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ABSTRACT

We study the problem of length generalization (LG) in transformers: the ability
of a model trained on shorter sequences to maintain performance when evaluated
on much longer, previously unseen inputs. Prior work by |Huang et al.| (2025)
established that transformers eventually achieve length generalization once the
training sequence length exceeds some finite threshold, but left open the question
of how large it must be. In this work, we provide the first quantitative bounds
on the required training length for length generalization to occur. Motivated by
previous empirical and theoretical work, we analyze LG in several distinct problem
settings: {., error control vs. average error control over an input distribution,
infinite-precision softmax attention vs. finite-precision attention (which reduces to
an argmax) in the transformer, as well as for one- or two-layer transformers. In all
scenarios, we prove that LG occurs when the internal behavior of the transformer
on longer sequences can be “simulated” by its behavior on shorter sequences seen
during training. Our bounds give qualitative estimates for the required length of
training data required for a transformer to generalize, and we verify these insights
empirically. These results sharpen our theoretical understanding of the mechanisms
underlying extrapolation in transformers, and formalize the intuition that richer
training data is required for generalization on more complex tasks.

1 INTRODUCTION

An important problem in the training of large language models (LLMs) is length generalization (LG),
which is the ability of a model to generalize to input sequences longer than those encountered during
training. Prior works have studied the ability of transformers to length generalize on simple testbed
tasks (Anil et al.} 2022} [Kazemnejad et al.,|2023)), yet the success of LG varies widely from task to
task. Recent theoretical work has thus sought to characterize which tasks admit LG. In particular,
Zhou et al.| (2023) introduced the RASP-L conjecture, which states that transformers can length
generalize on tasks which are expressible by a “simple” RASP-L program (a variant of the RASP
language introduced in [Weiss et al.|(2021))). [Huang et al.[(2025)) later formalized and partially proved
this conjecture, showing that tasks expressible by a limiting object called a “limit transformer,” which
includes tasks expressible by a C-RASP program (Yang & Chiang| 2024)), admit LG at some finite
training length. These results, however, are asymptotic in nature and rely on “identification in the
limit” (Gold, |[1967; |Angluin, |1980) style arguments, where the inference procedure can eventually
rule out all hypotheses except for the ground truth. In particular, for a fixed task f on which LG is
possible, it is not specified what the minimum training length is for LG to occur.

Our goal in this paper is to characterize how long training sequences need to be in order for a
transformer to generalize to sequences of arbitrary length. Specifically, we adopt the limit transformer
formulation from |[Huang et al.|(2025)), and aim to provide quantitative bounds on the minimum N
such that two limit transformers f, g which agree on inputs of length < N approximately agree on
inputs of arbitrary length.

We study this question in two distinct regimes. In Section[4] we consider limit transformers operating
at finite-precision, which matches the setting of [Huang et al.|(2025)). This results in a hard attention
pattern for sequences of a certain length. Our main results are that for one-layer limit transformers,
for both worst-case error control (Theorem[.T)) and average error control over a distribution (Theo-
rem[4.2) the minimum such V' scales monotonically with the parameter norms of the transformer, the
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positional embedding periodicity A, “locality” parameter 7, token vocabulary size |3|, and inverse
error £~ 1. In Section [5| we additionally study the setting where the parameters and forward pass are
computed at infinite precision. This allows us to establish results independent of the model precision,
and is a more suitable model for multi-layer transformers where the inputs to later layers “mix” the
first-layer inputs, and hence can be treated as continuous. In Theorem we establish a quantitative
LG bound for two-layer transformers, which scales with the transformer weight norms.

The proofs of our main results in both the finite- and infinite-precision settings rely on the following
high-level “simulation argument.” Given two limit transformers f, g and a long input string x, we
construct a string z of length at most N such that f(z) ~ f(z) and g(z) = g(2); if f and g agree
on all inputs of length < N, then they must satisfy f(z) ~ g(z). The key step in this simulation
argument is to construct z which approximately preserves various sufficient statistics which are
necessary for computing the forward pass of the model. The proof of Theoremd.1]does this explicitly,
by ensuring that z approximates the empirical frequencies of each token in the hard attention pattern,
while the proof of Theorem [5.2|does this randomly, sampling z from a specially defined distribution
and invoking the probabilistic method. Nevertheless, the unifying principle in both settings is that LG
is possible whenever the internal behavior of a transformer on a larger sequence can be simulated by
its behavior on a shorter sequence.

Altogether, our results make progress towards both characterizing a natural hierarchy of “difficulty”
amongst length-generalizable tasks, and more practically speaking, developing a better understanding
of how to scale training context length for LLMs.

2 RELATED WORK

A number of works have empirically studied the ability of transformers to length generalize on
various tasks. Bhattamishra et al.|(2020) studies the ability of transformers to length generalize on
various formal language tasks. |Anil et al.| (2022)) show that transformers fail to generalize on certain
reasoning tasks, unless certain scratchpad prompting techniques are used. Kazemnejad et al.| (2023)
study the role of various positional encoding schemes on LG.|Zhou et al.|(2023)) study LG on various
algorithmic tasks, and observe that tasks with a short RASP program (Weiss et al., 2021) have better
LG, leading to their RASP-L conjecture. This is supported by works such as |Jelassi et al.| (2024]),
who observe that for the string copying task, transformers can length generalize when there are no
repeated tokens, but fail once the string has repeats. LG has also been studied outside the context of
transformers. For instance, Nerem et al.| (2025)) showed that trained graph neural networks can learn
the Bellman-Ford algorithm which generalizes to shortest paths of arbitrary length. |Buitrago & Gu
(2025)) studied LG in the context of recurrent models such as state-space models or linear attention.

In light of these LG challenges, recent works have designed specific positional encoding schemes,
such as Alibi (Press et al.,|2021) or Abacus (McLeish et al.}2024) to improve LG. Other works have
also considered modifying the input with a scratchpad, extra positional information, or alternative
training techniques to improve LG on arithmetic tasks (Lee et al., 2023}, [Shen et al.| 2023} |(Cho
et al., [2025; |Lee et al., [2025; |Cai et al., |2025). Most recently, architectural modifications such as
looping (Fan et al.||2024) or recurrence (McLeish et al.;|2024) have led to LG improvements. Other
approaches by |Li et al.| (2025)); |/Anson et al.[(2025)); Hashemi et al.|(2025) have considered making
modifications to the attention mechanism to improve LG.

On the theoretical front, [Huang et al.| (2025) partially resolves the RASP-L conjecture for tasks
expressible by limit transformers. [Yang et al.| (2025) shows the equivalence of a class of transformers
to the C-RASP programming language and provide empirical evidence that their theory predicts the
depth of a transformer which is required for LG to occur in practice. Wang et al.|(2024) proves that
1-layer transformers trained with gradient descent length generalize on a sparse token selection task.
Ahuja & Mansouri| (2024) show that a model resembling a self-attention head can length generalize.
Golowich et al.|(2025) show that an abstraction of the self-attention head can length generalize on
tasks which depend on a sparse subset of input tokens. [Veitsman et al.|(2025) studied transformer
LG related to copy and retrieval operations, and find that theoretical limitations do indeed transfer
to practice. The work of (Chen et al.|(2025)) is at first glance the most similar to ours, as the authors
give nonasymptotic bounds for LG. However, they focus on general models of computation with
variable-length input rather than on transformers, offering complementary insights.
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3  PROBLEM FORMULATION

3.1 LIMIT TRANSFORMERS

We are interested in the ability of transformers to generalize to sequences of arbitrary length, but
real transformer architectures are limited by a bounded context length. To address this issue, Huang
et al.| (2025)) introduced the concept of a limit transformer. These objects have an infinite context
length and generalized positional embeddings, allowing them to distinguish between arbitrarily many
positions in their context. The computation of a limit transformer proceeds as follows:
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Here 7 is the input sequence with token x; € ¥ in the i-th position, E,, € R? is the embedding
of the i-th token, p, is the i-th (absolute) positional embedding vector. The super- and sub-scripts

(1, h) denote the I-th layer of the transformer and the h-th attention head. agf}h) is the (I, h) attention
logit between token 4 and j, K 5, Q, j,, and V' 5, are the the (I, h) key, query, and value embedding

matrices, respectively. The functions ¢; 1, (7, ¢) do not allow for modifications to the attention pattern

)

which cannot be captured by positional embedding vectors alone. Ygl denote the pre-activation

features for layer [ at position 7, and ygl) denote the post-activation features which have been passed
through a single-hidden-layer MLP with 1-Lipschitz activation v;, plus a residual connection; A;
and b; denote the hidden layer weights and bias term for this MLP, and B; denotes the output
layer weights. Finally, 7'(x); denotes the output logits at position ¢ which are computed via the
unembedding matrix U'.

Without additional constraints, a limit transformer cannot be recovered without seeing arbitrarily
long input sequences. Thus,|[Huang et al.| (2025) also make two additional assumptions. First, the
limit transformers in question are assumed to be A-periodic, defined as p; = p, , A for all i. Second,
the limit transformers are also translation-invariant, defined as ¢; 5, (j,4) = ¢ n(j +t, i+ t) for all ¢,
and 7-local, defined as ¢; ;,(4,7) = 0 whenever ¢ > j + 7.

3.2 FINITE-PRECISION ATTENTION

Huang et al.|(2025) assume that all of the transformer parameters, as well as the softmax attention,
are computed at p finite bits of precision. This is motivated by Merrill & Sabharwall (2023)), and
indeed, finite precision is a real constraint when LLMs are implemented in practice.

For our analysis, the precise instantiation of this assumption is that we will assume that all quantities of
absolute value < 277 are rounded to 0 during each intermediate computation of the limit transformer.
Even this definition requires further clarification, particularly for the computation of the softmax.
This is because the softmax (at infinite precision) is invariant to a constant shift in all of the logits;
thus, in principal, the softmax may be computed as a collection of terms each of which has absolute
value less than 277, in which case it is unclear what to do. To avoid this problem, we take the usual
step for improving the numerical stability of softmax and perform computations with the largest logit
shifted to 0. Equivalently, we subtract the largest logit from every logit in the softmax. After this
standardization, all terms in the softmax (post exponentiation) with absolute value at most 277 are
rounded to 0, then the computation proceeds as usual.

The impact of this assumption is as follows. Let f be a single-layer limit transformer which
is 7-local, A-periodic, and translation invariant as defined above. We can define the attention
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matrix A € RAFIXAE indexed by pairs (y,i) fory € ¥ and i € Z/A, where A, ;) () =
(E.+p;,)"KTQ(E, +p;). Fory € Y andi € Z/A, define
A(y,i) = {A(y,i),(z,i—k) + ¢(1, k+ 1) | z e E, k= 0, - ,T}.

Note that A, contains all of the possible attention logits that we can observe when processing a token
x; = y. We then define the logit margin v(f) of f by

~v(f) :== min min  a—ad,
YEX  a,a’ €Ay
CL/A 4 ¢/>0

where the minimum over an empty set is defined as +oco. The quantity v(f) is the smallest nonzero
gap we can observe between a maximal attention logit and any non-maximal logit.

Now let = be any input sequence and suppose that N = |z| > 2P/7(/)_ Consider an individual term
in the softmax, post-exponentiation but before the rounding procedure. These have the form

5= D (108 N - (A, ) (a,.9) + 00 V) = (A ) ,05) + 0" V)

= eXP<10gN Ay V@) TN =7 +1) = (Ay V) (@0 57) T (LN =55 + 1))])
= exp(log N - (a — a")),

where j* € argmax;i_y _; A@y,N), ;0,59 + @(J'; N) is an index with the largest attention logit
and a,a” € A(;,,N) are simply a renaming of the logits to emphasize that these are quantities in
A(zn,n)- The second equation follows by the translation invariance of ¢.

There are now two cases. If a = a* (i.e., the j-th position attains maximal attention for the input
sequence), then s; = exp(0) = 1 and this contribution to the softmax will not be affected by the
rounding procedure. On the other hand, if a # a* (i.e., the j-th position attains strictly sub-maximal
attention for the input sequence), then by definition of y(f), a — a* < —~(f) and we have

log 2
sy = explog N (0~ ") < exp( <2082 (1)) —2.
v(f)
Thus, this term will be rounded to 0. It follows that for sequences « of length N > /() softmax
attention acts as a hardmax and the computation is performed as a uniform average over the tokens
with argmax attention.

As can be seen from this analysis, while these design choices may seem like minutiae, they have
outsized effects on the analysis, and this fact has been observed in previous work (Jerad et al., 2025)).
There is also empirical evidence that attention does indeed concentrate on only a few tokens (Bietti
et al., 2023; |[Rogers et al., 2021)) and that finite precision does have a noticeable impact on LLM
behaviors (He & Lab), [2025)).

3.3 INFINITE-PRECISION ATTENTION

Deviating from previous works, we also provide results when the transformer’s attention computations
(and indeed, all internal computations) are performed at infinite precision. In this case, we do not
need to make careful assumptions about rounding. Instead, however, there is an additional subtlety
about the scaling of the attention logits. In particular, given infinite precision and bounded weight
matrices, the effect of the 7-suffix on the LT’s computation must always decay to O as the length
of the input sequence diverges to infinity. This is undesirable as it precludes important functions
which transformers are empirically capable of learning, e.g., the induction head. To alleviate this
shortcoming, we propose scaling only the T-suffix logits by a logarithmic factor:

Lh - - . .
a’z(',j : = (yg 1))TKl—|:th,]Lyz( Y + 1Og7’ ’ ¢l7h(]a Z)a
H Y| exp (a(vl"h)) Vil Y )]
l 1— j=1 i,J hd g
v =y, 1)+Z i (L,h)
h=1 Zj:l exXp (aij )

Depending on the size of the 7-suffix positional embeddings, this scaling increases the expressivity
of LTs to give three different possible behaviors. Consider the computation of the hth attention
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head in the first layer. For j < ¢ — 7, the contribution of the jth token will be proportional to

exp (E;—J K 1T n Q1 hEz) Therefore for any s € 3, the total contribution of all tokens equal to s
will be exp (ESTKlT)hQLhaZ) - (w<i)st, where p(z<;)s = + 22:1 1(z; = s) is the empirical
frequency of s in the first ¢ tokens of . On the other hand, the contribution of the jth token for
1—71 < j<7iisexp (E;—] KIth,hEri) - #1009 This yields the following three regimes:

1. Token Dominant (max;<, ¢1.5(¢ — t,4) < 1). For typical sequences, the empirical
frequences p(z<;)s will be ©(1) for large i. Therefore if ¢ is bounded below 1, as i — oo
the contribution of the 7-suffix will grow negligible.

2. Balanced (max;<, ¢1,,(¢ — ¢,4) = 1). Both the total contribution of all tokens equal to s,
as well as tokens in the 7-suffix with ¢1 5,(j,¢) = 1, will be proportional to ¢, and thus affect
the output of self-attention in a constant fashion as ¢ — co.

3. Position Dominant (max;<, ¢1 5 (¢ —t,4) > 1). The contribution of the 7-suffix dominates
that of the rest of the sequence, with the self-attention weights concentrating on those tokens
j which maximize ¢1 ,(j, ).

Thus, the proposed scaling allows us to consider the full range of possible relative importance for the
local information (found in the 7-suffix) and global information (found in the 7-prefix) of the input.
In spite of these three qualitatively different regimes, we are able to provide a unified analysis which
addresses LG in all three scenarios simultaneously.

We will operate in the infinite precision setting for our results on multi-layer transformers (Theo-
rem @]) Intuitively, in the first layer, the tokens are in fact discrete and hard attention to a subset of
these tokens may be desirable. Beyond the first layer, however, the token representations become
continuous mixtures of these discrete objects and are in some sense more “inherently” continuous.
This makes the infinite precision setup more suitable for this setting.

Lastly, we remark that the while the details of the finite- and infinite-precision analysis are quite
different, the fundamental analysis technique is the same. Namely, we show that it is possible to
simulate the behavior of the transformer on longer sequences using strings of bounded length. The
implications of the theory for the data requirement vs. various parameters of the target function also
align qualitatively for both precision regimes, and these insights match with our empirical results.

4 LENGTH GENERALIZATION WITH FINITE PRECISION

In this section, we give upper bounds on the length of training data required for a single-layer limit
transformer to generalize to sequences of arbitrary length in the finite precision setting.

Let f and g be two single-layer limit transformers which are 7-local, A-periodic, translation invariant,

and operate at p finite bits of precision as described in Section Let Vs, Ef (Af, By) be the value
matrix, token embedding, and MLP weights for f (and analogously defined for g), and define

Ly = max{[U |1+ 1AL Bs 1w DAV (B +p)ll + 1B+ pill + [[bs]]) = s € 3,

L, similarly for g, and L = Ly + L,. Finally, let v = min{~(f),~v(g)}, with v(f) and v(g) as
defined in Section We first establish LG for single-layer transformers in an /., setting.

. _ o/ L2AT|S(672
Theorem 4.1. There exists an N = O (max ¢ 2P/7, ==—3—"— ) such that || f(z) — g(z)|| < e

forall |x| < N implies that || f (z) — g(z)|| = O(e) for any sequence x.

Proof sketch. As discussed in Section the output of each limit transformer depends roughly on
the ratios between each token type entering hardmax attention. We construct a “simulation map” from
a string x of arbitrary length to a string z of length |z| < N which preserves these ratios up to O(¢)
error simultaneously for the tokens in attention in both f and g. Since f(z) = g(z) by assumption,
this in turn implies that f(x) & g(z). The complete proof is given in Appendix O

Remarks. Theorem [4.1]shows that, assuming that the input sequences are sufficiently long (N =
2P/7), the desired training length scales polynomially in the periodicity parameter A, the parameter
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norms L, the vocabulary size |¥|, and the inverse accuracy e . The N > 2P/7 constraint ensures
that the softmax attention behaves as a hardmax as discussed in Section[3.2] Indeed, it is possible for
this hardmax behavior to occur at smaller training lengths, implying that the training length N need
only scale with TAL? /2. See Section@for empirical support of this claim.

Theorem [4.1]bounds the test error when we have an £, bound on the error, i.e., when the error on
every sequence of length at least N is bounded by e. In practice, it is more common to have a bound
on the average error. The following theorem establishes that we can still achieve LG with respect to
average error for a certain class of sequence distributions.

Theorem 4.2. For any probability distribution P = (ps)sex over the token vocabulary ¥, define

If =gl = D Bp(@)]f(2) —g@)l,

|z|=n

where Pp(x) = Hlﬂl Dq; is the probability of the sequence x when the tokens are drawn i.i.d. from
P. Let P = (ps)sex ~ Dir((as)sex) be drawn from a Dirichlet distribution, and define

1f = 9lln = Eppir((an)ues) (If = glln.p]-

Let oy = mingey, ag. Then there exists

1 §L2+2a_1 b)) 4+20_1A5 SIAL . _
No=0 (max{Qp/W, 60 ° 1% ’ log‘ | = 0(5*2*2%1)

200! —1
o 0 £24+204 9

such that if | f — g||n < € forall N < Ny, we have that || f — g||7 = O(!/?) for any T.

Proof sketch. We show that with high probability over the draw of (p;)sex and the resulting sequence
x, the fraction of (token, positional embedding) pairs is close to its mean. For such sequences, we
further show that the output of the limit transformer is approximately constant. This allows us to
define a simulation map sim : X7 — %V from longer sequences to shorter ones which (1) satisfies
f(x) = f(sim(x)) and (2) does not transfer a large probability mass of long sequences in X7 to a
low-probability subset of short sequences in ¥V, These two features of the simulation map allow us to
control || f — g||7 in terms of || f — g|| v for any T > N. The full proof is given in Appendix[A.3] O

Remarks. We make two remarks on this result. First, the form of the sequence distribution is meant
to ensure some regularity between sequences of longer and shorter lengths. The need for some
such regularity assumption is inevitable. For instance, an obvious example would be where the
distribution over shorter sequences has support only on sequences with tokens in o C 2, while
the distribution over longer sequences has support 3 \ g0 The switch can occur at an arbitrarily
large sequence length, so a bound on the required training length cannot exist in such a setting. This
counterexample can also be approximated without requiring the probability of certain sequences to
be exactly equal to 0. We expect a similar result to hold for sequences with some form of regularity
in terms of token ratios between shorter and longer sequences; e.g., if the sequences are drawn from a
Markov chain, concentration of the token ratios to the stationary distribution may be sufficient. It is
an interesting direction for future work to establish minimal conditions on the sequence distribution
for LG to occur in the average case. Second, as a corollary to our proof technique, we can strengthen
the error dependence of our bound when || f — g|| v, is controlled conditional on mingey ps = Q(1).
In this case, the LG error does not suffer from the quadratic increase from ¢ to £'/2 as in Theorem
but the required training length to achieve O(e) error is longer. The proof for this setting can also
easily be extended to the case where the tokens are drawn from a fixed categorical distribution and
the probability p, for each token is at least a constant.

5 SOFT ATTENTION TRANSFORMERS WITH INFINITE PRECISION

In this section, we provide upper bounds on the length of training sequences required for two-layer
limit transformers operating at infinite precision to generalize to sequences of arbitrary length. Recall
that we have made the assumption that transformers which operate at infinite precision only have the
7-suffix logits scaled by log(token index), and thus have forward pass given by (T)). The key quantity
which governs the minimum training length is the following complexity measure.
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Definition 5.1 (Complexity and positional margin). Let F. be the class of depth 2 transformers
transformers which are 7-local, translation invariant, operate at infinite precision, use no positional
information in the second layer, and have nonnegative gbl’ For a transformer f € F,, with
key, query and value matrices {(K1n, Q1 5, V1,n)}neir U {(K2,1, @91, V21)}, MLP weights
{(Aq, By)}1eq1,2}, embeddings || E[| < 1, and unembedding U, define the complexity C(f) as

C(f) ‘= €xXp (pOIY<{|V17h”0p’ K;—’lQQ’IHO;D))

20ty (V] [ A2lly 1Bl 101,07 1)

Moreover, define the positional margin v(f) by

KLQu, | Al 1B,
OP) he[H]

v(f) := hmelg (max P, —max{p € Py, : p # max Py })

where P, := {¢1,5(i — t,7) o<i<r U {1} is the set of positional embedding values in the hth head.

—1 1
Theorem 5.2. Let f,g € F,. There exists N < (maX(C’(f),C’(g))s’l)maxw(f) D7) sy

that || f(z) — g(x)|| < e forall |x| < N implies that || f(z) — g(x)|| = O(g) for any sequence x.

Proof sketch. Similar to before, our goal is to, given an arbitrary string x, construct a simulation z

which satisfies f(z) = f(z) and g(x) =~ g(z). Our first observation is that YZ(»I), the output of the
first layer of the transformer in the ¢th position, can be written as a Lipschitz and bounded function
of both the 7-suffix z;_-.; and the empirical histogram up to token i, p(z<;) := % 22:1 ;.| As
such, the output of the two-layer transformer depends continuously on the empirical joint distribution
of {(i—r:i, (x<i) }ie[|2]- We would thus like for the simulation z to approximately preserve this
distribution. To do so, we construct a random simulation z by randomly sampling a subset of the
tokens in x, show in expectation that the outputs are preserved, and invoke the probabilistic method.
In particular, the following “key simulation lemma” shows that such a subset does indeed exist.

Lemma 5.3. Let p : [S]"t! x A% — R™ be a fixed function, which is L Lipschitz in its second
argument and uniformly bounded by G. Then, there exists a subset T C [T'] such that, if z = x1, then
IZ| = n| <7+ 1+n'?and
T |2l
1 (G+L)(t+1)
Zp(xt—fzt,u(fgt)) - m ZP(Zt—TmM(th)) < 3
t=1 t=1

N

The proof of Lemma [5.3|proceeds as follows. In order to preserve the empirical distribution over
7-suffices, we would like for the simulation z to include large (i.e., w(1) in size) contiguous blocks
of z. To do so, we consider a Markov chain (i1, ...,ir) on the state space {0, 1}, with stationary
distribution P(i; = 1) = n/T and transition P(i;41 = 0| ¢; =1) < 1. Letting Z = {j : i; = 1},
one can show that the choice z = z7 yields a good simulation in expectation. The proof of Lemmal[5.3]
as well as the full proof of Theorem 5.2] are deferred to Appendix [

Remarks. The complexity measure in Definition [5.1] scales exponentially in the first layer weight
norms. This is unavoidable, as the Lipschitz constant of the first layer softmax scales exponentially
in |K 1T nQ1 pllop- Moreover, for certain tasks which can be naturally expressed by a two-layer
transformer, the complexity is mild. Consider the following in-context k-gram task, which is a
generalization of the induction head (Olsson et al., [2022):

Definition 5.4. Let X = [S]. We say that f* is an in-context k-gram estimator if its output on a
sequence z is the empirical distribution of the token following all occurrences of z7_ ;H_l:i.e

Zthk-H (k-1 = TT—kt1.T) * €2,

f(zrr) = € RS,

T
Y imhr1 U @t—pit—1 = T py1.7)
'As per the discussion in Section all ¢;, < 1 yield the same “token-dominant” regime, and hence
assuming ¢;,, > 0 does not affect expressivity.
*Infinite precision attention is necessary here to show that this function is indeed Lipschitz.
*If there is no such occurrence within , the behavior of f*(z) can be arbitrary.
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Figure 1: Experiments on SimpleTask. Left: Test loss as a function of test length and train length,
for fixed w. For each fixed train length, as test length increases, the test loss plateaus at a finite value.
Right: Final test loss as a function of train length and w. The value the test loss plateaus at decreases
monotonically with train length, and increases monotonically with w.
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Figure 2: Experiments on ModPTask. Left: Test loss as a function of test length and train length,
for fixed A. For each fixed train length, as test length increases, the test loss plateaus at a finite value.
Right: Final test loss as a function of train length and A. The value the test loss plateaus at decreases
monotonically with train length, and increases monotonically with A.

Nichani et al.| (2024) show that f* can be approximated by a depth two transformer with k£ — 1
heads in the first layer, and local, translational invariant positional embeddings with 7 = k — 1. In
Appendix we show heuristically that f* can be approximated up to error € by a transformer f

with complexity C(f) = e=©*") and v(f) > 1, so a training length of e~ ©**) suffices for LG.

margin 1/+. This mimics the bound in Theorem 4.1} which contains an exp(y~!) dependence on
the logit-margin. Whether these margins matter for LG empirically or are simply an artifact of our
analysis is an interesting question for future work.

We also remark that in Theorem [5.2] the trainini length IV scales exponentially with the inverse

6 EXPERIMENTS

Single-layer Transformers. We next provide empirical support for the conclusions of Theorem 4.1
and[d.2] We consider the following two synthetic tasks:

SimpleTask: The vocabulary is 3 = {0, 1,2}. Given an input sequence z1.7 = (z1,...,27) € X7,
define c4(x) = Zthl 1(x; = s) to count the number of tokens equal to s. The output f* is given

by f*(z1.70) = 0 (%), where 0(z) = sin(wz) for some w € R. One observes that f* is

expressible by a one-layer limit transformer with no positional embeddings and L = O(w).

ModPTask: The vocabulary is ¥ = {0, 1}. Given a period p and index k, the output is the average
of all tokens in positions which are £ mod p:

T
_1(z;=1,t =k mod
[ (2rr) = L=t T( L p).
Y1 Lt =k modp)

One observes that f* is expressible by a limit transformer with A = p and L = O(1).

We train depth 1 transformers (consisting of a single self-attention layer followed by an MLP layer)
on SimpleTask for varying frequencies w and ModPTask for varying periods p. For a fixed training
length N, we train models on sequences of length 7" < N, and compute the test loss on sequences
of length T" > N. More details on the experimental methodology are presented in Appendix
sketches for both constructions are provided in Appendix [C.1]

Results for SimpleTask and ModPTask are presented in Figure[I]and Figure 2] respectively. In the
leftmost panes of both figures, we observe that the test loss plateaus as the test length increases. In the
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Figure 4: Experiments on the in-context k-gram task. Left: Test loss as a function of test length
and train length, for fixed k£ and S. For each fixed train length, as test length increases, the test loss
plateaus at a finite value. Middle: Final test loss as a function of train length and S, for fixed k. The
value the test loss plateaus at decreases monotonically with training length, and increases with .S.
Right: Final test loss as a function of train length and k, for fixed S. The value the test loss plateaus
at increases monotonically with k.

rightmost panes of both figures, we observe that the value at which the test loss plateaus at decreases
monotonically with the training length. This provides qualitative support for the conclusions of
Theorem 4.1} in particular that (i) given a target accuracy ¢, tasks expressible by a one-layer limit
transformer have a finite N such that a model which fits the task on sequences up to length N
acheives ¢ error on sequences of all length and (ii) the value of this N increases monotonically
as ¢ increases. Moreover, the rightmost pane in Figure [ shows that NV scales with the parameter
norm L, while the rightmost pane in Figure 2] shows that [V scales with the periodicity parameter A.

The proof of Theorem 4] relies on the “hardmax” attention
behavior discussed in Section [3.2} To check the validity
of this assumption, trained on the ModPTask with p = 5
for varying training lengths, and compute the post-softmax
attention probabilities on a batch of test sequences. In Fig- 0.00
ure[3] we observe that the positions not equal to & mod p . B
receive near zero attention probabilities while those in po-

sitions equal to k& mod p receive nearly the same attention ~Figure 3: For the ModPTask, the soft-
probability (the dashed black line). This provides evidence Max attention approximates uniform
that, for large enough training length, the models are indeed ~attention on all positions = k£ mod p.
operating in the hardmax regime.

4
o
R

— =kmodp
= kmod p

Attention probabilities

25

Two-layer Transformers. We next provide empirical support for the conclusions of Theorem

We train depth 2 transformers on the in-context k-gram synthetic task, as defined in Definition
Additional experimental details are given in Appendix [C} Results are presented in Figure d] In the
leftmost pane, we again observe that test loss plateaus as test length increases. Both the middle and
rightmost plots show that as the training length increases, the limiting test loss decreases. Moreover,
the middle plot shows the value of this limiting test loss increases with the alphabet size S (when we
fix k = 2), while the rightmost plot shows that it increases with k& (when we fix .S = 2). This matches
the qualitative dependence of the complexity measure C(f) on both S and 7.

7 CONCLUSION

In this paper, we provided quantitative bounds on the training length required for LG to occur, in
settings including finite- and infinite-precision attention, one- and two-layer transformers, and ¢, and
average error control. Our results show that this minimum training length scales with the parameter
norms of the transformer, the periodicity A, locality 7, alphabet size ||, and inverse error e L,
Unifying our analyses is the high level argument that LG occurs whenever the forward pass of a
transformer on a longer string can be “simulated” by that of a shorter string contained in the training

set. Qualitative support for the derived scalings are presented in Section [6]

One interesting direction of future work is to extend our results to transformers with larger depth.
In particular, it would be interesting to relate the minimum training length N to other notions
of complexity such as the length of the corresponding C-RASP program. Moreover, it would be
interesting to extend our average-case analysis in Theorem [4.2]to broader classes of distributions over
sequences. Finally, it is an important question to characterize how different positional embedding
schemes, which empirically improve LG, affect the minimum training length N.
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A OMITTED PROOFS FROM SECTION 4]

In all of the proofs and discussions for this section, we will assume that all sequences are of length
at least 27/ ™in{7(£):7(9)}  As discussed in Section this means that attention will operate as an
argmax over tokens with maximal logits, and therefore the computations of the transformer will be
performed over a subset of tokens determined by (token, position mod A) in the 7-prefix as well as
potentially some tokens in the 7-suffix. As, such, it will be useful to make the following definition.

Definition A.1. Define the token counting functionn : ¥ X Z x ¥* — Z>q by
n(s,i,x)=#{jel,....|lzg|—7 | z;=sandj =i (mod A)}.

That is, n(s, 4, ) counts the number of times that token s appears in a position which is i (mod A)
in x before the 7-suffix. In the case where there are no positional embedding vectors, we similarly
define

n(s,x) =#{jel,... |z| -7 | z; = s}.

The subset of (token, position mod A) pairs which enter the hard attention mechanism is determined
by the final token and its positional embedding vector. Thus, in the constructions which follow, it will
be important that the original long sequence z (|| = T) is simulated by a shorter string z (|z| = N)
such that v = zp and T = N (mod A). This will ensure that the hard attention mechanism
considers the same (token, positional embedding) pairs for both strings, and therefore that the output
of the limit transformer can be approximated by preserving the ratios of these quantities.

With these concerns in mind, consider a single-head, single-layer limit transformer f and an input
string 2 with |2| > 27(f), Let A(x) C ¥ x [A] be the set of (token, position mod A) pairs in the
7-prefix attended to by f when parsing the final token z7, and let A™(x) be the set of (token, position)
pairs attended to in the 7-suffix. Then the internal state of f immediately after the attention layer is
given by

Jla) = Y eiream M)V A(BL+D) + 3 hear@ Vi(EL+ ;)
Z(s,i)eA(x) n(s,i,z) + |A7™(z)|

; @
and the full computation is given by

J(@) = Uy ((BL, + f@) + Brop(As(BL, + f@) + b)) 3)

A.1 HELPER LEMMAS

For both of the finite-precision theorems, the following lemma relating f and f will be useful.
Lemma A.2. Let x and z be two sequences with |x| = T and |z| = N, and suppose that the final

tokens are equal: x7 = zn. Then || f(x) — f(2)]| < LI}/ILPH]E(JZ) — f(2)||, where
LYY = U1+ LA 1Bl )
is a bound on the Lipschitz constant of the transformer MLP.
Proof. We can write
@) =Us ((BL, + f@) + Brop(As (BL, + f@) +by)). )

Ty = E£ - Straightforward applications of the triangle inequality and
the submultiplicative inequality for operator norms then yield the desired result.

Because x1 = z5, we have E/

The following lemma bounds the norm of the output of a limit transformer in terms of the norms of
the weight matrices and activation function.

Lemma A.3. Define the following quantities:
LEY = UL+ [LA£ (1B gl 151D,

MY = V(Ef +p),
f Seg}?gwll f(Es +p)l

13
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M¥P = ma E! |-
f sEE,iEX[A] || s +p2H

Then setting
My = LYV (M + MY+ [log]),
we have || f(z)|| < Mjy for all x.

Proof. The proof is nearly identical to that of Lemma We begin by observing that f (z)isa
convex combination of terms of the form V s (E? + p,), so in particular || f(z)| < M}/ The results

follows by using the expression for f(x) in terms of f (z) given in equation (@), the triangle inequality,
and submultiplicativity of the operator norm.

A.2 PROOF OF THEOREM [4.1]

In this section, we give the proof of Theorem[4.1] We will first prove another helper lemma which
will aid in our simulation string constructions.

Lemma A4. Let {p;}", be an arbitrary finite probability distribution. For any integer N > 1,
there exist nonnegative integers {m;}?_, such that Y., m; = N and |m;/N — p;| < 1/N for all
i =1,...,n. In particular, this also implies that the m; satisfy |p; N — m;| < 1 for all i.

Proof. Define m; = |p;N] andlet R = N — > | m,. Note that 0 < R < n. Fori =1,...,R,
define m; = m; + 1and fori = R+ 1,...,n, define m; = m,;. This choice of m; can easily be
seen to have the desired properties. O

We are now ready to prove Theorem[4.1] which we restate for convenience.

Theorem 4.1. There exists an N = O (max {21’/7, %}) such that || f(z) — g(z)]| < e
forall |x| < N implies that || f (x) — g(x)|| = O(e) for any sequence .

Proof. We will first give a proof assuming there are no positional embedding vectors p,. We will
then show how to easily adapt the result to the case of positional embedding vectors.

Consider two limit transformers f and g and an input string x. Let Py be the positions attended to by
f and P, be the positions attended to by g in the T-prefix of « and assume WLOG that | Py| < | Py|.
Let Ay = Ap(x) = {z; | i € P} be the set of tokens which f attends to and define A, = A,(x)
similarly.

We construct the auxiliary string z as follows. The 7-suffix of z is always equal to the 7-suffix of z;
in particular, this ensures that the final tokens of x and z are equal.

If | P¢|, | P4 < 1/e, then the attention pattern in the 7-prefix of = can be directly recreated simultane-
ously for f and ¢ using at most 2/¢ tokens by just copying the union of the tokens in attention for f
and g into z. In this case, by formulas (Z) and (3), we will have f(z) = f(z) and g(z) = g(z) and
therefore || f(z) — g(2)|| = || f(2) — g(2)|| < e. Thus, we will assume that at least | Py| > 1/e.

We first recreate the attention pattern of f. To simplify notation, let ny = n(s, ) and ms = n(s, z).
If |P¢| < 1/e, then we simply set 21, p,| = zp, (i.e., we set the first | Py| tokens of z equal to the
attention pattern of f on the 7-prefix of ). The tokens which we will add later do not belong to A;
thus, we will clearly have f(x) = f(z). Thus, in the following construction, we will assume that
|Pr| > 1/e.

We first proceed with a slightly more fine-grained construction of Lemma[A.4] For each s € Ay,

define /el
e = { Py ”J

_ [1/¢] -
R= Z 7] ng — Z M

s€EAfNA, SEAfNA,

and let
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We must have R < |Ay N Ayl, so choose I C Ay N A, with |I| = R and define m, = m, + 1 for
s € ITand mgs =, fors € (AN Ay) \ I. This defines m, for all s € Ay N A, with the following
two properties:

1
<1 VseA;nA, 0§|—/E—‘|Pfﬂpg|— Y ome<1l (5)

Ns
|Pf‘ SGAfﬂAg

We then turn to Ay \ A, and define

; [1/€] N
R = Z |Pf‘ns— Z me — Z Mg

SEAf SEAf\Ag SEAfﬁAg

It is clear that 0 < R" < |Af \ Ayl so we can similarly choose J C Ay \ A, with |J| = R" and
define ms = my + 1 for s € J and my =, for s € (Ay \ A,) \ J. The m, defined in this way
have the property that

-
P T

1
<1 Vs Ap\ A, Hd|Pf\Pg|— > omg <L (6)
Py A
sEAf\Ay

Combining results (3)) and (@), we have the additional result that

[1/e] = md| < T]ffﬂpfmpd > omel+ (|1]§;]|Pf\Pg| > om <2

SEAf SEAfﬂAg SEAf\Ag
(N

In particular, combining the results of inequalities (3), (6), and (7), we can conclude that the m;
satisfy

ms N
ZS’EA‘f M ‘Pf|
We can use these inequalities to bound the difference between f(x) and f(z). Define
ZseAf nSVfE£

Zs’GAf g

to be the internal state of f immediately after the attention layer, ignoring the 7-suffix. Letting P; be
the set of positions f attends to in the 7-suffix of x, observe that we can write

Zs’eAf Ury n ZZGP; VfE£1
Zs,eAfns/+|P)ﬂ Zs,eAfnS/+|P]‘[|.

= 0(e). (8)

P =

fla)=[\T(x)-

It therefore follows that

n AT 1 AT TM}/
17 @)~ Pr@)l < |1 - —— 1 @)+ ot — ©
1 + L S Zs’GAf N
ZbIGA‘f Ngr
MY
R V) L (10)
ZS’EAf Nt ZS’EAf Nt
< 3MYre. ()

Inequalities (O) and (I0) both use the fact that |Pf| < 7 and ||V’ fEI| < M} Inequality (T0)
additionally uses that
1 2| P |

|P7 | - E Noor
14+ —~L — s'eA; s
Zs’eAf Ngt !
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provided that \P}|/ZS,€Af ny < 1/2. Since |Pf| = EseAf ns > 1/e and |Pf| < 7, this
inequality holds for ¢ small enough. The final inequality (33) simply uses the fact that > seA; Ms =
|Pf‘ > 1/6.
If we then define ;
ZSEAf mSVfES

ZS’EAf m

(=) =
a similar calculation will then yield
3rM JY 3trM }/
<
Sen,ms /el -2
for € small enough. By the triangle inequality, we then have

1f(x) = FI < 1F (@) = @) + 1 (z) = @)+ 1V (@) = (=)
= IF\"(x) = V" (2)| + O(M[ Te). (12)

We can now bound || f\7(z) — f\7(z)||. We have

H ZSEAf nszE£ ZSEAf mszEg

1F(z) = FV ()l < < dMjre

£\ (@) = ()] =

|Pf| ZS/EAf m

ms

|Pf‘ ZS’GAf mg

SIS

SEAy

= O(M/ |S[e). (13)
Equation|[13]uses the bound from (8) and the fact that [Af| < ||. Plugging (T3) into (T2), we obtain
1f () = F(2)Il = O(M[ (IZ] + 7)e).
Applying Lemma[A22] we then have
1f(x) = f()]| = O(LFE" M (=] + 7)e). (14)
We will refer to the portion of z which has been defined up to now as the f-prefix of z.

It remains to extend z so that it can simulate the behavior of g without adding any tokens in A so as
to preserve the previous calculations. There are now two cases depending on the size of Py N P,.
First, suppose that | Py N Py|/|Py| < . By Lemma[A.4] there exist 172, such that

‘mnww
TR

<1 Vsed,, D> me=[1/e%.

SEA,

We now define my; = m, fors € A, \ A;. Combined with the earlier definitions of m; for
s € Ay N Ay above, this defines m, for all s € A,. Furthermore, we have

Z me = 1/6 Z M

s€EAG\ Ay s€EAfNA,
2= Y At
SEAFNA, 9
= 1y - R e 14y n 4y
> [1/e*](1—¢) - [3] (15)
> [1/2](1 - 22)
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for e small enough. (Here, (T3] uses the assumption that | Py N P,|/| Py| < ¢.) Thus, using similar
logic as the derivation for inequality (8), we obtain

Ms s

= — —|=0(¢).
Zs'esg\sf my | Pyl

We now show that the terms in the 7 suffix and in Ay N A, do not contribute much to g. Define
A n,V,E?
@)= Y T
Bl
s€A \Ay
We have the following bound:

Dosea, sV EL+ ZiePgT V,ES,

Ig(x) = §\™ ()| =
[Pyl + | Py

n,V ,EY
s

s€A\As 15|

ZieP; IV EL| ZseAgmAf ||V ES,

< S venia, nallV B ’ pl ‘
T B+ 1P [Pyl + [Py | | Py [Pyl + [Py |
v MV|mePg| |Pg\Pf|MV 2|PT|
<M re+—2 + g .5 (16)
| Py | Pyl | Pyl
SM;/TE+M;/€+2M9VTE
<aMV7e. (17)

Inequality (T6)) used the fact that | Py| > 1/e, |P]| < 7, ||V E{|| < M), and |Py|/(|P| +|P]|) >
L —2|P7|/|Py| whenever |P]|/|P,| is small enough (which it will be for small enough ¢).

If we define
~\Tf Z msV E
SEA,\Ay Zs €A \Af ms

then the same logic as used to derive (T7)) can be used to show that ||g\™F (2) — §(2)|| = O(M) ).
This is because the critical facts that
ZseAgmAf s
= — =00,
ZseAg\A ¢ Mes

analogous to

7|PQT| = 0(7e%) = O(e)
EseAg\Af ms
analogous to |P]|/|Py| = O(7e¢).

We can now use inequality (T7), the triangle inequality, and Lemma[A-2]to bound the error for g. We
have

13(x) — G(2)|| < [1g(x) — 37 (@) + 13\ (2) = G(2) | + 13" (x) — 3\ (2)||

v Mms Ns v
SO(MQT€)+ Z ﬁ*ﬁ Mg
SEANA; s'eAg\A; s g

— (M) ( + S))e).

17
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Lemmathen gives [|g(x) — g(2)|| = O(LY"™" M) (7 + |X|)e). This completes the case when
[Py N Pyl/|Py| <e.

Otherwise we have | Py N Py|/|P,| > e. In this case, we have |P;| < |Py N Py|/e < |Py|/e. We
now consider two further subcases. Again if | P¢| < 1/e, we then have |P,| < 1/¢2. Thus, there are
at most 1/¢ + 1/e? + 7 = O(1/£?) tokens in the union of the attention patterns of f and g on z.
Thus, by setting z equal to the collection of all tokens in this union of attention patterns, we have

f(@) = f(2). 9(x) = g(2). | f () = g(@)]| = [[f(2) = 9(2)|| = O(e). and |z| = O(1/?) as desired.

Thus, we may assume that |Py| > 1/e.

Let s* = argmax,c 4, ns. Note thatsince [Pr| > 1/e and |Af| < |X[, we musthave ng- > [Py|/[Z].
Fors € A\ Ay, we first define /m; by

~ ms*
ms = ‘N | .
TN g*

Again similar to Lemma[A.4] we define

R=| Z ms:ns— Z ms].

n
s€eAN\A; 0 SEANAf

We again have R < |A, \ Ay¢|, so we can choose I C A, \ Ay, |I| = R, and define my = m; + 1
for s € I and mg = 1, for s € (Ag \ Ay) \ I. In this way, we have

Mg

<1 VseA,\ Ay, o™ Y m<1 @)
SEA A, Ts* SEA A,

s

‘ms -

Ng*

Note that in addition, we have

o ome< Y TZS*nSH (19)

SEANAf s€A \A; 1 °

[el, 41

< Y B (20)
SEA \Ay Ths
1 >
< [uﬁ;ﬂ [P\ Pyl + L' +1 @
<[1/e]-(1/e) + [Bf /e +1 (22)
—0(1/e2). (23)

In particular, this implies that this construction can be completed by adding at most O(1/£?) tokens
to 2, so in all cases the length of z is O(1/£?) as desired.

18
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We now proceed to bound the approximation error. We first want to extend the bound in (T8) to all of
Ayg. To this end, we have

ms* ms* ms*
Dogmem 2oms| S| ), Eme— ) mi+| 3, a3 oms
Urs n Ng*

*

s€A, 8 s€A, s€A \A;  ° s€A\Agf s€EA,NAy s€A NAy
Mg 1/e
<1+ ‘Pngf|_u|Pngf|+1 (24)
T |Pf‘
[1/e] 1
Py s L [1/e]
<2+ — |P, N Py| (25)
Mse IZIN A
<24 |Pg n Pf|
e
<24 %] (26)

Inequality (24) uses (I8) and (3)); 23) again uses (3); and 26) uses the fact that ng« > |Py|/|Z|.
We can now bound the error of the ratio of m, over all of A,. We have

mx
Mg S e s — 1 on
ZS'GAQ ry - T:’:: Zs’eAg Ng —|— 2 + |E|
o n 1
T Cea, et e Lawea,
" Iz .
Z s B O Mgx [Ngx . (28)
ZS'GAQ N’ ZS’GAQ Ngr Mg*
> s 9] ( |E| )
- ZSIEAQ Ngr Mg=
Ng 2
> =——— —O(X[%). (29)
ZsleAg Ury

Inequality (27) uses (5) and (26); @28) uses (3°,/c 4, 7s)/ns+ > 1; and (29) again uses () and

ng+ > |Pf|/|X]| to conclude mg- = Q(|X|/e). In a similar fashion, it can be shown that

U QL ——o () e
Zs'eAQ M/ ZS’EAg Mg/

Now we compare g(z) and g(z). As before, the effect of the 7-prefix contributes at most
O(ngv[LPMgV“?) to ||g(x) — g(z)]|, so we have

lg(z) —g(=)|l < Lg™F Y-

sES, ZSIESQ mg ZS/ESQ N

ms N

MY +O(Ly™ M) e)

_ MLP 3 rV (|33
= O (Ly"" My (IZ]° 4+ 7)e) .
Let My = Ll}/ILPM}/ and similarly for g. In every case, we have constructed z such that || f(z) —

F(2)|| = O(M¢(|E]+7)e) and ||g(x) — g(2)|| = O(M,(|Z|? +7)¢), and the length of 2 is O(1/£2).
Making the crude bound |X|? + 7 < |X|37 for convenience, we therefore have

I (@) = g(2)| = O((M; + My)[S|*re)

19
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whenever | f(z) — g(2)|| < ¢ for all inputs |2| < N, and N = O(1/¢?). Thus, by substituting
€ W, we have || f(x) — g(z)|| = O(e) for any string « provided that f and g differ by
at most € on inputs up to a length

2 6,2
G Eia)
3

Including positional embedding vectors The setting with positional embedding vectors can be
reduced to the general vocabulary case at the cost of increasing |X| — |X|A and an additional
factor of A by considering each possible (token, position mod A) combination as its own token
without positional embedding vectors. (This increases the vocabulary size from |X| to |X|A.) The
construction without positional embedding vectors can then be used considering this expanded
vocabulary; however, placing a “token” in the expanded vocabulary ¥ x [A] may require placing up
to A true tokens to ensure that the positional embedding is correct. Thus, this construction requires at
most an additional factor of A tokens. This gives a final bound

T +Mg>wz|672> |

22
As discussed in the beginning of the section, it will also be critical that |z| = |z| (mod A); this can
always be accomplished by padding z with at most A additional tokens, which does not change the
asymptotic length bound. [

A.3 PROOF OF THEOREM [4.2]

Lemma A.5. Let x € X7 and suppose that its constituent tokens x; are drawn i.i.d. from a
categorical distribution, where P(x; = s) = ps for each s € X. Then with probability at least 1 — p,
we have that

n(s,i,x)

_ <
T/A g

— Ds

for all (s,i) simultaneously provided that T > Aé~2 log %

above inequality holds for all (s,i) € 3 x [A] simultaneously.

. We say that x € bulky when the

Proof. Fix i and consider the subset of positions j = ¢ (mod A) and let 77 = T'/ A be the length of
each of these subsequences. (We will ignore the fact that this may not be an integer as it is neither

interesting nor important.) By Hoeffding’s inequality, we have that |n(s,i,2) — psT’| > ¢V T’ with

probability at most 2¢ <. Setting ¢ = {/log 2= and taking a union bound over (s,i) € ¥ x [A],
we see that
A
n(s2) | [lg %52
T Ds| = T!
log 2|3|A
with probability at least 1 — p. Setting § = —*— and solving for T' = AT" yields the desired
result. O

Lemma A.6. Let A(x) C X X [A] be the set of (token, position mod A) pairs in the T-prefix attended
to by f when parsing the final token xr. Furthermore, suppose A(z) # 0, i.e., some tokens in the
T-prefix enter hard attention. Define

B 2 (.)€ A() n(s,i,z)V (B! +p;)
Z(s’,i/,m)eA(z) 77/(8/7 i/7 LL’)

P\ ()

to be the internal state of f immediately after the attention layer, ignoring the T-suffix. Furthermore,
define
_ D (s.)EA() psz(Ef +p;)

Z(sgi/)eA(w) Ps

f(x)

20
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Finally suppose that mingeys, ps > «y and that § is small enough such that |X|Ad /vy < 1/2. Then for
any x € bulky, we have that
A = 3MY (|2]A)26
I\ (2) = f(o)l| < ff

where M]‘/ = MaXex je[A] IV (EL +p))|.

Proof. Let A = A(x). Observe that

n(siz)  p
Z(s/,i’)eAn(SI’i/ax) Z(s’,i’)eApS'

17V (@) — F@)l < >

(s,0)€A

MY (30)

We will proceed by bounding the terms in this summation. Let 77 = T'/A. Observe that for
z € bulky, we have the following:

nsie) (et )T
Z(S’,i’)eA n(slvilvx) - Z(vai/)eA(ps/ — 5)T’

< Ds n 0 Do (s,inyeaPs 31)
T\ X (wineals  DsrineaPs ) DisineaPs — 0[E[A

< Ps Jré (1+ 2E|A5> (32)
(s ineaPs Y Y

Ds 3IZ|AS
< + :
Z(s’,i’)GApS/ Y
Inequality (3T) holds because |A| < |X|A. Inequality (32) holds because ), 4 psr > v (since A is
nonempty and all pys > ) and 1/(1 — [2]|Ad/7y) < 1+ 2|X]Ad/y when |E|Ad/vy < 1/2. A similar
argument with § — —J and the inequalities reversed also shows that
n(s, ) S Ds 3IZ|AS
Z(s',i/)eA n(s',i',x) Z(s/,i/)eAPs/ v

We can therefore bound the terms in (30]) and we obtain

- = 3(ID|AzZMY S
1P (@) - Flay) < 30 2EIA% )y AHIATMG

s€A v v

as desired. O

Lemma A.7. Let A(x) be defined as in LemmalA.6|and again suppose A(xz) # 0. Let AT (x) be the
set of (token, position) pairs attended to in the T-suffix. Define
Fla) = > (s eA(w) ™S, i, o)V (E] +p;) + D (si)cAr V(E! +p;)

D (s.)eA() TS, 1) 4+ |AT|

to be the internal state of f immediately after the attention layer, this time not ignoring the T-suffix.
Then we have

v
3TAMf

1f(z) = F\(2)]| < CED

provided that © € bulky.

Proof. We denote A = A(z) and A™ = A7 (z). Observe that we can write

2 (s,iyca (s, 1, 1) D (si)c AT Vf(Eic +p;)
D siyean(s, i) FAT[ 0 Hean(s i @)+ [AT]

fla)=J\T(x)-
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It therefore follows that

v

A\ TMf 23
ol s et

1
[AT]

If(@) = F\ ()] < |1 - .
+ Z(Sgi)eAn(s,i,:c)

2T MY
< - 'MV + f - (34)
Z(s,i)eA n(s,z,;z:) f Z(&i)EA TL(S,’L,I)
< 37’]\/[}/ i
= (v - OT/A (35)

Inequalities (33) and (34) both use the fact that |A7| < 7 and ||V ;(E! +p,)| < M. Inequality (34)
additionally uses that 1/(1 +[AT[/>" »ean(s,i,x)) = 1 =2|AT|/ 37 ;4 n(s, i, ) provided
that [AT[/ 32 ean(s,i,z) < 1/2. The final inequality (35) uses the fact that A # () that
x € bulky son(s,i,x) > (ps — 0)T/A; and that ps > . O

Lemma A.8. Suppose that © € bulky, z € bulky, 27— r41.7 = 2N—741.5y and N =T (mod A)
with N < T, and mingex, ps > 7. Then

(|12]A)268 n TA >
gl (y=0N/’
Here, L?ALP is the bound on the MLP Lipschitz constant from Lemma

1£(z) — F(2)I| < 6MY LYP (

Proof. Observe that since x and z share a common 7-suffix (and therefore a common final token) as
well as a common positional embedding vector on the final token, A(z) = A(z) and A7 (z) = A7 (2).
We may now consider two cases. If A(z) = A(z) = 0, then f(z) = f(z) exactly (all of the
calculations are performed on the shared 7-suffix) and the desired inequality holds trivially.

Otherwise, we may assume that A(z) = A(z) # (. We may then apply Lemmas[A.6|and[A.7] We
have

7 1 3 = = TAMY MY (I2IA)2S
1) - F@l < 1@ — P @l + 177 (@) - Fol < oo 3 (RA0

(y=9)T

(36)

The analogous inequality holds for z with 7" replaced by IV. Since f () depends on z only via A(z),
we have f_(:c) = f(2). Thus we can again apply the triangle inequality to write 1f(z) — f(2)| <

| f(z) — f(x)|| + I f(z) = f(2)|. Applying inequality (36) to each of these terms and using the fact
that N < T, we have

|f@) ~ ()] < oM} <(7 TA@)N . <|z$> 6) |

We can then directly apply Lemmal[A.2]to obtain the final result. O

Lemma A.9. Letr {p;}sexs ~ Dirichlet((as)ses) be drawn from a Dirichlet distribution with
parameters os. Define o = Zsez as and g = minges, as. Then we have

*

2|¥
PEseX : ps <) < L4a oo,
Qo

Proof. Rather than dealing with the more complex joint distribution of the p;, we will bound
the marginals and apply a union bound. The marginals of the Dirichlet distribution are p, ~
Beta(as, o™ — ay), so it suffices to provide a lower tail bound for the beta distribution.

Let = ~ Beta(a,§), so z has density f(z) = prz2* ' (1 — 2)"~', where B(a, ) =
j;)l 2%~ 1(1 — 2)8~1 dz is the beta function. We first give a lower bound on B(a, 3). When a, 3 > 1,
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we have

3/4
B(a, 8) > / 22 Y1 —2)f tdx
1/4

1o/t
>z -
>3 (5) ()
B 1
722(1-‘,—2[3—3
S 1
= gatB8°

When o« < 1, we have

1
B(a, p) > /0 (1—x)°tde = %

Similarly, when 8 < 1, we have

! 1
B(a,8) > / e = —.
0

o)
In particular, since 472 > a, 3 for o, f > 0, we have that

B(a, 8) > min{ail,ﬁfl,lf(””rﬁ)} =4~ (@+h),
With this inequality, we can now establish the following bound for ¢ < 1/2:

Plx <t)= ﬁ/o 271 —z)f 1l da

1 t
m\/; xa71(1 —.’E)71 dx

1 ! a—1 _ -1
m/om (1—-t)""dx
tOt
a(l —t)B(a, B)

IN

IN

< ZgotBye

o

Now that we have established the tail bound for a general beta distribution, we can return to the
original goal of bounding the Dirichlet. The marginal beta distribution for each ps has o = a5 and
B = a* — a;. Thus, by a union bound, we have

P(Es : pe <) <Y P(ps <)
sEX

sex °

< 2|z|4(x*,ya0,
Qo

as desired. O

2|3|A

Lemma A.10. Suppose thatT > N > A§~—2log == and ming ps > . Then we have

B (12]A)26 TA
17 = allr =0 (5 + 31) (p+ B4 T iy gl ).

Proof. Given an integer N, define the simulation map simy (z) = x7_ N4 1.7 = the last N’ tokens
of z, where N < N’ < N + A is chosen such that N’ = T' (mod A). Note that using this definition
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and for N > 7, we have 27,417 = (simn (z)) N—r+41.7, 1.€., the T-suffixes coincide. Furthermore,
by definition, N’ = |[simy(2)| =T (mod A) and the final tokens match, so A(simy (x)) = A(x).

By Lemma and a union bound, z € bulky and simy(z) € bulkys simultaneously with
probability at least 1 — 2p provided that T > N > Aé 2 log 2‘2|A . The token independence means
that >, _ _, P(xz) =P(z), so we have

|z|=T,simpy (z)=2

Y P@)f(@) —g(x)] < Y. P@)Mp+M)+ Y P@)f(@) - g@)]

|z|=T |z|=T |z|=T
z¢bulky or z€bulkr and
simy (z)gbulk sim v (z) Ebulk n/

< 2p(My+Mg)+ ) Y P@) | (I£z) = 9@+ £ (@) = FE) + llga) = g(2)II)

z€bulk xEbulkr
simpy (z)=2

<20(My+ M)+ Y PE)(If(2) = 9@+ [1f (2) = £ + llg(x) = g(2)])

z€bulk

Y|A)26 TA
< 2000y + 85) + 1 gl + 001 £ 4 a1y (R0 50 )

B (I3]A)26 TA
=0ty (o4 B4 TN 17 =l ) 68)

Inequality (37) follows from Lemma Inequality (38) uses the fact that M} L}'“" < My and
similarly for g. O

We are now ready to prove Theorem [#.2} which we restate here for convenience.
Theorem 4.2. For any probability distribution P = (ps)seg over the token vocabulary %, define

= > Pp(@)|f(z) - g(@)].

|z|=n

where Pp(x) = Hl 1 Pa; is the probability of the sequence x when the tokens are drawn i.i.d. from
P. Let P = (ps)sex ~ Dir((as)sex) be drawn from a Dirichlet distribution, and define

1f = 9lln = Ep~bir((as)ees) IIf — 9llnP]-
Let ag = mingey, ag. Then there exists

o otoaTl |y jd42a0 5 ~ _
No=O<max{2p/7 1650 L2420 [5]4+205 7 A Z|AL}> _ et

2y
o 0 2+2a0 9

such that if | f — g||n < € forall N < Ny, we have that || f — g||7 = O(e'/?) for any T.

Proof. By Markov’s inequality, Ep pir(a,).c5)llf — 9llnp < € implies that || f — gl|xp > 7
with probability at most /7. When P is such that ||f — g||x»» > 71, we can use the bound
If —gllrp < My + M,

By Lemma L ming ps < -y with probability at most 2|2‘ 4"~ On this event, we can again
bound [| f(z) = g(x)||lr.p < My + M.
Conditional on ming ps > v and || f — g||n+,» < 1, we can use the bound from Lemma

Thus, by marginalizing P over the previous three cases, we have that

(I1Z]A)28 L TA) ) +

E
{ps} ~ (v —0)N

I
[/ =glhr=0 <(Mf + M) (|a|4°‘ v+ % +p+
0
(39)
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provided that N > A§~2 log %. To make the entire bound O(c'/2), we choose the following:

—1

cl/2 apel/? %
n=c'? p=——, v=(-— :
My + M, 4o E|(Mf+Mg)
e/ 2y Ozoaale:%“*o‘o_l)

- (Mg + M)([2[A)? 4%(Mf +Mg)1+a51\2|2+a51A2'
Note that with these settings, we indeed have v > § and furthermore 7A/((y — 0)N) =

O(e1*2a'/2) = o(c1/2). All other terms in (39) are O(c/2). Thus, we arrive at an error of
O(e'/?) with

165 (M + M,)2+2e3 " |9)4+205" A5 [SIA(My + M
N:O< O(My 4 MM [ORTAT ISy + My)
aoan €1+a0 €

as desired. We make several remarks. First, we actually required that || f — g||n+ < &, but since
N’ < N + A this does not change the final asymptotic bound on sequence length. Second, it is
interesting that up to leading order terms in ¢!, 7 does not enter the bound.

A final remark on the proof is that if we strengthen the assumption to || f — g||n7,» < € conditionally

on P with min, p, > ~, the resulting error can scale as ¢ rather than £'/2, albeit with a larger required
No. In this case, (39) becomes

B @ o oo (|E\A)25 TA
= alr =0 (Ot + 1) (Elaren sy py B, T2 Y ) o)

Efp.y

Setting p, v, and J according to

o= 3 y = 3 o
My + My’ a0 Bl + M) ’

ey B ag[?lgwagl
(Mg + M)(IZIA)? 455 (M + M) oo [g)2+es A2
inequality is O(e) with

a* -1 -1
N — O (16&0 (Mf + MQ)2+2a0 ‘E|4+2a0 AS log |Z|A(Mf + Mg))

2a; ! —1
o 0 £2+2a €

= O~ (2122 ) Jpg e,

B OMITTED PROOFS FROM SECTION

Notation. We will assume WLOG that ¥ = [S]. For a string 2 € [S]%l, define z1(z) to be the

empirical frequencies of the tokens in z, i.e u(z) := ﬁ Z‘lz:ll e.,, where e; € R¥ is the jth standard
basis element. Moreover, let <; denote the substring of x containing the first ¢ tokens, and for a set
A, x_4 the substring of z containing only those indices in .A. Finally, for integers a < b, define [a : b

to be the set of integers {a,a +1,...,b—1,b}.

B.1 PROOF OF KEY SIMULATION LEMMA

In this section, we prove Lemma[5.3] which we restate below for convenience.
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Lemma 5.3. Let p : [S]"t! x A% — R™ be a fixed function, which is L Lipschitz in its second
argument and uniformly bounded by G. Then, there exists a subset T C [T'] such that, if z = x1, then
I|IZ| = n| <7+ 1+n'? and

T
(G +L)(r+1)
; Tt—r:ty U x<t ‘ZP Zt—1ity U Z<t)) S T

Proof. Our proof proceeds via the probabilistic method. Let us sample Z as follows. Let p = n/T,
and let ¢ € (0, 1) be a parameter to be chosen later. Let us define a Markov chain j, .. ., jr on the
state space {0, 1}, with the following transition probabilities:

P(jir1=0]je=0)=1—7, P11 =1]j=0)=r
P(jir1=0]j:=1) =g, Pljiri=1|ji=1)=1-¢q

Letting r := {24, the stationary distribution is P(j: = 1) = p
We will let the subset Zbe Z := {i | j; = 1} U [T — 7 : T]

Computing the variance of |Z|. The first step is to compute the variance of |Z|. By definition,
EZl=(T-7-1)-p+(+1) =n+(r+1)(1-p).

Since the k-step transition kernel satisfies

Pljr=1]ji=1=(1—q—7)"1—-p)+p,

we have that

s -a($4)
2

Jz]z

T—7—1
=+ 2r+ )T —r—p+ > (A—a=nI - pp+p?)

i,i/=1

g(T+1)2+2(T+1)(T—T—1)p+(T+T—1)2p2+2(T—T—1)(1—p)pZ(1—q—r)i

1—
< (BIZ))? + op(L=P)P
q+r
2T
< (EZ))* + =E
2n
= (E|Z))* +

Therefore E(|Z] — E|Z|)* < 2n/q.

Decomposing the original expression. Next, we bound the quantity

T
E ﬂft Tity M 33<t

Define Z,,, to be the set of indices in Z such that some index in {¢ — 7,...,i— 1} isnotinZ, i.e

Tap={i €T |3telr]:i—t ¢TI}

|z

\
p Zt—7:ity M Z<t)) :
1

3\*—‘

t=
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We can write, denoting Z = {11, ..., iz} with iy <ip <--- <1z,
1 || 1 K 1 &
- ;p(zt—r:t,ﬂ(zgt)) = ;p(»’«'t—r:n#(zgt)) “1(iy € Igap) + - ;p(zt—T:tv,u(ZSt)) “1(iy & Igap)

|2l |2l

1 ) 1 .

I ZP(th'r:taN(ZSt)) (i € Igap) + n Zp(xiﬁ'r:ita/‘(zﬁt)) (it & Lgap)
t=1 =

|2l
1 .
- E;p(zth:tzﬂ(th)) “1(iy € Iyap) Zp Tyrit, W(Tpnz)) - L[t — 7 : ] C I).

Therefore we can decompose
|z

\
1
szxt‘rh 33<t E 1p2’t7t, Z<t))

t=

T T
1
T; P\Tt—7:t, 1 I<t)) ntzzlp(zt—ﬂthu(xft))'1([t77—:t] CI)
@

1 1w

TE| - p@ira p(es) Ut =70 CD) = 5> pl@rra plepgen) - Ut =78 € T)
t=1 t=1
)

LGByl

n
(1)

Bounding (I): Let us begin by defining the random variable

2= e pla<))(1 = 1( =7 4] € T))

The first term is then

D= TE ;ZL

1 T 1 T 1 T—1—1

< TZ 1Z:]| + T >zl + TE Z Zi
i=1 i=T—T1 i=1
2 1/2

G(2r+1) !

<YL Z;
1/2

Ger+1) 1 ([ "IN .

:——;—+THEZ|%H+ZM%@>
t=7+1 i#j

First, see that

2T T2
E||Z|]*> < G’E g(ﬁ<1_7lm1_@7+n2m1_qy>

22
<G

n
T
_¢L

(1_21@—T:ﬂc102
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Next, we have that

E(Z;i, Z;)| < G

E{(lil([iT:i] CI)> (1:7:1([3'7:3'] CI))H

2T

T2
—G21—n'p(l—q)7+nZP([z’—T:i]CI,[j—T:j]CI)'

=G1-20—q)" +p > Pli—7:4] CL,[j—7:4] CI)
Let’s assume that ¢ < j. First, consider the case where j > ¢ + 7. Then
Pli—7:d CL[j—7:4]CcD) =p(l—q)" -P(j—7T€l|icl)-(1-q)
=p(1l - (p+ A -pL—g—7)""77),
and thus
E(Zi, Zj)| <GP |1 =2(1 = q)" + (1= q)* +p (1 =p)(1 = q)* (L =g —7)" " 7|
<SG((I—=(1—=q) ) +p (1—g/ )
<GP +p H(1—q) M)
Next, for j < ¢ 4+ 7, we have that
P(i—7:4dCZ,j—7:4]CD)=P(i —7:j] CI)
=p(l—q) "7,
and thus
E(Z:, Z;)| < G*[1 = 2(1 = q)7 +p~ (1~ ¢ 77|
<G -7

Altogether, (I) can be bounded as

1/2

22

(< @ + % <GnT +T°G*r* +2G°p 7' T Y (1— q)k'”)
k>0

o7 +1) 1 /GT? 1/2
< G(2T + )+T<G +T2G272q2+2G2T2n_1q_1)

n n

G(t+1) G G
<~ 7 — __
= " +\/ﬁ+GTq+ o

Bounding (IT): Let’s next consider the (IT) term. Since p is L-Lipschitz in its second argument, we
have that

T T
(II) =K %Zp(aft—r:uﬂ(xgt)) : 1([t —T: t] C I) - %Zp(l’t,ﬂt,ﬂ(l‘[t]ﬂl’)) : 1([t —T: t] - I)
., Tt—l t=1
< o ZE[HM@CSt) - ,U(CU[t]mI)H A([t—71:t] CI)]

Let’s compute the ¢th term in this sum, for ¢t € [t + 1,7 — 7 — 1] (for t < 7, the quantity is trivially
zero, and for t > T — 7 we can bound it by O(1)). We have that

E[||u(z<t) — p(zgar)| - 1t — 7 : 1] € T))]

:El ) — 2_1'1@21[5]@'61) At -7 CT)
=1 - g || M= O e SR 3 c ).
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The denominator is |Z N [t]| = 3.'_, 1(i € Z). We first bound its conditional expectation:

t—7—1
ElZn|1(ft—7:CT))=7+1+ Y PliecI|[t—TeT)
i=1
t—7—1
=7+1+(t—T-1p+(1—-p) > (I—g—1)
i=1
> pt.
Next, we can bound the conditional variance of the denominator:
Var(IZN[t)| | ([t —7:t] CI))
=Var(|ZNt—7—-1)|| ([t —7:t] CI))
t—r—1
= Z Cov(ieI,jeI|t—T€el)
ij=1
t—7—1
= Z PGHeZ|icI)PieZ|t—T7el)-PHel|t—TeIl)PlicT|t—T€I)
ij=1
t—7—1
=Y @-p)((l=g-r)"7 =Q=q=r)""7)((1—q—7)"""(1L-p)+p)
ij=1
t—7—1
<> Q-9 p+A-pA-g )
ij=1
t—7—1 [
=Y (+0-p1-9" 7> (1-g"
i=1 j=1
t—7—1

<q ! Z (P+(1-p(1—g" 7

<pg l(t—T-1)+q°
Altogether, by Chebyshev’s inequality, we can upper bound the conditional probability that the
denominator is too small:

P(IZN [t < %pt|t—T€I) <PIZN[| < SEIZA[E| | 1(t=7:8 D) |[t—7:4 CT)

2
_Avar(Za )| [ 1t~ 7 1) € 7))
1

T OEZN[ (Tt D))

—1 —2
< Pa t+q

p2t2
1 n 1
Copgt - pPgit?
1
5 — A 17
pqt
where the last inequality follows from the fact that the probability must be bounded by 1.

Altogether, the t¢th term in the sum is
El||u(z<) — pzgaz)|| - 1([t = 7: 4] € T)]

S E[||nw<0) - 1Z 0 ]l - zi_le?w eD|11e-r:0c] (1 0).

The numerator in the above expression can be written as
t

> (1 € I) = p)(ew, — plw<i))

i=1

t

>

i=1

E |1([t—7:¢)CT)| =E |1([t—7:¢t) CT)

b

29



Under review as a conference paper at ICLR 2026

where Z; := (1(i € Z) — p)(eq; — pt(x<¢)). For i, < t — 7, we have the bounds (assuming WLOG
J <)

[E[(Z, Z;) | 1([t — 7 : t] C T)]]

SIEQQGeT)-p)A(Ge)—p) | L[t —7:t]CI)
=(PGeT|iel)—pPGiel|t—TeI)—pP(jeL|t—T€EI)+p*)
=((1=p(=g=—1)7((1=g=r)""T""(1=p)+p) —p(1=g—7)""7(1=p)+p) +1°)
=(P1-p)(L—q¢-r)"7+1-pPQ—q-1)"T7 —p(l-p)1—q-7)"T7)
<p(l—q)'7.

Therefore,

9 1/2

|1([t—7:¢] CI)

t

>

i=1

t—7—1

> %

i=1

E |[1(t—7:¢)]CI)| <t +1+E

1/2

STHl+4 |tp+pd) (1—gq)'7?

i#]
ST+ 14+/pt/q.

Putting everything together, the ¢th term in the sum can be bounded by

El|uz<t) — pagan)| - 1([t =) CT)] St T+ 1)+ /2p 212 4 (qlt Ap)

1
< (t—l(r +1) 7 Y2pl2gm 2 qt> Ap,

where the last line uses the fact that the entire expression can be trivially bounded by O(p). Plugging
back into the original expression for (II), this term can thus be upper bounded as

(H)<£2T: 1)+ 2212 D g T
~ n = qt n

< R S
~ 4

T
T+14+q¢! Lt
'<\/TP/Q+Z /\p>+n
t=1

S

S~ 3t

- (s/Tp/q +74+1+q " +log(Tp/(T+1+ qfl)))
< L N L(t+q71) n Llogn.
\/nq n n
Bounding (IIT):  Finally, for fixedt € [r+1: T —7—1],wehave P(i € Zyyp) =p—p(1—¢q)" S
pq7. Therefore we can bound (III) as

GE|Zyqp| < G(Tpqr + 27)
n - n

(Im) < < Gt(q+2/n).

Putting everything together. Altogether, we have that

T ||
1 1 G+ L)(t+1 G+ L Llogn
E sz(wtfrnﬂ(l’gt)) - Ezp(ztf‘r:tau(zgt)) S ( 7)L< ) + \/@ +GTC]+ g
t=1 t=1
LG+ D)+
= TLl/S ’

where the last inequality follows from choosing ¢ = n='/3,
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By the probabilistic method, there exists Z such that ||Z| — E|Z|| < 2n'/? = ||Z| —n| < (1 + 1 +
2n'/3) and

T ]
Z CT—T! w<t))*%zp(zt rit: (2<t)) 5%'

t=1

“3 \

For this choice of Z, we have that

T
E 33t ity M $<t E pzr ity Z<t))

G+ L)(t+1 1 B
~ ( nl)/(?’ ) ﬂ Zp(zt—T:ta //L(th)) ’1 — |,',T‘
t=1
(G+L)(r+1)
~ nl/3 )
as desired. .

B.2 PROOF OF THEOREM[5.2]

The proof begins by showing that the output of the first layer of attention at position ¢ can only depend
on the histogram of the first ¢ tokens ;1(x<;), along with the 7-prefix of z<;.

Lemma B.1. Let [ be a fixed transformer with key, query and value matrices
{(K 1,0, Q1 Vin) bnem U{(K2,1, Qs 1, V1) }, MLP weights {( Ay, Bi) }ie 1,2y, embeddings
| Es|l <1, and unembedding U. There exists a function q; : [S]"t! x A% x N — R? such that

( ) = Qf(xl ”,,u(x<1) Z)

Moreover, f satisfies

H

qr(w, py ) S ( |0p>(1 +BilloplAll,,) =: Gy

h=1

H
a7 (w, 1,9) = as (w1, ) S (14 1Bill,pll Al ) (72 + 1) min(i, )77 Y exp <4HKIhQLhHOP) =: Hymini, j)
h=1

H
IV s (w, . 3)]],, < 25 (Z IV 14l exp (4”1{;@1&“@)) (1411l A1l,,) = Ly
h=1

Proof. Recall that the first layer self-attention logits are

alh = ETKIthhE +logi - ¢1,n(4,1)

2
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and thus we can rewrite Ygl) as
Y
;:1 exp (al(}]?h)) VinEy,
i Lh
2j=16Xp (ag,j ))
;‘:1 exp (E;J KlT,th,hEa:i) 010DV LB,

Z;:l exp (E;—J KIth)hai) . Z'¢1,h(j,i)

H
=E, +) >
h=1

LADY
=E, + Z
h=1

H ZSE[S] L exp (EIKlTthhE%) VinEgu(r<i)s + Z;:i—T (Z.(bl’h(j’i) - 1) exp (EI] KIth,hExi) Vl,hEa:j
h=1 Zse[S] iexp (EIK].TJLQ].JLEQH) mE<i)s + Z;:Fr (i(bl’h(j’i) - 1) exp (Eg;TjKlT,hQLhai)
H
Np
E, + ;
2.,

where for each h, we have

Np(z) = Z i7" exp (EIKI;LQMEM) VinEsu(r<i)s
s€[S]

Py (iasl,,L(j,i)—wh _ @-—vh) exp (E;KIth,hai) VinE,,

J=i—7
Dy(z) = Z i1 exp (EIKI}LQL;’,E@) wlw<i)s + Z (im,h(j.,i)fw _ Z-wh) exp (E;KlT,th,hEm)
s€[S] J=i—T7

= max(1 |~ t,0)) =
Y := max( ,OréltanTqSl,h(z ,1)) = max Py,

N _

Therefore we can write Y ;") = ggsa(zi—r., p(v<;),i), where for wo., € [S]"Th,u € AS,

gsa(w, p, i) is given by

gsal\w, L7i = E'LUT + N 7 N
( / ) hz::l Dh(wu;uvl)

where

Np(w, p, i) = Z i exp (EZKI;LQLhaT) VinEsps
s€[S]

-
+ Z (i¢1,h(i7t7i)77h _ Z‘*%) exp (ELKIth,hE“’T) VinEw,
t=0

Dp(w, p, 1) := Z it exp <E:KIhQ1,ha,) s + Z (im’h(iq’i)*% - 717%) exp (ELKIhQLhaT)
s€[9] t=0

Each Ny, (w, p1,7) /Dy (w, p, ) term in the above sum is of the form of the expression in Lemma|[B.2]
First, we see that each denominator can be lower bounded by exp (— HK IT rQ1p H ) . Moreover,
op

we have

Sl 5+ DIV aal, e [KT@ui] )
k

1l 5 o+ e[ KT@u )
k
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Altogether, since v := y(f) = minpe g (v — max{p € Py : p # Y1 }), we can bound

g5 (w, 1,3) = gsalw, p )| S (2 + 1)j erxp(HKMQMH )

(€]

Next, see that y, ' = qMLp(Ygl)), where

gurp(z) =z + By (Arx + by).
Since 41 is 1-Lipschitz, garrp is 1 + || B1l|,,,[[A1]|,, Lipschitz. Altogether, since gy (w, p1,4) =
amrp(gsa(w, p, 1)), we have
op) ’

Jar (s 1,9) = a5 (w1, )| S (14 1Bl Al ) (72 +1)57 exp (4HKLQM
Next, for the uniform bound, observe that HYZ(-I) H <1+ 2’1;1:1 ||V1:hHop’ and therefore Hygl) H <
H
(14 i Vil ) (1 + 1B, A ,).

Finally, we compute the Lipschitz constant with respect to (.

Let M;, € R%S be the matrix with the sth column being exp (E;FKlT’th,haT) Vi ,Es,
let b, be the vector with sth entry exp (E:K Ith,haT), and let C, =
ST, (i#1nG=mD=m — =) exp (EL K[hQLhaT) > 0. We have that

H -1—; '2(1_'}%) T

. ] LMh 1 Mhub»
\Y% QSA(’U),M,Z) = . - ! y
g }; i1 h <bh7 :u> +Ch (il_'y’l <bh, u> + C}L)2

and Since <bh7/'L> 2 exp (_HKIth’hHop) and

¥y < VEWVsally ([ KTa1a], )t il < VS [T, )
we have that
H
HV;;qSA(wa 122 i)”op § Z 2S||V11h||op €xp <4HKI}LQ1’h Hop) '
h=1

Altogether,

H
IV as(w, 1,3, < 25 (Z IVinl, exp(4HKIhQ1,hHop)) (1+ 1B, 1Al ).
h=1

In order to prove the main theorem, it suffices to apply the key simulation lemma Lemma[5.3]

Proof of Theorem[5.2] Let f, g € F: be two transformers. In the forward pass of f, the second layer
logits are given by

2,1 1 . .
5; )= ('!J§ )) Kz 1Q2 1’!/1 (33] TJaM(xgj)vJ)TK;,1Q2,1Qf($i—r:i7M(xsi)aZ)v

and therefore

Y§?) =qf(xr_rr, pla<r), T)

T eXp(qf Tj— Tja/J/(xgj)aj)TK;—,lQZqu(foT:TvM(xST)vT))qf(xjf‘r:jv/jf(xgj)mj)

Z] 1exp<Qf(xJ Tj7,u‘(xﬁj)ﬂj)TK;—,lQQJQf(:ET—T:TvN(xST)7T))
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The analogous expression holds for the second layer logits in the forward pass of g.

Let us define the following sequence of functions:

po(w, p) = ew_,
pra(w, p) = exp (qf(w, 1 T) K3 1Qo1qr(vr—rm, (), T))
pf’z(’llh M) = pf’l(wv M)Qf(w’ :u)’
along with the analogous py 1, pg 2 for the transformer g. We first see that ||pg|| < 1 and py is constant

in p.

Next, we have that we can uniformly bound p¢ 1 by

gt < oo (G351 )

and the Lipschitz bound

Vupsi(w, p) = exp (Qf (w, 1, T) K 3,Q, 145 (771, 1(2), T)) Vs (w, 1, T)VK 3 Qo a4y (xr—r1, (), T)

— st < exp (63| K,Qua | )| K@ L

op

Finally, for ps 2 we have the uniform bound

[py2(w, p)| < exp (chHKzT,le,lHop) Gy
and the Lipschitz bound

Vups2(w, 1) = pra(w, w)V,uqr(w, 1, T) + ¥V up1(w, 1) qp (w, i)

:>Hvupf,2(w7l~‘>|| < exp (G?HK;JQQ,IHOP) HKz’T,lQQJHOpG?‘Lf-

Define the quantity My as

My = exp (G?HKQTJQMH )HKLQz,lHOpG;Lf,

op

and analogously for M.

Let us define the function p by

MfMg pO(wvﬂ)
GfMQ ~pf,1(w,u)

plw,p) = | My pya2(w, p)
Mng ’pgyl(wali)

Mf 'pg,z(UhM)
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p is both uniformly bounded by and has a Lipschitz constant of M M,. Therefore by Lemma@

we have the following bounds:

T
Z o(@j—r:j, 1(T<H))
1 X
szf,l(xjfr:jwu’(xﬁj)
j=1

prQ Tj—7:jy x<]
] 1

pg,l('rj—T:j7 l’<]

NI~

1

<
I

Nl =

pg,Q(xj—T:ja z<]

1

J

Let’s first look at pg. Observe that

Pl

and therefore

T

Z

() =

Next let’s look at py 1. We have that

T

Jj=1
T

’ﬂ\*—‘

Jj=

0(@j—r:js p

2|
1
(Xj—7ij, (<) —E
G—7igy PAT < z_

|zl

|ZPO Zj—rijy 1(2<;))

[k

1
B |pr1 Zj—rij, M(2<5))| S

|2l

prz Zj—rijy 1(2<5))

|ZP91 Zj—rijy 1(2<5))| S

|Zpg2 2o i(2<)))

1‘<j

T+1
~ A3

MGyl (T +1)
nl/3

< Mf(T-l-l)

S T8

MgG;I(T +1)
173

My(T+1)
/3

T+1

0(2j—rij, #(2<5)) S’W'

T

1 . 1
T ZeXp(Qf(xjf‘r:jv/J’(xﬁj)7])TK;—,IQZqu(foT:TaN(xST)7T)) - T pr,l(mjf'r:jﬁfv(xgj))

j=1

S| exp(ar (@i 1@<). )T K, Qunar(@r—rer, plz<r), T))

- exp(qf (2o 12 <), T) KT, Qo 10p(wr—rar, plw<r), T))|

A

T
1 .
= T E eXp<G30HK2T,1Q2,1H0p>HK2T,1Q2,1HOpr'HfJ ")
Jj=1

exp <G§HK;—,1Q2,1HOP> HK;r’lQQ’lHopr CHp &) (T),

where we’re letting & (T) := 7 Zle j
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Next, note that

|| 2]
1 o 1
mZeXp(Qf(Zj—T:j7/”'(Zﬁj)aj)TK2,1Q2,1Qf(Z|z\7T:\Z\7M( ‘Z| ) TZ Z_] iy M Z<j))

=1
1 i T T
< ?Z (G HK2 1Q2 1H )‘Qf(zjmjﬁi(kj)’j) Ky 1Q2107 (2217212 1(2), [2])
_qf(zjfr:jvu(zﬁj%T)TK;1Q2,1(]f(‘T\z\—T:|z|v/1'(1.)7T)‘
|z|
1 .
<h Zexp (G?HKLQQ,lHop)GfHKLQQ,luop(||qf<zjT:j,u(z@-),;) — 47 (2o i(z2). )|
+ [y (zpzj—rpzp 1(2); 12]) = @ ()2 =2, ol ||)
|z|
1 o _
SEp xp<a |31 Qa )GfHK;ilQMHOp(Hﬂ "l 2|7 4 Lyl(z) — (o))

S exp (G?HK;lQQJHOZ]) GfHKJJQMHOP (H& i) (12) + Ly(r + Dn )

Altogether,

T
T Z exp <Qf($j—r:j, (x<s), ) Ko 1Qo1ap(r—ror, plw<r), T)>
=1

|z

1 .
- m Zexp (qf(zj—T:ja :u(zfj)7])TK;1Q2,1qf(Z|z|—T:|Z\a:u‘(Z)v |ZD) |

exp <G}HK2T’1Q2’1HOP) G| K31 Qu.| (HiE (2D + Ly(r + )n )

T |z]
prl (Tj—r:js H(T<j)) |pr1 Zj—r:js M(2<5))
] 1
exp (G?HKLQQ,lH )L;-(v +1)
< op
~ /3

< exp <G?HK2T,1Q2,1HOP> GfHK2T,1Q2,1HOp (Hfgw)(n) +Ly(r+ 1)n_1/3)_

Similarly, we can bound the numerators by

1 _ .
T > exp (Qf(wj—rzj, 1(x<;),§) " K31Qa 105 (xr—rir, p(z<1), T))Qf(ﬂﬁj—fm wx<;), )
j=1

||
o > eXp(Qf(Zj—Tij7 1(2<5),3) " K31 Qo 145 (2121 —ripz) 1(2), |Z|))Qf(zj—7-:j7 1(2<5), )
j=1

S exp (ch |K31Qu, Hp) 3| K1,Q., Hp (H1& 5y () + Ly (7 + 1012
Finally, we bound

@y (@r—rirs 10(2), T) = G5 (212 —reja)s 1(2), [2])]| < Lyllpp(x) — p(2)| + Hyl2) 7
SLy(r+ 1) V3 ¢ Hpn D),
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Altogether, we can relate Yg?) (x) and Y@ (z) by

2|

HYEE)(QT) - Y\(j\)(z)H < exp (4G?HK2T,1Q271HOP> G?‘HK;JQZIHOP (1 + ||V2Hop) (Hfg'y(f) (n) + Lg(T+ 1)”_1/3)-
Finally, we have that
1£@) = I < U (1+ 1Bzl 42ll,, ) [ Y @) - Y =)

Plugging in the expressions for G f, L, H, and noting that £, (n) < n~(1/3/7) yields
1f(z) — f(2)|| < C(f)n~ /3

where

H 2
C(f) =exp c(1+z|v1,h||o,,> (4 1Bl 4 )| KT 1@ | (14121

h=1

H
x (Z 1V il exp(4HKIhczl,hHOp)> (1+1B2lly A2l ) [T, (72 + 1),
h=1

Repeating the above argument for the transformer g, we have that
lg() = g(2)|| S Cg)n~ /M)

Combining these together implies the desired result. O

B.2.1 HELPER LEMMAS

Lemma B.2. Let f(i) be of the form

B Zk Ak,i*%c
= Zk Bki_7k7

where A, € R? and > op Bri™" >0 forall i. Assume that 0 = v < 72 < --- < yg. Then, for
7 <4,

f(@)

1) = F@IF <6777 <Z ||Ak|> (Z |Bk|>

k

Proof. One can write

() Ari™ ) (X, Brd ™) — (X Ak =) (X, Bri™ )|l

176 = 7l = (s B ) (o Brj )]

<672\ Y (1B — AgBy)iT
1#£k

<5 (%j ||Ak> (; lBkl>

B.3 IN-CONTEXT k-GRAM CONSTRUCTION

Below, we sketch the in-context k-gram construction, which closely follows Construction 2 in Nichani
et al.[(2024).

In the first layer, the h-th head will attend fully to the (¢ — h)-th token; this is done by setting
¢1.1(i — h, 1) to be large, and the rest of the entries of ¢, along with Ky j, and @ ;,, equal to 0. By
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choosing an embedding dimension of d > (7 + 1).S, the value matrices V'1 j, can be chosen such

that YEI) =FE;, ®E;,_, ® - ® E,__; this is accomplished via V1 ;, being a block identity

matrix, which thus satisfies |[V'1 ||, = 1. The first layer MLP is then set to identically zero, so that
M =—y®

Yy

In the second layer, K ; 1Q2 1 is equal to 3 times another block-identity matrix, which compares the
E, ©---®FE, _ subspaceof yl(-l) tothe £, @& -® E,,__,, subspace of ygrl). This places an

attention weight of e7? on each token i with z;_,.;_1 = Tr_r+1.7, and a weight of at most em(A=1)
on all other tokens. Finally, the second value matrix V'3 ; copies from the E,, subspace of y,, while
the second layer MLP is also zero.

Altogether, the output of the transformer is

efT 21 1(1'1'77:1'71 = XT—741:T, L5 = 8) + EN,S
ehr Zz 1(1’1‘,7—;2',1 = mTf'rJrl:T) +Ep

where | Ex||,|Ep| < Te?"=1). Therefore

f(xlzT)s =

)

s -
ef Zz 1($i771i71 = fo‘H»l:T)

On a “typical” sequence x, Y, 1(z;—7:i—1 = &r—r41.7) = O(T), in which case
If(@rr) = )| SeP <e

whenever 8 < log(1/¢). Therefore HKLQQJH = O(log(1/e)). Plugging in, this yields a
op

I f(x1.7) — f*(z1.7)]

complexity measure of

C(f) =exp (Ck2 log(l/g))sz =g Ok,

C EXPERIMENTAL METHODOLOGY

Data Generation:

+ SimpleTask: Each sequence x.7 is generated by first sampling a probability vector p € R3
uniformly at random over the simplex, then sampling each z; i.i.d, where x; = s with
probability ps. This ensures that Var(f*) = ©(1). We vary w between 2 and 5.5 in
intervals of 0.5.

* ModPTask: Each sequence 1.7 is generated by first generating qo, . . . , ¢p—1 i.i.d uniformly
from [0, 1]. Then, each z; is sampled from Bernoulli(py), where kK = ¢ mod p. This
ensures that Var(f*) = ©(1), and also that attending to incorrect positions mod p cannot
help the model. We vary A from 3 to 8

o In-context k-gram: The data generation follows that of [Nichani et al.|(2024)). Each sequence
x1.7 is generated by first sampling a k-wise transition tensor m € [S]*, where for any
21.5—1 the distribution 7 (- | z1.5—1) is sampled uniformly at random over the simplex in S
dimensions. Next, 1., are sampled uniformly at random. Finally, for ¢ > k, we sample
x; ~ (- | i—g—1). To ensure that zp_ 1.7 occurs at least once in the sequence, we
randomly select an index i € [k : T' — 1], and replace x;_k1.; With zp_g41.7. We fix
k = 2 and vary S from 3 to 8, and also fix S = 2 and vary k from 2 to 4.

Training Procedure:

* Single-layer transformers: The model architecture is one layer of a single self-attention
head followed by an MLP. The embedding dimension is d = 16 and the MLP width is 256.
We use the pP initialization [Yang et al.|(2022)), and train using the Adam optimizer with
learning rate 7 = 10~2/d for the hidden layers and = 10~2 for the embedding layers. We
train all of the models using online SGD (sampling a fresh batch of size 1024 at each step),
until the training loss crosses below 10~°. All results are averaged over 8 random seeds.
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» Two-layer transformers: The model architecture is a two-layer transformer, with k — 1 heads
in the first layer and one head in the second layer. The embedding dimension is either
d = 32 (when k£ = 2 is fixed and .S ranges from 3 to 8) or d = 16 (when S = 2 and k
ranges from 2 to 4). We use the pP initialization and train using the Adam optimizer with
learning rate 7 = 3 - 10~2/d for the hidden layers and = 10~ for the embedding layers,
on a fresh batch of size 1024 at each step for 2'° steps. The k = 2 results are averaged over
8 random seeds, while the S = 2 results are averaged over 14 random seeds.

C.1 EXPRESSIVITY OF SYNTHETIC TASKS

We sketch the constructions for each of the synthetic tasks in Section [6]

SimpleTask: Set p; = 0, and let Eq, E, E5 be orthogonal. Choose K, Q so that a; ; = oo
when j = 0,1 and a; ; = 0 when j = 2. The attention probabilities will then be uniform over all

0 and 1 tokens, and thus the output of self-attention becomes Y = E,, + %VEO +

V E;. We can then set VE; = —V E;. It suffices to approximate the one-dimensional

ci1(x)
co(z)+ei(x)
function z — sin(wz) with an MLP; it is well known (Barron, [1993)) that this can be done with
weight norms O(w), as desired.

ModPTask: Let {q;}ic[a] be some fixed set of orthogonal embeddings, and let p; be equal to
q;, where i # j mod p. These are periodic embeddings with periodicity A = p. Choose K, Q
so that a; ; equals oo if j = k£ mod p and 0 otherwise. The attention probabilities will then be
uniform over all positions which are £ mod p. Choosing V' so that V'g; = 0 for all j, the output
of self-attention becomes Y1 = yr + f*(z1.7)VE; + (1 — f*(21.7)V Eq. Choosing the readout
layer appropriately, we can ensure that T'(x)r = f*(x1.7), as desired.
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