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Abstract

Several performance measures can be used for evaluating classification results:
accuracy, F-measure, and many others. Can we say that some of them are better than
others, or, ideally, choose one measure that is best in all situations? To answer this
question, we conduct a systematic analysis of classification performance measures:
we formally define a list of desirable properties and theoretically analyze which
measures satisfy which properties. We also prove an impossibility theorem: some
desirable properties cannot be simultaneously satisfied. Finally, we propose a
new family of measures satisfying all desirable properties except one. This family
includes the Matthews Correlation Coefficient and a so-called Symmetric Balanced
Accuracy that was not previously used in classification literature. We believe that
our systematic approach gives an important tool to practitioners for adequately
evaluating classification results.

1 Introduction

Classification is a classic machine learning task that is used in countless applications. To evaluate
classification results, one has to compare the predicted labeling of a given set of elements with the
actual (true) labeling. For this, performance measures are used, and there are many well-known ones
like accuracy, F-measure, and so on [13, 15]. The fact that different measures behave differently
is known throughout the literature [10, 13, 20, 21]. For instance, accuracy is known to be biased
towards the majority class. Thus, different measures may lead to different evaluation results, and it
is important to choose an appropriate measure. While there are attempts to compare performance
measures and describe their properties [3, 6, 13, 14, 26, 28], the problem still lacks a systematic
approach, and our paper aims at filling this gap.1 Our research is particularly motivated by a recent
paper [12] providing a systematic analysis of evaluation measures for the clustering task. We transfer
many proposed properties to the classification problem and extend the research by adding more
properties, new measures, and novel theoretical results.

To provide a systematic comparison of performance measures, we formally define a list of properties
that are desirable across various classification tasks. The proposed properties can be applied both to
binary and multiclass problems. Some properties are intuitive and straightforward, like symmetry,
while others are more tricky. A particularly important property is called constant baseline. It requires
a measure not to be biased towards particular predicted class sizes. For each measure and each

1We describe related research in detail in Appendix A.
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property, we formally prove or disprove that the property is satisfied. We believe that this analysis is
essential for better understanding the differences between the performance measures.

Then, we analyze relations between different properties in the binary case and prove an impossibility
theorem: it is impossible for a performance measure to be linearly transformable to a metric and
simultaneously have the constant baseline property. This means that at least one of these properties has
to be discarded. If we relax the set of properties by discarding the distance requirement, the remaining
ones can be simultaneously satisfied. In fact, we propose a family of measures called Generalized
Means (GM), satisfying all the properties except distance and generalizing the well-known Matthews
Correlation Coefficient (CC). In addition to CC, this class also contains another intuitive measure
that we name Symmetric Balanced Accuracy. To the best of our knowledge, this measure has not
been previously used for classification evaluation.2 If we instead discard the constant baseline (but
keep its approximation), then the arccosine of CC is a measure satisfying all the properties.

We also demonstrate through a series of experiments that different performance measures can be
inconsistent in various situations. We notice that measures having more desirable properties are
usually more consistent with each other.

We hope that our research will motivate further studies analyzing the properties of performance
measures for classification and other problems since there are still plenty of questions to be answered.

2 Performance measures for classification

In this section, we define measures that are commonly used for evaluating classification results.
Classification problems can be divided into binary, multiclass, and multilabel. In this paper, we
focus on binary and multiclass and leave multilabel for future research. There are several types of
performance measures: threshold measures assume that predicted labels deterministically assign each
element to a class (e.g., accuracy); probability measures assume that the predicted labels are soft and
compare these probabilities with the actual outcome (e.g., the cross-entropy loss); ranking measures
take into account the relative order of the predicted soft labels, i.e., quantify whether the elements
belonging to a class have higher predicted probabilities compared to other elements (e.g., area under
the ROC curve or average precision). Our research focuses on threshold measures.

Now we introduce notation needed to formally define binary and multiclass threshold measures.3
Let n > 0 be the number of elements in the dataset and let m ≥ 2 denote the number of classes. We
assume that there is true labeling classifying elements into m classes and also predicted labeling. Let
C be the confusion matrix: each matrix element cij denotes the number of elements with true label i
and predicted label j. For binary classification, c11 is true positive (TP), c00 is true negative (TN),
c10 is false negative (FN), and c01 is false positive (FP). We use the notation ai =

∑m−1
j=0 cij , bi =∑m−1

j=0 cji for the sizes of i-th class in the true and predicted labelings, respectively. Finally, we
denote classification measures byM(C) orM(A,B), whereA andB are true and predicted labelings,
and write M(c11, c10, c01, c00) for binary ones.

Table 1 (above the line) lists several widely used classification measures. The most well-known
is accuracy which is the fraction of correctly classified elements. Accuracy is known to be biased
towards the majority class, so it is not appropriate for unbalanced problems. To overcome this,
Balanced Accuracy re-weights the terms to treat all classes equally. Cohen’s Kappa uses a different
approach to overcome this bias: it corrects the number of correctly classified samples by the expected
value obtained by a random classifier [5]. Matthews Correlation Coefficient is the Pearson correlation
coefficient between true and predicted labelings for binary classification [11]. For the multiclass case,
covariance is computed for each class, and the obtained values are averaged before computing the
correlation coefficient. Finally, Confusion Entropy computes the entropy of the misclassification
distribution for each class and combines the obtained values, see Table 1 and [30] for the details.4

Some measures are exclusively defined for binary classification. In this case, the classes are often
referred to as ‘positive’ and ‘negative’. Jaccard measures the fraction of correctly detected positive

2For clustering evaluation, there is an analog known as Sokal&Sneath’s measure [12].
3For convenience, we list the notation used in the paper in Table 7 in Appendix.
4There can be cases when a class is not present in the predicted labels. Then, some measures may contain

division by zero. A proper way to fill in such singularities is discussed in Appendix B.
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Table 1: Commonly used (above the line) and novel (below the line) validation measures

Binary Multiclass

F-measure (Fβ) (1+β2)·c11
(1+β2)·c11+β2·c10+c01

micro / macro / weighted

Jaccard (J) c11
c11+c10+c01

micro / macro / weighted

Matthews Coefficient (CC) c11c00−c01c10√
b1·a1·b0·a0

n
∑m−1

i=0 cii−
∑m−1

i=0 biai√
(n2−

∑m−1
i=0 b2i )(n2−

∑m−1
i=0 a2i )

Accuracy (Acc)
∑m−1

i=0 cii
n

Balanced Accuracy (BA) 1
m

∑m−1
i=0

cii
ai

Cohen’s Kappa (κ) n
∑m−1

i=0 cii−
∑m−1

i=0 aibi

n2−
∑m−1

i=0 aibi

Confusion Entropy (CE) − 1
2n

∑
i,j:i6=j

(
cji log2m−2

cji
aj+bj

+ cij log2m−2
cij

aj+bj

)
Symmetric Balanced Accuracy (SBA) 1

2m

∑m−1
i=0

(
cii
ai

+ cii
bi

)
Generalized Means (GM) n c11−a1b1

r
√

1
2 (a

r
1a

r
0+b

r
1b

r
0)

micro / macro / weighted

Correlation Distance (CD) 1
π
arccos(CC)

examples among all positive ones (both in true and predicted labelings). F-measure is the (possibly
weighted) harmonic mean of Recall (c11/a1) and Precision (c11/b1). For measures that do not have a
natural multiclass variant, there are several universal extensions obtained via averaging the results
for m one-vs-all binary classifications [17]. For each one-vs-all classification, a particular class i is
considered positive while all other classes are grouped to a negative class.

Micro averaging sums up all binary confusion matrices corresponding to m one-vs-all classifications.
Formally, it sets true positive as

∑m−1
i=0 cii, false negative and false positive as n−

∑m−1
i=0 cii, true

negative as (m− 2)n+
∑m−1
i=0 cii. Then, a given binary measure is applied to the obtained matrix.

Macro averaging computes the measure values for m binary classification sub-problems and then
averages the results: 1

m

∑m−1
i=0 M(cii, ai − cii, bi − cii, n− ai − bi + cii), where M(·) is a given

binary measure. Note that macro averaging gives equal weights to all one-vs-all binary classifications.

In contrast, weighted averaging weights one-vs-all binary classifications according to the sizes of the
corresponding classes: 1

n

∑m−1
i=0 ai ·M(cii, ai − cii, bi − cii, n− ai − bi + cii).

3 Properties of validation measures

As clearly seen from the above discussion, there are many options for classification validation. In
this section, we propose a formal approach that allows for a better understanding the differences
between the measures and for making an informed decision among them for a particular application.
For this, we propose properties of validation measures that can be useful across various applications
and formally check which measures satisfy which properties. In this regard, we follow the approach
proposed in [12] for comparing validation measures for clustering tasks.

First, we observe that some theoretical results from [12] are related to binary classification measures.
Indeed, a popular subclass of clustering validation measures are pair-counting ones. Such measures
are defined in terms of the values N11, N10, N01, N00 that essentially define a confusion matrix for
binary classification on element pairs. Thus, replacingNij in pair-counting clustering measures by cij ,
results in binary classification measures. We refer to Table 8 in Appendix B for the correspondence
of some classification and clustering measures. In particular, Accuracy is equivalent to Rand, while
Cohen’s Kappa corresponds to Adjusted Rand. This equivalence allows us to transfer some of the
results from [12] to the context of binary classification. However, an important contribution of
our work is the extension of the properties and analysis to the multiclass case. We also prove an
impossibility theorem stating that some of the desirable properties cannot be simultaneously satisfied
and develop a new family of measures having all properties except one.
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Table 2: Properties of validation measures and averagings, 3/7 indicates that property is satisfied
only in binary case

Measure Max Min CSym Sym Dist Mon SMon CB ACB

F1 (binary) 3 7 7 3 7 3 7 7 7
J (binary) 3 7 7 3 3 3 7 7 7
CC 3 3/7 3 3 7 3/7 3/7 3 3
Acc 3 3 3 3 3 3 3 7 7
BA 3 3 3 7 7 3 3 3 3
κ 3 7 3 3 7 3/7 7 3 3
CE 3 7 3 3 7 7 7 7 7

SBA 3 3 3 3 7 3 3 3 3
GM (binary) 3 3 3 3 7 3 3 3 3
CD 3 3/7 3 3 3 3/7 3/7 7 3

Preserving properties by various averaging types

Micro 3 7 3 3 3 3 7 7 7
Macro 3 7 3 3 3 3 7 3 3
Weighted 3 7 3 7 7 3 7 3 3

Similarly to [12], we note that all the discussed properties are invariant under linear transformations
and interchanging true and predicted labelings. Hence, we may restrict to measures for which higher
values indicate higher similarity between classifications.

Table 2 summarizes our findings: for each measure, we mathematically prove or disprove each
desirable property. Further in this section, we refer only to known measures (above the line), while
the remaining ones will be defined and analyzed in Section 4. In addition to individual measures, we
also analyze the properties of micro, macro, and weighted multiclass averagings: for each averaging,
we analyze whether it preserves a given property, assuming the binary classification measure satisfies
it. All the proofs can be found in Appendix C. Let us now define and motivate each property.

3.1 Maximal and minimal agreement

These properties make the upper and lower range of a performance measure interpretable. The
maximal agreement property requires the measure to have an upper bound that is only achieved when
the compared labelings are identical.

Definition 1. We say that a measure M satisfies maximal agreement if there exists a constant cmax

such that for all C, M(C) ≤ cmax with equality iff C is diagonal.

Also, for a given true labeling, there are several “worst” predictions, i.e., labelings that are wrong
everywhere. This leads to the following property.

Definition 2. We say that a measure M satisfies minimal agreement if there exists a constant cmin

such that for all C, M(C) ≥ cmin with equality iff the diagonal of C is zero, i.e., cii = 0 for all i.

These properties allow for an easy and intuitive interpretation of the measure’s values. While all of
the measures in Table 2 do satisfy maximal agreement, there are popular measures such as Recall
(c11/a1) and Precision (c11/b1) that do not satisfy this property as the maximum can also be achieved
when the compared classifications are not identical. For minimal agreement, many performance
measures violate it. For example, Cohen’s Kappa is obtained from accuracy by subtracting the
expected value of accuracy and normalizing the result. As a result of the particular normalization
used, it has minimal value −

(∑m−1
i=0 aibi

)
/
(
n2 −

∑m−1
i=0 aibi

)
, which is clearly not constant.

If a binary measure satisfies maximal agreement, then its multiclass variant obtained via micro,
macro, or weighted averaging also satisfies this property as each one-vs-all binary classification
agrees maximally. However, this does not hold for minimal agreement: though each one-vs-all binary
classification will have zero true positives, the number of true negatives may still be positive.
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3.2 Symmetry

Definition 3. We say that a measure M is symmetric if M(C) = M(CT ) holds for all C.

In other words, we require symmetry with respect to interchanging predicted and true labels. This
property is often desirable since similarity is usually understood as a symmetric concept. However, in
some specific applications, there may be reasons to treat the true and predicted labelings differently
and thus use an asymmetric measure. An example of an asymmetric measure is Balanced Accuracy.

Let us also introduce class-symmetry, i.e., invariance to permuting the classes.

Definition 4. We say that a measure M is class-symmetric if, for any permutation π of the classes
{1, . . . ,m} and any confusion matrix C, M(C) = M(C̃) holds, where C̃ is given by c̃ij = cπ(i),π(j).

Note that known multiclass measures are all class-symmetric, while in binary classification tasks,
there can be an asymmetry between ‘positive’ and ‘negative’ classes. Examples of well-known
class-asymmetric binary classification measures are Jaccard and F1.

3.3 Distance

In some applications, it is desirable to have a distance interpretation of a measure: whenever a
labeling A is similar to B, while B is similar to C, it should intuitively hold that A is also somewhat
similar to C. For instance, it can be the case that the actual labels are unknown, and the labeling A is
only an approximation of the truth. Then, we would want the similarity between predicted labels and
A to be not too different from the similarity between predicted and the actual true labels. This would
be guaranteed if the measure is a distance.

Definition 5. A measure has distance property if it can be linearly transformed to a metric distance.

A function d(A,B) is a metric distance if it is symmetric, nonnegative, equals zero only whenA = B,
and satisfies the triangle inequality d(A,C) ≤ d(A,B) + d(B,C). Note that the first requirement
is equivalent to symmetry (Definition 3), while the second and third imply maximal agreement
(Definition 1). Furthermore, note that if d is a distance, then c · d is also a distance for any c > 0.
Therefore, we can conclude that M is a distance if and only if M satisfies symmetry and maximal
agreement while cmax −M(A,B) satisfies the triangle inequality.

While most measures cannot be linearly transformed to a distance, some measures do satisfy this
property. For example, the Jaccard measure can be transformed to the Jaccard distance 1− J(A,B).
Similarly, Accuracy can be transformed to a distance by 1− Acc(A,B).

3.4 Monotonicity

Monotonicity is one of the most important properties of a similarity measure: intuitively, changing
one labeling such that it becomes more similar to the other ought to increase the similarity score.
Then, to formalize monotonicity, we need to determine what changes make the classifications A and
B more similar to each other. The simplest option is to take one element on which A and B disagree
and resolve this disagreement.

Definition 6. A measure M is monotone if M(C) < M(C̃) for any confusion matrices C and C̃ such
that C̃ is obtained from C by decrementing an off-diagonal entry cab and incrementing caa or cbb and
none of the row- or column-sums of C equal n.

The condition on C is equivalent to neither A nor B labeling all elements to the same class. We need
this to prevent contradictions with the constant baseline property that will be defined in Section 3.5.

Definition 6 defines a partial ordering over confusion matrices with the same total number of elements.
However, we can relax the latter restriction and obtain the following, stronger notion of monotonicity
that defines a partial ordering across different numbers of elements.

Definition 7. A measureM is strongly monotone ifM(C) < M(C̃) for any confusion matrices C and
C̃ such that C̃ is obtained from C by either increasing a diagonal entry or decreasing an off-diagonal
entry. Here we require that none of the row- or column-sums of C equal n and that C and C̃ are not
simultaneously diagonal or zero-diagonal matrices.
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The last condition is needed since otherwise the definition would contradict the maximal (or minimal)
agreement properties as M(C) = cmax ≥M(C̃) holds when C is diagonal.

All measures in Table 2 except for CE and multiclass κ, CC and CD satisfy monotonicity from
Definition 6. Strong monotonicity is violated by many measures: for instance, the widely used F1,
Jaccard and Cohen’s Kappa do not satisfy this intuitive property.

3.5 Constant baseline

The constant baseline is perhaps the most important non-trivial property. On the one hand, it ensures
that a measure is not biased towards labelings with particular class sizes b1, . . . , bm. On the other
hand, it also ensures some interpretability for ‘mediocre’ predictions.

Intuitively, if predicted labels are drawn at random and independently of the true labels, we would
expect them to have a low similarity with the true labels. Then, if another prediction has a similarly
low score, we can say that it is roughly as bad as a random guess. However, this is only possible when
such random classifications achieve similar scores, independent of their class sizes. To formalize this,
let U(b1, . . . , bm) denote the uniform distribution over labelings with class sizes b1, . . . , bm. We say
that the class sizes b1, . . . , bm are unary if bi = n for some i ∈ {1, . . . ,m}. That is, if all elements
get classified to the same class, so that U(b1, . . . , bm) is a constant distribution.
Definition 8. We say that a measure M has a constant baseline property if there exists cbase(m) that
does not depend on n but may depend on m, such that for any true labeling A and non-unary class
sizes b1, . . . , bm, it holds that EB∼U(b1,...,bm)[M(A,B)] = cbase(m).

Note that we need to require the class sizes to be non-unary: if these class sizes are unary, we
will have contradictions with maximal and minimal agreement when the class sizes of A are also
unary. Many popular measures such as F1, Accuracy, and Jaccard do not have a constant baseline.
Furthermore, some measures that do have a constant baseline were deliberately designed to have one.
For example, Cohen’s Kappa was obtained from accuracy by correcting it for chance. While our
definition of the constant baseline does allow for a baseline cbase(m) that depends on the number of
classes m, some measures such as the Matthews Coefficient and Cohen’s Kappa have a baseline that
is constant w.r.t. m.

All of the measures that satisfy constant baseline turn out to be linear functions of cii for fixed class
sizes a1, . . . , am and b1, . . . , bm. For such measures, linearity of the expectation can be utilized to
easily compute the baseline by substituting the expected values EB∼U(b1,...,bm)[cii] = aibi

n . Thus,
we also propose the following relaxation of the constant baseline property.
Definition 9. A measure M is said to have an approximate constant baseline if there exists a function
cbase(m) that does not depend on n but may depend on m such that for any class sizes a1, . . . , am
and any non-unary b1, . . . , bm, M(C̄) = cbase(m), where c̄ij =

aibj
n .

The advantage of this relaxation is that it allows us to non-linearly transform measures while
still maintaining an approximate constant baseline. Take for example the Matthews Correlation
Coefficient: it cannot be linearly transformed to a distance while the transformations CD(A,B) =
1
π arccos(CC(A,B)) and

√
2(1− CC(A,B)) do yield distances. Because Correlation Coefficient

has a constant baseline, these non-linear transformations have an approximate constant baseline, see
Section 4 for more details.

As can be seen from Table 2, there is no measure satisfying all the properties. In particular, there is
no measure having both distance and constant baseline. In the next section, we show why this is not a
coincidence.

4 Impossibility theorem for classification

In this section, we focus on binary classification and more deeply analyze the relations between the
properties discussed above. Unfortunately, it turns out that the properties introduced in the previous
section cannot all be satisfied simultaneously.
Theorem 1. There is no binary classification measure that simultaneously satisfies the monotonicity,
distance, and constant baseline properties.
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Proof. Let A be a labeling with a single positive and n− 1 negatives. Let B1 be a random labeling
with a single positive and let B2 be a random labeling with two positives. The constant baseline
requires E[M(A,B1)] = E[M(A,B2)], which gives

1

n
cmax +

n− 1

n
M(0, 1, 1, n− 2) =

2

n
M(1, 0, 1, n− 2) +

n− 2

n
M(0, 1, 2, n− 3),

which we rewrite to

2M(1, 0, 1, n− 2)− cmax = (n− 1)M(0, 1, 1, n− 2)− (n− 2)M(0, 1, 2, n− 3). (1)

Now, we consider a labeling C with a single positive that does not coincide with the positive of A
and a labeling B that has two positives which are the positives of A and C. The triangle inequality
tells us that

cmax−M(0, 1, 1, n−2) ≤ 2cmax−M(1, 1, 0, n−2)−M(1, 0, 1, n−2) = 2(cmax−M(1, 1, 0, n−2)),

where the last step follows from symmetry (implied by distance). This is rewritten to

2M(1, 1, 0, n− 2)− cmax ≤M(0, 1, 1, n− 2). (2)

Combining (1) and (2), we obtain

(n− 1)M(0, 1, 1, n− 2)− (n− 2)M(0, 1, 2, n− 3) ≤M(0, 1, 1, n− 2).

We rewrite this to M(0, 1, 1, n−2) ≤M(0, 1, 2, n−3), which clearly contradicts monotonicity.

Thus, we have to discard one of these properties. Obviously, discarding monotonicity would be highly
undesirable since higher values would then not necessarily indicate higher similarity. For this reason,
we analyze what happens if we discard either distance or constant baseline. All the results stated
below are proven in Appendix D.

Discarding distance Assuming some additional smoothness conditions that are, however, satisfied
by all measures discussed in this paper, we prove the following result.

Theorem 2. All binary measures that satisfy all properties except distance must be of the form

s

(
a0a1
n2

,
b0b1
n2

)
· nc11 − a1b1

n2
,

where the normalization factor s(a, b) needs to satisfy some additional properties listed in Theorem 3.

This class of measures is quite wide and contains many unelegant measures. An interesting subclass
can be obtained if we normalize by the generalized mean, i.e., take s(a, b)−1 = ( 1

2a
r + 1

2b
r)1/r.

Definition 10. For r ∈ R, we define Generalized Means measures as

GMr =
n c11 − a1b1

r

√
1
2 (ar1a

r
0 + br1b

r
0)
.

Statement 1. For any r ∈ R, the measure GMr satisfies all properties except for being a distance.

We also show that the Generalized Means measures contain two interesting special cases.

Statement 2. If r → 0 (corresponding to the geometric mean), GMr(C)→ CC(C).
If r = −1 (corresponding to the harmonic mean), GM−1(C) = BA(C) + BA(C>)− 1 .

Thus, for r = −1 Generalized Means is equivalent to the measure 1
2

(
BA(C) + BA(C>)

)
that we call

Symmetric Balanced Accuracy (SBA). To the best of our knowledge, this measure has not been used
in the classification literature. However, in the clustering literature, a similar measure is known as
Sokal&Sneath’s measure [1, 12]. Interestingly, SBA preserves its properties for the multiclass case.

Statement 3. SBA satisfies all properties except for being a distance for any m ≥ 2.
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Discarding (exact) constant baseline Note that Theorem 1 only proves an impossibility for the
exact constant baseline, but not the approximate constant baseline.
Statement 4. The measures CD(A,B) := 1

π arccos(CC(A,B)) and CD′(A,B) :=√
2(1− CC(A,B)) satisfy all properties except the exact constant baseline, but including the

approximate constant baseline.

Following [12], we call the measure 1
π arccos(CC(A,B)) Correlation Distance (CD). We prove the

following result (see Appendix D.2 for the details).
Statement 5. CD approximates a constant baseline with one order of precision better than CD′.

Essentially, this is a consequence of the fact that the transformation 1
π arccos(CC) is a symmetric

function around the constant baseline CC = 0 while
√

2(1− CC) is not. In more detail, we show
that the leading error term of CD′ is of the order E[CC(A,B)2] while the leading error term for CD
is of the order E[CC(A,B)3]. Currently, we are not aware of other distance measures for which the
constant baseline is approximated up to the same order of precision as CD. We thus argue that for
binary classification tasks where a distance interpretation is desirable, Correlation Distance is the
most suitable measure.

5 Inconsistency of measures in practice

In this section, we conduct several experiments that demonstrate how often performance measures
may disagree in practice in different scenarios. These experiments demonstrate the importance of the
problem considered in this paper and show which measures are usually more consistent than others.
For binary classification, we consider all measures from Table 1. For F-measure, we take β = 1,
for Generalized Means, we consider r = 1. Recall that SBA and CC are also instances of GM with
r = −1 and r → 0, respectively. Furthermore, Jaccard is a monotone transformation of F1, and
CD is a monotone transformation of CC. Therefore, we omit CD and Jaccard from all inconsistency
tables. The code for our experiments can be found on GitHub.5

5.1 Binary measures

Distinguishing measures for small datasets First, we construct simple examples showing the
inconsistency of all pairs of binary classification measures. We say that two measures M1 and
M2 are consistent on a triplet of classifications (A,B1, B2) if M1(A,B1) ∗ M1(A,B2) implies
M2(A,B1)∗M2(A,B2), where ∗ ∈ {>,<,=}. Otherwise, we say that the measures are inconsistent.
We took n ∈ {2, 3, . . . , 10} and went through all the possible triplets (A,B1, B2) of binary labelings
of n elements (we additionally require that all labelings contain both classes). For each triplet, we
check which pairs of measures are inconsistent. We say that a pair of measures is indistinguishable
for a given n if it is consistent on all triplets.

Table 3: Indistinguishable measures

n measures

2 [Acc, BA, F1, κ, CE, GM1, CC,
SBA]

3 [Acc, BA, κ, GM1, CC, SBA]
4-5 [BA, κ, GM1, CC, SBA]
6-7 [GM1, CC, SBA]
8 [CC, SBA]

9-10 —

Table 3 lists all measures that are indistinguishable for
a given n. For instance, for n = 2, all measures are
always consistent. For n = 4, we can distinguish Acc,
F1, and CE from other measures and each other. Inter-
estingly, the remaining measures are those having the
constant baseline property. Importantly, the most consis-
tent measures are CC, SBA, and GM1 — these measures
have the best properties according to our analysis. This
supports our intuition that “good” measures agree with
each other better than those having fewer desired prop-
erties. Additionally, in Appendix E.1, we list six triplets
(A,B1, B2) with n = 10 that discriminate all pairs of
different measures.

Experiment within a weather forecasting service In this experiment, we aim at understanding
whether the differences between measures may affect the decisions made while designing real systems.
For this purpose, we conduct an experiment within the Yandex.Weather service.

5https://github.com/yandex-research/classification-measures
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There is a model that predicts the presence/absence of precipitation at a particular location [18]. The
prediction is made for 12 prediction intervals (horizons): from ten minutes to two hours. The original
model returns the probability of precipitation, which can be converted to binary labels via a threshold.
There are six thresholds used in this experiment, which lead to six different models. The measures
were logged for 12 days. To sum up, for each threshold (model), each day, and each horizon, we have
a confusion matrix that can be used to compute a performance measure.

Table 4: Inconsistency of binary measures for rain prediction, %

Acc BA F1 κ CE GM1 CC SBA

Acc — 96.5 41.0 37.5 3.1 38.7 44.3 55.9
BA 96.5 — 55.6 58.9 99.7 57.7 52.0 40.4
F1 41.0 55.6 — 3.3 44.2 2.2 3.4 15.0
κ 37.5 58.9 3.3 — 40.7 1.1 6.7 18.3
CE 3.1 99.7 44.2 40.7 — 41.9 47.5 59.1
GM1 38.7 57.7 2.2 1.1 41.9 — 5.5 17.1
CC 44.3 52.0 3.4 6.7 47.5 5.5 — 11.4
SBA 55.9 40.4 15.0 18.3 59.1 17.1 11.4 —

For each pair of measures, we
compute how often they are in-
consistent according to the def-
inition above. For this, we ag-
gregate the results over all days
and horizons. Table 4 shows that
there are pairs of measures with
substantial disagreement: e.g.,
accuracy and Balanced Accuracy
almost always disagree. This can
be explained by the fact that ac-
curacy has a bias towards the ma-
jority class, so it prefers a higher
threshold, while Balanced Accuracy weighs true positives more heavily, so it prefers a lower threshold.
In contrast, GM1, CC, κ, and F1 agree with each other much better. In Appendix E.1 we conduct a
more detailed analysis. In particular, we separately consider the ten-minute and two-hour prediction
horizons and show that the behavior and consistency of measures significantly depend on the horizon
as the horizon defines the balance between true positives, true negatives, false positives, and false
negatives. We also observe that CC and SBA perfectly agree for the ten-minute horizon but have
noticeable disagreement for two hours.

5.2 Multiclass measures

In this section, we analyze multiclass measures. For all measures that are defined for the multiclass
problems, we consider their standard expressions (if not stated otherwise). For other measures (F1,
Jaccard, GM1), we use macro averaging.

Image classification We conduct an experiment on ImageNet [24], a classic dataset for image
classification. For this, we take the top-10 algorithms that are considered to be state-of-the-art at the
moment of submission.6 We check whether the leaderboard based on accuracy is consistent with
the leaderboards based on other measures. Thus, we apply the models to the test set, compute the
confusion matrices, and compare all measures defined in Table 1.

Notably, the ImageNet dataset is balanced. This makes all measures more similar to each other. For
instance, accuracy and BA are equal in this scenario. Also, the constant baseline property discussed
in Section 3.5 is especially important for unbalanced datasets. Thus, measures are more consistent
on balanced data. Nevertheless, we notice that the ranking can be inconsistent starting from the
algorithm ranked fifth on the leaderboard.

The (partial) results are shown in Table 5. Here we compare EfficientNet-B7 NoisyStudent [31] and
Swin-B Transformer (patch size 4x4, window size 12x12, image size 3842) [19] that are the fifth and
sixth models in the leaderboard. One can see that the measures inconsistently rank the algorithms:
Confusion Entropy, Jaccard, and SBA disagree with accuracy and other measures. Interestingly,
while Jaccard and F1 always agree for binary problems, they may disagree after the macro averaging,
as we see in this case. Also, for one measure, different multiclass extensions may be inconsistent, as
we see with macro averaging versus the standard definition of the multiclass Correlation Coefficient.
More detailed results can be found in Appendix E.2.

Sentiment analysis In the previous experiment, we noticed that despite several disagreements,
the measures usually rank the algorithms similarly. This can be caused by the fact that the test
set of ImageNet is balanced: all classes have equal sizes. However, in practical applications, we

6https://github.com/rwightman/pytorch-image-models/blob/master/results/results-imagenet.csv
(May 8, 2021).
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Table 5: Inconsistent results on ImageNet, % (fifth and sixth models in the leaderboard)

Acc/BA F1 J κ 1−CE GM1 CC CCmacro SBA

Efficientnet 86.46 86.30 77.525 86.44 93.41 86.28 86.44 86.419 86.57
Swin 86.43 86.27 77.531 86.42 93.51 86.26 86.42 86.423 86.61

Table 6: Ranking algorithms according to different measures on SST-5: from 1 (best) to 7 (worst)

Acc BA F1 J κ CE GM1 CC CCmacro SBA

Flair+ELMo 1 1 1 1 1 1 1 1 1 1
Flair+BERT 2 4 5 5 4 2 5 2 2 2
SVM 3 3 3 3 3 5 3 3 4 4
Logistic 4 5 4 4 5 3 4 5 5 3
FastText 5 2 2 2 2 6 2 4 3 5
VADER 6 6 6 6 6 7 6 6 6 7
TextBlob 7 7 7 7 7 4 7 7 7 6

rarely encounter balanced data. Thus, we also consider an unbalanced classification task. In this
experiment, we take the 5-class Stanford Sentiment Treebank (SST-5) dataset [27]. We compare the
following algorithms: TextBlob, VADER, Logistic Regression, SVM, FastText, Flair+ELMo, and
Flair+BERT [23]. Table 6 shows that different measures rank the algorithms differently. Among the
measures shown in the table, the only consistent rankings are the one provided by κ and BA and the
second given by F1, GM, and Jaccard. Note that the latter ranking significantly disagrees with the
ranking by accuracy.

Appendix E.2 contains an additional experiment with an unbalanced multiclass dataset, where we
show the inconsistency rates of the considered measures and different multiclass extensions.

6 Conclusion and future work

In this paper, we propose a systematic approach to the analysis of classification performance measures:
we propose several desirable properties and theoretically check each property for a list of measures.
We also prove an impossibility theorem: some desirable properties cannot be simultaneously satisfied,
so either distance or exact constant baseline has to be discarded.

Based on the properties we analyzed in this paper, we come to the following practical suggestions. If
the distance requirement is needed, Correlation Distance seems to be the best option: it satisfies all the
properties except for the exact constant baseline, which is still approximately satisfied. Otherwise, we
suggest using one of Generalized Means, including Correlation Coefficient and Symmetric Balanced
Accuracy — they satisfy all the properties except distance. For binary classification, CC is a natural
choice as it can be non-linearly transformed to a distance. For multiclass problems, Symmetric
Balanced Accuracy has an additional advantage: among the considered measures, only this one
preserves its good properties in the multiclass case. Finally, we do not advise using averagings, but if
needed, then macro averaging preserves more properties.

There are still many open questions and promising directions for future research. First, we would like
to see whether one could construct a set of desirable properties that can be used as axioms to uniquely
define one good measure (or a parametrized group of measures). Secondly, it is an open problem
whether Generalized Means measures in general (or SBA in particular) can be converted to a distance
via a continuous transformation. Finally, our work does not cover ranking and probability-based
measures. Thus, we leave aside such widely used measures as cross-entropy and AUC. Formalizing
and analyzing their properties is an important direction for future research.

Broader impact Our work may help towards reducing certain biases in research. For instance,
some measures (e.g., accuracy) are biased towards the majority class. Thus, the bias towards the
majority class could be even amplified with the poor metric selection. Our work could provide some
clues on how to avoid such a situation.
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