where $A_{(y,i),(z,j)} := (\mathbf{E}_z + \mathbf{p}_i)^\top K^\top Q(\mathbf{E}_y + \mathbf{p}_j)$. For $y \in \Sigma$ and $i \in \mathbb{Z}/\Delta$, define

$$\mathcal{A}_{(y,i)} := \{A_{(y,i),(z,i-k)} + \phi(1, k+1) \mid z \in \Sigma, k = 0, \dots, \tau\}.$$

Note that \mathcal{A}_y contains all of the possible attention logits that we can observe when processing a token $x_i = y$. We then define the *logit margin* $\gamma(f)$ of f by

$$\gamma(f) := \min_{\substack{y \in \Sigma \\ i \in \mathbb{Z}/\Delta}} \min_{\substack{a, a' \in \mathcal{A}_{(y,i)} \\ a - a' > 0}} a - a',$$

where the minimum over an empty set is defined as $+\infty$. The quantity $\gamma(f)$ is the smallest nonzero gap we can observe between a maximal attention logit and any non-maximal logit.

Now let x be any input sequence and suppose that $N = |x| \geq 2^{p/\gamma(f)}$. Consider an individual term in the softmax, post-exponentiation but before the rounding procedure. These have the form

$$\begin{aligned} s_j &= \exp\left(\log N \cdot [(A_{(x_N, N), (x_j, j)} + \phi(j, N)) - (A_{(x_N, N), (x_{j^*}, j^*)} + \phi(j^*, N))]\right) \\ &= \exp\left(\log N \cdot [(A_{(x_N, N), (x_j, j)} + \phi(1, N - j + 1)) - (A_{(x_N, N), (x_{j^*}, j^*)} + \phi(1, N - j^* + 1))]\right) \\ &= \exp(\log N \cdot (a - a^*)), \end{aligned}$$

where $j^* \in \operatorname{argmax}_{j'=1, \dots, i} A_{(x_N, N), (x_{j'}, j')} + \phi(j', N)$ is an index with the largest attention logit and $a, a^* \in \mathcal{A}_{(x_N, N)}$ are simply a renaming of the logits to emphasize that these are quantities in $\mathcal{A}_{(x_N, N)}$. The second equation follows by the translation invariance of ϕ .

There are now two cases. If $a = a^*$ (i.e., the j -th position attains maximal attention for the input sequence), then $s_j = \exp(0) = 1$ and this contribution to the softmax will not be affected by the rounding procedure. On the other hand, if $a \neq a^*$ (i.e., the j -th position attains strictly sub-maximal attention for the input sequence), then by definition of $\gamma(f)$, $a - a^* \leq -\gamma(f)$ and we have

$$s_j = \exp(\log N \cdot (a - a^*)) \leq \exp\left(-\frac{p \log 2}{\gamma(f)} \gamma(f)\right) = 2^{-p}.$$

Thus, this term will be rounded to 0. It follows that for sequences x of length $N \geq 2^{p/\gamma(f)}$, softmax attention acts as a hardmax and the computation is performed as a uniform average over the tokens with argmax attention.

As can be seen from this analysis, while these design choices may seem like minutiae, they have outsized effects on the analysis, and this fact has been observed in previous work (Jerad et al., 2025). There is also empirical evidence that attention does indeed concentrate on only a few tokens (Bietti et al., 2023; Rogers et al., 2021) and that finite precision does have a noticeable impact on LLM behaviors (He & Lab, 2025).

3.3 INFINITE-PRECISION ATTENTION

Deviating from previous works, we also provide results when the transformer’s attention computations (and indeed, all internal computations) are performed at infinite precision. In this case, we do not need to make careful assumptions about rounding. Instead, however, there is an additional subtlety about the scaling of the attention logits. In particular, given infinite precision and bounded weight matrices, the effect of the τ -suffix on the LT’s computation must *always* decay to 0 as the length of the input sequence diverges to infinity. This is undesirable as it precludes important functions which transformers are empirically capable of learning, e.g., the induction head. To alleviate this shortcoming, we propose scaling *only the τ -suffix logits* by a logarithmic factor:

$$\begin{aligned} a_{i,j}^{(l,h)} &= (\mathbf{y}_j^{(l-1)})^\top \mathbf{K}_{l,h}^\top \mathbf{Q}_{l,h} \mathbf{y}_i^{(l-1)} + \log i \cdot \phi_{l,h}(j, i), \\ \mathbf{Y}_i^{(l)} &= \mathbf{y}_i^{(l-1)} + \sum_{h=1}^H \frac{\sum_{j=1}^i \exp(a_{i,j}^{(l,h)}) \mathbf{V}_{l,h} \mathbf{y}_j^{(l-1)}}{\sum_{j=1}^i \exp(a_{i,j}^{(l,h)})}. \end{aligned} \quad (1)$$

Depending on the size of the τ -suffix positional embeddings, this scaling increases the expressivity of LTs to give three different possible behaviors. Consider the computation of the h th attention

head in the first layer. For $j < i - \tau$, the contribution of the j th token will be proportional to $\exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i})$. Therefore for any $s \in \Sigma$, the total contribution of all tokens equal to s will be $\exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \cdot \mu(x_{\leq i})_s$, where $\mu(x_{\leq i})_s = \frac{1}{i} \sum_{j=1}^i \mathbf{1}(x_j = s)$ is the empirical frequency of s in the first i tokens of x . On the other hand, the contribution of the j th token for $i - \tau \leq j \leq i$ is $\exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \cdot i^{\phi_{1,h}(j,i)}$. This yields the following three regimes:

1. **Token Dominant** ($\max_{t \leq \tau} \phi_{1,h}(i - t, i) < 1$). For typical sequences, the empirical frequencies $\mu(x_{\leq i})_s$ will be $\Theta(1)$ for large i . Therefore if ϕ is bounded below 1, as $i \rightarrow \infty$ the contribution of the τ -suffix will grow negligible.
2. **Balanced** ($\max_{t \leq \tau} \phi_{1,h}(i - t, i) = 1$). Both the total contribution of all tokens equal to s , as well as tokens in the τ -suffix with $\phi_{1,h}(j, i) = 1$, will be proportional to i , and thus affect the output of self-attention in a constant fashion as $i \rightarrow \infty$.
3. **Position Dominant** ($\max_{t \leq \tau} \phi_{1,h}(i - t, i) > 1$). The contribution of the τ -suffix dominates that of the rest of the sequence, with the self-attention weights concentrating on those tokens j which maximize $\phi_{1,h}(j, i)$.

Thus, the proposed scaling allows us to consider the full range of possible relative importance for the local information (found in the τ -suffix) and global information (found in the τ -prefix) of the input. In spite of these three qualitatively different regimes, we are able to provide a unified analysis which addresses LG in all three scenarios simultaneously.

We will operate in the infinite precision setting for our results on multi-layer transformers (Theorem 5.2). Intuitively, in the first layer, the tokens are in fact discrete and hard attention to a subset of these tokens may be desirable. Beyond the first layer, however, the token representations become continuous mixtures of these discrete objects and are in some sense more “inherently” continuous. This makes the infinite precision setup more suitable for this setting.

Lastly, we remark that the while the details of the finite- and infinite-precision analysis are quite different, the fundamental analysis technique is the same. Namely, we show that it is possible to *simulate* the behavior of the transformer on longer sequences using strings of bounded length. The implications of the theory for the data requirement vs. various parameters of the target function also align qualitatively for both precision regimes, and these insights match with our empirical results.

4 LENGTH GENERALIZATION WITH FINITE PRECISION

In this section, we give upper bounds on the length of training data required for a single-layer limit transformer to generalize to sequences of arbitrary length in the finite precision setting.

Let f and g be two single-layer limit transformers which are τ -local, Δ -periodic, translation invariant, and operate at p finite bits of precision as described in Section 3. Let $\mathbf{V}_f, \mathbf{E}_s^f, (\mathbf{A}_f, \mathbf{B}_f)$ be the value matrix, token embedding, and MLP weights for f (and analogously defined for g), and define

$$L_f = \max\{\|\mathbf{U}_f\|(1 + \|\mathbf{A}_f\|\|\mathbf{B}_f\|\|\psi_f\|)(\|\mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)\| + \|\mathbf{E}_s^f + \mathbf{p}_i\| + \|\mathbf{b}_f\|) : s \in \Sigma\},$$

L_g similarly for g , and $L = L_f + L_g$. Finally, let $\gamma = \min\{\gamma(f), \gamma(g)\}$, with $\gamma(f)$ and $\gamma(g)$ as defined in Section 3.2. We first establish LG for single-layer transformers in an ℓ_∞ setting.

Theorem 4.1. *There exists an $N = O\left(\max\left\{2^{p/\gamma}, \frac{L^2 \Delta^7 |\Sigma|^6 \tau^2}{\varepsilon^2}\right\}\right)$ such that $\|f(x) - g(x)\| \leq \varepsilon$ for all $|x| \leq N$ implies that $\|f(x) - g(x)\| = O(\varepsilon)$ for any sequence x .*

Proof sketch. As discussed in Section 3.2, the output of each limit transformer depends roughly on the ratios between each token type entering hardmax attention. We construct a “simulation map” from a string x of arbitrary length to a string z of length $|z| \leq N$ which preserves these ratios up to $O(\varepsilon)$ error simultaneously for the tokens in attention in both f and g . Since $f(z) \approx g(z)$ by assumption, this in turn implies that $f(x) \approx g(x)$. The complete proof is given in Appendix A.2. \square

Remarks. Theorem 4.1 shows that, assuming that the input sequences are sufficiently long ($N \gtrsim 2^{p/\gamma}$), the desired training length scales polynomially in the periodicity parameter Δ , the parameter

270 norms L , the vocabulary size $|\Sigma|$, and the inverse accuracy ε^{-1} . The $N \gtrsim 2^{p/\gamma}$ constraint ensures
 271 that the softmax attention behaves as a hardmax as discussed in Section 3.2. Indeed, it is possible for
 272 this hardmax behavior to occur at smaller training lengths, implying that the training length N need
 273 only scale with $\tau\Delta L^2/\varepsilon^2$. See Section 6 for empirical support of this claim.

274 Theorem 4.1 bounds the test error when we have an ℓ_∞ bound on the error, i.e., when the error on
 275 *every sequence* of length at least N is bounded by ε . In practice, it is more common to have a bound
 276 on the *average* error. The following theorem establishes that we can still achieve LG with respect to
 277 average error for a certain class of sequence distributions.

278 **Theorem 4.2.** *For any probability distribution $\mathcal{P} = (p_s)_{s \in \Sigma}$ over the token vocabulary Σ , define*

$$280 \quad \|f - g\|_{n, \mathcal{P}} = \sum_{|x|=n} \mathbb{P}_{\mathcal{P}}(x) \|f(x) - g(x)\|,$$

283 where $\mathbb{P}_{\mathcal{P}}(x) = \prod_{i=1}^{|x|} p_{x_i}$ is the probability of the sequence x when the tokens are drawn i.i.d. from
 284 \mathcal{P} . Let $\mathcal{P} = (p_s)_{s \in \Sigma} \sim \text{Dir}((\alpha_s)_{s \in \Sigma})$ be drawn from a Dirichlet distribution, and define

$$285 \quad \|f - g\|_n = \mathbb{E}_{\mathcal{P} \sim \text{Dir}((\alpha_s)_{s \in \Sigma})} [\|f - g\|_{n, \mathcal{P}}].$$

286 Let $\alpha_0 = \min_{s \in \Sigma} \alpha_s$. Then there exists

$$288 \quad N_0 = O \left(\max \left\{ 2^{p/\gamma}, \frac{16^{\frac{\alpha^*}{\alpha_0}} L^{2+2\alpha_0^{-1}} |\Sigma|^{4+2\alpha_0^{-1}} \Delta^5}{\alpha_0^{2\alpha_0^{-1}} \varepsilon^{2+2\alpha_0^{-1}}} \log \frac{|\Sigma| \Delta L}{\varepsilon} \right\} \right) = \tilde{O}(\varepsilon^{-2-2\alpha_0^{-1}})$$

291 such that if $\|f - g\|_N \leq \varepsilon$ for all $N \leq N_0$, we have that $\|f - g\|_T = O(\varepsilon^{1/2})$ for any T .

293 *Proof sketch.* We show that with high probability over the draw of $(p_s)_{s \in \Sigma}$ and the resulting sequence
 294 x , the fraction of (token, positional embedding) pairs is close to its mean. For such sequences, we
 295 further show that the output of the limit transformer is approximately constant. This allows us to
 296 define a simulation map $\text{sim} : \Sigma^T \rightarrow \Sigma^N$ from longer sequences to shorter ones which (1) satisfies
 297 $f(x) \approx f(\text{sim}(x))$ and (2) does not transfer a large probability mass of long sequences in Σ^T to a
 298 low-probability subset of short sequences in Σ^N . These two features of the simulation map allow us to
 299 control $\|f - g\|_T$ in terms of $\|f - g\|_N$ for any $T \geq N$. The full proof is given in Appendix A.3. \square

301 **Remarks.** We make two remarks on this result. First, the form of the sequence distribution is meant
 302 to ensure some regularity between sequences of longer and shorter lengths. The need for some
 303 such regularity assumption is inevitable. For instance, an obvious example would be where the
 304 distribution over shorter sequences has support only on sequences with tokens in $\Sigma_{\text{short}} \subsetneq \Sigma$, while
 305 the distribution over longer sequences has support $\Sigma \setminus \Sigma_{\text{short}}$. The switch can occur at an arbitrarily
 306 large sequence length, so a bound on the required training length cannot exist in such a setting. This
 307 counterexample can also be approximated without requiring the probability of certain sequences to
 308 be exactly equal to 0. We expect a similar result to hold for sequences with some form of regularity
 309 in terms of token ratios between shorter and longer sequences; e.g., if the sequences are drawn from a
 310 Markov chain, concentration of the token ratios to the stationary distribution may be sufficient. It is
 311 an interesting direction for future work to establish minimal conditions on the sequence distribution
 312 for LG to occur in the average case. Second, as a corollary to our proof technique, we can strengthen
 313 the error dependence of our bound when $\|f - g\|_{N, \mathcal{P}}$ is controlled *conditional* on $\min_{s \in \Sigma} p_s = \Omega(1)$.
 314 In this case, the LG error does not suffer from the quadratic increase from ε to $\varepsilon^{1/2}$ as in Theorem 4.2,
 315 but the required training length to achieve $O(\varepsilon)$ error is longer. The proof for this setting can also
 316 easily be extended to the case where the tokens are drawn from a *fixed* categorical distribution and
 317 the probability p_s for each token is at least a constant.

318 5 SOFT ATTENTION TRANSFORMERS WITH INFINITE PRECISION

320 In this section, we provide upper bounds on the length of training sequences required for two-layer
 321 limit transformers operating at infinite precision to generalize to sequences of arbitrary length. Recall
 322 that we have made the assumption that transformers which operate at infinite precision only have the
 323 τ -suffix logits scaled by $\log(\text{token index})$, and thus have forward pass given by (1). The key quantity
 324 which governs the minimum training length is the following complexity measure.

324 **Definition 5.1** (Complexity and positional margin). Let \mathcal{F}_τ be the class of depth 2 transformers
 325 transformers which are τ -local, translation invariant, operate at infinite precision, use no positional
 326 information in the second layer, and have nonnegative $\phi_{l,h}$ ¹. For a transformer $f \in \mathcal{F}_\tau$, with
 327 key, query and value matrices $\{(\mathbf{K}_{1,h}, \mathbf{Q}_{1,h}, \mathbf{V}_{1,h})\}_{h \in [H]} \cup \{(\mathbf{K}_{2,1}, \mathbf{Q}_{2,1}, \mathbf{V}_{2,1})\}$, MLP weights
 328 $\{(\mathbf{A}_l, \mathbf{B}_l)\}_{l \in \{1,2\}}$, embeddings $\|\mathbf{E}_s\| \leq 1$, and unembedding \mathbf{U} , define the *complexity* $C(f)$ as
 329

$$330 \quad C(f) := \exp \left(\text{poly} \left(\left\{ \|\mathbf{V}_{1,h}\|_{op}, \|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op} \right\}_{h \in [H]}, \|\mathbf{A}_1\|_{op}, \|\mathbf{B}_1\|_{op}, \|\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}\|_{op} \right) \right) \\ 331 \quad \cdot \text{poly} \left(\|\mathbf{V}_2\|_{op}, \|\mathbf{A}_2\|_{op}, \|\mathbf{B}_2\|_{op}, \|\mathbf{U}\|_{op}, \tau, |\Sigma| \right)$$

334 Moreover, define the *positional margin* $\gamma(f)$ by

$$335 \quad \gamma(f) := \min_{h \in H} (\max \mathcal{P}_h - \max \{p \in \mathcal{P}_h : p \neq \max \mathcal{P}_h\})$$

337 where $\mathcal{P}_h := \{\phi_{1,h}(i - t, i)\}_{0 \leq t \leq \tau} \cup \{1\}$ is the set of positional embedding values in the h th head.

339 **Theorem 5.2.** Let $f, g \in \mathcal{F}_\tau$. There exists $N \lesssim (\max(C(f), C(g))\varepsilon^{-1})^{\max(\gamma(f)^{-1}, \gamma(g)^{-1}, 3)}$ such
 340 that $\|f(x) - g(x)\| \leq \varepsilon$ for all $|x| \leq N$ implies that $\|f(x) - g(x)\| = O(\varepsilon)$ for any sequence x .
 341

342 *Proof sketch.* Similar to before, our goal is to, given an arbitrary string x , construct a simulation z
 343 which satisfies $f(x) \approx f(z)$ and $g(x) \approx g(z)$. Our first observation is that $\mathbf{Y}_i^{(1)}$, the output of the
 344 first layer of the transformer in the i th position, can be written as a Lipschitz and bounded function
 345 of both the τ -suffix $x_{i-\tau:i}$ and the empirical histogram up to token i , $\mu(x_{\leq i}) := \frac{1}{i} \sum_{j=1}^i \mathbf{e}_{x_j}$.² As
 346 such, the output of the two-layer transformer depends continuously on the empirical joint distribution
 347 of $\{(x_{i-\tau:i}, \mu(x_{\leq i}))\}_{i \in [|x|]}$. We would thus like for the simulation z to approximately preserve this
 348 distribution. To do so, we construct a *random* simulation z by randomly sampling a subset of the
 349 tokens in x , show in expectation that the outputs are preserved, and invoke the probabilistic method.
 350 In particular, the following “key simulation lemma” shows that such a subset does indeed exist.

351 **Lemma 5.3.** Let $p : [S]^{\tau+1} \times \Delta^S \rightarrow \mathbb{R}^m$ be a fixed function, which is L Lipschitz in its second
 352 argument and uniformly bounded by G . Then, there exists a subset $\mathcal{I} \subset [T]$ such that, if $z = x_{\mathcal{I}}$, then
 353 $|\mathcal{I}| - n \leq \tau + 1 + n^{1/3}$ and

$$355 \quad \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{|\mathcal{I}|} \sum_{t=1}^{|\mathcal{I}|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \lesssim \frac{(G + L)(\tau + 1)}{n^{1/3}}.$$

358 The proof of Lemma 5.3 proceeds as follows. In order to preserve the empirical distribution over
 359 τ -suffixes, we would like for the simulation z to include large (i.e., $\omega(1)$ in size) contiguous blocks
 360 of x . To do so, we consider a *Markov chain* (i_1, \dots, i_T) on the state space $\{0, 1\}$, with stationary
 361 distribution $\mathbb{P}(i_j = 1) = n/T$ and transition $\mathbb{P}(i_{j+1} = 0 | i_j = 1) \ll 1$. Letting $\mathcal{I} = \{j : i_j = 1\}$,
 362 one can show that the choice $z = x_{\mathcal{I}}$ yields a good simulation in expectation. The proof of Lemma 5.3,
 363 as well as the full proof of Theorem 5.2, are deferred to Appendix B. \square
 364

365 **Remarks.** The complexity measure in Definition 5.1 scales exponentially in the first layer weight
 366 norms. This is unavoidable, as the Lipschitz constant of the first layer softmax scales exponentially
 367 in $\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}$. Moreover, for certain tasks which can be naturally expressed by a two-layer
 368 transformer, the complexity is mild. Consider the following *in-context k -gram* task, which is a
 369 generalization of the induction head (Olsson et al., 2022):

370 **Definition 5.4.** Let $\Sigma = [S]$. We say that f^* is an *in-context k -gram* estimator if its output on a
 371 sequence x is the empirical distribution of the token following all occurrences of $x_{T-k+1:T}$ ³ i.e

$$372 \quad f^*(x_{1:T}) = \frac{\sum_{t=k+1}^T \mathbf{1}(x_{t-k:t-1} = x_{T-k+1:T}) \cdot \mathbf{e}_{x_t}}{\sum_{t=k+1}^T \mathbf{1}(x_{t-k:t-1} = x_{T-k+1:T})} \in \mathbb{R}^S.$$

375 ¹As per the discussion in Section 3.3, all $\phi_{l,h} < 1$ yield the same “token-dominant” regime, and hence
 376 assuming $\phi_{l,h} \geq 0$ does not affect expressivity.

377 ²Infinite precision attention is necessary here to show that this function is indeed Lipschitz.

378 ³If there is no such occurrence within x , the behavior of $f^*(x)$ can be arbitrary.

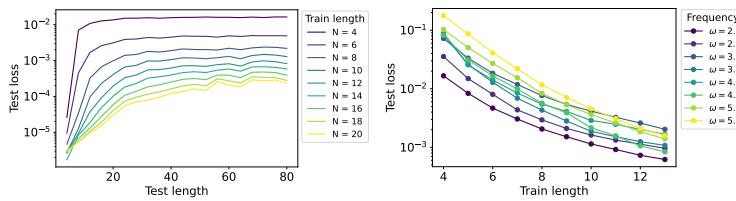
378
379
380
381
382
383
384

Figure 1: Experiments on SimpleTask. **Left:** Test loss as a function of test length and train length, for fixed ω . For each fixed train length, as test length increases, the test loss plateaus at a finite value. **Right:** Final test loss as a function of train length and ω . The value the test loss plateaus at decreases monotonically with train length, and increases monotonically with ω .

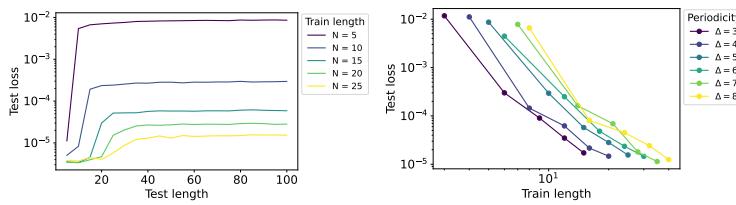
389
390
391
392
393
394
395
396

Figure 2: Experiments on ModPTask. **Left:** Test loss as a function of test length and train length, for fixed Δ . For each fixed train length, as test length increases, the test loss plateaus at a finite value. **Right:** Final test loss as a function of train length and Δ . The value the test loss plateaus at decreases monotonically with train length, and increases monotonically with Δ .

Nichani et al. (2024) show that f^* can be approximated by a depth two transformer with $k - 1$ heads in the first layer, and local, translational invariant positional embeddings with $\tau = k - 1$. In Appendix B.3, we show heuristically that f^* can be approximated up to error ε by a transformer f with complexity $C(f) = \varepsilon^{-\Theta(k^2)}$ and $\gamma(f) \geq 1$, so a training length of $\varepsilon^{-\Theta(k^2)}$ suffices for LG.

We also remark that in Theorem 5.2, the training length N scales exponentially with the inverse margin $1/\gamma$. This mimics the bound in Theorem 4.1, which contains an $\exp(\gamma^{-1})$ dependence on the *logit*-margin. Whether these margins matter for LG empirically or are simply an artifact of our analysis is an interesting question for future work.

409

6 EXPERIMENTS

410

Single-layer Transformers. We next provide empirical support for the conclusions of Theorem 4.1 and 4.2. We consider the following two synthetic tasks:

414
415
416
417
418

SimpleTask: The vocabulary is $\Sigma = \{0, 1, 2\}$. Given an input sequence $x_{1:T} = (x_1, \dots, x_T) \in \Sigma^T$, define $c_s(x) = \sum_{t=1}^T \mathbf{1}(x_t = s)$ to count the number of tokens equal to s . The output f^* is given by $f^*(x_{1:T}) = \sigma\left(\frac{c_0(x) - c_1(x)}{c_0(x) + c_1(x)}\right)$, where $\sigma(z) = \sin(\omega z)$ for some $\omega \in \mathbb{R}$. One observes that f^* is expressible by a one-layer limit transformer with no positional embeddings and $L = \Theta(\omega)$.

419
420
421

ModPTask: The vocabulary is $\Sigma = \{0, 1\}$. Given a period p and index k , the output is the average of all tokens in positions which are $k \bmod p$:

$$f^*(x_{1:T}) = \frac{\sum_{t=1}^T \mathbf{1}(x_t = 1, t \equiv k \bmod p)}{\sum_{t=1}^T \mathbf{1}(t \equiv k \bmod p)}.$$

424
425

One observes that f^* is expressible by a limit transformer with $\Delta = p$ and $L = \Theta(1)$.

426
427
428
429
430

We train depth 1 transformers (consisting of a single self-attention layer followed by an MLP layer) on SimpleTask for varying frequencies ω and ModPTask for varying periods p . For a fixed training length N , we train models on sequences of length $T \leq N$, and compute the test loss on sequences of length $T' \geq N$. More details on the experimental methodology are presented in Appendix C; sketches for both constructions are provided in Appendix C.1.

431

Results for SimpleTask and ModPTask are presented in Figure 1 and Figure 2 respectively. In the leftmost panes of both figures, we observe that the test loss plateaus as the test length increases. In the

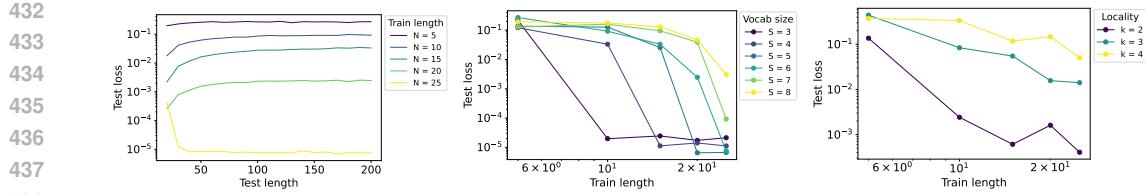


Figure 4: Experiments on the in-context k -gram task. **Left:** Test loss as a function of test length and train length, for fixed k and S . For each fixed train length, as test length increases, the test loss plateaus at a finite value. **Middle:** Final test loss as a function of train length and S , for fixed k . The value the test loss plateaus at decreases monotonically with training length, and increases with S . **Right:** Final test loss as a function of train length and k , for fixed S . The value the test loss plateaus at increases monotonically with k .

rightmost panes of both figures, we observe that the value at which the test loss plateaus at decreases monotonically with the training length. This provides qualitative support for the conclusions of Theorem 4.1, in particular that (i) given a target accuracy ε , tasks expressible by a one-layer limit transformer have a finite N such that a model which fits the task on sequences up to length N achieves ε error on sequences of all length and (ii) the value of this N increases monotonically as ε increases. Moreover, the rightmost pane in Figure 1 shows that N scales with the parameter norm L , while the rightmost pane in Figure 2 shows that N scales with the periodicity parameter Δ .

The proof of Theorem 4.1 relies on the ‘‘hardmax’’ attention behavior discussed in Section 3.2. To check the validity of this assumption, trained on the ModPTask with $p = 5$ for varying training lengths, and compute the post-softmax attention probabilities on a batch of test sequences. In Figure 3, we observe that the positions not equal to $k \bmod p$ receive near zero attention probabilities while those in positions equal to $k \bmod p$ receive nearly the same attention probability (the dashed black line). This provides evidence that, for large enough training length, the models are indeed operating in the hardmax regime.

Two-layer Transformers. We next provide empirical support for the conclusions of Theorem 5.2. We train depth 2 transformers on the *in-context k -gram* synthetic task, as defined in Definition 5.4. Additional experimental details are given in Appendix C. Results are presented in Figure 4. In the leftmost pane, we again observe that test loss plateaus as test length increases. Both the middle and rightmost plots show that as the training length increases, the limiting test loss decreases. Moreover, the middle plot shows the value of this limiting test loss increases with the alphabet size S (when we fix $k = 2$), while the rightmost plot shows that it increases with k (when we fix $S = 2$). This matches the qualitative dependence of the complexity measure $C(f)$ on both S and τ .

7 CONCLUSION

In this paper, we provided quantitative bounds on the training length required for LG to occur, in settings including finite- and infinite-precision attention, one- and two-layer transformers, and ℓ_∞ and average error control. Our results show that this minimum training length scales with the parameter norms of the transformer, the periodicity Δ , locality τ , alphabet size $|\Sigma|$, and inverse error ε^{-1} . Unifying our analyses is the high level argument that LG occurs whenever the forward pass of a transformer on a longer string can be ‘‘simulated’’ by that of a shorter string contained in the training set. Qualitative support for the derived scalings are presented in Section 6.

One interesting direction of future work is to extend our results to transformers with larger depth. In particular, it would be interesting to relate the minimum training length N to other notions of complexity such as the length of the corresponding C-RASP program. Moreover, it would be interesting to extend our average-case analysis in Theorem 4.2 to broader classes of distributions over sequences. Finally, it is an important question to characterize how different positional embedding schemes, which empirically improve LG, affect the minimum training length N .



Figure 3: For the ModPTask, the softmax attention approximates uniform attention on all positions $\equiv k \bmod p$.

486 ETHICS STATEMENT
487488 This paper presents work whose goal is to advance the field of Machine Learning. There are many
489 potential societal consequences of our work, none which we feel must be specifically highlighted
490 here.
491492 **LLM Usage:** We used LLMs to check for grammatical errors in the paper.
493494 REPRODUCIBILITY STATEMENT
495496 Experimental details are provided in Appendix C, and code is attached to the submission.
497498 REFERENCES
499500 Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization. *arXiv*
501 *preprint arXiv:2402.04875*, 2024.
502503 Dana Angluin. Inductive inference of formal languages from positive data. *Information and control*,
504 45(2):117–135, 1980.
505506 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
507 Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
508 in large language models. *Advances in Neural Information Processing Systems*, 35:38546–38556,
509 2022.
510511 Ben Anson, Xi Wang, and Laurence Aitchison. Scale-invariant attention. *arXiv preprint*
512 *arXiv:2505.17083*, 2025.
513514 Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE*
515 *Transactions on Information theory*, 39(3):930–945, 1993.
516517 Satwik Bhattacharya, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
518 to recognize formal languages. *arXiv preprint arXiv:2009.11264*, 2020.
519520 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jegou, and Leon Bottou. Birth of a
521 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:
522 1560–1588, 2023.
523524 Ricardo Buitrago and Albert Gu. Understanding and improving length generalization in recurrent
525 models. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=20Eb20dy7B>.
526527 Ziyang Cai, Nayoung Lee, Avi Schwarzschild, Samet Oymak, and Dimitris Papailiopoulos. Ex-
528 trapolation by association: Length generalization transfer in transformers. *arXiv preprint*
529 *arXiv:2506.09251*, 2025.
530531 Thomas Chen, Tengyu Ma, and Zhiyuan Li. Non-asymptotic length generalization. In *Forty-second*
532 *International Conference on Machine Learning*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=WZ1q625BWD)
533 *forum?id=WZ1q625BWD*.
534535 Hanseul Cho, Jaeyoung Cha, Srinadh Bhojanapalli, and Chulhee Yun. Arithmetic transformers
536 can length-generalize in both operand length and count. In *The Thirteenth International Confer-
537 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=eIgGesYKLG>.
538539 Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
540 generalization. *arXiv preprint arXiv:2409.15647*, 2024.
541542 E Mark Gold. Language identification in the limit. *Information and control*, 10(5):447–474, 1967.
543544 Noah Golowich, Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. The role
545 of sparsity for length generalization in transformers. *arXiv preprint arXiv:2502.16792*, 2025.
546

540 Baran Hashemi, Kurt Pasque, Chris Teska, and Ruriko Yoshida. Tropical attention: Neural algorithmic
 541 reasoning for combinatorial algorithms. *arXiv preprint arXiv:2505.17190*, 2025.

542

543 Horace He and Thinking Machines Lab. Defeating nondeterminism in llm inference. *Thinking Machines Lab: Connectionism*, 2025. doi: 10.64434/tml.20250910.
 544 <https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/>.

545

546 Xinting Huang, Andy Yang, Satwik Bhattacharya, Yash Sarrof, Andreas Krebs, Hattie Zhou, Preetum
 547 Nakkiran, and Michael Hahn. A formal framework for understanding length generalization in
 548 transformers. In *The Thirteenth International Conference on Learning Representations*, 2025.
 549 URL <https://openreview.net/forum?id=U49N5V51rU>.

550

551 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
 552 formers are better than state space models at copying. *arXiv preprint arXiv:2402.01032*, 2024.

553

554 Selim Jerad, Anej Svetec, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides.
 555 *arXiv preprint arXiv:2503.14615*, 2025.

556

557 Amirkhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
 558 The impact of positional encoding on length generalization in transformers. *Advances in Neural
 559 Information Processing Systems*, 36:24892–24928, 2023.

560

561 Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
 562 Teaching arithmetic to small transformers. *arXiv preprint arXiv:2307.03381*, 2023.

563

564 Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
 565 improving transformers overcome easy-to-hard and length generalization challenges. In *Forty-
 566 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=ZtX0MBT6mf>.

567

568 Ruining Li, Gabrijel Boduljak, et al. On vanishing variance in transformer length generalization.
 569 *arXiv preprint arXiv:2504.02827*, 2025.

570

571 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian Bartoldson, Bhavya
 572 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
 573 arithmetic with the right embeddings. *Advances in Neural Information Processing Systems*, 37:
 574 108012–108041, 2024.

575

576 William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. *Advances
 577 in neural information processing systems*, 36:52453–52463, 2023.

578

579 Robert R Nerem, Samantha Chen, Sanjoy Dasgupta, and Yusu Wang. Graph neural networks
 580 extrapolate out-of-distribution for shortest paths. *arXiv preprint arXiv:2503.19173*, 2025.

581

582 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 583 gradient descent. *arXiv preprint arXiv:2402.14735*, 2024.

584

585 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 586 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 587 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 588 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 589 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 590 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

591

592 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 593 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.

594

595 Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
 596 how bert works. *Transactions of the association for computational linguistics*, 8:842–866, 2021.

597

598 Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
 599 description matters for transformers arithmetic. *arXiv preprint arXiv:2311.14737*, 2023.

594 Yana Veitsman, Mayank Jobanputra, Yash Sarrof, Aleksandra Bakalova, Vera Demberg, Ellie Pavlick,
595 and Michael Hahn. Born a transformer—always a transformer? *arXiv preprint arXiv:2505.21785*,
596 2025.

597

598 Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
599 selection while fully-connected nets cannot. *arXiv preprint arXiv:2406.06893*, 2024.

600 Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In *International Conference*
601 *on Machine Learning*, pp. 11080–11090. PMLR, 2021.

602

603 Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into
604 softmax transformers. *arXiv preprint arXiv:2404.04393*, 2024.

605

606 Andy Yang, Michaël Cadilhac, and David Chiang. Knee-deep in c-rasp: A transformer depth
607 hierarchy. *arXiv preprint arXiv:2506.16055*, 2025.

608

609 Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
610 Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. *arXiv preprint arXiv:2203.03466*, 2022.

611 Hattie Zhou, Arwen Bradley, Eta Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
612 and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
613 *arXiv preprint arXiv:2310.16028*, 2023.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A OMITTED PROOFS FROM SECTION 4
649

650 In all of the proofs and discussions for this section, we will assume that all sequences are of length
651 at least $2^{p/\min\{\gamma(f), \gamma(g)\}}$. As discussed in Section 3.2, this means that attention will operate as an
652 argmax over tokens with maximal logits, and therefore the computations of the transformer will be
653 performed over a subset of tokens determined by (token, position mod Δ) in the τ -prefix as well as
654 potentially some tokens in the τ -suffix. As, such, it will be useful to make the following definition.

655 **Definition A.1.** Define the *token counting function* $n : \Sigma \times \mathbb{Z} \times \Sigma^* \rightarrow \mathbb{Z}_{\geq 0}$ by
656

$$657 n(s, i, x) = \#\{j \in 1, \dots, |x| - \tau \mid x_j = s \text{ and } j \equiv i \pmod{\Delta}\}.$$

658 That is, $n(s, i, x)$ counts the number of times that token s appears in a position which is $i \pmod{\Delta}$
659 in x before the τ -suffix. In the case where there are no positional embedding vectors, we similarly
660 define

$$661 n(s, x) = \#\{j \in 1, \dots, |x| - \tau \mid x_j = s\}.$$

662 The subset of (token, position mod Δ) pairs which enter the hard attention mechanism is determined
663 by the final token and its positional embedding vector. Thus, in the constructions which follow, it will
664 be important that the original long sequence x ($|x| = T$) is simulated by a shorter string z ($|z| = N$)
665 such that $x_T = z_T$ and $T \equiv N \pmod{\Delta}$. This will ensure that the hard attention mechanism
666 considers the same (token, positional embedding) pairs for both strings, and therefore that the output
667 of the limit transformer can be approximated by preserving the ratios of these quantities.

668 With these concerns in mind, consider a single-head, single-layer limit transformer f and an input
669 string x with $|x| \geq 2^{\gamma(f)}$. Let $A(x) \subseteq \Sigma \times [\Delta]$ be the set of (token, position mod Δ) pairs in the
670 τ -prefix attended to by f when parsing the final token x_T , and let $A^\tau(x)$ be the set of (token, position)
671 pairs attended to in the τ -suffix. Then the internal state of f immediately after the attention layer is
672 given by

$$673 \tilde{f}(x) = \frac{\sum_{(s,i) \in A(x)} n(s, i, x) \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i) + \sum_{(s,i) \in A^\tau(x)} \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)}{\sum_{(s,i) \in A(x)} n(s, i, x) + |A^\tau(x)|}, \quad (2)$$

674 and the full computation is given by
675

$$676 f(x) = \mathbf{U}_f \left((\mathbf{E}_{x_T}^f + \tilde{f}(x)) + \mathbf{B}_f \psi_f(\mathbf{A}_f(\mathbf{E}_{x_T}^f + \tilde{f}(x)) + \mathbf{b}_f) \right). \quad (3)$$

677 A.1 HELPER LEMMAS
678

679 For both of the finite-precision theorems, the following lemma relating \tilde{f} and f will be useful.

680 **Lemma A.2.** Let x and z be two sequences with $|x| = T$ and $|z| = N$, and suppose that the final
681 tokens are equal: $x_T = z_N$. Then $\|f(x) - f(z)\| \leq L_f^{\text{MLP}} \|\tilde{f}(x) - \tilde{f}(z)\|$, where
682

$$683 L_f^{\text{MLP}} = \|\mathbf{U}_f\| (1 + \|\mathbf{A}_f\| \|\mathbf{B}_f\| \|\psi_f\|)$$

684 is a bound on the Lipschitz constant of the transformer MLP.
685

686 *Proof.* We can write
687

$$688 f(x) = \mathbf{U}_f \left((\mathbf{E}_{x_T}^f + \tilde{f}(x)) + \mathbf{B}_f \psi_f(\mathbf{A}_f(\mathbf{E}_{x_T}^f + \tilde{f}(x)) + \mathbf{b}_f) \right). \quad (4)$$

689 Because $x_T = z_N$, we have $\mathbf{E}_{x_T}^f = \mathbf{E}_{z_N}^f$. Straightforward applications of the triangle inequality and
690 the submultiplicative inequality for operator norms then yield the desired result. \square
691

692 The following lemma bounds the norm of the output of a limit transformer in terms of the norms of
693 the weight matrices and activation function.

694 **Lemma A.3.** Define the following quantities:
695

$$696 L_f^{\text{MLP}} = \|\mathbf{U}_f\| (1 + \|\mathbf{A}_f\| \|\mathbf{B}_f\| \|\psi_f\|),$$

$$697 M_f^V = \max_{s \in \Sigma, i \in [\Delta]} \|\mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)\|,$$

$$702 \quad M_f^E = \max_{s \in \Sigma, i \in [\Delta]} \|\mathbf{E}_s^f + \mathbf{p}_i\|. \\ 703$$

704 *Then setting*

$$705 \quad M_f = L_f^{\text{MLP}}(M_f^E + M_f^V + \|b_f\|), \\ 706$$

707 *we have $\|f(x)\| \leq M_f$ for all x .*

708 *Proof.* The proof is nearly identical to that of Lemma A.2. We begin by observing that $\tilde{f}(x)$ is a
709 convex combination of terms of the form $\mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)$, so in particular $\|\tilde{f}(x)\| \leq M_f^V$. The results
710 follows by using the expression for $f(x)$ in terms of $\tilde{f}(x)$ given in equation (4), the triangle inequality,
711 and submultiplicativity of the operator norm. \square

714 A.2 PROOF OF THEOREM 4.1

715 In this section, we give the proof of Theorem 4.1. We will first prove another helper lemma which
716 will aid in our simulation string constructions.

717 **Lemma A.4.** *Let $\{p_i\}_{i=1}^n$ be an arbitrary finite probability distribution. For any integer $N \geq 1$,
718 there exist nonnegative integers $\{m_i\}_{i=1}^n$ such that $\sum_{i=1}^n m_i = N$ and $|m_i/N - p_i| \leq 1/N$ for all
719 $i = 1, \dots, n$. In particular, this also implies that the m_i satisfy $|p_i N - m_i| \leq 1$ for all i .*

720 *Proof.* Define $\tilde{m}_i = \lfloor p_i N \rfloor$ and let $R = N - \sum_{i=1}^n \tilde{m}_i$. Note that $0 \leq R \leq n$. For $i = 1, \dots, R$,
721 define $m_i = \tilde{m}_i + 1$ and for $i = R + 1, \dots, n$, define $m_i = \tilde{m}_i$. This choice of m_i can easily be
722 seen to have the desired properties. \square

723 We are now ready to prove Theorem 4.1, which we restate for convenience.

724 **Theorem 4.1.** *There exists an $N = O\left(\max\left\{2^{p/\gamma}, \frac{L^2 \Delta^7 |\Sigma|^6 \tau^2}{\varepsilon^2}\right\}\right)$ such that $\|f(x) - g(x)\| \leq \varepsilon$
725 for all $|x| \leq N$ implies that $\|f(x) - g(x)\| = O(\varepsilon)$ for any sequence x .*

726 *Proof.* We will first give a proof assuming there are no positional embedding vectors \mathbf{p}_i . We will
727 then show how to easily adapt the result to the case of positional embedding vectors.

728 Consider two limit transformers f and g and an input string x . Let P_f be the positions attended to by
729 f and P_g be the positions attended to by g in the τ -prefix of x and assume WLOG that $|P_f| \leq |P_g|$.
730 Let $A_f = A_f(x) = \{x_i \mid i \in P_f\}$ be the set of tokens which f attends to and define $A_g = A_g(x)$
731 similarly.

732 We construct the auxiliary string z as follows. The τ -suffix of z is always equal to the τ -suffix of x ;
733 in particular, this ensures that the final tokens of x and z are equal.

734 If $|P_f|, |P_g| \leq 1/\varepsilon$, then the attention pattern in the τ -prefix of x can be directly recreated simultaneously
735 for f and g using at most $2/\varepsilon$ tokens by just copying the union of the tokens in attention for f
736 and g into z . In this case, by formulas (2) and (3), we will have $f(x) = f(z)$ and $g(x) = g(z)$ and
737 therefore $\|f(x) - g(x)\| = \|f(z) - g(z)\| \leq \varepsilon$. Thus, we will assume that at least $|P_g| \geq 1/\varepsilon$.

738 We first recreate the attention pattern of f . To simplify notation, let $n_s = n(s, x)$ and $m_s = n(s, z)$.
739 If $|P_f| \leq 1/\varepsilon$, then we simply set $z_{1:|P_f|} = x_{P_f}$ (i.e., we set the first $|P_f|$ tokens of z equal to the
740 attention pattern of f on the τ -prefix of x). The tokens which we will add later do not belong to A_f ;
741 thus, we will clearly have $f(x) = f(z)$. Thus, in the following construction, we will assume that
742 $|P_f| \geq 1/\varepsilon$.

743 We first proceed with a slightly more fine-grained construction of Lemma A.4. For each $s \in A_f$,
744 define

$$745 \quad \tilde{m}_s = \left\lfloor \frac{\lceil 1/\varepsilon \rceil}{|P_f|} n_s \right\rfloor \\ 746$$

747 and let

$$748 \quad R = \left\lfloor \sum_{s \in A_f \cap A_g} \frac{\lceil 1/\varepsilon \rceil}{|P_f|} n_s - \sum_{s \in A_f \cap A_g} \tilde{m}_s \right\rfloor. \\ 749$$

We must have $R \leq |A_f \cap A_g|$, so choose $I \subseteq A_f \cap A_g$ with $|I| = R$ and define $m_s = \tilde{m}_s + 1$ for $s \in I$ and $m_s = \tilde{m}_s$ for $s \in (A_f \cap A_g) \setminus I$. This defines m_s for all $s \in A_f \cap A_g$ with the following two properties:

$$\left| m_s - \frac{\lceil 1/\varepsilon \rceil}{|P_f|} n_s \right| \leq 1 \quad \forall s \in A_f \cap A_g, \quad 0 \leq \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_f \cap P_g| - \sum_{s \in A_f \cap A_g} m_s < 1. \quad (5)$$

We then turn to $A_f \setminus A_g$ and define

$$R' = \left| \sum_{s \in A_f} \frac{\lceil 1/\varepsilon \rceil}{|P_f|} n_s - \sum_{s \in A_f \setminus A_g} \tilde{m}_s - \sum_{s \in A_f \cap A_g} m_s \right|.$$

It is clear that $0 \leq R' \leq |A_f \setminus A_g|$, so we can similarly choose $J \subseteq A_f \setminus A_g$ with $|J| = R'$ and define $m_s = \tilde{m}_s + 1$ for $s \in J$ and $m_s = \tilde{m}_s$ for $s \in (A_f \setminus A_g) \setminus J$. The m_s defined in this way have the property that

$$\left| m_s - \frac{\lceil 1/\varepsilon \rceil}{|P_f|} n_s \right| \leq 1 \quad \forall s \in A_f \setminus A_g, \quad \left| \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_f \setminus P_g| - \sum_{s \in A_f \setminus A_g} m_s \right| \leq 1. \quad (6)$$

Combining results (5) and (6), we have the additional result that

$$\left| \lceil 1/\varepsilon \rceil - \sum_{s \in A_f} m_s \right| \leq \left| \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_f \cap P_g| - \sum_{s \in A_f \cap A_g} m_s \right| + \left| \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_f \setminus P_g| - \sum_{s \in A_f \setminus A_g} m_s \right| \leq 2. \quad (7)$$

In particular, combining the results of inequalities (5), (6), and (7), we can conclude that the m_s satisfy

$$\left| \frac{m_s}{\sum_{s' \in A_f} m_{s'}} - \frac{n_s}{|P_f|} \right| = O(\varepsilon). \quad (8)$$

We can use these inequalities to bound the difference between $f(x)$ and $f(z)$. Define

$$\tilde{f}^{\setminus \tau}(x) = \frac{\sum_{s \in A_f} n_s \mathbf{V}_f \mathbf{E}_s^f}{\sum_{s' \in A_f} n_{s'}}$$

to be the internal state of f immediately after the attention layer, ignoring the τ -suffix. Letting P_f^τ be the set of positions f attends to in the τ -suffix of x , observe that we can write

$$\tilde{f}(x) = \tilde{f}^{\setminus \tau}(x) \cdot \frac{\sum_{s' \in A_f} n_{s'}}{\sum_{s' \in A_f} n_{s'} + |P_f^\tau|} + \frac{\sum_{i \in P_f^\tau} \mathbf{V}_f \mathbf{E}_{x_i}^f}{\sum_{s' \in A_f} n_{s'} + |P_f^\tau|}.$$

It therefore follows that

$$\|\tilde{f}(x) - \tilde{f}^{\setminus \tau}(x)\| \leq \left| 1 - \frac{1}{1 + \frac{|P_f^\tau|}{\sum_{s' \in A_f} n_{s'}}} \right| \|\tilde{f}^{\setminus \tau}(x)\| + \frac{\tau M_f^V}{\sum_{s' \in A_f} n_{s'}} \quad (9)$$

$$\leq \frac{2\tau}{\sum_{s' \in A_f} n_{s'}} \cdot M_f^V + \frac{\tau M_f^V}{\sum_{s' \in A_f} n_{s'}} \quad (10)$$

$$\leq 3M_f^V \tau \varepsilon. \quad (11)$$

Inequalities (9) and (10) both use the fact that $|P_f^\tau| \leq \tau$ and $\|\mathbf{V}_f \mathbf{E}_s^f\| \leq M_f^V$. Inequality (10) additionally uses that

$$\frac{1}{1 + \frac{|P_f^\tau|}{\sum_{s' \in A_f} n_{s'}}} \geq 1 - \frac{2|P_f^\tau|}{\sum_{s' \in A_f} n_{s'}}$$

810 provided that $|P_f^\tau| / \sum_{s' \in A_f} n_{s'} \leq 1/2$. Since $|P_f| = \sum_{s \in A_f} n_s > 1/\varepsilon$ and $|P_f^\tau| \leq \tau$, this
 811 inequality holds for ε small enough. The final inequality (35) simply uses the fact that $\sum_{s \in A_f} n_s =$
 812 $|P_f| > 1/\varepsilon$.
 813

814 If we then define

$$815 \tilde{f}^{\setminus \tau}(z) = \frac{\sum_{s \in A_f} m_s \mathbf{V}_f \mathbf{E}_s^f}{\sum_{s' \in A_f} m_{s'}},$$

816 a similar calculation will then yield
 817

$$819 \|\tilde{f}(z) - \tilde{f}^{\setminus \tau}(z)\| \leq \frac{3\tau M_f^V}{\sum_{s \in A_f} m_s} \leq \frac{3\tau M_f^V}{\lceil 1/\varepsilon \rceil - 2} \leq 4M_f^V \tau \varepsilon$$

820 for ε small enough. By the triangle inequality, we then have
 821

$$822 \|\tilde{f}(x) - \tilde{f}(z)\| \leq \|\tilde{f}(x) - \tilde{f}^{\setminus \tau}(x)\| + \|\tilde{f}(z) - \tilde{f}^{\setminus \tau}(z)\| + \|\tilde{f}^{\setminus \tau}(x) - \tilde{f}^{\setminus \tau}(z)\| \\ 823 = \|\tilde{f}^{\setminus \tau}(x) - \tilde{f}^{\setminus \tau}(z)\| + O(M_f^V \tau \varepsilon). \quad (12)$$

824 We can now bound $\|\tilde{f}^{\setminus \tau}(x) - \tilde{f}^{\setminus \tau}(z)\|$. We have
 825

$$826 \|\tilde{f}^{\setminus \tau}(x) - \tilde{f}^{\setminus \tau}(z)\| = \left\| \frac{\sum_{s \in A_f} n_s \mathbf{V}_f \mathbf{E}_s^f}{|P_f|} - \frac{\sum_{s \in A_f} m_s \mathbf{V}_f \mathbf{E}_s^f}{\sum_{s' \in A_f} m_{s'}} \right\| \\ 827 \leq M_f^V \sum_{s \in A_f} \left| \frac{n_s}{|P_f|} - \frac{m_s}{\sum_{s' \in A_f} m_{s'}} \right| \\ 828 = O(M_f^V |\Sigma| \varepsilon). \quad (13)$$

829 Equation 13 uses the bound from (8) and the fact that $|A_f| \leq |\Sigma|$. Plugging (13) into (12), we obtain
 830

$$831 \|\tilde{f}(x) - \tilde{f}(z)\| = O(M_f^V (|\Sigma| + \tau) \varepsilon).$$

832 Applying Lemma A.2, we then have
 833

$$834 \|f(x) - f(z)\| = O(L_f^{\text{MLP}} M_f^V (|\Sigma| + \tau) \varepsilon). \quad (14)$$

835 We will refer to the portion of z which has been defined up to now as the *f-prefix* of z .
 836

837 It remains to extend z so that it can simulate the behavior of g *without* adding any tokens in A_f so as
 838 to preserve the previous calculations. There are now two cases depending on the size of $P_f \cap P_g$.
 839 First, suppose that $|P_f \cap P_g| / |P_g| \leq \varepsilon$. By Lemma A.4, there exist \tilde{m}_s such that
 840

$$841 \left| \tilde{m}_s - \frac{\lceil 1/\varepsilon^2 \rceil}{|P_g|} n_s \right| \leq 1 \quad \forall s \in A_g, \quad \sum_{s \in A_g} \tilde{m}_s = \lceil 1/\varepsilon^2 \rceil.$$

842 We now define $m_s = \tilde{m}_s$ for $s \in A_g \setminus A_f$. Combined with the earlier definitions of m_s for
 843 $s \in A_f \cap A_g$ above, this defines m_s for all $s \in A_g$. Furthermore, we have
 844

$$845 \sum_{s \in A_g \setminus A_f} m_s = \lceil 1/\varepsilon^2 \rceil - \sum_{s \in A_f \cap A_g} \tilde{m}_s \\ 846 \geq \lceil 1/\varepsilon^2 \rceil - \sum_{s \in A_f \cap A_g} \left(\frac{\lceil 1/\varepsilon^2 \rceil}{|P_g|} n_s + 1 \right) \\ 847 = \lceil 1/\varepsilon^2 \rceil - \frac{|P_f \cap P_g|}{|P_g|} \lceil 1/\varepsilon^2 \rceil - |A_f \cap A_g| \\ 848 \geq \lceil 1/\varepsilon^2 \rceil (1 - \varepsilon) - |\Sigma| \\ 849 \geq \lceil 1/\varepsilon^2 \rceil (1 - 2\varepsilon) \quad (15)$$

864 for ε small enough. (Here, (15) uses the assumption that $|P_f \cap P_g|/|P_g| \leq \varepsilon$.) Thus, using similar
 865 logic as the derivation for inequality (8), we obtain
 866

$$867 \quad \left| \frac{m_s}{\sum_{s' \in S_g \setminus S_f} m_{s'}} - \frac{n_s}{|P_g|} \right| = O(\varepsilon).$$

870 We now show that the terms in the τ suffix *and* in $A_f \cap A_g$ do not contribute much to g . Define
 871

$$872 \quad \tilde{g}^{\tau,f}(x) = \sum_{s \in A_g \setminus A_f} \frac{n_s \mathbf{V}_g \mathbf{E}_s^g}{|P_g|}.$$

875 We have the following bound:

$$877 \quad \|\tilde{g}(x) - \tilde{g}^{\tau,f}(x)\| = \left\| \frac{\sum_{s \in A_g} n_s \mathbf{V}_g \mathbf{E}_s^g + \sum_{i \in P_g^\tau} \mathbf{V}_g \mathbf{E}_{x_i}^g}{|P_g| + |P_g^\tau|} - \sum_{s \in A_g \setminus A_f} \frac{n_s \mathbf{V}_g \mathbf{E}_s^g}{|P_g|} \right\|$$

$$880 \quad \leq \frac{\sum_{i \in P_g^\tau} \|\mathbf{V}_g \mathbf{E}_{x_i}^g\|}{|P_g| + |P_g^\tau|} + \frac{\sum_{s \in A_g \cap A_f} n_s \|\mathbf{V}_g \mathbf{E}_{x_i}^g\|}{|P_g| + |P_g^\tau|} + \frac{\sum_{s \in A_g \setminus A_f} n_s \|\mathbf{V}_g \mathbf{E}_s^g\|}{|P_g|} \left| \frac{|P_g|}{|P_g| + |P_g^\tau|} - 1 \right|$$

$$884 \quad \leq M_g^V \tau \varepsilon + \frac{M_g^V |P_f \cap P_g|}{|P_g|} + \frac{|P_g \setminus P_f| M_g^V}{|P_g|} \cdot \frac{2|P_g^\tau|}{|P_g|} \quad (16)$$

$$887 \quad \leq M_g^V \tau \varepsilon + M_g^V \varepsilon + 2M_g^V \tau \varepsilon$$

$$889 \quad \leq 4M_g^V \tau \varepsilon. \quad (17)$$

891 Inequality (16) used the fact that $|P_g| \geq 1/\varepsilon$, $|P_g^\tau| \leq \tau$, $\|\mathbf{V}_g \mathbf{E}_s^g\| \leq M_g^V$, and $|P_g|/(|P_g| + |P_g^\tau|) \geq$
 892 $1 - 2|P_g^\tau|/|P_g|$ whenever $|P_g^\tau|/|P_g|$ is small enough (which it will be for small enough ε).
 893

894 If we define

$$895 \quad \tilde{g}^{\tau,f}(z) = \sum_{s \in A_g \setminus A_f} \frac{m_s \mathbf{V}_g \mathbf{E}_s^g}{\sum_{s' \in A_g \setminus A_f} m_{s'}},$$

896 then the same logic as used to derive (17) can be used to show that $\|\tilde{g}^{\tau,f}(z) - \tilde{g}(z)\| = O(M_g^V \varepsilon)$.
 897 This is because the critical facts that

$$900 \quad \frac{\sum_{s \in A_g \cap A_f} m_s}{\sum_{s \in A_g \setminus A_f} m_s} = O(\varepsilon),$$

903 analogous to $|P_f \cap P_g|/|P_g|$; and

$$905 \quad \frac{|P_g^\tau|}{\sum_{s \in A_g \setminus A_f} m_s} = O(\tau \varepsilon^2) = O(\varepsilon)$$

907 analogous to $|P_g^\tau|/|P_g| = O(\tau \varepsilon)$.

909 We can now use inequality (17), the triangle inequality, and Lemma A.2 to bound the error for g . We
 910 have

$$911 \quad \|\tilde{g}(x) - \tilde{g}(z)\| \leq \|\tilde{g}(x) - \tilde{g}^{\tau,f}(x)\| + \|\tilde{g}^{\tau,f}(x) - \tilde{g}(z)\| + \|\tilde{g}^{\tau,f}(x) - \tilde{g}^{\tau,f}(z)\|$$

$$913 \quad \leq O(M_g^V \tau \varepsilon) + \sum_{s \in A_g \setminus A_f} \left| \frac{m_s}{\sum_{s' \in A_g \setminus A_f} m_{s'}} - \frac{n_s}{|P_g|} \right| M_g^V$$

$$915 \quad = O(M_g^V (\tau + |\Sigma|) \varepsilon).$$

918 Lemma A.2 then gives $\|g(x) - g(z)\| = O(L_g^{\text{MLP}} M_g^V (\tau + |\Sigma|) \varepsilon)$. This completes the case when
 919 $|P_f \cap P_g|/|P_g| \leq \varepsilon$.
 920

921 Otherwise we have $|P_f \cap P_g|/|P_g| > \varepsilon$. In this case, we have $|P_g| < |P_f \cap P_g|/\varepsilon \leq |P_f|/\varepsilon$. We
 922 now consider two further subcases. Again if $|P_f| \leq 1/\varepsilon$, we then have $|P_g| \leq 1/\varepsilon^2$. Thus, there are
 923 at most $1/\varepsilon + 1/\varepsilon^2 + \tau = O(1/\varepsilon^2)$ tokens in the union of the attention patterns of f and g on x .
 924 Thus, by setting z equal to the collection of all tokens in this union of attention patterns, we have
 925 $f(x) = f(z)$, $g(x) = g(z)$, $\|f(x) - g(x)\| = \|f(z) - g(z)\| = O(\varepsilon)$, and $|z| = O(1/\varepsilon^2)$ as desired.
 926 Thus, we may assume that $|P_f| > 1/\varepsilon$.

927 Let $s^* = \text{argmax}_{s \in A_f} n_s$. Note that since $|P_f| \geq 1/\varepsilon$ and $|A_f| \leq |\Sigma|$, we must have $n_{s^*} \geq |P_f|/|\Sigma|$.
 928 For $s \in A_g \setminus A_f$, we first define \tilde{m}_s by
 929

$$931 \quad 932 \quad \tilde{m}_s = \left\lfloor \frac{m_{s^*}}{n_{s^*}} \cdot n_s \right\rfloor.$$

935 Again similar to Lemma A.4, we define
 936

$$938 \quad 939 \quad R = \left\lfloor \sum_{s \in A_g \setminus A_f} \frac{m_{s^*}}{n_{s^*}} n_s - \sum_{s \in A_g \setminus A_f} m_s \right\rfloor.$$

942 We again have $R \leq |A_g \setminus A_f|$, so we can choose $I \subseteq A_g \setminus A_f$, $|I| = R$, and define $m_s = \tilde{m}_s + 1$
 943 for $s \in I$ and $m_s = \tilde{m}_s$ for $s \in (A_g \setminus A_f) \setminus I$. In this way, we have
 944

$$947 \quad 948 \quad \left| m_s - \frac{m_{s^*}}{n_{s^*}} n_s \right| \leq 1 \quad \forall s \in A_g \setminus A_f, \quad \left| \sum_{s \in A_g \setminus A_f} \frac{m_{s^*}}{n_{s^*}} n_s - \sum_{s \in A_g \setminus A_f} m_s \right| \leq 1. \quad (18)$$

951 Note that in addition, we have
 952

$$955 \quad 956 \quad \sum_{s \in A_g \setminus A_f} m_s \leq \sum_{s \in A_g \setminus A_f} \frac{m_{s^*}}{n_{s^*}} n_s + 1 \quad (19)$$

$$958 \quad 959 \quad \leq \sum_{s \in A_g \setminus A_f} \frac{\lceil 1/\varepsilon \rceil n_{s^*} + 1}{n_{s^*}} n_s + 1 \quad (20)$$

$$962 \quad 963 \quad \leq \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_g \setminus P_f| + \frac{|\Sigma|}{n_{s^*}} + 1 \quad (21)$$

$$965 \quad 966 \quad \leq \lceil 1/\varepsilon \rceil \cdot (1/\varepsilon) + |\Sigma|^2/\varepsilon + 1 \quad (22)$$

$$967 \quad 968 \quad = O(1/\varepsilon^2). \quad (23)$$

971 In particular, this implies that this construction can be completed by adding at most $O(1/\varepsilon^2)$ tokens
 972 to z , so in all cases the length of z is $O(1/\varepsilon^2)$ as desired.

We now proceed to bound the approximation error. We first want to extend the bound in (18) to all of A_g . To this end, we have

$$\begin{aligned} \left| \sum_{s \in A_g} \frac{m_{s^*}}{n_{s^*}} n_s - \sum_{s \in A_g} m_s \right| &\leq \left| \sum_{s \in A_g \setminus A_f} \frac{m_{s^*}}{n_{s^*}} n_s - \sum_{s \in A_g \setminus A_f} m_s \right| + \left| \sum_{s \in A_g \cap A_f} \frac{m_{s^*}}{n_{s^*}} n_s - \sum_{s \in A_g \cap A_f} m_s \right| \\ &\leq 1 + \frac{m_{s^*}}{n_{s^*}} |P_g \cap P_f| - \frac{\lceil 1/\varepsilon \rceil}{|P_f|} |P_g \cap P_f| + 1 \end{aligned} \quad (24)$$

$$\begin{aligned} &\leq 2 + \left(\frac{\lceil 1/\varepsilon \rceil n_{s^*} + 1}{n_{s^*}} - \frac{\lceil 1/\varepsilon \rceil}{|P_f|} \right) |P_g \cap P_f| \end{aligned} \quad (25)$$

$$\begin{aligned} &\leq 2 + \frac{|P_g \cap P_f|}{n_{s^*}} \\ &\leq 2 + |\Sigma|. \end{aligned} \quad (26)$$

Inequality (24) uses (18) and (5); (25) again uses (5); and (26) uses the fact that $n_{s^*} \geq |P_f|/|\Sigma|$.

We can now bound the error of the *ratio* of m_s over all of A_g . We have

$$\frac{m_s}{\sum_{s' \in A_g} m_{s'}} \geq \frac{\frac{m_{s^*}}{n_{s^*}} n_s - 1}{\frac{m_{s^*}}{n_{s^*}} \sum_{s' \in A_g} n_{s'} + 2 + |\Sigma|} \quad (27)$$

$$\begin{aligned} &\geq \frac{n_s}{\sum_{s' \in A_g} n_{s'} + \frac{2+|\Sigma|}{m_{s^*}/n_{s^*}}} - \frac{1}{\frac{m_{s^*}}{n_{s^*}} \sum_{s' \in A_g} n_{s'}} \\ &\geq \frac{n_s}{\sum_{s' \in A_g} n_{s'}} - O\left(\frac{|\Sigma|}{\sum_{s' \in A_g} n_{s'}}\right) - \frac{1}{m_{s^*}} \end{aligned} \quad (28)$$

$$\begin{aligned} &\geq \frac{n_s}{\sum_{s' \in A_g} n_{s'}} - O\left(\frac{|\Sigma|}{m_{s^*}}\right) \\ &\geq \frac{n_s}{\sum_{s' \in A_g} n_{s'}} - O(|\Sigma|^2 \varepsilon). \end{aligned} \quad (29)$$

Inequality (27) uses (5) and (26); (28) uses $(\sum_{s' \in A_g} n_{s'})/n_{s^*} \geq 1$; and (29) again uses (5) and $n_{s^*} \geq |P_f|/|\Sigma|$ to conclude $m_{s^*} = \Omega(|\Sigma|/\varepsilon)$. In a similar fashion, it can be shown that

$$\frac{m_s}{\sum_{s' \in A_g} m_{s'}} \leq \frac{n_s}{\sum_{s' \in A_g} n_{s'}} + O(|\Sigma|^2 \varepsilon).$$

Now we compare $g(x)$ and $g(z)$. As before, the effect of the τ -prefix contributes at most $O(L_g^{\text{MLP}} M_g^V \tau \varepsilon)$ to $\|g(x) - g(z)\|$, so we have

$$\begin{aligned} \|g(x) - g(z)\| &\leq L_g^{\text{MLP}} \sum_{s \in S_g} \left| \frac{m_s}{\sum_{s' \in S_g} m_{s'}} - \frac{n_s}{\sum_{s' \in S_g} n_{s'}} \right| M_g^V + O(L_g^{\text{MLP}} M_g^V \tau \varepsilon) \\ &= O(L_g^{\text{MLP}} M_g^V (|\Sigma|^3 + \tau) \varepsilon). \end{aligned}$$

Let $M_f = L_f^{\text{MLP}} M_f^V$ and similarly for g . In every case, we have constructed z such that $\|f(x) - f(z)\| = O(M_f(|\Sigma| + \tau) \varepsilon)$ and $\|g(x) - g(z)\| = O(M_g(|\Sigma|^3 + \tau) \varepsilon)$, and the length of z is $O(1/\varepsilon^2)$. Making the crude bound $|\Sigma|^3 + \tau \leq |\Sigma|^3 \tau$ for convenience, we therefore have

$$\|f(x) - g(x)\| = O((M_f + M_g)|\Sigma|^3 \tau \varepsilon)$$

1026 whenever $\|f(z) - g(z)\| \leq \varepsilon$ for all inputs $|z| \leq N$, and $N = O(1/\varepsilon^2)$. Thus, by substituting
 1027 $\varepsilon \mapsto \frac{\varepsilon}{(M_f + M_g)|\Sigma|^3\tau}$, we have $\|f(x) - g(x)\| = O(\varepsilon)$ for any string x provided that f and g differ by
 1028 at most ε on inputs up to a length
 1029

$$1030 \quad N = O\left(\frac{(M_f + M_g)^2|\Sigma|^6\tau^2}{\varepsilon^2}\right).$$

1032

1033 **Including positional embedding vectors** The setting with positional embedding vectors can be
 1034 reduced to the general vocabulary case at the cost of increasing $|\Sigma| \rightarrow |\Sigma|\Delta$ and an additional
 1035 factor of Δ by considering each possible (token, position mod Δ) combination as its own token
 1036 without positional embedding vectors. (This increases the vocabulary size from $|\Sigma|$ to $|\Sigma|\Delta$.) The
 1037 construction without positional embedding vectors can then be used considering this expanded
 1038 vocabulary; however, placing a “token” in the expanded vocabulary $\Sigma \times [\Delta]$ may require placing up
 1039 to Δ true tokens to ensure that the positional embedding is correct. Thus, this construction requires at
 1040 most an additional factor of Δ tokens. This gives a final bound
 1041

$$1042 \quad N = O\left(\frac{(M_f + M_g)^2\Delta^7|\Sigma|^6\tau^2}{\varepsilon^2}\right).$$

1043

1044 As discussed in the beginning of the section, it will also be critical that $|z| \equiv |x| \pmod{\Delta}$; this can
 1045 always be accomplished by padding z with at most Δ additional tokens, which does not change the
 1046 asymptotic length bound. \square

1047

1048 A.3 PROOF OF THEOREM 4.2

1049

1050 **Lemma A.5.** *Let $x \in \Sigma^T$ and suppose that its constituent tokens x_i are drawn i.i.d. from a
 1051 categorical distribution, where $\mathbb{P}(x_i = s) = p_s$ for each $s \in \Sigma$. Then with probability at least $1 - \rho$,
 1052 we have that*

$$1053 \quad \left| \frac{n(s, i, x)}{T/\Delta} - p_s \right| \leq \delta$$

1054

1055 for all (s, i) simultaneously provided that $T \geq \Delta\delta^{-2} \log \frac{2|\Sigma|\Delta}{\rho}$. We say that $x \in \text{bulk}_T$ when the
 1056 above inequality holds for all $(s, i) \in \Sigma \times [\Delta]$ simultaneously.

1057

1058 *Proof.* Fix i and consider the subset of positions $j \equiv i \pmod{\Delta}$ and let $T' = T/\Delta$ be the length of
 1059 each of these subsequences. (We will ignore the fact that this may not be an integer as it is neither
 1060 interesting nor important.) By Hoeffding’s inequality, we have that $|n(s, i, x) - p_s T'| > c\sqrt{T'}$ with
 1061 probability at most $2e^{-c^2}$. Setting $c = \sqrt{\log \frac{2|\Sigma|\Delta}{\rho}}$ and taking a union bound over $(s, i) \in \Sigma \times [\Delta]$,
 1062 we see that

$$1063 \quad \left| \frac{n(s, x)}{T'} - p_s \right| \leq \sqrt{\frac{\log \frac{2|\Sigma|\Delta}{\rho}}{T'}}$$

1064

1065 with probability at least $1 - \rho$. Setting $\delta = \sqrt{\frac{\log \frac{2|\Sigma|\Delta}{\rho}}{T'}}$ and solving for $T = \Delta T'$ yields the desired
 1066 result. \square

1067

1068 **Lemma A.6.** *Let $A(x) \subseteq \Sigma \times [\Delta]$ be the set of (token, position mod Δ) pairs in the τ -prefix attended
 1069 to by f when parsing the final token x_T . Furthermore, suppose $A(x) \neq \emptyset$, i.e., some tokens in the
 1070 τ -prefix enter hard attention. Define*

1071

$$1072 \quad \tilde{f}^{\setminus \tau}(x) = \frac{\sum_{(s, i) \in A(x)} n(s, i, x) \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)}{\sum_{(s', i', x) \in A(x)} n(s', i', x)}$$

1073

1074 to be the internal state of f immediately after the attention layer, ignoring the τ -suffix. Furthermore,
 1075 define

1076

$$1077 \quad \bar{\tilde{f}}(x) = \frac{\sum_{(s, i) \in A(x)} p_s \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)}{\sum_{(s', i') \in A(x)} p_{s'}}$$

1078

1079

1080 Finally suppose that $\min_{s \in \Sigma} p_s \geq \gamma$ and that δ is small enough such that $|\Sigma|\Delta\delta/\gamma \leq 1/2$. Then for
 1081 any $x \in \text{bulk}_T$, we have that

1082

$$1083 \|\tilde{f}^{\setminus\tau}(x) - \tilde{f}(x)\| \leq \frac{3M_f^V(|\Sigma|\Delta)^2\delta}{\gamma},$$

1084

1085 where $M_f^V = \max_{s \in \Sigma, i \in [\Delta]} \|\mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)\|$.

1086

1087 *Proof.* Let $A = A(x)$. Observe that

1088

$$1089 \|\tilde{f}^{\setminus\tau}(x) - \tilde{f}(x)\| \leq \sum_{(s,i) \in A} \left| \frac{n(s,i,x)}{\sum_{(s',i') \in A} n(s',i',x)} - \frac{p_s}{\sum_{(s',i') \in A} p_{s'}} \right| M_f^V. \quad (30)$$

1090

1092 We will proceed by bounding the terms in this summation. Let $T' = T/\Delta$. Observe that for
 1093 $x \in \text{bulk}_T$, we have the following:

$$1094 \frac{n(s,i,x)}{\sum_{(s',i') \in A} n(s',i',x)} \leq \frac{(p_s + \delta)T'}{\sum_{(s',i') \in A} (p_{s'} - \delta)T'} \quad (31)$$

1095

$$1096 \leq \left(\frac{p_s}{\sum_{(s',i') \in A} p_{s'}} + \frac{\delta}{\sum_{(s',i') \in A} p_{s'}} \right) \frac{\sum_{(s',i') \in A} p_{s'}}{\sum_{(s',i') \in A} p_{s'} - \delta|\Sigma|\Delta}$$

1097

$$1098 \leq \left(\frac{p_s}{\sum_{(s',i') \in A} p_{s'}} + \frac{\delta}{\gamma} \right) \left(1 + \frac{2|\Sigma|\Delta\delta}{\gamma} \right) \quad (32)$$

1099

$$1100 \leq \frac{p_s}{\sum_{(s',i') \in A} p_{s'}} + \frac{3|\Sigma|\Delta\delta}{\gamma}.$$

1101

1102 Inequality (31) holds because $|A| \leq |\Sigma|\Delta$. Inequality (32) holds because $\sum_{s' \in A} p_{s'} \geq \gamma$ (since A is
 1103 nonempty and all $p_{s'} \geq \gamma$) and $1/(1 - |\Sigma|\Delta\delta/\gamma) \leq 1 + 2|\Sigma|\Delta\delta/\gamma$ when $|\Sigma|\Delta\delta/\gamma \leq 1/2$. A similar
 1104 argument with $\delta \mapsto -\delta$ and the inequalities reversed also shows that

$$1111 \frac{n(s,x)}{\sum_{(s',i') \in A} n(s',i',x)} \geq \frac{p_s}{\sum_{(s',i') \in A} p_{s'}} - \frac{3|\Sigma|\Delta\delta}{\gamma}.$$

1112

1113 We can therefore bound the terms in (30) and we obtain

$$1115 \|\tilde{f}^{\setminus\tau}(x) - \tilde{f}(x)\| \leq \sum_{s \in A} \frac{3|\Sigma|\Delta\delta}{\gamma} M_f^V \leq \frac{3(|\Sigma|\Delta)^2 M_f^V \delta}{\gamma}$$

1116

1117 as desired. □

1118 **Lemma A.7.** Let $A(x)$ be defined as in Lemma A.6 and again suppose $A(x) \neq \emptyset$. Let $A^\tau(x)$ be the
 1119 set of (token, position) pairs attended to in the τ -suffix. Define

$$1122 \tilde{f}(x) = \frac{\sum_{(s,i) \in A(x)} n(s,i,x) \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i) + \sum_{(s,i) \in A^\tau} \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)}{\sum_{(s,i) \in A(x)} n(s,i,x) + |A^\tau|}$$

1123

1124 to be the internal state of f immediately after the attention layer, this time not ignoring the τ -suffix.
 1125 Then we have

$$1127 \|\tilde{f}(x) - \tilde{f}^{\setminus\tau}(x)\| \leq \frac{3\tau\Delta M_f^V}{(\gamma - \delta)T}$$

1128

1129 provided that $x \in \text{bulk}_T$.

1130 *Proof.* We denote $A = A(x)$ and $A^\tau = A^\tau(x)$. Observe that we can write

$$1132 \tilde{f}(x) = \tilde{f}^{\setminus\tau}(x) \cdot \frac{\sum_{(s,i) \in A} n(s,i,x)}{\sum_{(s,i) \in A} n(s,i,x) + |A^\tau|} + \frac{\sum_{(s,i) \in A^\tau} \mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)}{\sum_{(s,i) \in A} n(s,i,x) + |A^\tau|}.$$

1133

1134 It therefore follows that
 1135

$$1136 \quad \|\tilde{f}(x) - \tilde{f}^{\setminus \tau}(x)\| \leq \left| 1 - \frac{1}{1 + \frac{|A^\tau|}{\sum_{(s,i) \in A} n(s,i,x)}} \right| \|\tilde{f}^{\setminus \tau}(x)\| + \frac{\tau M_f^V}{\sum_{(s,i) \in A} n(s,i,x)} \quad (33)$$

$$1140 \quad \leq \frac{2\tau}{\sum_{(s,i) \in A} n(s,i,x)} \cdot M_f^V + \frac{\tau M_f^V}{\sum_{(s,i) \in A} n(s,i,x)} \quad (34)$$

$$1143 \quad \leq \frac{3\tau M_f^V}{(\gamma - \delta)T/\Delta}. \quad (35)$$

1146 Inequalities (33) and (34) both use the fact that $|A^\tau| \leq \tau$ and $\|\mathbf{V}_f(\mathbf{E}_s^f + \mathbf{p}_i)\| \leq M_f^V$. Inequality (34)
 1147 additionally uses that $1/(1 + |A^\tau|/\sum_{(s,i) \in A} n(s,i,x)) \geq 1 - 2|A^\tau|/\sum_{(s,i) \in A} n(s,i,x)$ provided
 1148 that $|A^\tau|/\sum_{(s,i) \in A} n(s,i,x) \leq 1/2$. The final inequality (35) uses the fact that $A \neq \emptyset$; that
 1149 $x \in \text{bulk}_T$ so $n(s,i,x) \geq (p_s - \delta)T/\Delta$; and that $p_s \geq \gamma$. \square
 1150

1151 **Lemma A.8.** *Suppose that $x \in \text{bulk}_T$, $z \in \text{bulk}_N$, $x_{T-\tau+1:T} = z_{N-\tau+1:N}$ and $N \equiv T \pmod{\Delta}$
 1152 with $N \leq T$, and $\min_{s \in \Sigma} p_s \geq \gamma$. Then*

$$1154 \quad \|f(x) - f(z)\| \leq 6M_f^V L_f^{\text{MLP}} \left(\frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau \Delta}{(\gamma - \delta)N} \right).$$

1156 Here, L_f^{MLP} is the bound on the MLP Lipschitz constant from Lemma A.2
 1157

1158 *Proof.* Observe that since x and z share a common τ -suffix (and therefore a common final token) as
 1159 well as a common positional embedding vector on the final token, $A(x) = A(z)$ and $A^\tau(x) = A^\tau(z)$.
 1160 We may now consider two cases. If $A(x) = A(z) = \emptyset$, then $f(x) = f(z)$ exactly (all of the
 1161 calculations are performed on the shared τ -suffix) and the desired inequality holds trivially.
 1162

1163 Otherwise, we may assume that $A(x) = A(z) \neq \emptyset$. We may then apply Lemmas A.6 and A.7. We
 1164 have

$$1166 \quad \|\tilde{f}(x) - \tilde{f}(x)\| \leq \|\tilde{f}(x) - \tilde{f}^{\setminus \tau}(x)\| + \|\tilde{f}^{\setminus \tau}(x) - \tilde{f}(x)\| \leq \frac{3\tau \Delta M_f^V}{(\gamma - \delta)T} + \frac{3M_f^V (|\Sigma|\Delta)^2 \delta}{\gamma}. \quad (36)$$

1168 The analogous inequality holds for z with T replaced by N . Since $\tilde{f}(x)$ depends on x only via $A(x)$,
 1169 we have $\tilde{f}(x) = \tilde{f}(z)$. Thus we can again apply the triangle inequality to write $\|\tilde{f}(x) - \tilde{f}(z)\| \leq$
 1170 $\|\tilde{f}(x) - \tilde{f}(x)\| + \|\tilde{f}(x) - \tilde{f}(z)\|$. Applying inequality (36) to each of these terms and using the fact
 1171 that $N \leq T$, we have
 1172

$$1173 \quad \|\tilde{f}(x) - \tilde{f}(z)\| \leq 6M_f^V \left(\frac{\tau \Delta}{(\gamma - \delta)N} + \frac{(|\Sigma|\Delta)^2 \delta}{\gamma} \right).$$

1176 We can then directly apply Lemma A.2 to obtain the final result. \square
 1177

1178 **Lemma A.9.** *Let $\{p_s\}_{s \in \Sigma} \sim \text{Dirichlet}((\alpha_s)_{s \in \Sigma})$ be drawn from a Dirichlet distribution with
 1179 parameters α_s . Define $\alpha^* = \sum_{s \in \Sigma} \alpha_s$ and $\alpha_0 = \min_{s \in \Sigma} \alpha_s$. Then we have*

$$1180 \quad \mathbb{P}(\exists s \in \Sigma : p_s < \gamma) \leq \frac{2|\Sigma|}{\alpha_0} 4^{\alpha^*} \gamma^{\alpha_0}.$$

1183 *Proof.* Rather than dealing with the more complex joint distribution of the p_s , we will bound
 1184 the marginals and apply a union bound. The marginals of the Dirichlet distribution are $p_s \sim$
 1185 $\text{Beta}(\alpha_s, \alpha^* - \alpha_s)$, so it suffices to provide a lower tail bound for the beta distribution.
 1186

1187 Let $x \sim \text{Beta}(\alpha, \beta)$, so x has density $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}$, where $B(\alpha, \beta) =$
 1188 $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function. We first give a lower bound on $B(\alpha, \beta)$. When $\alpha, \beta > 1$,

1188 we have

$$\begin{aligned}
 1190 \quad B(\alpha, \beta) &\geq \int_{1/4}^{3/4} x^{\alpha-1} (1-x)^{\beta-1} dx \\
 1191 &\geq \frac{1}{2} \cdot \left(\frac{1}{4}\right)^{\alpha-1} \left(\frac{1}{4}\right)^{\beta-1} \\
 1192 &= \frac{1}{2^{2\alpha+2\beta-3}} \\
 1193 &\geq \frac{1}{4^{\alpha+\beta}}.
 \end{aligned}$$

1199 When $\alpha \leq 1$, we have

$$1200 \quad B(\alpha, \beta) \geq \int_0^1 (1-x)^{\beta-1} dx = \frac{1}{\beta}.$$

1203 Similarly, when $\beta \leq 1$, we have

$$1204 \quad B(\alpha, \beta) \geq \int_0^1 x^{\alpha-1} dx = \frac{1}{\alpha}.$$

1207 In particular, since $4^{\alpha+\beta} \geq \alpha, \beta$ for $\alpha, \beta > 0$, we have that

$$1209 \quad B(\alpha, \beta) \geq \min\{\alpha^{-1}, \beta^{-1}, 4^{-(\alpha+\beta)}\} = 4^{-(\alpha+\beta)}.$$

1210 With this inequality, we can now establish the following bound for $t \leq 1/2$:

$$\begin{aligned}
 1212 \quad \mathbb{P}(x \leq t) &= \frac{1}{B(\alpha, \beta)} \int_0^t x^{\alpha-1} (1-x)^{\beta-1} dx \\
 1213 &\leq \frac{1}{B(\alpha, \beta)} \int_0^t x^{\alpha-1} (1-x)^{-1} dx \\
 1214 &\leq \frac{1}{B(\alpha, \beta)} \int_0^t x^{\alpha-1} (1-t)^{-1} dx \\
 1215 &= \frac{t^\alpha}{\alpha(1-t)B(\alpha, \beta)} \\
 1216 &\leq \frac{2}{\alpha} \cdot 4^{\alpha+\beta} t^\alpha.
 \end{aligned}$$

1224 Now that we have established the tail bound for a general beta distribution, we can return to the
1225 original goal of bounding the Dirichlet. The marginal beta distribution for each p_s has $\alpha = \alpha_s$ and
1226 $\beta = \alpha^* - \alpha_s$. Thus, by a union bound, we have

$$\begin{aligned}
 1227 \quad \mathbb{P}(\exists s : p_s < \gamma) &\leq \sum_{s \in \Sigma} \mathbb{P}(p_s < \gamma) \\
 1228 &\leq \sum_{s \in \Sigma} \frac{2}{\alpha_s} \cdot 4^{\alpha_s + \alpha^* - \alpha_s} \gamma^{\alpha_s} \\
 1229 &\leq \frac{2|\Sigma|}{\alpha_0} 4^{\alpha^*} \gamma^{\alpha_0},
 \end{aligned}$$

1234 as desired. □

1235 **Lemma A.10.** Suppose that $T \geq N \geq \Delta \delta^{-2} \log \frac{2|\Sigma|\Delta}{\rho}$ and $\min_s p_s \geq \gamma$. Then we have

$$1238 \quad \|f - g\|_{T, \mathcal{P}} = O \left((M_f + M_g) \left(\rho + \frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau \Delta}{(\gamma - \delta)N} \right) + \|f - g\|_{N', \mathcal{P}} \right).$$

1240 *Proof.* Given an integer N , define the simulation map $\text{sim}_N(x) = x_{T-N'+1:T}$ = the last N' tokens
1241 of x , where $N \leq N' < N + \Delta$ is chosen such that $N' \equiv T \pmod{\Delta}$. Note that using this definition

1242 and for $N \geq \tau$, we have $x_{T-\tau+1:T} = (\text{sim}_N(x))_{N-\tau+1:\tau}$, i.e., the τ -suffixes coincide. Furthermore,
 1243 by definition, $N' = |\text{sim}_N(x)| \equiv T \pmod{\Delta}$ and the final tokens match, so $A(\text{sim}_N(x)) = A(x)$.
 1244

1245 By Lemma A.5 and a union bound, $x \in \text{bulk}_T$ and $\text{sim}_N(x) \in \text{bulk}_{N'}$ simultaneously with
 1246 probability at least $1 - 2\rho$ provided that $T \geq N \geq \Delta\delta^{-2} \log \frac{2|\Sigma|\Delta}{\rho}$. The token independence means
 1247 that $\sum_{|x|=T, \text{sim}_N(x)=z} \mathbb{P}(x) = \mathbb{P}(z)$, so we have

$$\begin{aligned} \sum_{|x|=T} \mathbb{P}(x) \|f(x) - g(x)\| &\leq \sum_{\substack{|x|=T \\ x \notin \text{bulk}_T \text{ or} \\ \text{sim}_N(x) \notin \text{bulk}_{N'}}} \mathbb{P}(x) \cdot (M_f + M_g) + \sum_{\substack{|x|=T \\ x \in \text{bulk}_T \text{ and} \\ \text{sim}_N(x) \in \text{bulk}_{N'}}} \mathbb{P}(x) \|f(x) - g(x)\| \\ &\leq 2\rho(M_f + M_g) + \sum_{z \in \text{bulk}_{N'}} \left(\sum_{\substack{x \in \text{bulk}_T \\ \text{sim}_N(x)=z}} \mathbb{P}(x) \right) (\|f(z) - g(z)\| + \|f(x) - f(z)\| + \|g(x) - g(z)\|) \\ &\leq 2\rho(M_f + M_g) + \sum_{z \in \text{bulk}_{N'}} \mathbb{P}(z) (\|f(z) - g(z)\| + \|f(x) - f(z)\| + \|g(x) - g(z)\|) \\ &\leq 2\rho(M_f + M_g) + \|f - g\|_{N', \mathcal{P}} + 6(M_f^V L_f^{\text{MLP}} + M_g^V L_g^{\text{MLP}}) \left(\frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau\Delta}{(\gamma - \delta)N} \right) \quad (37) \end{aligned}$$

$$= O \left((M_f + M_g) \left(\rho + \frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau\Delta}{(\gamma - \delta)N} \right) + \|f - g\|_{N', \mathcal{P}} \right). \quad (38)$$

1264 Inequality (37) follows from Lemma A.8. Inequality (38) uses the fact that $M_f^V L_f^{\text{MLP}} \leq M_f$ and
 1265 similarly for g . \square

1270 We are now ready to prove Theorem 4.2, which we restate here for convenience.

1271 **Theorem 4.2.** *For any probability distribution $\mathcal{P} = (p_s)_{s \in \Sigma}$ over the token vocabulary Σ , define*

$$1273 \|f - g\|_{n, \mathcal{P}} = \sum_{|x|=n} \mathbb{P}_{\mathcal{P}}(x) \|f(x) - g(x)\|,$$

1275 where $\mathbb{P}_{\mathcal{P}}(x) = \prod_{i=1}^{|x|} p_{x_i}$ is the probability of the sequence x when the tokens are drawn i.i.d. from
 1276 \mathcal{P} . Let $\mathcal{P} = (p_s)_{s \in \Sigma} \sim \text{Dir}((\alpha_s)_{s \in \Sigma})$ be drawn from a Dirichlet distribution, and define

$$1278 \|f - g\|_n = \mathbb{E}_{\mathcal{P} \sim \text{Dir}((\alpha_s)_{s \in \Sigma})} [\|f - g\|_{n, \mathcal{P}}].$$

1279 Let $\alpha_0 = \min_{s \in \Sigma} \alpha_s$. Then there exists

$$1280 N_0 = O \left(\max \left\{ 2^{p/\gamma}, \frac{16^{\frac{\alpha^*}{\alpha_0}} L^{2+2\alpha_0^{-1}} |\Sigma|^{4+2\alpha_0^{-1}} \Delta^5}{\alpha_0^{2\alpha_0^{-1}} \varepsilon^{2+2\alpha_0^{-1}}} \log \frac{|\Sigma|\Delta L}{\varepsilon} \right\} \right) = \tilde{O}(\varepsilon^{-2-2\alpha_0^{-1}})$$

1283 such that if $\|f - g\|_N \leq \varepsilon$ for all $N \leq N_0$, we have that $\|f - g\|_T = O(\varepsilon^{1/2})$ for any T .

1285 *Proof.* By Markov's inequality, $\mathbb{E}_{\mathcal{P} \sim \text{Dir}((\alpha_s)_{s \in \Sigma})} \|f - g\|_{N', \mathcal{P}} \leq \varepsilon$ implies that $\|f - g\|_{N', \mathcal{P}} > \eta$
 1286 with probability at most ε/η . When \mathcal{P} is such that $\|f - g\|_{N', \mathcal{P}} > \eta$, we can use the bound
 1287 $\|f - g\|_{T, \mathcal{P}} \leq M_f + M_g$.

1288 By Lemma A.9, $\min_s p_s < \gamma$ with probability at most $\frac{2|\Sigma|}{\alpha_0} 4^{\alpha^*} \gamma^{\alpha_0}$. On this event, we can again
 1289 bound $\|f(x) - g(x)\|_{T, \mathcal{P}} \leq M_f + M_g$.

1291 Conditional on $\min_s p_s \geq \gamma$ and $\|f - g\|_{N', \mathcal{P}} \leq \eta$, we can use the bound from Lemma A.10.

1292 Thus, by marginalizing \mathcal{P} over the previous three cases, we have that

$$1294 \mathbb{E}_{\{p_s\}} \|f - g\|_{1, T} = O \left((M_f + M_g) \left(\frac{|\Sigma|}{\alpha_0} 4^{\alpha^*} \gamma^{\alpha_0} + \frac{\varepsilon}{\eta} + \rho + \frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau\Delta}{(\gamma - \delta)N} \right) + \eta \right) \quad (39)$$

1296 provided that $N \geq \Delta \delta^{-2} \log \frac{2|\Sigma|\Delta}{\rho}$. To make the entire bound $O(\varepsilon^{1/2})$, we choose the following:
1297

$$1298 \quad \eta = \varepsilon^{1/2}, \quad \rho = \frac{\varepsilon^{1/2}}{M_f + M_g}, \quad \gamma = \left(\frac{\alpha_0 \varepsilon^{1/2}}{4^{\alpha^*} |\Sigma| (M_f + M_g)} \right)^{\alpha_0^{-1}},$$

$$1300 \quad \delta = \frac{\varepsilon^{1/2} \gamma}{(M_f + M_g)(|\Sigma|\Delta)^2} = \frac{\alpha_0^{\alpha_0^{-1}} \varepsilon^{\frac{1}{2}(1+\alpha_0^{-1})}}{4^{\alpha^*} (M_f + M_g)^{1+\alpha_0^{-1}} |\Sigma|^{2+\alpha_0^{-1}} \Delta^2}.$$

1301 Note that with these settings, we indeed have $\gamma > \delta$ and furthermore $\tau\Delta/((\gamma - \delta)N) =$
1302 $O(\varepsilon^{1+\alpha_0^{-1}/2}) = o(\varepsilon^{1/2})$. All other terms in (39) are $O(\varepsilon^{1/2})$. Thus, we arrive at an error of
1303 $O(\varepsilon^{1/2})$ with

$$1304 \quad N = O \left(\frac{16^{\alpha_0^*} (M_f + M_g)^{2+2\alpha_0^{-1}} |\Sigma|^{4+2\alpha_0^{-1}} \Delta^5}{\alpha_0^{2\alpha_0^{-1}} \varepsilon^{1+\alpha_0^{-1}}} \log \frac{|\Sigma|\Delta(M_f + M_g)}{\varepsilon} \right)$$

1305 as desired. We make several remarks. First, we actually required that $\|f - g\|_{N'} \leq \varepsilon$, but since
1306 $N' < N + \Delta$ this does not change the final asymptotic bound on sequence length. Second, it is
1307 interesting that up to leading order terms in ε^{-1} , τ does not enter the bound.

1308 A final remark on the proof is that if we strengthen the assumption to $\|f - g\|_{N', \mathcal{P}} \leq \varepsilon$ *conditionally*
1309 on \mathcal{P} with $\min_s p_s > \gamma$, the resulting error can scale as ε rather than $\varepsilon^{1/2}$, albeit with a larger required
1310 N_0 . In this case, (39) becomes

$$1311 \quad \mathbb{E}_{\{p_s\}} \|f - g\|_{1, T} = O \left((M_f + M_g) \left(\frac{|\Sigma|}{\alpha_0} 4^{\alpha^*} \gamma^{\alpha_0} + \rho + \frac{(|\Sigma|\Delta)^2 \delta}{\gamma} + \frac{\tau\Delta}{(\gamma - \delta)N} \right) + \varepsilon \right). \quad (40)$$

1312 Setting ρ , γ , and δ according to

$$1313 \quad \rho = \frac{\varepsilon}{M_f + M_g}, \quad \gamma = \left(\frac{\varepsilon}{4^{\alpha^*} \frac{|\Sigma|}{\alpha_0} (M_f + M_g)} \right)^{\alpha_0^{-1}},$$

$$1314 \quad \delta = \frac{\varepsilon \gamma}{(M_f + M_g)(|\Sigma|\Delta)^2} = \frac{\alpha_0^{\alpha_0^{-1}} \varepsilon^{1+\alpha_0^{-1}}}{4^{\alpha^*} (M_f + M_g)^{1+\alpha_0^{-1}} |\Sigma|^{2+\alpha_0^{-1}} \Delta^2},$$

1315 inequality (40) is $O(\varepsilon)$ with

$$1316 \quad N = O \left(\frac{16^{\alpha_0^*} (M_f + M_g)^{2+2\alpha_0^{-1}} |\Sigma|^{4+2\alpha_0^{-1}} \Delta^5}{\alpha_0^{2\alpha_0^{-1}} \varepsilon^{2+2\alpha_0^{-1}}} \log \frac{|\Sigma|\Delta(M_f + M_g)}{\varepsilon} \right)$$

$$1317 \quad = O(\varepsilon^{-(2+2\alpha_0^{-1})} \log \varepsilon^{-1}).$$

1318 \square

1319 B OMITTED PROOFS FROM SECTION 5

1320 **Notation.** We will assume WLOG that $\Sigma = [S]$. For a string $x \in [S]^{|x|}$, define $\mu(x)$ to be the
1321 empirical frequencies of the tokens in x , i.e $\mu(x) := \frac{1}{|x|} \sum_{i=1}^{|x|} \mathbf{e}_{x_i}$, where $\mathbf{e}_j \in \mathbb{R}^S$ is the j th standard
1322 basis element. Moreover, let $x_{\leq i}$ denote the substring of x containing the first i tokens, and for a set
1323 \mathcal{A} , $x_{\mathcal{A}}$ the substring of x containing only those indices in \mathcal{A} . Finally, for integers $a < b$, define $[a : b]$
1324 to be the set of integers $\{a, a+1, \dots, b-1, b\}$.

1325 B.1 PROOF OF KEY SIMULATION LEMMA

1326 In this section, we prove Lemma 5.3, which we restate below for convenience.

1350 **Lemma 5.3.** *Let $p : [S]^{\tau+1} \times \Delta^S \rightarrow \mathbb{R}^m$ be a fixed function, which is L Lipschitz in its second
 1351 argument and uniformly bounded by G . Then, there exists a subset $\mathcal{I} \subset [T]$ such that, if $z = x_{\mathcal{I}}$, then
 1352 $|\mathcal{I}| - n \leq \tau + 1 + n^{1/3}$ and*

$$1354 \quad \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{|z|} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \lesssim \frac{(G+L)(\tau+1)}{n^{1/3}}.$$

1358 *Proof.* Our proof proceeds via the probabilistic method. Let us sample \mathcal{I} as follows. Let $p = n/T$,
 1359 and let $q \in (0, 1)$ be a parameter to be chosen later. Let us define a Markov chain j_1, \dots, j_T on the
 1360 state space $\{0, 1\}$, with the following transition probabilities:

$$1361 \quad \begin{aligned} \mathbb{P}(j_{t+1} = 0 \mid j_t = 0) &= 1 - r, & \mathbb{P}(j_{t+1} = 1 \mid j_t = 0) &= r \\ 1362 \quad \mathbb{P}(j_{t+1} = 0 \mid j_t = 1) &= q, & \mathbb{P}(j_{t+1} = 1 \mid j_t = 1) &= 1 - q \end{aligned}$$

1364 Letting $r := \frac{pq}{1-p}$, the stationary distribution is $\mathbb{P}(j_t = 1) = p$.

1367 We will let the subset \mathcal{I} be $\mathcal{I} := \{i \mid j_i = 1\} \cup [T - \tau : T]$

1369 **Computing the variance of $|\mathcal{I}|$.** The first step is to compute the variance of $|\mathcal{I}|$. By definition,
 1370 $\mathbb{E}|\mathcal{I}| = (T - \tau - 1) \cdot p + (\tau + 1) = n + (\tau + 1)(1 - p)$.

1371 Since the k -step transition kernel satisfies

$$1373 \quad \mathbb{P}[j_{t+k} = 1 \mid j_t = 1] = (1 - q - r)^k (1 - p) + p,$$

1374 we have that

$$\begin{aligned} 1376 \quad \mathbb{E}(|\mathcal{I}|)^2 &= \mathbb{E} \left(\sum_{t=1}^T j_t \right)^2 \\ 1377 \quad &= \sum_{i,i'=1}^T \mathbb{E}[j_i j_{i'}] \\ 1378 \quad &= (\tau + 1)^2 + 2(\tau + 1)(T - \tau - 1)p + \sum_{i,i'=1}^{T - \tau - 1} \left((1 - q - r)^{|i-i'|} (1 - p)p + p^2 \right) \\ 1379 \quad &\leq (\tau + 1)^2 + 2(\tau + 1)(T - \tau - 1)p + (T + \tau - 1)^2 p^2 + 2(T - \tau - 1)(1 - p)p \sum_{i=0}^{\infty} (1 - q - r)^i \\ 1380 \quad &\leq (\mathbb{E}|\mathcal{I}|)^2 + 2T \frac{(1 - p)p}{q + r} \\ 1381 \quad &\leq (\mathbb{E}|\mathcal{I}|)^2 + \frac{2Tp}{q} \\ 1382 \quad &\leq (\mathbb{E}|\mathcal{I}|)^2 + \frac{2n}{q}. \end{aligned}$$

1383 Therefore $\mathbb{E}(|\mathcal{I}| - \mathbb{E}|\mathcal{I}|)^2 \leq 2n/q$.

1396 **Decomposing the original expression.** Next, we bound the quantity

$$1398 \quad \mathbb{E} \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\|.$$

1402 Define \mathcal{I}_{gap} to be the set of indices in \mathcal{I} such that some index in $\{i - \tau, \dots, i - 1\}$ is not in \mathcal{I} , i.e

$$1403 \quad \mathcal{I}_{gap} = \{i \in \mathcal{I} \mid \exists t \in [\tau] : i - t \notin \mathcal{I}\}.$$

1404 We can write, denoting $\mathcal{I} = \{i_1, \dots, i_{|\mathcal{I}|}\}$ with $i_1 < i_2 < \dots < i_{|\mathcal{I}|}$,

$$\begin{aligned}
 1406 \quad & \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) = \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \cdot \mathbf{1}(i_t \in I_{gap}) + \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \cdot \mathbf{1}(i_t \notin I_{gap}) \\
 1407 \quad & = \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \cdot \mathbf{1}(i_t \in I_{gap}) + \frac{1}{n} \sum_{t=1}^{|z|} p(x_{i_t-\tau:i_t}, \mu(z_{\leq t})) \cdot \mathbf{1}(i_t \notin I_{gap}) \\
 1408 \quad & = \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \cdot \mathbf{1}(i_t \in I_{gap}) + \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{[t] \cap \mathcal{I}})) \cdot \mathbf{1}([t-\tau:t] \subset \mathcal{I}).
 \end{aligned}$$

1415 Therefore we can decompose

$$\begin{aligned}
 1416 \quad & \mathbb{E} \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \\
 1417 \quad & \leq \underbrace{\mathbb{E} \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) \cdot \mathbf{1}([t-\tau:t] \subset \mathcal{I}) \right\|}_{(I)} \\
 1418 \quad & + \underbrace{\mathbb{E} \left\| \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) \cdot \mathbf{1}([t-\tau:t] \subset \mathcal{I}) - \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{[t] \cap \mathcal{I}})) \cdot \mathbf{1}([t-\tau:t] \subset \mathcal{I}) \right\|}_{(II)} \\
 1419 \quad & + \underbrace{\frac{G\mathbb{E}|\mathcal{I}_{gap}|}{n}}_{(III)}.
 \end{aligned}$$

1420 **Bounding (I):** Let us begin by defining the random variable

$$1421 \quad Z_t = p(x_{t-\tau:t}, \mu(x_{\leq t})) \left(1 - \frac{T}{n} \mathbf{1}([t-\tau:t] \subset \mathcal{I})\right).$$

1422 The first term is then

$$\begin{aligned}
 1423 \quad (I) &= \frac{1}{T} \mathbb{E} \left\| \sum_{i=1}^T Z_i \right\| \\
 1424 \quad &\leq \frac{1}{T} \sum_{i=1}^{\tau} \|Z_i\| + \frac{1}{T} \sum_{i=T-\tau}^T \|Z_i\| + \frac{1}{T} \mathbb{E} \left\| \sum_{i=1}^{T-\tau-1} Z_i \right\| \\
 1425 \quad &\leq \frac{G(2\tau+1)}{n} + \frac{1}{T} \left(\mathbb{E} \left\| \sum_{i=1}^{T-\tau-1} Z_i \right\|^2 \right)^{1/2} \\
 1426 \quad &= \frac{G(2\tau+1)}{n} + \frac{1}{T} \left(\mathbb{E} \sum_{i=1}^{T-\tau-1} \|Z_i\|^2 + \sum_{i \neq j} \mathbb{E} \langle Z_i, Z_j \rangle \right)^{1/2}
 \end{aligned}$$

1427 First, see that

$$\begin{aligned}
 1428 \quad \mathbb{E} \|Z_t\|^2 &\leq G^2 \mathbb{E} \left[\left(1 - \frac{T}{n} \mathbf{1}([t-\tau:t] \subset \mathcal{I}) \right)^2 \right] \leq G^2 \left(1 - \frac{2T}{n} p(1-q)^\tau + \frac{T^2}{n^2} p(1-q)^\tau \right) \\
 1429 \quad &\leq \frac{G^2 T^2 p}{n^2} \\
 1430 \quad &= \frac{G^2 T}{n}.
 \end{aligned}$$

1458 Next, we have that
1459

$$\begin{aligned}
 1460 \quad |\mathbb{E}\langle Z_i, Z_j \rangle| &\leq G^2 \left| \mathbb{E} \left[\left(1 - \frac{T}{n} \mathbf{1}([i - \tau : i] \subset \mathcal{I}) \right) \left(1 - \frac{T}{n} \mathbf{1}([j - \tau : j] \subset \mathcal{I}) \right) \right] \right| \\
 1461 \\
 1462 &= G^2 \left| 1 - \frac{2T}{n} \cdot p(1 - q)^\tau + \frac{T^2}{n^2} \mathbb{P}([i - \tau : i] \subset \mathcal{I}, [j - \tau : j] \subset \mathcal{I}) \right| \\
 1463 \\
 1464 &= G^2 \left| 1 - 2(1 - q)^\tau + p^{-2} \cdot \mathbb{P}([i - \tau : i] \subset \mathcal{I}, [j - \tau : j] \subset \mathcal{I}) \right|
 \end{aligned}$$

1465 Let's assume that $i < j$. First, consider the case where $j \geq i + \tau$. Then
1466

$$\begin{aligned}
 1467 \quad \mathbb{P}([i - \tau : i] \subset \mathcal{I}, [j - \tau : j] \subset \mathcal{I}) &= p(1 - q)^\tau \cdot \mathbb{P}(j - \tau \in \mathcal{I} \mid i \in \mathcal{I}) \cdot (1 - q)^\tau \\
 1468 \\
 1469 &= p(1 - q)^{2\tau} (p + (1 - p)(1 - q - r)^{j-i-\tau}),
 \end{aligned}$$

1470 and thus
1471

$$\begin{aligned}
 1472 \quad |\mathbb{E}\langle Z_i, Z_j \rangle| &\leq G^2 \left| 1 - 2(1 - q)^\tau + (1 - q)^{2\tau} + p^{-1}(1 - p)(1 - q)^{2\tau}(1 - q - r)^{j-i-\tau} \right| \\
 1473 \\
 1474 &\leq G^2 ((1 - (1 - q)^\tau)^2 + p^{-1}(1 - q)^{j-i+\tau}) \\
 1475 \\
 1476 &\leq G^2 (\tau^2 q^2 + p^{-1}(1 - q)^{j-i+\tau})
 \end{aligned}$$

Next, for $j < i + \tau$, we have that
1476

$$\begin{aligned}
 1477 \quad \mathbb{P}([i - \tau : i] \subset \mathcal{I}, [j - \tau : j] \subset \mathcal{I}) &= \mathbb{P}([i - \tau : j] \subset \mathcal{I}) \\
 1478 \\
 1479 &= p(1 - q)^{j-i+\tau},
 \end{aligned}$$

and thus
1480

$$\begin{aligned}
 1481 \quad |\mathbb{E}\langle Z_i, Z_j \rangle| &\leq G^2 \left| 1 - 2(1 - q)^\tau + p^{-1}(1 - q)^{j-i+\tau} \right| \\
 1482 \\
 1483 &\leq G^2 p^{-1} (1 - q)^{j-i+\tau}.
 \end{aligned}$$

Altogether, (I) can be bounded as
1484

$$\begin{aligned}
 1485 \quad (\mathbf{I}) &\leq \frac{G(2\tau + 1)}{n} + \frac{1}{T} \left(\frac{G^2 T^2}{n} + T^2 G^2 \tau^2 q^2 + 2G^2 p^{-1} T \sum_{k>0} (1 - q)^{k+\tau} \right)^{1/2} \\
 1486 \\
 1487 &\leq \frac{G(2\tau + 1)}{n} + \frac{1}{T} \left(\frac{G^2 T^2}{n} + T^2 G^2 \tau^2 q^2 + 2G^2 T^2 n^{-1} q^{-1} \right)^{1/2} \\
 1488 \\
 1489 &\lesssim \frac{G(\tau + 1)}{n} + \frac{G}{\sqrt{n}} + G\tau q + \frac{G}{\sqrt{np}}.
 \end{aligned}$$

1494 **Bounding (II):** Let's next consider the (II) term. Since p is L -Lipschitz in its second argument, we
1495 have that
1496

$$\begin{aligned}
 1497 \quad (\mathbf{II}) &= \mathbb{E} \left\| \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I}) - \frac{1}{n} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{[t] \cap \mathcal{I}})) \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I}) \right\| \\
 1498 \\
 1499 &\leq \frac{L}{n} \sum_{t=1}^T \mathbb{E} [\|\mu(x_{\leq t}) - \mu(x_{[t] \cap \mathcal{I}})\| \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I})]
 \end{aligned}$$

1503 Let's compute the t th term in this sum, for $t \in [\tau + 1, T - \tau - 1]$ (for $t \leq \tau$, the quantity is trivially
1504 zero, and for $t \geq T - \tau$ we can bound it by $O(1)$). We have that
1505

$$\begin{aligned}
 1506 \quad \mathbb{E} [\|\mu(x_{\leq t}) - \mu(x_{[t] \cap \mathcal{I}})\| \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I})] \\
 1507 &= \mathbb{E} \left[\left\| \mu(x_{\leq t}) - \frac{\sum_{i=1}^t e_{x_i} \mathbf{1}(i \in \mathcal{I})}{|\mathcal{I} \cap [t]|} \right\| \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I}) \right] \\
 1508 \\
 1509 &= p(1 - q)^\tau \mathbb{E} \left[\left\| \frac{\mu(x_{\leq t}) \cdot |\mathcal{I} \cap [t]| - \sum_{i=1}^t e_{x_i} \mathbf{1}(i \in \mathcal{I})}{|\mathcal{I} \cap [t]|} \right\| \mid \mathbf{1}([t - \tau : t] \subset \mathcal{I}) \right].
 \end{aligned}$$

1512 The denominator is $|\mathcal{I} \cap [t]| = \sum_{i=1}^t \mathbf{1}(i \in \mathcal{I})$. We first bound its conditional expectation:

$$\begin{aligned}
 1514 \mathbb{E}[|\mathcal{I} \cap [t]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})] &= \tau + 1 + \sum_{i=1}^{t-\tau-1} \mathbb{P}(i \in \mathcal{I} \mid t-\tau \in \mathcal{I}) \\
 1515 &= \tau + 1 + (t-\tau-1)p + (1-p) \sum_{i=1}^{t-\tau-1} (1-q-r)^i \\
 1516 &\geq pt.
 \end{aligned}$$

1520 Next, we can bound the conditional variance of the denominator:

$$\begin{aligned}
 1521 \text{Var}(|\mathcal{I} \cap [t]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})) &= \text{Var}(|\mathcal{I} \cap [t-\tau-1]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})) \\
 1522 &= \sum_{i,j=1}^{t-\tau-1} \text{Cov}(i \in \mathcal{I}, j \in \mathcal{I} \mid t-\tau \in \mathcal{I}) \\
 1523 &= \sum_{i,j=1}^{t-\tau-1} \mathbb{P}(j \in \mathcal{I} \mid i \in \mathcal{I}) \mathbb{P}(i \in \mathcal{I} \mid t-\tau \in \mathcal{I}) - \mathbb{P}(j \in \mathcal{I} \mid t-\tau \in \mathcal{I}) \mathbb{P}(i \in \mathcal{I} \mid t-\tau \in \mathcal{I}) \\
 1524 &= \sum_{i,j=1}^{t-\tau-1} (1-p)((1-q-r)^{i-j} - (1-q-r)^{t-\tau-j})((1-q-r)^{t-\tau-i}(1-p) + p) \\
 1525 &\leq \sum_{i,j=1}^{t-\tau-1} (1-q)^{i-j}(p + (1-p)(1-q)^{t-\tau-i}) \\
 1526 &= \sum_{i=1}^{t-\tau-1} (p + (1-p)(1-q)^{t-\tau-i}) \sum_{j=1}^i (1-q)^{i-j} \\
 1527 &\leq q^{-1} \sum_{i=1}^{t-\tau-1} (p + (1-p)(1-q)^{t-\tau-i}) \\
 1528 &\leq pq^{-1}(t-\tau-1) + q^{-2}
 \end{aligned}$$

1543 Altogether, by Chebyshev's inequality, we can upper bound the conditional probability that the
1544 denominator is too small:

$$\begin{aligned}
 1545 \mathbb{P}(|\mathcal{I} \cap [t]| \leq \frac{1}{2}pt \mid t-\tau \in \mathcal{I}) &\leq \mathbb{P}(|\mathcal{I} \cap [t]| \leq \frac{1}{2}\mathbb{E}[|\mathcal{I} \cap [t]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})] \mid [t-\tau:t] \subset \mathcal{I}) \\
 1546 &\leq \frac{4\text{Var}(|\mathcal{I} \cap [t]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I}))}{\mathbb{E}[|\mathcal{I} \cap [t]| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})]^2} \\
 1547 &\leq \frac{pq^{-1}t + q^{-2}}{p^2t^2} \\
 1548 &= \frac{1}{pqt} + \frac{1}{p^2q^2t^2} \\
 1549 &\lesssim \frac{1}{pqt} \wedge 1,
 \end{aligned}$$

1556 where the last inequality follows from the fact that the probability must be bounded by 1.

1557 Altogether, the t th term in the sum is

$$\begin{aligned}
 1558 \mathbb{E}[\|\mu(x_{\leq t}) - \mu(x_{[t] \cap \mathcal{I}})\| \cdot \mathbf{1}([t-\tau:t] \subset \mathcal{I})] \\
 1559 &\lesssim \frac{\mathbb{E}[\|\mu(x_{\leq t}) \cdot |\mathcal{I} \cap [t]| - \sum_{i=1}^t e_{x_i} \mathbf{1}(i \in \mathcal{I})\| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})]}{t} + \left(\frac{1}{qt} \wedge p\right).
 \end{aligned}$$

1563 The numerator in the above expression can be written as

$$\mathbb{E}\left[\left\|\sum_{i=1}^t (\mathbf{1}(i \in \mathcal{I}) - p)(e_{x_i} - \mu(x_{\leq t}))\right\| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})\right] = \mathbb{E}\left[\left\|\sum_{i=1}^t Z_i\right\| \mid \mathbf{1}([t-\tau:t] \subset \mathcal{I})\right],$$

1566 where $Z_i := (\mathbf{1}(i \in \mathcal{I}) - p)(e_{x_i} - \mu(x_{\leq t}))$. For $i, j < t - \tau$, we have the bounds (assuming WLOG
1567 $j < i$)
1568
1569 $|\mathbb{E}[\langle Z_i, Z_j \rangle \mid \mathbf{1}([t - \tau : t] \subset \mathcal{I})]|$
1570 $\lesssim |\mathbb{E}[(\mathbf{1}(i \in \mathcal{I}) - p)(\mathbf{1}(j \in \mathcal{I}) - p) \mid \mathbf{1}([t - \tau : t] \subset \mathcal{I})]|$
1571 $= ((\mathbb{P}(j \in \mathcal{I} \mid i \in \mathcal{I}) - p)\mathbb{P}(i \in \mathcal{I} \mid t - \tau \in \mathcal{I}) - p\mathbb{P}(j \in \mathcal{I} \mid t - \tau \in \mathcal{I}) + p^2)$
1572 $= ((1 - p)(1 - q - r)^{i-j}((1 - q - r)^{t-\tau-i}(1 - p) + p) - p((1 - q - r)^{t-\tau-j}(1 - p) + p) + p^2)$
1573 $= (p(1 - p)(1 - q - r)^{i-j} + (1 - p)^2(1 - q - r)^{t-\tau-j} - p(1 - p)(1 - q - r)^{t-\tau-j})$
1574 $\leq p(1 - q)^{i-j}.$
1575

1576 Therefore,

$$\begin{aligned} 1578 \mathbb{E}\left[\left\|\sum_{i=1}^t Z_i\right\| \mid \mathbf{1}([t - \tau : t] \subset \mathcal{I})\right] &\leq \tau + 1 + \mathbb{E}\left[\left\|\sum_{i=1}^{t-\tau-1} Z_i\right\|^2 \mid \mathbf{1}([t - \tau : t] \subset \mathcal{I})\right]^{1/2} \\ 1579 &\leq \tau + 1 + \left(tp + p \sum_{i \neq j} (1 - q)^{i-j}\right)^{1/2} \\ 1580 &\lesssim \tau + 1 + \sqrt{pt/q}. \\ 1581 \\ 1582 \\ 1583 \\ 1584 \\ 1585 \\ 1586 \end{aligned}$$

1587 Putting everything together, the t th term in the sum can be bounded by
1588

$$\begin{aligned} 1589 \mathbb{E}[\|\mu(x_{\leq t}) - \mu(x_{[t] \cap \mathcal{I}})\| \cdot \mathbf{1}([t - \tau : t] \subset \mathcal{I})] &\lesssim t^{-1}(\tau + 1) + t^{-1/2}p^{1/2}q^{-1/2} + \left(\frac{1}{qt} \wedge p\right) \\ 1590 &\lesssim \left(t^{-1}(\tau + 1) + t^{-1/2}p^{1/2}q^{-1/2} + \frac{1}{qt}\right) \wedge p, \\ 1591 \\ 1592 \\ 1593 \end{aligned}$$

1594 where the last line uses the fact that the entire expression can be trivially bounded by $O(p)$. Plugging
1595 back into the original expression for (II), this term can thus be upper bounded as
1596

$$\begin{aligned} 1597 \text{(II)} &\lesssim \frac{L}{n} \sum_{t=1}^T \left(t^{-1}(\tau + 1) + t^{-1/2}p^{1/2}q^{-1/2} + \frac{1}{qt}\right) \wedge p + \frac{L\tau}{n} \\ 1598 &\lesssim \frac{L}{n} \cdot \left(\sqrt{Tp/q} + \sum_{t=1}^T \frac{\tau + 1 + q^{-1}}{t} \wedge p\right) + \frac{L\tau}{n} \\ 1599 &\lesssim \frac{L}{n} \cdot \left(\sqrt{Tp/q} + \tau + 1 + q^{-1} + \log(Tp/(\tau + 1 + q^{-1}))\right) \\ 1600 &\lesssim \frac{L}{\sqrt{qn}} + \frac{L(\tau + q^{-1})}{n} + \frac{L \log n}{n}. \\ 1601 \\ 1602 \\ 1603 \\ 1604 \\ 1605 \\ 1606 \end{aligned}$$

1607 **Bounding (III):** Finally, for fixed $t \in [\tau + 1 : T - \tau - 1]$, we have $\mathbb{P}(i \in \mathcal{I}_{gap}) = p - p(1 - q)^\tau \lesssim$
1608 $pq\tau$. Therefore we can bound (III) as
1609

$$\text{(III)} \leq \frac{G\mathbb{E}|\mathcal{I}_{gap}|}{n} \leq \frac{G(Tpq\tau + 2\tau)}{n} \leq G\tau(q + 2/n).$$

1612 **Putting everything together.** Altogether, we have that
1613

$$\begin{aligned} 1614 \mathbb{E}\left\|\frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t}))\right\| &\lesssim \frac{(G + L)(\tau + 1)}{n} + \frac{G + L}{\sqrt{qn}} + G\tau q + \frac{L \log n}{n} \\ 1615 &\leq \frac{(G + L)(\tau + 1)}{n^{1/3}}, \\ 1616 \\ 1617 \\ 1618 \\ 1619 \end{aligned}$$

where the last inequality follows from choosing $q = n^{-1/3}$.

1620 By the probabilistic method, there exists \mathcal{I} such that $|\mathcal{I}| - \mathbb{E}|\mathcal{I}| \leq 2n^{1/3} \implies |\mathcal{I}| - n \leq (\tau + 1 +$
 1621 $2n^{1/3})$ and
 1622

$$1624 \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{n} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \lesssim \frac{(G+L)(\tau+1)}{n^{1/3}}.$$

1628 For this choice of \mathcal{I} , we have that
 1629

$$1631 \left\| \frac{1}{T} \sum_{t=1}^T p(x_{t-\tau:t}, \mu(x_{\leq t})) - \frac{1}{|z|} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \\ 1632 \lesssim \frac{(G+L)(\tau+1)}{n^{1/3}} + \left\| \frac{1}{|z|} \sum_{t=1}^{|z|} p(z_{t-\tau:t}, \mu(z_{\leq t})) \right\| \left| 1 - \frac{|z|}{n} \right| \\ 1633 \\ 1634 \lesssim \frac{(G+L)(\tau+1)}{n^{1/3}},$$

1640 as desired. □
 1641

1643 B.2 PROOF OF THEOREM 5.2

1645 The proof begins by showing that the output of the first layer of attention at position i can only depend
 1646 on the histogram of the first i tokens $\mu(x_{\leq i})$, along with the τ -prefix of $x_{\leq i}$.
 1647

1648 **Lemma B.1.** *Let f be a fixed transformer with key, query and value matrices
 1649 $\{(\mathbf{K}_{1,h}, \mathbf{Q}_{1,h}, \mathbf{V}_{1,h})\}_{h \in [H]} \cup \{(\mathbf{K}_{2,1}, \mathbf{Q}_{2,1}, \mathbf{V}_{2,1})\}$, MLP weights $\{(\mathbf{A}_l, \mathbf{B}_l)\}_{l \in \{1,2\}}$, embeddings
 1650 $\|\mathbf{E}_s\| \leq 1$, and unembedding \mathbf{U} . There exists a function $q_f : [S]^{\tau+1} \times \Delta^S \times \mathbb{N} \rightarrow \mathbb{R}^d$ such that*
 1651

$$1653 \mathbf{y}_i^{(1)} = q_f(x_{i-\tau:i}, \mu(x_{\leq i}), i)$$

1655 Moreover, f satisfies
 1656

$$1658 q_f(w, \mu, i) \lesssim \left(1 + \sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op} \right) (1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op}) =: G_f \\ 1659 \\ 1660 |q_f(w, \mu, i) - q_f(w, \mu, j)| \lesssim \left(1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op} \right) (\tau^2 + 1) \min(i, j)^{-\gamma} \sum_{h=1}^H \exp \left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right) =: H_f \min(i, j)^{-\gamma} \\ 1661 \\ 1662 \|\nabla_\mu q_f(w, \mu, i)\|_{op} \leq 2S \left(\sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op} \exp \left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right) \right) (1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op}) =: L_f \\ 1663 \\ 1664 \\ 1665 \\ 1666$$

1667 *Proof.* Recall that the first layer self-attention logits are
 1668
 1669
 1670

1671

$$1672 a_{i,j}^{(1,h)} = \mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i} + \log i \cdot \phi_{1,h}(j, i)$$

1674 and thus we can rewrite $\mathbf{Y}_i^{(1)}$ as
1675
1676 $\mathbf{Y}_i^{(1)}$
1677 $= \mathbf{E}_{x_i} + \sum_{h=1}^H \frac{\sum_{j=1}^i \exp(a_{i,j}^{(1,h)}) \mathbf{V}_{1,h} \mathbf{E}_{x_j}}{\sum_{j=1}^i \exp(a_{i,j}^{(1,h)})}$
1678
1679 $= \mathbf{E}_{x_i} + \sum_{h=1}^H \frac{\sum_{j=1}^i \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \cdot i^{\phi_{1,h}(j,i)} \cdot \mathbf{V}_{1,h} \mathbf{E}_{x_j}}{\sum_{j=1}^i \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \cdot i^{\phi_{1,h}(j,i)}}$
1680
1681 $= \mathbf{E}_{x_i} +$
1682
1683 $\sum_{h=1}^H \frac{\sum_{s \in [S]} i \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mathbf{V}_{1,h} \mathbf{E}_s \mu(x_{\leq i})_s + \sum_{j=i-\tau}^i (i^{\phi_{1,h}(j,i)} - 1) \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mathbf{V}_{1,h} \mathbf{E}_{x_j}}{\sum_{s \in [S]} i \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mu(x_{\leq i})_s + \sum_{j=i-\tau}^i (i^{\phi_{1,h}(j,i)} - 1) \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i})}$
1684
1685 $= \mathbf{E}_{x_i} + \sum_{h=1}^H \frac{N_h}{D_h},$
1686
1687
1688
1689
1690
1691
1692

1693 where for each h , we have

1694 $N_h(x) := \sum_{s \in [S]} i^{1-\gamma_h} \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mathbf{V}_{1,h} \mathbf{E}_s \mu(x_{\leq i})_s$
1695
1696
1697 $+ \sum_{j=i-\tau}^i (i^{\phi_{1,h}(j,i)-\gamma_h} - i^{-\gamma_h}) \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mathbf{V}_{1,h} \mathbf{E}_{x_j}$
1698
1699
1700 $D_h(x) := \sum_{s \in [S]} i^{1-\gamma_h} \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i}) \mu(x_{\leq i})_s + \sum_{j=i-\tau}^i (i^{\phi_{1,h}(j,i)-\gamma_h} - i^{-\gamma_h}) \exp(\mathbf{E}_{x_j}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{x_i})$
1701
1702
1703 $\gamma_h := \max(1, \max_{0 \leq t \leq \tau} \phi_{1,h}(i-t, i)) = \max \mathcal{P}_h$
1704

1705 Therefore we can write $\mathbf{Y}_i^{(1)} = q_{SA}(x_{i-\tau:i}, \mu(x_{\leq i}), i)$, where for $w_{0:\tau} \in [S]^{\tau+1}, \mu \in \Delta^S$,
1706 $q_{SA}(w, \mu, i)$ is given by

1707 $q_{SA}(w, \mu, i) = E_{w_\tau} + \sum_{h=1}^H \frac{N_h(w, \mu, i)}{D_h(w, \mu, i)},$
1708
1709

1710 where

1711 $N_h(w, \mu, i) := \sum_{s \in [S]} i^{1-\gamma_h} \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau}) \mathbf{V}_{1,h} \mathbf{E}_s \mu_s$
1712
1713
1714 $+ \sum_{t=0}^{\tau} (i^{\phi_{1,h}(i-t, i)-\gamma_h} - i^{-\gamma_h}) \exp(\mathbf{E}_{w_t}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau}) \mathbf{V}_{1,h} \mathbf{E}_{w_t}$
1715
1716
1717 $D_h(w, \mu, i) := \sum_{s \in [S]} i^{1-\gamma_h} \exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau}) \mu_s + \sum_{t=0}^{\tau} (i^{\phi_{1,h}(i-t, i)-\gamma_h} - i^{-\gamma_h}) \exp(\mathbf{E}_{w_t}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau})$
1718

1719 Each $N_h(w, \mu, i)/D_h(w, \mu, i)$ term in the above sum is of the form of the expression in Lemma B.2.

1720
1721 First, we see that each denominator can be lower bounded by $\exp(-\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op})$. Moreover,
1722 we have

1723
1724 $\sum_k \|A_k\| \lesssim (\tau + 1) \|\mathbf{V}_{1,h}\|_{op} \exp\left(\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}\right)$
1725
1726 $\sum_k |B_k| \lesssim (\tau + 1) \exp\left(\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}\right)$
1727

1728 Altogether, since $\gamma := \gamma(f) = \min_{h \in H} (\gamma_h - \max\{p \in \mathcal{P}_h : p \neq \gamma_h\})$, we can bound
 1729

$$1730 \quad |q_{SA}(w, \mu, i) - q_{SA}(w, \mu, j)| \lesssim (\tau^2 + 1) j^{-\gamma} \sum_{h=1}^H \exp \left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right).$$

1733 Next, see that $\mathbf{y}_i^{(1)} = q_{MLP}(\mathbf{Y}_i^{(1)})$, where
 1734

$$1735 \quad q_{MLP}(x) = x + \mathbf{B}_1 \psi_1(\mathbf{A}_1 x + \mathbf{b}_1).$$

1736 Since ψ_1 is 1-Lipschitz, q_{MLP} is $1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op}$ Lipschitz. Altogether, since $q_f(w, \mu, i) =$
 1737 $q_{MLP}(q_{SA}(w, \mu, i))$, we have

$$1739 \quad |q_f(w, \mu, i) - q_f(w, \mu, j)| \lesssim \left(1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op} \right) (\tau^2 + 1) j^{-\gamma} \exp \left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right).$$

1741 Next, for the uniform bound, observe that $\|\mathbf{Y}_i^{(1)}\| \leq 1 + \sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op}$, and therefore $\|\mathbf{y}_i^{(1)}\| \leq$
 1742 $\left(1 + \sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op} \right) (1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op})$.
 1743

1744 Finally, we compute the Lipschitz constant with respect to μ .
 1745

1746 Let $M_h \in \mathbb{R}^{d \times S}$ be the matrix with the s th column being $\exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau}) \mathbf{V}_{1,h} \mathbf{E}_s$,
 1747 let b_h be the vector with s th entry $\exp(\mathbf{E}_s^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau})$, and let $C_h =$
 1748 $\sum_{t=0}^\tau (i^{\phi_{1,h}(i-\tau,j)-\gamma_h} - i^{-\gamma_h}) \exp(\mathbf{E}_{w_t}^\top \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \mathbf{E}_{w_\tau}) > 0$. We have that
 1749

$$1751 \quad \nabla_\mu q_{SA}(w, \mu, i) = \sum_{h=1}^H \frac{i^{1-\gamma_h} M_h}{i^{1-\gamma_h} \langle b_h, \mu \rangle + C_h} - \frac{i^{2(1-\gamma_h)} M_h \mu b_j^\top}{(i^{1-\gamma_h} \langle b_h, \mu \rangle + C_h)^2},$$

1755 and since $\langle b_h, \mu \rangle \geq \exp(-\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op})$ and
 1756

$$1757 \quad \|M_h\|_{op} \leq \sqrt{S} \|\mathbf{V}_{1,h}\|_{op} \exp\left(\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}\right) \quad \text{and} \quad \|b_h\| \leq \sqrt{S} \exp\left(\|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}\right),$$

1759 we have that
 1760

$$1761 \quad \|\nabla_\mu q_{SA}(w, \mu, i)\|_{op} \leq \sum_{h=1}^H 2S \|\mathbf{V}_{1,h}\|_{op} \exp\left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right).$$

1764 Altogether,

$$1765 \quad \|\nabla_\mu q_f(w, \mu, i)\|_{op} \leq 2S \left(\sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op} \exp\left(4 \left\| \mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h} \right\|_{op} \right) \right) \left(1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op} \right).$$

1768 \square
 1769

1770 In order to prove the main theorem, it suffices to apply the key simulation lemma Lemma 5.3.
 1771

1772 *Proof of Theorem 5.2.* Let $f, g \in \mathcal{F}_\tau$ be two transformers. In the forward pass of f , the second layer
 1773 logits are given by
 1774

$$1775 \quad a_{i,j}^{(2,1)} = \left(\mathbf{y}_j^{(1)} \right)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \mathbf{y}_i^{(1)} = q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{i-\tau:i}, \mu(x_{\leq i}), i),$$

1776 and therefore
 1777

$$1778 \quad \mathbf{Y}_T^{(2)} = q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \\ 1779 \quad + \mathbf{V}_{2,1} \sum_{j=1}^T \frac{\exp\left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T)\right) q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)}{\sum_{j=1}^T \exp\left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T)\right)}.$$

1782 The analogous expression holds for the second layer logits in the forward pass of g .
 1783

1784 Let us define the following sequence of functions:
 1785

$$1786 \quad p_0(w, \mu) = e_{w-1} \\ 1787 \quad p_{f,1}(w, \mu) = \exp\left(q_f(w, \mu, T)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau, T}, \mu(x), T)\right) \\ 1788 \quad p_{f,2}(w, \mu) = p_{f,1}(w, \mu) q_f(w, \mu), \\ 1789 \\ 1790$$

1791 along with the analogous $p_{g,1}, p_{g,2}$ for the transformer g . We first see that $\|p_0\| \leq 1$ and p_0 is constant
 1792 in μ .
 1793

1794 Next, we have that we can uniformly bound $p_{f,1}$ by
 1795

$$1797 \quad |p_{f,1}(w, \mu)| \leq \exp\left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op}\right), \\ 1798 \\ 1799$$

1800 and the Lipschitz bound
 1801

$$1803 \quad \nabla_\mu p_{f,1}(w, \mu) = \exp\left(q_f(w, \mu, T)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau, T}, \mu(x), T)\right) \nabla_\mu q_f(w, \mu, T) \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau, T}, \mu(x), T) \\ 1804 \\ 1805 \implies \|\nabla_\mu p_{f,1}(w, \mu)\| \leq \exp\left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op}\right) \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} G_f L_f. \\ 1806 \\ 1807$$

1808 Finally, for $p_{f,2}$ we have the uniform bound
 1809

$$1811 \quad |p_{f,2}(w, \mu)| \leq \exp\left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op}\right) G_f \\ 1812 \\ 1813$$

1814 and the Lipschitz bound
 1815

$$1817 \quad \nabla_\mu p_{f,2}(w, \mu) = p_{f,1}(w, \mu) \nabla_\mu q_f(w, \mu, T) + \nabla_\mu p_1(w, \mu) q_f(w, \mu) \\ 1818 \\ 1819 \implies \|\nabla_\mu p_{f,2}(w, \mu)\| \leq \exp\left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op}\right) \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} G_f^2 L_f. \\ 1820 \\ 1821$$

1822 Define the quantity M_f as
 1823

$$1824 \quad M_f := \exp\left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op}\right) \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} G_f^2 L_f, \\ 1825 \\ 1826$$

1827 and analogously for M_g .
 1828

1829 Let us define the function p by
 1830

$$1831 \\ 1832 \\ 1833 \\ 1834 \\ 1835 \quad p(w, \mu) = \begin{bmatrix} M_f M_g \cdot p_0(w, \mu) \\ G_f M_g \cdot p_{f,1}(w, \mu) \\ M_g \cdot p_{f,2}(w, \mu) \\ M_f G_g \cdot p_{g,1}(w, \mu) \\ M_f \cdot p_{g,2}(w, \mu) \end{bmatrix}$$

1836 p is both uniformly bounded by and has a Lipschitz constant of $M_f M_g$. Therefore by Lemma 5.3,
 1837 we have the following bounds:
 1838

$$\begin{aligned}
 1840 \quad & \left\| \frac{1}{T} \sum_{j=1}^T p_0(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_0(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{\tau+1}{n^{1/3}} \\
 1841 \quad & \left\| \frac{1}{T} \sum_{j=1}^T p_{f,1}(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{f,1}(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{M_f G_f^{-1}(\tau+1)}{n^{1/3}} \\
 1842 \quad & \left\| \frac{1}{T} \sum_{j=1}^T p_{f,2}(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{f,2}(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{M_f(\tau+1)}{n^{1/3}} \\
 1843 \quad & \left\| \frac{1}{T} \sum_{j=1}^T p_{g,1}(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{g,1}(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{M_g G_g^{-1}(\tau+1)}{n^{1/3}} \\
 1844 \quad & \left\| \frac{1}{T} \sum_{j=1}^T p_{g,2}(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{g,2}(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{M_g(\tau+1)}{n^{1/3}}.
 \end{aligned}$$

1856
 1857 Let's first look at p_0 . Observe that
 1859

$$\begin{aligned}
 1860 \quad & \frac{1}{T} \sum_{j=1}^T p_0(x_{j-\tau:j}, \mu(x_{\leq j})) = \frac{1}{T} \sum_{j=1}^T e_{x_j} = \mu(x),
 \end{aligned}$$

1864 and therefore
 1865

$$\|\mu(x) - \mu(z)\| = \left\| \frac{1}{T} \sum_{j=1}^T p_0(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_0(z_{j-\tau:j}, \mu(z_{\leq j})) \right\| \lesssim \frac{\tau+1}{n^{1/3}}.$$

1872 Next let's look at $p_{f,1}$. We have that
 1873

$$\begin{aligned}
 1874 \quad & \left| \frac{1}{T} \sum_{j=1}^T \exp \left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \right) - \frac{1}{T} \sum_{j=1}^T p_{f,1}(x_{j-\tau:j}, \mu(x_{\leq j})) \right| \\
 1875 \quad & \leq \frac{1}{T} \sum_{j=1}^T \left| \exp \left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \right) \right. \\
 1876 \quad & \quad \left. - \exp \left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), T)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \right) \right| \\
 1877 \quad & \leq \frac{1}{T} \sum_{j=1}^T \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} G_f \cdot H_f j^{-\gamma(f)} \\
 1878 \quad & = \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} G_f \cdot H_f \xi_{\gamma(f)}(T),
 \end{aligned}$$

1886 where we're letting $\xi_\gamma(T) := \frac{1}{T} \sum_{j=1}^T j^{-\gamma}$

1890

Next, note that

1891

$$\begin{aligned}
& \left| \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(z_{|z|-\tau:|z|}, \mu(z), |z|) \right) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{f,1}(z_{j-\tau:j}, \mu(z_{\leq j})) \right| \\
& \leq \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) \left| q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(z_{|z|-\tau:|z|}, \mu(z), |z|) \right. \\
& \quad \left. - q_f(z_{j-\tau:j}, \mu(z_{\leq j}), T)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{|z|-\tau:|z|}, \mu(x), T) \right| \\
& \leq \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(\|q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j) - q_f(z_{j-\tau:j}, \mu(z_{\leq j}), T)\| \right. \\
& \quad \left. + \|q_f(z_{|z|-\tau:|z|}, \mu(z), |z|) - q_f(x_{|z|-\tau:|z|}, \mu(x), T)\| \right) \\
& \leq \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(H_f j^{-\gamma(f)} + H_f |z|^{-\gamma(f)} + L_f \|\mu(z) - \mu(x)\| \right) \\
& \lesssim \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(H_f \xi_{\gamma(f)}(|z|) + L_f (\tau + 1) n^{-1/3} \right)
\end{aligned}$$

1910

Altogether,

1911

$$\begin{aligned}
& \left| \frac{1}{T} \sum_{j=1}^T \exp \left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \right) \right. \\
& \quad \left. - \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(z_{|z|-\tau:|z|}, \mu(z), |z|) \right) \right| \\
& \lesssim \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(H_f \xi_{\gamma(f)}(|z|) + L_f (\tau + 1) n^{-1/3} \right) \\
& \quad + \left| \frac{1}{T} \sum_{j=1}^T p_{f,1}(x_{j-\tau:j}, \mu(x_{\leq j})) - \frac{1}{|z|} \sum_{j=1}^{|z|} p_{f,1}(z_{j-\tau:j}, \mu(z_{\leq j})) \right| \\
& \lesssim \frac{\exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) L_f (\tau + 1)}{n^{1/3}} \\
& \lesssim \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(H_f \xi_{\gamma(f)}(n) + L_f (\tau + 1) n^{-1/3} \right).
\end{aligned}$$

1929

Similarly, we can bound the numerators by

1930

$$\begin{aligned}
& \left| \frac{1}{T} \sum_{j=1}^T \exp \left(q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(x_{T-\tau:T}, \mu(x_{\leq T}), T) \right) q_f(x_{j-\tau:j}, \mu(x_{\leq j}), j) \right. \\
& \quad \left. - \frac{1}{|z|} \sum_{j=1}^{|z|} \exp \left(q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j)^\top \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} q_f(z_{|z|-\tau:|z|}, \mu(z), |z|) \right) q_f(z_{j-\tau:j}, \mu(z_{\leq j}), j) \right| \\
& \lesssim \exp \left(G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \right) G_f^2 \left\| \mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1} \right\|_{op} \left(H_f \xi_{\gamma(f)}(n) + L_f (\tau + 1) n^{-1/3} \right)
\end{aligned}$$

1940

Finally, we bound

1941

$$\begin{aligned}
& \|q_f(x_{T-\tau:T}, \mu(x), T) - q_f(z_{|z|-\tau:|z|}, \mu(z), |z|)\| \leq L_f \|\mu(x) - \mu(z)\| + H_f |z|^{-\gamma(f)} \\
& \lesssim L_f (\tau + 1) n^{-1/3} + H_f n^{-\gamma(f)}.
\end{aligned}$$

1944 Altogether, we can relate $\mathbf{Y}_T^{(2)}(x)$ and $\mathbf{Y}_{|z|}^{(2)}(z)$ by
 1945

$$1946 \quad \|\mathbf{Y}_T^{(2)}(x) - \mathbf{Y}_{|z|}^{(2)}(z)\| \lesssim \exp\left(4G_f^2 \|\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}\|_{op}\right) G_f^2 \|\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}\|_{op} \left(1 + \|\mathbf{V}_2\|_{op}\right) \left(H_f \xi_{\gamma(f)}(n) + L_f(\tau + 1)n^{-1/3}\right).$$

1948 Finally, we have that
 1949

$$1950 \quad \|f(x) - f(z)\| \leq \|\mathbf{U}\| \left(1 + \|\mathbf{B}_2\|_{op} \|\mathbf{A}_2\|_{op}\right) \|\mathbf{Y}_T^{(2)}(x) - \mathbf{Y}_{|z|}^{(2)}(z)\|.$$

1952 Plugging in the expressions for G_f, L_f, H_f , and noting that $\xi_{\gamma}(n) \lesssim n^{-(1/3 \wedge \gamma)}$, yields
 1953

$$1954 \quad \|f(x) - f(z)\| \lesssim C(f) n^{-(1/3 \wedge \gamma(f))},$$

1955 where
 1956

$$1957 \quad C(f) := \exp\left(C \left(1 + \sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op}\right)^2 (1 + \|\mathbf{B}_1\|_{op} \|\mathbf{A}_1\|_{op})^2 \|\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}\|_{op}\right) \left(1 + \|\mathbf{V}_2\|_{op}\right) \\ 1958 \quad \times \left(\sum_{h=1}^H \|\mathbf{V}_{1,h}\|_{op} \exp\left(4 \|\mathbf{K}_{1,h}^\top \mathbf{Q}_{1,h}\|_{op}\right)\right) \left(1 + \|\mathbf{B}_2\|_{op} \|\mathbf{A}_2\|_{op}\right) \|\mathbf{U}\|_{op} (\tau^2 + 1) S.$$

1960 Repeating the above argument for the transformer g , we have that
 1961

$$1962 \quad \|g(x) - g(z)\| \lesssim C(g) n^{-(1/3 \wedge \gamma(g))}.$$

1963 Combining these together implies the desired result. \square
 1964

1968 B.2.1 HELPER LEMMAS

1970 **Lemma B.2.** *Let $f(i)$ be of the form*

$$1972 \quad f(i) = \frac{\sum_k A_k i^{-\gamma_k}}{\sum_k B_k i^{-\gamma_k}},$$

1974 where $A_k \in \mathbb{R}^d$ and $\sum_k B_k i^{-\gamma_k} \geq \delta$ for all i . Assume that $0 = \gamma_1 < \gamma_2 < \dots < \gamma_K$. Then, for
 1975 $j < i$,

$$1977 \quad \|f(i) - f(j)\| \leq \delta^{-2} j^{-\gamma_2} \left(\sum_k \|A_k\|\right) \left(\sum_k |B_k|\right)$$

1980 *Proof.* One can write
 1981

$$1982 \quad \|f(i) - f(j)\| = \frac{\|(\sum_k A_k i^{-\gamma_k})(\sum_k B_k j^{-\gamma_k}) - (\sum_k A_k j^{-\gamma_k})(\sum_k B_k i^{-\gamma_k})\|}{|(\sum_k B_k i^{-\gamma_k})(\sum_k B_k j^{-\gamma_k})|} \\ 1983 \quad \leq \delta^{-2} \left\| \sum_{l \neq k} (A_l B_k - A_k B_l) i^{-\gamma_l} j^{-\gamma_k} \right\| \\ 1984 \quad \leq \delta^{-2} j^{-\gamma_2} \left(\sum_k \|A_k\|\right) \left(\sum_k |B_k|\right)$$

1992 B.3 IN-CONTEXT k -GRAM CONSTRUCTION

1994 Below, we sketch the in-context k -gram construction, which closely follows Construction 2 in Nichani
 1995 et al. (2024).

1996 In the first layer, the h -th head will attend fully to the $(i - h)$ -th token; this is done by setting
 1997 $\phi_{1,h}(i - h, i)$ to be large, and the rest of the entries of ϕ , along with $\mathbf{K}_{1,h}$ and $\mathbf{Q}_{1,h}$, equal to 0. By

choosing an embedding dimension of $d \geq (\tau + 1)S$, the value matrices $\mathbf{V}_{1,h}$ can be chosen such that $\mathbf{Y}_i^{(1)} = \mathbf{E}_{x_i} \oplus \mathbf{E}_{x_{i-1}} \oplus \dots \oplus \mathbf{E}_{x_{i-\tau}}$; this is accomplished via $\mathbf{V}_{1,h}$ being a block identity matrix, which thus satisfies $\|\mathbf{V}_{1,h}\|_{op} = 1$. The first layer MLP is then set to identically zero, so that $\mathbf{y}^{(1)} = \mathbf{Y}^{(1)}$

In the second layer, $\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}$ is equal to β times another block-identity matrix, which compares the $\mathbf{E}_{x_{i-1}} \oplus \dots \oplus \mathbf{E}_{x_{i-\tau}}$ subspace of $\mathbf{y}_i^{(1)}$ to the $\mathbf{E}_{x_T} \oplus \dots \oplus \mathbf{E}_{x_{T-\tau+1}}$ subspace of $\mathbf{y}_T^{(1)}$. This places an attention weight of $e^{\tau\beta}$ on each token i with $x_{i-\tau:i-1} = x_{T-\tau+1:T}$, and a weight of at most $e^{\tau(\beta-1)}$ on all other tokens. Finally, the second value matrix $\mathbf{V}_{2,1}$ copies from the \mathbf{E}_{x_i} subspace of \mathbf{y}_i , while the second layer MLP is also zero.

Altogether, the output of the transformer is

$$f(x_{1:T})_s = \frac{e^{\beta\tau} \sum_i \mathbf{1}(x_{i-\tau:i-1} = x_{T-\tau+1:T}, x_i = s) + E_{N,s}}{e^{\beta\tau} \sum_i \mathbf{1}(x_{i-\tau:i-1} = x_{T-\tau+1:T}) + E_D},$$

where $\|E_N\|, |E_D| \leq T e^{\beta(\tau-1)}$. Therefore

$$\|f(x_{1:T}) - f^*(x_{1:T})\| \lesssim \frac{T}{e^\beta \sum_i \mathbf{1}(x_{i-\tau:i-1} = x_{T-\tau+1:T})}$$

On a “typical” sequence x , $\sum_i \mathbf{1}(x_{i-\tau:i-1} = x_{T-\tau+1:T}) = \Theta(T)$, in which case

$$\|f(x_{1:T}) - f^*(x_{1:T})\| \lesssim e^{-\beta} \leq \varepsilon$$

whenever $\beta \asymp \log(1/\varepsilon)$. Therefore $\|\mathbf{K}_{2,1}^\top \mathbf{Q}_{2,1}\|_{op} = \Theta(\log(1/\varepsilon))$. Plugging in, this yields a complexity measure of

$$C(f) = \exp(Ck^2 \log(1/\varepsilon)) k^2 S = \varepsilon^{-\Theta(k^2)}.$$

C EXPERIMENTAL METHODOLOGY

Data Generation:

- SimpleTask: Each sequence $x_{1:T}$ is generated by first sampling a probability vector $\mathbf{p} \in \mathbb{R}^3$ uniformly at random over the simplex, then sampling each x_i i.i.d, where $x_i = s$ with probability \mathbf{p}_s . This ensures that $\text{Var}(f^*) = \Theta(1)$. We vary ω between 2 and 5.5 in intervals of 0.5.
- ModPTask: Each sequence $x_{1:T}$ is generated by first generating q_0, \dots, q_{p-1} i.i.d uniformly from $[0, 1]$. Then, each x_i is sampled from $\text{Bernoulli}(p_k)$, where $k \equiv i \pmod p$. This ensures that $\text{Var}(f^*) = \Theta(1)$, and also that attending to incorrect positions mod p cannot help the model. We vary Δ from 3 to 8
- *In-context k-gram*: The data generation follows that of Nichani et al. (2024). Each sequence $x_{1:T}$ is generated by first sampling a k -wise transition tensor $\pi \in [S]^k$, where for any $z_{1:k-1}$ the distribution $\pi(\cdot | z_{1:k-1})$ is sampled uniformly at random over the simplex in S dimensions. Next, $x_{1:k-1}$ are sampled uniformly at random. Finally, for $i \geq k$, we sample $x_i \sim \pi(\cdot | x_{i-k:i-1})$. To ensure that $x_{T-k+1:T}$ occurs at least once in the sequence, we randomly select an index $i \in [k : T-1]$, and replace $x_{i-k+1:i}$ with $x_{T-k+1:T}$. We fix $k = 2$ and vary S from 3 to 8, and also fix $S = 2$ and vary k from 2 to 4.

Training Procedure:

- Single-layer transformers: The model architecture is one layer of a single self-attention head followed by an MLP. The embedding dimension is $d = 16$ and the MLP width is 256. We use the $\mu\mathbf{P}$ initialization Yang et al. (2022), and train using the Adam optimizer with learning rate $\eta = 10^{-2}/d$ for the hidden layers and $\eta = 10^{-2}$ for the embedding layers. We train all of the models using online SGD (sampling a fresh batch of size 1024 at each step), until the training loss crosses below 10^{-5} . All results are averaged over 8 random seeds.

2052
 2053 • Two-layer transformers: The model architecture is a two-layer transformer, with $k - 1$ heads
 2054 in the first layer and one head in the second layer. The embedding dimension is either
 2055 $d = 32$ (when $k = 2$ is fixed and S ranges from 3 to 8) or $d = 16$ (when $S = 2$ and k
 2056 ranges from 2 to 4). We use the μ P initialization and train using the Adam optimizer with
 2057 learning rate $\eta = 3 \cdot 10^{-2}/d$ for the hidden layers and $\eta = 10^{-2}$ for the embedding layers,
 2058 on a fresh batch of size 1024 at each step for 2^{15} steps. The $k = 2$ results are averaged over
 2059 8 random seeds, while the $S = 2$ results are averaged over 14 random seeds.

2060 C.1 EXPRESSIVITY OF SYNTHETIC TASKS

2061 We sketch the constructions for each of the synthetic tasks in Section 6.

2062 **SimpleTask:** Set $p_i = 0$, and let $\mathbf{E}_0, \mathbf{E}_1, \mathbf{E}_2$ be orthogonal. Choose \mathbf{K}, \mathbf{Q} so that $a_{i,j} = \infty$
 2063 when $j = 0, 1$ and $a_{i,j} = 0$ when $j = 2$. The attention probabilities will then be uniform over all
 2064 0 and 1 tokens, and thus the output of self-attention becomes $\mathbf{Y}_T = \mathbf{E}_{x_T} + \frac{c_0(x)}{c_0(x) + c_1(x)} \mathbf{V} \mathbf{E}_0 +$
 2065 $\frac{c_1(x)}{c_0(x) + c_1(x)} \mathbf{V} \mathbf{E}_1$. We can then set $\mathbf{V} \mathbf{E}_0 = -\mathbf{V} \mathbf{E}_1$. It suffices to approximate the one-dimensional
 2066 function $z \mapsto \sin(\omega z)$ with an MLP; it is well known (Barron, 1993) that this can be done with
 2067 weight norms $\Theta(\omega)$, as desired.

2068 **ModPTask:** Let $\{\mathbf{q}_i\}_{i \in [\Delta]}$ be some fixed set of orthogonal embeddings, and let p_i be equal to
 2069 q_j , where $i \neq j \pmod{p}$. These are periodic embeddings with periodicity $\Delta = p$. Choose \mathbf{K}, \mathbf{Q}
 2070 so that $a_{i,j}$ equals ∞ if $j \equiv k \pmod{p}$ and 0 otherwise. The attention probabilities will then be
 2071 uniform over all positions which are $k \pmod{p}$. Choosing \mathbf{V} so that $\mathbf{V} \mathbf{q}_j = 0$ for all j , the output
 2072 of self-attention becomes $\mathbf{Y}_T = \mathbf{y}_T + f^*(x_{1:T}) \mathbf{V} \mathbf{E}_1 + (1 - f^*(x_{1:T})) \mathbf{V} \mathbf{E}_0$. Choosing the readout
 2073 layer appropriately, we can ensure that $T(x)_T = f^*(x_{1:T})$, as desired.

2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105