
Base Models for Parabolic Partial Differential Equations

Xingzi Xu*1 Ali Hasan*†1,2 Jie Ding3 Vahid Tarokh1

1Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
2Machine Learning Research, Morgan Stanley

3School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

Parabolic partial differential equations (PDEs) ap-
pear in many disciplines to model the evolution
of various mathematical objects, such as probabil-
ity flows, value functions in control theory, and
derivative prices in finance. It is often necessary
to compute the solutions or a function of the so-
lutions to a parametric PDE in multiple scenarios
corresponding to different parameters of this PDE.
This process often requires resolving the PDEs
from scratch, which is time-consuming. To better
employ existing simulations for the PDEs, we pro-
pose a framework for finding solutions to parabolic
PDEs across different scenarios by meta-learning
an underlying base distribution. We build upon this
base distribution to propose a method for comput-
ing solutions to parametric PDEs under different
parameter settings. Finally, we illustrate the ap-
plication of the proposed methods through exten-
sive experiments in generative modeling, stochas-
tic control, and finance. The empirical results sug-
gest that the proposed approach improves general-
ization to solving new PDEs.

1 INTRODUCTION

In this work, we propose and study a particular type of neu-
ral structure that can adapt rapidly to tasks associated with
parabolic partial differential equations (PDEs). Parabolic
PDEs are a standard mathematical framework for describ-
ing the evolution of different processes. Applications are
evident in various fields, such as probabilistic modeling and
mathematical finance [Pardoux and Râs, canu, 2014]. For
instance, the probability density functions (PDFs) in genera-
tive modeling with diffusion processes satisfy a parabolic

*Equal contribution.
†Corresponding author.

PDE known as the Fokker-Planck equation. In continuous
stochastic control problems, the optimal policy satisfies the
Hamilton-Jacobi-Bellman equation. In finance, the Black-
Scholes equation describes the price of a derivative. Due
to the numerous applications, there is a general need to de-
scribe such processes under different boundary conditions
and parameters. In the probabilistic modeling example, we
may consider a scenario where we wish to sample from mul-
tiple related distributions while using their shared features to
accelerate training. In this case, different diffusion processes
can correspond to distinct parameters of the Fokker-Planck
equation.

Parabolic PDEs have a particular structure that allows
for efficient computation of their solution in high dimen-
sions using Monte Carlo techniques [Pardoux and Râs, canu,
2014]. The Feynman-Kac formula formalizes this for linear
parabolic PDEs through a connection between an expecta-
tion over sample paths and the solution to the corresponding
PDE [Särkkä and Solin, 2019, Chapter 7.7] with the non-
linear extension following a similar argument [Fahim et al.,
2011]. However, the formula requires sampling solution
paths of a stochastic differential equation (SDE) with pa-
rameters corresponding to the PDE. This process can be
time-consuming due to the large number of sequential sam-
ples needed, and it requires sample paths to be resampled
for different parameters of the PDE. We instead build upon
this idea to approximate the PDE solutions by recycling
Monte Carlo samples used in computing the solutions while
mitigating the instabilities inherent in the direct application
of importance sampling. This idea leads to a base model
(or meta model) that can swiftly adapt and extend to differ-
ent tasks (e.g., solving different PDEs or sampling distinct
target distributions). We borrow techniques from two re-
search disciplines: the first related to meta-learning and the
second related to operator learning [Finn et al., 2017, Lu
et al., 2019, Jin et al., 2022]. Rooted from meta-learning,
we want to modify the base model to unseen tasks with
lower training effort. Related to operator learning, we want
to define an operator using the base model that maps pa-

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

mailto:<xingzi.xu@duke.edu>?Subject=Your UAI 2024 paper
mailto:<ali.hasan@duke.edu>?Subject=Your UAI 2024 paper
mailto:<dingj@umn.edu>?Subject=Your UAI 2024 paper
mailto:<vahid.tarokh@duke.edu>?Subject=Your UAI 2024 paper

6 6
X0

12

6
X 1

Task Moons

Prior Meta

Task Gaussians

YMeta
t

pMeta

XGaussians
t

pGaussians

XMoons
t

pMoons

(a) Maximizing likelihoods of target distributions
pGaussians, pMoons using a shared base distribution pMeta.

t

X

Base Task 1

t

Task 2

(b) Solving PDEs with different parameters (Task 1 and 2) by
reusing the base solution.

Figure 1: Schematic of the proposed procedures for maximizing functions (1a) and solving PDEs with different parame-
ters (1b). In both scenarios, we reuse a meta-learned base parameterization across different tasks. (1a) illustrates sampling
target densities using a task-specific diffusion for each density. (1b) illustrates two solutions to linear parabolic PDEs
simulated with the same stochastic process based on the proposed method.

rameters and boundary conditions to solutions. The outline
of the paper is as follows: We first describe the importance
sampling framework in section 2.3; we then discuss the
issues of directly applying importance sampling and intro-
duce the proposed meta-learning approach in section 3.1.
In section G, we describe a lower bound for applying the
framework to maximization tasks, such as maximizing the
likelihood in generative modeling. In Section 3.3, we gener-
alize the computation for maximization tasks and present a
neural operator that allows computing solutions to PDEs at
a reduced cost. Figure 1 illustrates an overview of these con-
cepts where: on the left, we apply the proposed framework
to sample from different target distributions corresponding
to pMoons, pGaussians using a shared base model pMeta; and, on
the right, we apply the operator framework to solve two
parabolic PDEs (Task 1 and 2) with different parameters by
reusing the original simulated stochastic process (Base). 1

Contributions To summarize, our main contribution is a
framework for establishing a base model for reuse across
problems associated with parabolic PDEs. To that end,

• We describe the base model and a corresponding meta-
learning framework for solving maximization prob-
lems associated with parabolic PDEs;

• We use the meta-learning framework and propose
a neural operator to approximate the solution of
parabolic PDEs under different parameter settings;

• We analyze the convergence of the operator over para-
metric classes of functions;

1Github repository to this paper is: https://github.
com/XingziXu/base_parabolic.git

• We evaluate the methods in different experimental set-
tings, including synthetic and real-world examples.

1.1 RELATED WORK

We will discuss the related work on meta-learning tech-
niques for PDEs and operator-learning methods for PDEs.
Psaros et al. [2022], Chen et al. [2022], Liu et al. [2022] con-
sider applying the MAML framework to physics-informed
neural networks (PINNs) [Raissi et al., 2019b]. In these
approaches, the authors learn a meta-parameterization of
PDEs for efficient optimization to estimate PDEs under new
parameters. Huang et al. [2022] considered a latent variable
model fine-tuned to obtain the solution at different regions
of the parameter space and domain based on the PINNs
framework. Chen et al. [2022] uses hypernetworks for multi-
task learning with parameterized PDEs, which also focuses
on low-dimensional settings.

On the second front are neural operator architectures used to
solve PDEs. Operator-learning methods map sets of param-
eters to solutions of PDEs by estimating the operator that
describes this transformation. The work of Lu et al. [2019]
proposed DeepONet, which uses the result that a neural net-
work with a single hidden layer can approximate any non-
linear continuous operator, and follow-up work of Li et al.
[2020] considers learning a mapping in Fourier space with
improved empirical performance. Gupta et al. [2021], Wang
et al. [2021b], Li et al. [2022], Zheng et al. [2022] propose
additional variants on this operator framework. However,
these methods require first generating a dataset of parameter
and solution pairs by solving the PDE according to standard
techniques, which can be expensive. Wang et al. [2021b]
attempts to circumvent this issue by including the PINN

2

https://github.com/XingziXu/base_parabolic.git
https://github.com/XingziXu/base_parabolic.git

loss in the operator learning framework. Additionally, Hu
et al. [2023] considers learning PINNs for high-dimensional
PDEs by decomposing a gradient of PDEs into pieces cor-
responding to different dimensions. However, various is-
sues associated with optimization persist with the PINNs
framework, e.g., in Krishnapriyan et al. [2021], Wang et al.
[2021a], making its application difficult with certain PDEs.
Finally, several methods consider the stochastic represen-
tation used in this paper. Berner et al. [2020], Richter and
Berner [2022], Glau and Wunderlich [2022], Zhang et al.
[2023] consider various forms of regression-based tech-
niques wherein the stochastic representation is repeatedly
sampled for different parameter values and regressed to a
sufficiently expressive function approximator (usually a neu-
ral network). However, this incurs significant training costs
due to the required sampling at each iteration in training and
a feature that the proposed methods in this work explicitly
circumvents. Han et al. [2018] consider solving semi-linear
parabolic PDEs by regressing the stochastic representation
of the solution to the neural network. A hybrid approach
that considers both PINN losses and the stochastic repre-
sentation of PDEs was considered in Nüsken and Richter
[2021] for the single parameter case. These methods, how-
ever, only provide solutions for PDEs for one particular set
of parameters rather than a family of parameters.

To address these gaps in the literature, including the lack
of scalability to high dimensions, requiring many solution
pairs for training, and requiring computing new solutions for
different parameters, our framework exploits the stochastic
representation of parabolic PDE with an importance sam-
pling technique to transform the learned solution to one with
distinct parameters.

2 STOCHASTIC REPRESENTATIONS OF
PARABOLIC PDES

We will now describe the key ingredients of the proposed
method and how to apply them in the proposed framework.
Throughout the paper, we will refer to the base model inter-
changeably as a meta model.

2.1 PARABOLIC PDES

Consider a domain D ⊂ [0, T]× Rd such that the solution
p(t, x) : D → R of the PDE is defined. A linear parabolic
PDE is of the form

∂p

∂t
(t, x) = ∇p(t, x) · µ(t, x)

+
1

2
Tr(σσ⊤(t, x)(Hessxp)(t, x))− r(t, x)p(t, x), (1)

with boundary condition p(0, x) = p0(x). The function
µ(t, x) : D → Rd is referred to as the drift function and the
function σ(t, x) : D → Rd×d

+ where σσ⊤ is semi positive

definite for all elements in D is referred to as the volatility
function. The function r(t, x) : D → R is sometimes re-
ferred to as the growth term. For all functions, we require
the usual conditions on µ, σ, r such that (1) is uniformly
parabolic (e.g. see Evans [2022, Chapter 7.1]). Hessxp(x, t)
denotes the Hessian of p with respect to x. For the remain-
der of the text, we will focus on the interplay between the
functions µ, σ, and p0, as we are interested in how they can
be easily updated to solve different tasks.

2.2 FEYNMAN-KAC METHOD

Solving (1) in high dimensions generally requires using a
Monte Carlo method to alleviate the curse of dimensionality.
In particular, the Feynman-Kac method provides such a
mechanism:

Lemma 1 (Feynman-Kac method Särkkä and Solin
[2019]). Let Xt satisfy the following Itô diffusion: dXt =
µ(t,Xt)dt + σ(t,Xt)dWt. Then, the solution of the PDE
in (1) is

p(t, x) = E
[
p0(Xt) exp

(
−
∫ t

0

r(s,Xs)ds

) ∣∣∣∣ X0 = x

]
.

(2)

While the Feynman-Kac method applies to various types
of parabolic equations, we present it in the case of solv-
ing Equation (1) with an initial condition to simplify the
exposition.

2.3 CHANGING PARAMETERS

From (2), changing the parameters of the PDE requires
sampling new sample paths of Xt. We aim to decrease
this sampling burden by reusing the existing samples for
different parameters. To do this, we consider an application
of Girsanov’s theorem:

Definition 1 (Likelihood Ratio [Särkkä and Solin, 2019]).
Let Xt, Yt be two Itô diffusions satisfying

dXt = µ(1)(t,Xt)dt+ σ(t)dWt,

dYt = µ(2)(t, Yt)dt+ σ(t)dWt

with laws PXt
,PYt

. Define Σ = σσ⊤ and δµ(s, x) =

µ(1)(s, x)− µ(2)(s, x) and assume E
[
1
2

∫ t

0
δµ(s, x)ds

]
<

∞. Then, the exponential martingale gives the likelihood
ratio of the two processes:

dP
X

(1)
t

dP
Y

(2)
t

:= exp

(
−1

2

∫ t

0

δµ(s, x)⊤Σ−1δµ(s, x)ds

+

∫ t

0

δµ(s, x)⊤Σ−1dWt

)
. (3)

3

We will drop the superscript in
dP

X
(1)
t

dP
Y

(2)
t

except for cases

where specifying the drift index is necessary. Definition 1
relates to Girsanov’s theorem [Särkkä and Solin, 2019] and
note that the Xt, Yt originates from the same filtration Ft

generated by the Brownian motion Wt. The likelihood ratio
facilitates computing the expectation of a function of Xt by
using generated samples of Yt. Specifically, it holds that

E [p0(Xt) | Ft] = E
[
p0(Yt)

dPXt

dPYt

∣∣∣∣ Ft

]
(4)

meaning that to change the PDE parameters µ, σ, we only
need to compute a transformation of the existing sampled
paths rather than resampling from scratch. A standout exam-
ple is the case of Brownian motion when µ(1)(t,Xt) = 0,
where we can sample N Gaussian random variables with
variances depending on σ and t (i.e., independent of state)
and reuse the sample path for different µ(i). Through Itô’s
lemma, we can apply a function f to the sampled Brow-
nian motion to find a new sample path that has non-unit
volatility2 and depends on the state:

Lemma 2 (Itô’s lemma [Särkkä and Solin, 2019]). If Wt ∈
Rd is a Brownian motion on [0, T], and f(x) : Rd → R is
a twice continuously differentiable function, then for any
t ≤ T ,

df(Wt) =
1

2
tr(Hessxf(Wt))dt+∇xf(Wt)

TdWt. (5)

With these tools in mind, we describe how to efficiently
calculate solutions of parabolic PDEs with changing drift
and volatility functions.

3 LEARNING A BASE MODEL

Recall that we want to develop a model with the following
properties such that it applies to many tasks:

• Adaptability, the model defines a representation shared
across many tasks;

• Extensibility, the representation can be rapidly assimi-
lated to new tasks.

To achieve these properties, we invoke Definition 1 and
Lemma 2 to a base set of sample paths shared across all tasks.
We first describe the general approach and why naively ap-
plying Definition 1 fails in many cases, which motivates the
need for neural parameterization. We then consider maxi-
mizing a function of parabolic PDE solutions rather than
solving the PDEs. We finally present the operator-learning
framework where different tasks correspond to the solutions
to a PDE under different parameter configurations.

2To avoid confusion with diffusion processes, we will refer
to σ as the volatility, but note that it often denotes the diffusion
coefficient.

3.1 SOLVING PARABOLIC PDES THROUGH
IMPORTANCE SAMPLING

Consider a parabolic PDE that satisfies (1) using the repre-
sentation given in (2). Computing the solution for (1) for a
series of K different drifts, {µ(i)}Ki=1, requires simulating a
different SDE for each µ(i). Simulating the SDEs with an
Euler-Maruyama integration, where the discretization size is
h, the number of time steps is NT = T/h, and approximat-
ing the expectation with NE different realizations requires
NE ×NT ×K computations. Importantly, to compute Xt,
the computation must be performed sequentially, since it
relies on the previous value of Xt. This sequential operation
induces the main bottleneck, and we try to avoid it whenever
possible.

We instead consider the SDE dYt = σ(Yt)dWt associated
with marginal distribution PYt

which we assume we can
simulate as a function of Brownian motion f(Wt). Suppose
we wish to solve the PDE in (1) for µ = {µ(i)(x)}Ki=1, σ =
σ(x). Using (4) combined with (2), we can write the solu-
tion with µ(i) write the expectation as

pµ(i)(T, x) :=

EP
X

(i)
t

[
p0(X

(i)
T) exp

(
−
∫ T

0

r
(
X(i)

s

)
ds

) ∣∣∣∣ X(i)
0 = x

]

= EPYt

[
p0(YT) exp

(
−
∫ T

0

r(Ys)ds

)
dP

X
(i)
T

dPYT

∣∣∣∣ Y0 = x

]
(6)

where Xt satisfies dX
(i)
t = µ(i)(X

(i)
t)dt + σ(X

(i)
t)dWt

with measure P
X

(i)
t

. By writing the expectation with respect

to Yt, we can reuse the N simulations of Yt for each µ(i),

and we only need to compute the likelihood ratio,
dP(i)

XT

dPYT
for

i = 1 . . .K. This formulation is crucial since each
dP(i)

XT

dPYT

only requires an integral (approximated by a sum) rather
than sampling an SDE. Unfortunately upon inspecting (3),
computing the likelihood ratio dPXT

dPYT
requires computing

the exponential of numerically approximated integrals. This
results in an error that grows exponentially in the discretiza-
tion size h rather than linearly in h, as is the case when
directly computing the expectation with new sample paths
from each µ(i). In the next section, we discuss ways to cir-
cumvent this issue by deriving a lower bound of the PDE
solution with an error linear in h and developing a neural
network-based representation of the likelihood ratio.

3.2 MAXIMIZING PARABOLIC PDES

It is often the case that we are interested in the parame-
ters that maximize the expectation of a function of sample
paths, i.e. maxE

[
J
(
X

(i)
T

)]
where the maximization is

4

over parameters of XT for different tasks associated with
K distinct datasets, {X(i)}Ki=1. Note that by Lemma 2, this
expectation satisfies the PDE (1). To motivate this approach,
we will consider the problem of sampling from a family of
target distributions, as illustrated on the left side of Figure 1.
This is closely related to the works on diffusion models
in [Song et al., 2021a,b],which uses a neural network to
approximate the score function of a transition density de-
scribed by an SDE. However, in those cases, a specific form
of the forward SDE is used such that an analytical form of
the transition density exists. Instead, we are interested in
relaxing this parametric assumption and working directly
with the Fokker-Planck equation through its stochastic rep-
resentation.

Continuing with K target distributions {p(i)(x)}Ki=1 that
we wish to approximate, when approximating with an Itô
diffusion, we can represent each distribution as the solu-
tion of the Fokker-Planck equation at some terminal time
T under K different parameters. This equation is a lin-
ear parabolic PDE which we can write in terms of an ex-
pectation according to the Feynman-Kac formula (2) with
r = ∇ · µ(i) (see Appendix G for derivation) and dX

(i)
t =

µ(i)(t,X
(i)
t)dt+ σ(t)dWt, assuming that σ is independent

of Xt for ease of explanation. Then, we want to maximize
the distribution’s likelihoods for K different tasks at T . We
will use the idea described in Section 3.1 to bypass the ex-
pensive Euler-Maruyama sampling procedure during each
training iteration. To do this, we use the form in (6) with the
parameters of the latent process Yt being the meta-learned
parameters, i.e. dYt = µ0(Yt, t)dt+ σ0(t)dWt, Y0 ∼ p0.
As such, we have translated the problem from requiring Xt

to Yt samples, which are reusable across training iterations.
We take the parameters (p0, µ0, σ0) as the meta parameters,
which are optimized over all K tasks.

The exponential term in (4) still incurs high errors for large
T , and solving the PDE using this form is inaccurate with-
out prohibitively large Nh. To circumvent this, we remind
ourselves that the goal is to maximize the solution of the
PDE, which corresponds to the likelihood in this case. Ap-
plying Jensen’s inequality, we obtain an evidence lower
bound (ELBO) without the exponential error:

log p(T, x) ≥ EPXt

[∫ T

0

∇ · µ(s,Xs)ds+ log p0(XT)

]
(7)

= EPYt

[∫ T

0

µ̂(s, Ys)dWs −
∫ T

0

1

2
µ̂2(s, Ys)

−∇ · µ(s, Ys)ds+ log p0(YT) | Y0 = x

]
(8)

with (8) denoted as ELBOIS, with IS referring to im-
portance sampling, and (7) denoted as ELBOdirect and
µ̂ = (σ0σ

⊤
0)

−1µ, µ̂2 = µ⊤(σ0σ
⊤
0)

−1µ. Huang et al. [2021]

1

0

1

X

Ground Truth NGO

0.0 0.5 1.0
t

1

0

1

X

Euler-Maruyama

0.0 0.5 1.0
t

Girsanov

Figure 2: Simulated solutions of the Fokker-Planck equation
of an 1d OU-process compared with the analytic solution.

explored a similar idea for score-based diffusion models and
proved that the bound in (7) is tight when maximizing over
a sufficiently expressive class of drift parameterizations.
Circling back to the maximum likelihood estimation prob-
lem, we can apply this technique to reduce the exponential
error to linear while reusing the sample paths Yt and meta-
learning the parameters (p0, µ0, σ0). We describe an explicit
example of meta-learning p0 in Appendix G.

3.3 NGO: META-LEARNING A CONTINUOUS
SPACE OF TASKS

Having described the meta-learning framework where we
consider (p0, µ0, σ0) as meta-learned parameters for the
case of maximizing the solution to a parabolic PDE, we now
study estimating the explicit solution to the PDE. Specifi-
cally, we want a model that easily generalizes to solutions
for different parameters in one shot. From the previous sec-
tion, we can apply importance sampling to compute the
solution for different µ(i)’s while reusing the sample paths.
However, we noted that this incurs an exponential error
for the integration in time when computing with the Euler-
Maruyama method. The key idea of the operator learning
approach is to instead learn an optimal integrator through
a neural network for a parametric family of drifts. We re-
fer to this as the Neural Girsanov Operator (NGO), which
transforms the expected value of solutions of SDEs Yt with
meta-parameters (p0, µ0, σ0) to SDEs Xt with drift µ(i).
We will consider the case where µ0 = 0, σ0 = 1 for ease of
exposition. This approximation of E[p0(XT) | FT] is done
by equating the following:

EPX
[p0(XT) | FT] ≈

EPY

[
p0(Yt)NGO

(
{µ(Ysn),∆Wsn , h}

NT
nT=1; θ

) ∣∣∣ FT

]
where NGO(·; θ) is a neural network with non-negative
outputs with parameters θ. For a parametric set of drifts

5

{µ(i)(·; ξi)}, the NGO learns the optimal numerical inte-
grator over the parameter space. We parameterize NGO
using a convolutional neural network, motivated by the con-
nection between finite different stencils and convolutions,
although the integration performed by NGO involves non-
linear terms. To optimize the parameters of NGO, we con-
sider the following optimization over the measure ν(ξ) of
all parameterizations of drifts µ we are interested in solving:

min
θ

Eµξ

(
E [p0(YT)NGO({µξ(Ysn),∆Wsn , h}

NT

nT=1 ;

θ)]− E

[
p0(YT)

dPXµξ

dPY

])2

. (9)

The loss in (9) has a few helpful properties. First, this loss
only requires sampling Brownian motion and approximating
the integral in (3). This property is a notable departure from
the usual requirement of the exact solution and parameter
values — we do not need to solve for the explicit solution
of the PDE using Euler-Maruyama but only need to sample
Brownian motion and approximate an integral. Second, al-
though the second term incurs high numerical error, since
we average over many realizations, this error does not affect
the approximation of the solution. Finally, this solution does
not require a meshing of the domain and provides solutions
depending on the starting points of the Brownian motion,
which can be arbitrary. This attribute is vital for evaluating
solutions over complex domains. Algorithm 1 describes the
full algorithm.

Algorithm 1 Approximating linear parabolic PDEs with
NGO

Input: N ∈ N, h ∈ R+, µ(t, x) : R+ ×Rd → Rd, evalua-
tion coordinate (T,X)

1: Sample N Brownian motions to time T starting at X ,{
X +

√
khε(i)

}i=1...N

k=1...T/h
, ε ∼ N (0, 1)

2: for i ∈ {1, . . . , N} do ▷ Easy to parallelize.

3: Compute
dP(i)

µ

dPW
≈

NGO

[{
µ
(
W

(i)
k

)}T/h

k=1
,
{√

khε(i)
}T/h

k=1
, h

]
▷

Stochastic exponential.
4: end for

Output: Approximation of u(T,X) as ǔ(T,X) =
1
N

∑N
i=1 p0(W

(i)
T)

dP(i)
µ

dPW

Extension to semi-linear parabolic PDEs We presented
the method in terms of linear parabolic PDEs. However, ex-
tending to semi-linear parabolic PDEs is relatively straight-
forward by again using the stochastic representation of such

PDEs. We can consider equations of the form:
∂p
∂t +

1
2Tr(σσ

⊤(t, x)Hessxp(t, x)) +∇xp(t, x)
⊤µ(t, x)

+ϕ(x, p, σ⊤∇p) = 0,

p(T, x) = g(x).
(10)

This PDE has a stochastic representation:

dXt = µ(t, x)dt+ σ(t, x)dWt, X0 = x;

dSt = −ϕ(x, p, σ⊤∇xp)dt+ Z⊤
t dWt, ST = g(XT),

and p(t, x) = E[St | X0 = x] [Exarchos and Theodorou,
2018, Bender and Moseler, 2010]. Simulating this system
requires computing two Euler schemes: one for the forward
component Xt and the other for the backward process St.
We can easily follow the scheme for the forward compo-
nent Xt presented in Algorithm 1 by sampling Brownian
motion and computing an expectation with the estimated
exponential martingale. If ϕ does not depend on p, we can
compute the integration of St using a basic sum without
requiring sequential computations. We provide the complete
algorithm in Appendix E.

Extension to elliptic PDEs Finally, we note that extend-
ing to elliptic PDEs is also relatively straightforward. El-
liptic PDEs require computing the first hitting time of the
domain boundary ∂D at each evaluation point. Then, us-
ing the first hitting times, the importance sampling follows.
Specifically, we modify the stochastic exponential in (3) to
be: dPY

dPX
:= exp

(∫ τ

0
µ(Xs)dWs − 1

2

∫ τ

0
µ(Xs)

2dt
)

where
τ is the first hitting time of ∂D starting at x.

4 PROPERTIES OF THE ESTIMATORS

Since the meta-learning framework follows from the stochas-
tic representation of this class of PDEs, theoretical analysis
is particularly amenable in contrast to other black-box meth-
ods that only use neural networks. We discuss the error rate
of the ELBO in (8) and the convergence rate of the NGO
over a parametric space of solutions.

4.1 ERROR ANALYSIS

We first note that the proposed algorithm induces a trade-
off between memory and execution time since we save the
Brownian motions underlying the importance sampling. Sav-
ing the Brownian motions is a minor constraint since the
Brownian motions saved are only O(NE × d) where NE

is the number of Monte Carlo samples used to estimate the
expectation, and d is the number of dimensions. Addition-
ally, these can be distributed over multiple devices, as no
communication between nodes is needed when computing
the expectation. We also analyze the approximation error of
both ELBOIS and ELBOdirect presented in Section 3.2.

6

Although ELBOIS introduces more errors than ELBOdirect

by having more integration terms, they are all of at least
order O(h2). Employing a multi-level architecture based
on the multi-level Monte Carlo can improve the accuracy
further under a similar computational budget [Giles, 2015].

4.2 UNIFORM CONVERGENCE OVER DRIFT
PARAMETERS

A final property of the NGO concerns the convergence rate
over a family of solutions to PDEs with parameter µ(x, t)
and σ(t) dependent only on t. Specifically, by using the
properties of the stochastic representation, we can show
that a well-learned NGO-based solution pξθ(x) uniformly
converges over the parameter space Ξ to the ground truth
pξ(x) under mild conditions. Intuitively, since the NGO
learns how to compute the likelihood ratio, we can change
the parameters within a compact set while maintaining high
performance over this set.

Proposition 1 (Uniform Convergence). For fixed x ∈
D, T ∈ R+, consider a space of functions F ={
dP

X
(ξ)
T

/dPYT
: ξ ∈ Ξ

}
parameterized by ξ from a com-

pact set Ξ ⊂ Rk satisfying V ar
(
dP

X
(ξ)
T

/dPYT

)
<∞ for

all ξ ∈ Ξ with P
X

(ξ)
T

denoting the distribution of the solu-

tionXT = x+
∫ T

0
µ(Xt, t; ξ)dt+

∫ T

0
σ(t)dWt and PYT

the
distribution of Yt = x+

∫ T

0
σ(t)dWt. Additionally, assume

that the image of (T,XT) 7→ µ(T,XT ; ξ) is compact for

allXT , ξ. Then, GNE
=

√
NE

(
pξθ(x, T)− pξ(x, T)

)
con-

verges in distribution to a zero-mean Gaussian process over
ξ ∈ Ξ as NE → ∞ where NE is the number of samples
used to compute the expectation.

The proof follows from first showing that F is PYT
-Donsker

and then follows with an analysis of our construction of
the solution pξθ in terms of an expectation. The complete
statement is in Appendix A.1.

5 EXPERIMENTS

We now examine the capabilities of the models in their
respective tasks. First, we illustrate a proof-of-concept ex-
periment on maximizing the parameters of a PDE by es-
timating K target distributions in a generative modeling
setting. Then, we present our main experiments on solv-
ing parabolic PDEs. We simulate the sample paths with the
basic Euler-Maruyama solver for all experiments.

5.1 MAXIMIZING PARAMETERS

To illustrate the running example on generative modeling,
we consider maximizing the solution of the Fokker-Planck

0 200
Wass Distance

0

50

100

150

200

Bi
ts

/D
im

1000 2000
Wass Distance

0

500

1000

1500

2000
Gaussian
pmeta

pmeta + meta

(a) Sampling 2d (left) and 100d
(right) Gaussians with different
means starting from a standard
Gaussian versus pmeta and no
meta-drift versus µmeta.

0 10 20
X0

0

10

20

X 1

pmeta

Gaussian
Task

(b) Comparing pmeta, a stan-
dard Gaussian, and the target
task distributions. pmeta pro-
vides the best initial condition
for all the target distributions.

Figure 3: Numerical results for meta-learning generative
models for Gaussian distributions where different means
correspond to different tasks.

PDE (corresponding to the likelihood of a generative model)
at a terminal time using (8). Consider the problem of ap-
proximating K Gaussian target distributions with different
means and the same covariance matrix. We are interested
in investigating the sample quality in the few-shot learn-
ing setting with and without the meta-learned parameter by
trainingK separate drift and diffusion functions {µi, σi}Ki=1

on K different target distributions. We represent the meta-
parameter pmeta as a small normalizing flow, which we
optimize over κ < K training distributions similar to the
K target distributions. To sample the ith target distribution
parameterized by µi and σi, we first sample from the initial
distribution (either a standard Gaussian or the meta-learned
pmeta) and evolve the SDE to the terminal time according to
µi and σi. Figure 3a shows the test distribution bits/dim for
the 100 target distributions compared to the 2-Wasserstein
distance between the initial and target distributions. Fig-
ure 3b visualizes pmeta, standard Gaussian, and sampled
target distributions in the 2d case. The results demonstrate
the importance of including the meta-learned parameter in
the optimization to improve generalization.

5.2 OPERATOR LEARNING

We consider examples of the NGO on operator learning
tasks by testing on a few PDEs. We first consider a linear
and semi-linear PDE, with parametric classes of the function
µ in the linear PDE (1) and µ, h in the semi-linear PDE (10).
Figure 2 in the Appendix shows a visualization of solutions
of a 1d Fokker-Planck equation calculated with the ana-
lytical solution, NGO, Euler-Maruyama, and directly with
Girsanov. We then consider canonical parabolic PDEs con-
sisting of two linear equations – the Black-Scholes (BS) and
the Fokker-Planck (FP) equations, and two semi-linear equa-
tions – the Hamilton-Jacobi-Bellman (HJB) and the Black-
Scholes-Barrenblatt (BSB) equations. These equations have
applications in finance (BS, BSB), stochastic control (HJB),
and the previously explored probabilistic modeling (FP).

7

0.00 0.25 0.50
10 1

100

No
rm

al
ize

d
Er

ro
r

0.00 0.25 0.50

103

109

0.00 0.25 0.50
Terminal Time

10 3

10 2

In
fe

re
nc

e
tim

e

0.00 0.25 0.50
Terminal Time

10 2

10 1

NGO
DON
E-M
GIR

(a) 10d linear (left) and semi-linear (right)
parabolic PDEs.

5 10 15

10 1

100

No
rm

al
ize

d
Er

ro
r

5 10 15

109

1022

5 10 15
Dimension

10 3

10 2

In
fe

re
nc

e
tim

e

5 10 15
Dimension

10 1

NGO
DON
E-M
GIR

(b) Varying the dimensionality at T =
0.25 for linear (left) and semi-linear (right)
parabolic PDEs.

0.00 0.25 0.50

10 5

10 2

0.00 0.25 0.50
Terminal Time

10 3

10 1

No
rm

al
ize

d
Er

ro
r

0.00 0.25 0.50
Terminal Time

10 4

101

0.00 0.25 0.50

10 2

100

No
rm

al
ize

d
Er

ro
r NGO

DON
E-M

(c) Normalized errors for 10d HJB (top left),
BSB (top right), BS (bottom left), and FP
(bottom right).

Figure 4: Comparison of the normalized errors and inference times of NGO, DeepONet (DON), Girsanov (GIR), and
Euler-Maruyama (E-M) on linear and semi-linear parabolic PDEs.

We present detailed definitions of the PDEs in Appendix D.
For this study, we compare against the DeepONet operator
learning architecture [Lu et al., 2019] (DON) with a similar
model size, naively applying the change-of-measure (GIR),
and the direct simulation with Euler-Maruyama (E-M). Note
that the E-M method provides a strong baseline that encom-
passes many techniques in the related work (e.g. [Berner
et al., 2020, Glau and Wunderlich, 2022, Richter and Berner,
2022]), so we use this as a baseline for the existing deep
learning methods based on Feynman-Kac. We compare com-
putation time and accuracy between the different methods
for estimating the solution under different µ and h functions.
When analytical solutions do not exist, we consider E-M
with a substantial NE , NT as the ground truth.

PDEs with defined basis In the linear case, we consider
second-order polynomials

µ(i)(x) ∈

{
2∑

i=0

cix
i | ci ∼ U(0, 1)

}
.

For the semi-linear equation, we also test changing the back-
ward drift ϕ in (10) by considering basis functions given
by

ϕi(t, x, s, z) ∈ {c1
∑

sin(xi) + c2
∑

z2i + c3 cos(t+ s)

| ci ∼ U(0, 1)}.

We set the parameters r = 0 and σ = 1 for these exper-
iments. We randomly sample from these function classes
during training and then evaluate on a different test set of
functions. The results are illustrated in Figure 4 and Ta-
ble 1 for these two equations with Figure 4a presenting
the error and computation at different terminal times and
Figure 4b considering the error and inference time at var-
ious dimensions. The proposed NGO has high accuracies
while maintaining small computation times in all the tested
regimes.

Canonical parabolic PDEs We test the generalization
capabilities of NGO and DON models trained in the previ-
ous section on four canonical parabolic PDEs previously
mentioned (BS, FP, HJB, and BSB) in 10d. Since an exact
solution is known for these equations, we compare NGO,
DeepONet, and E-M to the analytical solution (presented
in Appendix D). Note that for the BS and BSB equations,
a change in the volatility function σ occurs. Results on
the normalized error are in Figure 4c. The proposed NGO
achieves low errors across all four tested canonical PDEs
again. Additional ablations are available in Appendix C.

Param. Loss Inf. Time (s)

NGO 15.7K 4.50(0.05)×10−2 2.7×10−2

FNO 19.9K 4.44(0.16)×10−2 7.4×10−2

NGO 18.8K 5.10(0.11)×10−2 1.80×10−2

FNO 2.0M 6.10(0.02)×10−2 1.14×10−1

Table 1: NGO and Fourier Neural Operator (FNO) per-
formances on one-dimensional (first two rows) and two-
dimensional (last two rows) linear parabolic equations. We
calculate the normalized losses and standard errors with five
independent training episodes.

6 DISCUSSION

We proposed a method for solving problems related to
parabolic PDEs based on their stochastic representation.
We treat the parameters of parabolic PDEs’ stochastic repre-
sentation as the meta-learned parameters shared across all
tasks and calculate task-specific solutions with them. This
structure allows application in optimizations under differ-
ent scenarios and solving PDEs with distinct parameters
through the NGO. Empirical results indicate that NGO pro-
vides a sizable advantage in computation time and accuracy
compared to baselines.

8

Limitations Theoretically, if the target drift has a large
magnitude, the variance of stochastic exponential can be
high, which may lead to numerical instabilities. In this case,
the direct Euler-Maruyama approach may be beneficial for
training the neural operator.

Acknowledgements

This work was supported in part by the Office of Naval
Research (ONR) under grant number N00014-21-1-2590.
AH was supported by NSF-GRFP.

References

Yacine Aït-Sahalia. Closed-form likelihood expansions for
multivariate diffusions. The Annals of Statistics, pages
906–937, 2008.

Christian Bender and Thilo Moseler. Importance sam-
pling for backward sdes. Stochastic Analysis and
Applications, 28(2):226–253, 2010. doi: 10.1080/
07362990903546405. URL https://doi.org/10.
1080/07362990903546405.

Julius Berner, Markus Dablander, and Philipp Grohs.
Numerically solving parametric families of high-
dimensional kolmogorov partial differential equations
via deep learning. Advances in Neural Information Pro-
cessing Systems, 33:16615–16627, 2020.

Yuyan Chen, Bin Dong, and Jinchao Xu. Meta-mgnet: Meta
multigrid networks for solving parameterized partial dif-
ferential equations. J. Comput. Phys., 455:110996, 2022.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. CoRR,
abs/1410.8516, 2014.

Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy
Bengio. Density estimation using real nvp. ArXiv,
abs/1605.08803, 2016.

Lawrence C Evans. Partial differential equations, vol-
ume 19. American Mathematical Society, 2022.

Ioannis Exarchos and Evangelos A. Theodorou. Stochastic
optimal control via forward and backward stochas-
tic differential equations and importance sampling.
Automatica, 87:159–165, 2018. ISSN 0005-1098.
doi: https://doi.org/10.1016/j.automatica.2017.09.004.
URL https://www.sciencedirect.com/
science/article/pii/S0005109817304740.

Arash Fahim, Nizar Touzi, and Xavier Warin. A probabilis-
tic numerical method for fully nonlinear parabolic pdes.
The Annals of Applied Probability, pages 1322–1364,
2011.

Chelsea Finn, P. Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. ArXiv,
abs/1703.03400, 2017.

Michael B Giles. Multilevel monte carlo methods. Acta
numerica, 24:259–328, 2015.

Kathrin Glau and Linus Wunderlich. The deep parametric
pde method and applications to option pricing. Applied
Mathematics and Computation, 432:127355, 2022.

Somdatta Goswami, Katiana Kontolati, Michael D. Shields,
and George Em Karniadakis. Deep transfer learning for
partial differential equations under conditional shift with
deeponet. ArXiv, abs/2204.09810, 2022.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya
Sutskever, and David Kristjanson Duvenaud. Ffjord: Free-
form continuous dynamics for scalable reversible genera-
tive models. ArXiv, abs/1810.01367, 2018.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan.
Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information
processing systems, 34:24048–24062, 2021.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-
dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sci-
ences, 115:8505 – 8510, 2018.

Zheyuan Hu, Khemraj Shukla, George Em Karni-
adakis, and Kenji Kawaguchi. Tackling the curse
of dimensionality with physics-informed neural net-
works. ArXiv, abs/2307.12306, 2023. URL https:
//api.semanticscholar.org/CorpusID:
260125464.

Chin-Wei Huang, Jae Hyun Lim, and Aaron C. Courville.
A variational perspective on diffusion-based generative
models and score matching. In NeurIPS, 2021.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Shi Ji, Zidong
Wang, Kang Yang, Yang Li, Min Wang, Haotian Chu, Fan
Yu, et al. Meta-auto-decoder for solving parametric partial
differential equations. Advances in Neural Information
Processing Systems, 35:23426–23438, 2022.

Jikai Jin, Yiping Lu, Jose Blanchet, and Lexing Ying. Mini-
max optimal kernel operator learning via multilevel train-
ing. arXiv preprint arXiv:2209.14430, 2022.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert
Kirby, and Michael W Mahoney. Characterizing possi-
ble failure modes in physics-informed neural networks.
Advances in Neural Information Processing Systems, 34:
26548–26560, 2021.

9

https://doi.org/10.1080/07362990903546405
https://doi.org/10.1080/07362990903546405
https://www.sciencedirect.com/science/article/pii/S0005109817304740
https://www.sciencedirect.com/science/article/pii/S0005109817304740
https://api.semanticscholar.org/CorpusID:260125464
https://api.semanticscholar.org/CorpusID:260125464
https://api.semanticscholar.org/CorpusID:260125464

Xinpeng Li, Yiqing Lin, and Weicheng Xu. On proper-
ties of solutions to black–scholes–barenblatt equations.
Advances in Difference Equations, 2019(1):193, 2019.
doi: 10.1186/s13662-019-2135-z. URL https://doi.
org/10.1186/s13662-019-2135-z.

Zong-Yi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Fourier neural operator for paramet-
ric partial differential equations. ArXiv, abs/2010.08895,
2020.

Zong-Yi Li, Daniel Zhengyu Huang, Burigede Liu, and
Anima Anandkumar. Fourier neural operator with learned
deformations for pdes on general geometries. ArXiv,
abs/2207.05209, 2022.

Xu Liu, Xiaoya Zhang, Wei Peng, Weien Zhou, and Wen
Yao. A novel meta-learning initialization method for
physics-informed neural networks. Neural Comput. Appl.,
34:14511–14534, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and
George Em Karniadakis. Learning nonlinear operators via
deeponet based on the universal approximation theorem
of operators. Nature Machine Intelligence, 3:218 – 229,
2019.

Nikolas Nüsken and Lorenz Richter. Interpolating be-
tween bsdes and pinns: deep learning for elliptic and
parabolic boundary value problems. arXiv preprint
arXiv:2112.03749, 2021.

Etienne Pardoux and Aurel Râs, canu. Stochastic differential
equations, Backward SDEs, Partial differential equations,
volume 69. Springer, 2014.

Apostolos F Psaros, Kenji Kawaguchi, and George Em Kar-
niadakis. Meta-learning pinn loss functions. Journal of
Computational Physics, 458:111121, 2022. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2022.111121.
URL https://www.sciencedirect.com/
science/article/pii/S0021999122001838.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019a. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal
of Computational physics, 378:686–707, 2019b.

Lorenz Richter and Julius Berner. Robust sde-based varia-
tional formulations for solving linear pdes via deep learn-
ing. In International Conference on Machine Learning,
pages 18649–18666. PMLR, 2022.

Simo Särkkä and Arno Solin. Applied stochastic differential
equations, volume 10. Cambridge University Press, 2019.

Bodhisattva Sen. A gentle introduction to empirical pro-
cess theory and applications. Lecture Notes, Columbia
University, 11:28–29, 2018.

Yang Song, Conor Durkan, Iain Murray, and Stefano
Ermon. Maximum likelihood training of score-based
diffusion models. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems,
volume 34, pages 1415–1428. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.
pdf.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P.
Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochas-
tic differential equations. ArXiv, abs/2011.13456, 2021b.

Vincent Stimper, David Liu, Andrew Campbell, Vin-
cent Berenz, Lukas Ryll, Bernhard Scholkopf, and
José Miguel Hernández-Lobato. normflows: A pytorch
package for normalizing flows. ArXiv, abs/2302.12014,
2023.

Denis Talay and Luciano Tubaro. Expansion of the
global error for numerical schemes solving stochas-
tic differential equations. Stochastic Analysis and
Applications, 8(4):483–509, 1990. doi: 10.1080/
07362999008809220. URL https://doi.org/10.
1080/07362999008809220.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understand-
ing and mitigating gradient flow pathologies in physics-
informed neural networks. SIAM Journal on Scientific
Computing, 43(5):A3055–A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learn-
ing the solution operator of parametric partial differential
equations with physics-informed deeponets. Science Ad-
vances, 7, 2021b.

Rui Zhang, Qi Meng, Rongchan Zhu, Yue Wang, Wenlei Shi,
Shihua Zhang, Zhi-Ming Ma, and Tie-Yan Liu. Monte
carlo neural operator for learning pdes via probabilistic
representation, 2023.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzade-
nesheli, and Anima Anandkumar. Fast sampling of diffu-
sion models via operator learning. ArXiv, abs/2211.13449,
2022.

10

https://doi.org/10.1186/s13662-019-2135-z
https://doi.org/10.1186/s13662-019-2135-z
https://www.sciencedirect.com/science/article/pii/S0021999122001838
https://www.sciencedirect.com/science/article/pii/S0021999122001838
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://doi.org/10.1080/07362999008809220
https://doi.org/10.1080/07362999008809220

A ADDITIONAL SIMULATION RESULTS

Proposition 2. Approximating the ELBOIS and ELBOdirect terms with Euler-Maruyama using step size h will both induce
the error h

∫ t

0
E[ψe(s,Xs)ds] +O(h2), where

ψe(t, x) =
1

2

d∑
i,j=1

µi(t, x)µj(t, x)∂xixj
p(t, x) +

1

2

d∑
i,j,k=1

µi(t, x)ajk(t, x)∂xixjxk
p(t, k)

+
1

8

d∑
i,j,k,l=1

aij(t, x)a
k
l (t, x)∂xixjxkxl

p(t, x) +
1

2

∂2

∂t2
p(t, x)

+

d∑
i=1

µi(t, x)
∂

∂t
∂xiu(t, x) +

1

2

d∑
i,j=1

aij(t, x)
∂

∂t
∂xixju(t, x)

and a(t, x) = σ(t, x)σ⊤(t, x).

Proof. For this section, we do not consider Monte Carlo error NE and focus only on the integration error. We analyze the
approximation error of ELBOdirect and ELBOIS using the error bound introduced in [Talay and Tubaro, 1990]. Given the
following SDE:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

We want to estimate the error of E[f(XT)], where we evaluate XT through the Euler-Maruyama scheme. Define h = T/N
as the step size in the Euler-Maruyama scheme and denote Xh

T as the approximated XT using step size h. Following Talay
and Tubaro [1990], we define the error term err(T, h) = E[f(XT)]− E[f(Xh

T)].

Talay and Tubaro [1990] proved that

err(T, h) = −h
∫ T

0

E[ψe(s,Xs)]ds+O(h2) (11)

where

ψe(t, x) =
1

2

d∑
i,j=1

µi(t, x)µj(t, x)∂xixj
u(t, x)

+
1

2

d∑
i,j,k=1

µi(t, x)ajk(t, x)∂xixjxk
u(t, k)

+
1

8

d∑
i,j,k,l=1

aij(t, x)a
k
l (t, x)∂xixjxkxl

u(t, x) +
1

2

∂2

∂t2
u(t, x)

+

d∑
i=1

µi(t, x)
∂

∂t
∂xi

u(t, x) +
1

2

d∑
i,j=1

aij(t, x)
∂

∂t
∂xixj

u(t, x)

and a(t, x) = σ(t, x)σT (t, x).

We will assume that σ = 1 for ease of analysis. For the ELBO, we have an additional integral we must approximate related
to the divergence of the drift term.

Recall that

ELBOdirect = EPXt

[∫ T

0

∇ · µ(s,Xs)ds+ log p0(XT) | X0 = x

]

ELBOIS = EPYt

[∫ T

0

µ(s, Ys)dWs −
∫ T

0

1

2
µ(s, Ys)

Tµ(s, Ys)−∇ · µ(s, Ys)ds+ log p0(YT) | Y0 = x

]

11

The error associated with the divergence is defined as

errdiv,t = −h
∫ t

0

E[ψe(s,Xs)]ds+O(h2)

with a similar argument following the initial condition, i.e.

errp0
= −h

∫ T

0

E[ψe(s,Xs)]ds+O(h2)

Combining these terms, we get the final error, errELBOdirect
:

errELBOdirect
=

∫ T

0

errdiv,sds+ errp0

=

N∑
i=1

h× errdiv,ti + errp0

= N × h[−h
∫ T

0

E[ψe(s,Xs)] +O(h2)]− h

∫ T

0

E[ψe(s,Xs)]ds+O(h2)

≈ −h
∫ T

0

E[ψe(s,Xs)] +O(h2).

For the ELBOIS case, Xt can be sampled exactly since we assume it follows a Brownian motion, which removes the
integration error in errp0

.

The errors are then introduced when integrating the terms in the stochastic exponential. Then we have∫ T

0

∇ · µ(s, Ys)ds︸ ︷︷ ︸
errdiv

−
∫ T

0

1

2
µ(s, Ys)

Tµ(s, Ys)ds+

∫ T

0

µ(s, Ys)dWs︸ ︷︷ ︸
O(h)

where the second error rate comes from the Euler discretization. Following this argument, we get

errELBOIS
= −h

∫ T

0

E[ψe(s,Xs)]ds+O(h2). (12)

Although ELBOIS introduces more error than ELBOdirect by having more integration terms, they are all of the order
O(h2).

A.1 UNIFORM CONVERGENCE

Proposition 3 (Uniform Convergence). For fixed x ∈ D, T ∈ R+, consider a space of functions

F =
{
dP

X
(ξ)
T

/dPYT
: ξ ∈ Ξ

}
parameterized by ξ from a compact set Ξ ⊂ Rk satisfying V ar

(
dP

X
(ξ)
T

/dPYT

)
<∞ for all ξ ∈ Ξ with P

X
(ξ)
T

denoting the

distribution of the solution XT = x+
∫ T

0
µ(Xt, t; ξ)dt+

∫ T

0
σ(t)dWt and PYT

the distribution of Yt = x+
∫ T

0
σ(t)dWt.

Additionally, assume that the image of (T,XT) 7→ µ(T,XT ; ξ) is compact for all XT , ξ. Then,

GNE
=
√
NE

(
pξθ(x, T)− pξ(x, T)

)
converges in distribution to a zero-mean Gaussian process over ξ ∈ Ξ as NE → ∞ where NE is the number of samples
used to compute the expectation.

12

Proof. First, we will assume that the stochastic exponential has a finite variance for all t, x within the support of the
distribution. The finite variance allows us to use the law of large numbers to obtain pointwise convergence of the empirical
expectation to the ground-truth solution. Additionally, we assume that the operator NGO is well-learned in the sense that

NGO(x, T, ξ) =
dP

X
(ξ)
T

dPYT
can be computed exactly.

Next, we need to show that the class of functions we are approximating are P -Donsker, which we will do using a covering
number argument. Recall that the parameters of the functions are assumed to be from a compact set Ω ⊂ Rd with

F =

{
f(T, {Xt}; ξ) := exp

(∫ T

0

µ(Xt; ξ)dWt −
1

2

∫ T

0

µ(Xt; ξ)
2dt

)
: ξ ∈ Ξ

}

also compact. The covering number of Ξ, a subset of the Euclidean space, is known to be bounded byN(ε,Ξ, ∥·∥) ≤ C
(
1
ε

)d
for some C > 0. We will use this to bound the bracketing number of F . The log of the covering number is then bounded by
O(d log 1

ε) <
1
ε2 .

Using this to bound the bracketing number, we can obtain that F is P -Donsker (c.f. Sen [2018, Theorem 11]). We can then
define the empirical process GNE

, NE corresponding to the number of terms used to take the expectation as

Gξ
NE

:=
√
NE

(
PNE

YT
− PYT

)
p0(YT)NGO(·; ξ)

=
√
NE

(
NE∑
i=1

p0(Y
(i)
T)NGO(Y

(i)
T ; ξ)− E [p0(YT)NGO(YT ; ξ)]

)
.

Since NGO is assumed to be well learned, it approximates the likelihood ratio exactly, so the expectation gives the
ground-truth solution. From the finite variance assumption on NGO, by the central limit theorem for any ξ ∈ Ξ, Gξ

NE
→√

NEN (0, 1). Given that the finite-dimensional margins are unit normal, we conclude that G converges to a Gaussian
process over Ξ.

B NETWORK STRUCTURE AND TRAINING HYPERPARAMETERS

B.1 LINEAR PARABOLIC PDE

Network structure We first provide network structures on the NGO and DeepONet used to calculate solutions of linear
parabolic PDEs. For both NGO and DeepONet, we use a network structure that correlates to the number of dimensions of
the PDEs, as shown in Tables 2,3,4.

Operation Layer Input Channels Output Channels
Convolutional Layer Ndim × 2 + 1 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim

Table 2: Network structure of NGO in the linear parabolic case.

13

Operation Layer Input Number Output Number
Linear Layer Nsensor = 100 Ndim × 5 + 70
Tanh N/A N/A
Linear Layer Ndim × 5 + 70 Ndim × 5 + 70
Tanh N/A N/A
Linear Layer Ndim × 5 + 70 Ndim × 5 + 70
Tanh N/A N/A
Linear Layer Ndim × 5 + 70 Ndim × 5 + 70
Tanh N/A N/A
Linear Layer Ndim × 5 + 70 Nbranch = 15

Table 3: Network structure of the “branch” network of the DeepONet in both the linear and semi-linear parabolic
caseGoswami et al. [2022].

Operation Layer Input Number Output Number
Linear Layer Ndim + 1 Ndim × 5 + 50
Tanh N/A N/A
Linear Layer Ndim × 5 + 50 Ndim × 5 + 50
Tanh N/A N/A
Linear Layer Ndim × 5 + 50 Ndim × 5 + 50
Tanh N/A N/A
Linear Layer Ndim × 5 + 50 Ndim × 5 + 50
Tanh N/A N/A
Linear Layer Ndim × 5 + 50 Nbranch = 15

Table 4: Network structure of the “trunk” network of the DeepONet in both the linear and semi-linear parabolic caseGoswami
et al. [2022].

Training hyperparameters We train both NGO and DeepONet on random PDEs with a defined basis. Specifically, we
consider second-order polynomials µi(x) ∈

{∑2
i=0 cix

i | ci ∼ U(0, 1)
}

, x ∈ RNdim . We set the parameters r = 0 and
σ = 1 during training. For each epoch, we sample 6000 initial x values, x ∈ [0.1, 0.6], and initial t values, t ∈ [0, 0.1], and
PDE parameters {ci}2i=0. We calculate PDE solutions p(x, t) through direct Girsanov calculation, NGO, and DeepONet.
We use 4000 sample paths for Girsanov calculation NGO. We then minimize the ℓ1 loss between Girsanov calculation and
NGO or DeepONet using an Adam optimizer, with a learning rate 1× 10−3.

B.2 SEMI-LINEAR PARABOLIC PDE

Network structure We now provide network structures on the NGO and DeepONet used to calculate solutions of
semi-linear parabolic PDEs. For both NGO and DeepONet, we use a network structure that depends on the number of input
dimensions, as shown in Tables 3, 4, 5, and 6.

Operation Layer Input Channels Output Channels
Convolutional Layer Ndim × 2 + 1 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim

Table 5: Network structure of NGO for estimating the exponential martingale in the semi-linear parabolic case.

Training hyperparameters We train both NGO and DeepONet to estimate random PDEs with a defined basis. Specifically,
we consider second-order polynomials hi(t, x, s, z) ∈

{
c1
∑

sin(xi) + c2
∑
z2i + c3 cos(t+ s) | ci ∼ U(0, 1)

}
. We set

the parameters r = 0 and σ = 1 during training. For each epoch, we uniformly sample 6000 initial x values, x ∈ [0.1, 0.6],

14

Operation Layer Input Channels Output Channels
Convolutional Layer Ndim + 1 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim × 5 + 50
Softplus N/A N/A
Convolutional Layer Ndim × 5 + 50 Ndim

Table 6: Network structure of NGO for estimating Zt in the semi-linear parabolic case.

and initial t values, t ∈ [0, 0.1], and PDE parameters {ci}2i=0. We calculate the PDE solution p(x, t) through direct Girsanov
calculation, NGO, and DeepONet. We use 4000 sample paths for Girsanov calculation NGO. We then minimize the ℓ1 loss
between Girsanov calculation and NGO or DeepONet using the Adam optimizer, with a learning rate of 1× 10−3.

B.3 GENERATIVE MODELING

Network structure We describe the network structure for the normalizing flow used to model pmeta and the forward SDE.
For pmeta, we use a real-NVP model [Dinh et al., 2014, 2016] with 32 affine coupling layers, each having the structure as
shown in Table 7 for 2-d pmeta and in Table 8 for 100-d pmeta.

Training hyperparameters We train the normalizing flows using the “normflows” platform Stimper et al. [2023]. The
training dataset for the 2-d and the 100-d case contain 600 samples each. We sample 60 points from each of the 10 Gaussians
with different means and standard variances to form the meta-dataset. Training is performed with the Adam optimizer using
a learning rate of 5 × 10−4 and a weight decay of 1 × 10−5. We define the diffusion function of the forward SDE as a
d-dimensional diagonal matrix, where d is the dimension of the forward SDE. We set the terminal time of the forward SDE
as T = 0.1, the number of Euler steps when training is 40, and the number of Euler steps when testing is 50. We set the
number of samples NE used to estimate ELBOIS to be 75. We estimate the divergence with Hutchinson’s trace estimator as
used in Grathwohl et al. [2018]. We minimize ELBOIS using an AdamW optimizer and a learning rate of 8× 10−4.

Operation Layer Input Number Output Number
Linear Layer 1 64
Tanh N/A N/A
Linear Layer 64 64
Tanh N/A N/A
Linear Layer 64 64
Tanh N/A N/A
Linear Layer 64 64
Tanh N/A N/A
Linear Layer 64 2
Tanh N/A N/A

Table 7: Network structure of the affine coupling layer in the normalizing for 2-d pmeta.

15

Operation Layer Input Number Output Number
Linear Layer 50 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 100
Tanh N/A N/A

Table 8: Network structure of the affine coupling layer in the normalizing for 100-d pmeta.

Operation Layer Input Number Output Number
Linear Layer 2 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 2
Tanh N/A N/A

Table 9: Network structure of the drift function of the forward SDE in the 2-d case.

Operation Layer Input Number Output Number
Linear Layer 100 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 200
Tanh N/A N/A
Linear Layer 200 100
Tanh N/A N/A

Table 10: Network structure of the drift function of the forward SDE in the 100-d case.

C ABLATION STUDY

We perform a series of ablation studies of the proposed NGO algorithm for the linear and semi-linear parabolic PDEs on the
number of dimensions of the PDEs and on the number of sample paths used to approximate the solutions.

Number of dimensions We investigate the influence of the number of dimensions on the performance of direct Girsanov
calculation (GIR), NGO, DeepONet (DON), and compare to either the analytical solutions or solutions simulated with Euler
Maruyama (E-M) using a large number of sample paths.

Figure 5 shows the results on linear parabolic PDEs. As the number of dimensions grows, the normalized errors of NGO
increase for random PDEs with a defined basis and decrease in the Fokker-Planck and Black-Scholes equation. The figures
suggest that the number of dimensions does not significantly influence the inference time of NGO.

16

Operation Layer Input Number Output Number
Linear Layer 1 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 2
Tanh N/A N/A

Table 11: Network structure of the diffusion function of the forward SDE in the 2-d case.

Operation Layer Input Number Output Number
Linear Layer 1 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 16
Tanh N/A N/A
Linear Layer 16 100
Tanh N/A N/A

Table 12: Network structure of the diffusion function of the forward SDE in the 100-d case.

Figure 6 shows the results on semi-linear parabolic PDEs. The number of dimensions does not significantly influence
the normalized error of NGO on random PDEs with a defined basis and on the Black-Scholes-Barrenblatt equation. The
normalized error of NGO decreases in the Hamilton-Jacobi-Bellman equation as the number of dimensions grows. The
inference time of NGO correlates positively with the number of dimensions but is still the lowest among all methods tested.

Number of sample paths We additionally how the number of sample paths used to calculate the solutions correlates with
the performance of direct Girsanov calculation, NGO, DeepONet (which is uninfluenced by the number of sample paths),
and compare to either the analytical solutions or solutions simulated with Euler Maruyama (E-M) and a large number of
sample paths.

Figure 7 shows the results on linear parabolic PDEs. As the number of sample paths grows, the normalized errors of NGO
on all three PDEs decrease and then stabilize. This behavior is particularly obvious on random PDEs with a defined basis.
Due to parallel rather than sequential computations, the number of sample paths does not significantly influence the inference
time of NGO. The number of sample paths does not impact the inference time before reaching the GPU’s memory limit.

Figure 8 shows the results on semi-linear parabolic PDEs. As the number of sample paths increases, the normalized error of
NGO slightly decreases. The number of sample paths does not significantly influence the normalized errors of NGO on the
Hamilton-Jacobi-Bellman equation and the Black-Scholes-Barrenblatt equation. The inference time of NGO first increases
with the number of sample paths and then stabilizes but is still the lowest among all methods tested.

17

5 10 15
10 1

100

101

102

No
rm

al
ize

d
Er

ro
r

5 10 15

10 8

10 4

100

104

108

5 10 15

10 3

10 2

10 1

100

5 10 15
Dimension

10 3

10 2

In
fe

re
nc

e
Ti

m
e

5 10 15
Dimension

10 3

10 2

5 10 15
Dimension

10 3

10 2

NGO
GIR
E-M
DON

Figure 5: Ablation study on the number of dimensions of linear parabolic PDEs evaluated at the terminal time T = 0.5.
We show the normalized error (top) and inference time (bottom). The first column shows results on random PDEs with a
defined basis; the second column shows results on the Fokker-Planck equation of the OU process; the third column shows
results on the Black-Scholes equation.

18

5 10 15

103

1010

1017

1024

1031

No
rm

al
ize

d
Er

ro
r

5 10 15
10 3

10 2

10 1

100

5 10 15

10 4

10 2

100

5 10 15
Dimension

10 1

In
fe

re
nc

e
Ti

m
e

5 10 15
Dimension

10 1

5 10 15
Dimension

10 1

100

NGO
GIR
E-M
DON

Figure 6: Ablation study on the number of dimensions of semi-linear parabolic PDEs evaluated at terminal time T = 0.5.
We show the normalized error and inference time. The first column shows results on random PDEs with a defined basis;
the second column shows results on the Hamilton-Jacobi-Bellman equation; the third column shows results on the
Black-Scholes-Barrenblatt equation. The variance of the Girsanov calculation on the random PDEs with a defined basis
increases significantly for d > 11.

19

250 500 750

100

No
rm

al
ize

d
Er

ro
r

250 500 750

10 5

10 2

101

104

250 500 750

10 2

10 1

100

250 500 750
Number of Samples

10 3

10 2

In
fe

re
nc

e
Ti

m
e

250 500 750
Number of Samples

10 3

10 2

250 500 750
Number of Samples

10 3

10 2

NGO
GIR
E-M
DON

Figure 7: Ablation study on the number of sample paths used in simulating linear parabolic PDEs evaluated at terminal time
T = 0.5. We show the normalized error (top) and inference time (bottom). The first column shows results on random PDEs
with a defined basis; the second column shows results on the Fokker-Planck equation of the OU process; the third column
shows results on the Black-Scholes equation.

20

250 500 750

103

1010

1017

1024

1031

No
rm

al
ize

d
Er

ro
r

250 500 750

10 2

10 1

100

250 500 750

10 4

10 2

100

250 500 750
Number of Samples

10 2

10 1

In
fe

re
nc

e
Ti

m
e

250 500 750
Number of Samples

10 2

10 1

250 500 750
Number of Samples

10 2

10 1

100

NGO
GIR
E-M
DON

Figure 8: Ablation study on the number of sample paths used in simulating semi-linear parabolic PDEs evaluated at terminal
time T = 0.5. We show the normalized error (top) and inference time (bottom). The first column shows results on random
PDEs with a defined basis; the second column shows results on the Hamilton-Jacobi-Bellman equation; the third column
shows results on the Black-Scholes-Barrenblatt equation.

21

D DEFINITIONS OF CANONICAL PDES

D.1 FOKKER PLANCK EQUATION

We study the PDF of a d-dimensional time-invariant linear SDE of the form:{
dXt = Xtdt+ dWt,

X0 ∼ N (0, I).

Xt follows a Gaussian distribution for all t: Xt ∼ N (m(t), c(t)), where m(t) and c(t) satisfies the following ODE system:{
m(t) = exp(t− t0)m(t0),

c(t) = exp(t− t0)c(t0) exp(t− t0)
T +

∫ t

t0
exp(t− τ)Q exp(t− τ)T dτ,

where Q is the Brownian motion’s diffusion coefficient and is assumed to be a d-dimensional identity matrix in our
case [Särkkä and Solin, 2019].

We assume the mean at initial time m(t0) = 0, and find{
m(t) = 0,

c(t) = (32 exp(2t)−
1
2)I.

So we have an analytical form of Xt’s distribution: Xt ∼ N (0, (32 exp(2t)−
1
2)I).

Distribution of the SDE Xt corresponds to the initial value problem (IVP) satisfying the Fokker-Planck equation{
∂p
∂t = −x · ∇p+ 1

2Tr(Hessxp)− dp

p0(x, 0) = 1
(2π)d

exp
(
−xxT

2

)
,

where d is the dimension of the SDE, · is inner product, × is scalar multiplication.

Using the Feynman Kac formula introduced in equation 2, the solution to this IVP has a stochastic representation
p(x, t) = exp(−d t)E[p0(Xt)],

dXt = Xtdt+ dWt,

X0 = x.

We apply NGO and DeepONet to solve this PDE according to the expectation and compare it with the ground truth PDF.

D.2 MULTI-DIMENSIONAL BLACK-SCHOLES EQUATION

We consider a multi-variate extension of the Black-Scholes model where multiple, correlated assets govern the price of
a derivative. The price evolution of a European call under the Black–Scholes model is modeled by the expectation of the
corresponding payoff function with respect to geometric Brownian motion:{

∂p
∂τ + σ̂2

2

∑d
i=1 s

2
i
∂2p
∂s2i

+ r(s · ∇p− p) = 0,

p(s, T) = Φ(s).
(13)

We apply a change of variable t = T − τ and transform the terminal condition problem to an equivalent initial value problem
(IVP):

{
∂p
∂t = σ̂2

2

∑d
i=1 s

2
i
∂2p
∂s2i

+ r(s · ∇p− p) = 0,

p(s, 0) = Φ(s).
(14)

22

Note that this transformation is not necessary, and the Black-Scholes equation is usually solved according to a terminal
condition, but to maintain consistency with the other experiments we consider an IVP. This IVP can be solved using the
Feynman-Kac method described in equation 2, with drift µ(s) = rs and volatility σ(s) = σ̂s for some prescribed volatility
coefficient σ̂ and payoff Φ.

To get a more accurate estimate, we simplify the terminal value problem 13 with a change of variable by transforming
it to a function of Brownian motion, as described in the main text. We will consider the variable xi = f(si) where
f(s) = ln s+ (r − 1

2 σ̂
2)τ . Since dst = rstdt+ σ̂stdWt, applying Itô’s lemma to f(s) gives us the new SDE

df(st) =

rst
(

1

st

)
︸ ︷︷ ︸

∂f
∂s

+
1

2
σ̂2s2t

(
−1

s2t

)
︸ ︷︷ ︸

∂f2

∂s2

−
(
r − 1

2
σ̂2

)
︸ ︷︷ ︸

∂f
∂t

 dt+ σ̂st

(
1

st

)
dWt

dXt = σ̂dWt.

Now, we can consider taking expectations of Xt, where exact sampling is possible since it is Brownian motion. After the
transformation, the PDE now corresponds to the heat equation plus the discount factor given by −rp:{

∂Ψ
∂t = σ̂2

2

∑N
i=1

∂2Ψ
∂x2

i
− rp,

Ψ(x, 0) = p(x, 0) = Φ(exp(xi + (r − σ̂2

2)τ)).
(15)

This gives us a relationship between the PDE on the transformed variable and the original one through

p(s, t) = exp(−rt)Ψ
(
ln s−

(
r − σ̂2

2

)
(T − t), t

)
.

We take Φ(s) = max{maxk=1...d sk −K, 0} for the payoff function, which corresponds to the payoff for the best-asset
rainbow option.

We approximate p(s, t) with NGO and DeepONet, following the IVP problem 14, and compare to solutions calculated with
the simplified IVP system 15. Note NGO is trained with a constant diffusion term, whereas the SDE system required here
has a state-dependent diffusion. The low error of NGO on this problem showcases its generality.

D.3 HAMILTON-JACOBI-BELLMAN EQUATION

The field of optimal control often requires directly or indirectly solving a terminal value problem involving a d-dimensional
HJB equation. We study such a problem:{

∂p
∂t = −Tr(Hessxp) + ∥∇p∥2,
p(T, x) = g(x),

where g(x) = ln
(
1
2 (1 + ∥x∥2)

)
.

This PDE has a stochastic solution given by p(t, x) = − ln(E[exp(−g(x+
√
2WT−t))]) [Raissi et al., 2019a].

This PDE’s semi-linear results in a representation as a Forward-Backward SDE (FBSDE) of the form of
dXt =

√
2dWt,

X0 = 0,

dSt = ∥Zt∥2

2 dt+ ZT
t dWt,

ST = g(XT),

where Zt =
√
2ptx. We apply NGO on this FBSDE system, with forward drift function µ(t, x) = 0, forward dif-

fusion function σ(t, x) =
√
2, backward drift function h(t, x, p, σT∇xp) = −∥σT∇xp∥2

2σ2 , and terminal condition
g(x) = ln

(
1
2 (1 + ∥x∥2)

)
. We compare the results generated with NGO, DeepONet, and Girsanov with the analytical

solution.

23

D.4 BLACK-SCHOLES-BARRENBLATT EQUATION

The Black-Scholes-Barenblatt (BSB) equation is a semi-linear extension to the Black-Scholes equation mentioned in
section D.2 and models uncertainty in volatility and interest rates under the Black-Scholes model Li et al. [2019]. We study
a terminal value problem involving the BSB equation:

{
pt = − 1

2Tr[σ2diag(X2
t)D

2p] + r(p− (Dp)Tx),

p(T, x) = ∥x∥2.

From Raissi et al. [2019a], this problem has an exact solution given as

p(t, x) = exp((r + σ2)(T − t))g(x). (16)

Due to the BSB equation’s semi-linear nature, one can represent its solution with an FBSDE system.
dXt = σdiag(Xt)dWt, t ∈ [0, T],

X0 = x0,

dSt = r(St − ZT
t Xt)dt+ σZT

t diag(Xt)dWt, t ∈ [0, T),

ST = g(XT).

Following the FBSDE system, we then construct the NGO, where the forward drift function µ(t, x) = 0, the forward
diffusion function σ(t, x) = σdiag(Xt), the backward drift function h(t, x, p, σT∇xp) = r(p− σT∇xp

T

σx), and the terminal
condition g(x) = ∥x∥2. We compare the explicit solution of the BSB equation with the solutions generated by NGO,
DeepONet, and Girsanov.

E ALGORITHM FOR NGO OF SEMI-LINEAR PARABOLIC PDES

We present the complete algorithm of NGO on semi-linear parabolic PDEs in algorithm 2.

Algorithm 2 Approximating semi-linear PDEs with NGO

Input: N ∈ N, h ∈ R+, µ(t, x) : R+ × Rd → Rd, terminal time T , initial position X

1: Sample N Brownian motions to time T starting at X ,
{
X +

√
khε(i)

}i=1...N

k=1...T/h
, ε ∼ N (0, 1)

2: for i ∈ {1, . . . , N} do

3: Compute
dP(i)

µ

dPW
≈ NGOexpmart

[{
µ
(
W

(i)
k

)}T/h

k=1
,
{√

khε(i)
}T/h

k=1
, h

]
4: Compute S(i)

T ≈ g(W
(i)
T)NGOexpmart

T and Z(i)
T = NGOgrad

[
S
(i)
T ,W

(i)
T

]
5: end for
6: for k ∈ {T/h, . . . , 1}, i ∈ {1, . . . , N} do
7: Compute S(i)

T−kh = S
(i)
T + h(T − kh,W

(i)
T−kh, S

(i)
T−(k−1)h, Z

(i)
T−(k−1)h)× h×NGOexpmart

T−(k−1)h

8: Compute Z(i)
T−kh = NGOgrad

[
S
(i)
T−kh,W

(i)
T−kh

]
9: end for

Output: Approximation of u(T − kh,XT−kh) as ǔ(T − kh,XT−kh) =
1
N

∑N
i=1 S

(i)
T−kh

F OTHER PARAMETERS FOR META-LEARNING

In the main text, we focused on meta-learning the prior pmeta for the generative modeling task. Here we describe how to
meta-learn the other parameters associated with the PDE and provide examples of use cases. In terms of the solution to a
PDE, this corresponds to learning an optimal initial condition that satisfies all tasks.

24

F.1 META-LEARNING THE BASE µ0

In the experiments provided in the main text, we always considered sampling from PXt
being standard Brownian motion

(that is, µ0 = 0). However, this need not be the case. Consider k task-specific {µi}ki=1 drifts. We can learn an optimal µ0

that minimizes the distance between all the task-specific µi’s. This has the effect of µi − µ0 → 0 for all i, which would lead
to a However, this comes at the expense of requiring an Euler-Maruyama solve for each iteration of training since µ0 would
need to change.

Example: baseline policy Suppose our interest lies in solving the following maximization problem:

max
µ0

Ei {Eµi−µ0
[J(XT)]} ,

where we compute the inner expectation over an objective function and the outer expectation over various tasks i with
distinct drift functions µi. This maximization problem could, for example, relate to the maximization of a portfolio under k
different market conditions. The meta-learned parameter µ0 then describes the optimal policy in all k market conditions. We
rewrite this maximization problem with using Girsanov’s theorem as

max
µ0

Ei

{
E−µ0

[
J(XT) exp

(∫ T

0

µidWt −
1

2

∫ T

0

µ2
idt

)]}
,

leading to a similar meta-learning problem as described in the main text.

F.2 META-LEARNING THE BASE σ0

In addition to optimizing for the base drift, µ0, we can also consider optimizing for a baseline σ0. Diffusion models utilize
similar concepts by learning σ values for known SDEs. However, due to challenges with sampling state-dependent diffusion,
it is more convenient to consider a function linear in Xt. In the following example, we will delve into this issue further.

Example: baseline volatility Suppose our interest lies in sampling from a generative model with distributions that satisfy
a Fokker-Planck equation. In order to sample from all target distributions optimized for the considered set of distributions,
we can estimate a baseline volatility. Score-based generative modeling applies similar concepts, typically using an affine
SDE as a base model that is adapted for different target distributions. To solve the same maximization problem we previously
discussed, we can now introduce a parameter σ(t) shared among all sample paths for different tasks. We express the problem
as:

max
σ⋆(t)

Ei

{
Eµ0 log p0(YT) +

∫
σ−1(t)µidWt −

1

2

∫
µT
i σ

−1(t)µidt | Y0 ∼ pi(Y)

}
.

Extension to state-dependent volatility The primary focus of this study is situations where µ represents different
parameters of a partial differential equation’s (PDE) solution or various tasks within a meta-learning framework. We also
examine the instances where the volatility, denoted by σ, changes. We limit our consideration to those volatilities that fulfill
the conditions set by the multivariate Lamperti transform [Aït-Sahalia, 2008, Proposition 1].

The Lamperti transform imposes specific constraints on the partial derivatives, which come from Itô’s Lemma in 2. This
property enables converting the corresponding diffusion into a form with unit volatility.

Assuming the existence of a function f such that σ = ∇xf(·), the PDE can be solved for various parameters using the
following approximation:

EPX,σ
[p0(XT) | FT] ≈ EPY

[
p0(Yt)NGO

(
{µ(f(Ysn)),∆f(Wsn), h}

NT
nT=1; θ

) ∣∣∣ FT

]
.

Finally, the operator approximates the integral, with the additional component contributed by the trace of the Hessian, as
outlined in equation (5).

G MAXIMIZATION PROBLEMS

We presented the main motivation of the maximization problem in terms of the Fokker-Planck equation under different
types of target distributions.

25

Maximizing value functions Consider an example where we wish to obtain the policy that maximizes a certain utility
function. This situation arises, for instance, in a portfolio optimization problem where we assume a particular stochastic
differential equation (SDE) governs a vector of assets St, and we aim to find the policy π⋆ that maximizes the utility J
across K different market scenarios. In other words, we seek the meta-parameter µmeta = π⋆ that maximizes the utility
across the various scenarios, with each scenario specified by the drift µ(i).

This maximization problem is expressed as maxπ
∑K

i=1 Eµ(i) [J(ST)]. To tackle this problem, we employ the same Monte
Carlo approach used in the generative modeling case. Assuming a linear interaction between the policy and the assets, we
once again apply Jensen’s inequality to maximize the expectation of the logarithm. The evidence lower bound (ELBO) in
this case is given by:

max
π

K∑
i=1

Eπ

[
J(ST) +

∫ T

0

µ(i)(St) dWt −
1

2

∫ T

0

(
µ(i)(St)

)2
dt

]
.

This formulation eliminates the need to recompute sample paths, as only the sample path corresponding to π requires
computation.

Example: Meta-learning p0 for K tasks Continuing with our example from the main text, we assume that all tasks have
some relationship to each other, and we aim to leverage these relationships to enhance the performance of the sampling
task compared to individual training. We consider the initial distribution, p0, as a meta-learned parameter, which we can
represent using a parametric model, pmeta(· ; θ) ≡ p0.

When integrated with the forward stochastic differential equation (SDE), we need to solve for:

max
pmeta

K∑
i=1

max
µi

ELBOIS({X(i)};µi) =

max
pmeta

K∑
i=1

max
µi

E

[∫ T

0

µi(Ys, s) dWs −
1

2

∫ T

0

µ2
i (Ys, s)−∇ · µi(Ys, s) ds+ log pmeta(YT)

]
.

By maximizing this expression over all pi that we want to approximate, with a corresponding µi for each pi, we can use the
associated information of each pi in the form of pmeta. It is important to note that the same derivation holds if we compute
the expectation over full sample paths without employing importance sampling:

max
pmeta

K∑
i=1

max
µi

ELBOdirect({X(i)};µi) = max
pmeta

K∑
i=1

max
µi

E

[∫ T

0

∇ · µi(X
(i)
s , s) ds+ log pmeta

(
X

(i)
T

)]
.

However, in the case of ELBOdirect, the sample paths need to be recomputed for each iteration since they depend on the
parameters of the drift, whereas the simpler model under PYt needs to be resampled for each iteration of the importance
sampling-based method. The direct case requires sequential computation at each time, whereas the computation in ELBOIS

can be parallelized.

26

	Introduction
	Related work

	Stochastic representations of parabolic PDEs
	Parabolic PDEs
	Feynman-Kac method
	Changing parameters

	Learning a base model
	Solving parabolic PDEs through importance sampling
	Maximizing parabolic PDEs
	Lg: Meta-learning a continuous space of tasks

	Properties of the estimators
	Error analysis
	Uniform convergence over drift parameters

	Experiments
	Maximizing parameters
	Operator learning

	Discussion
	Additional simulation results
	Uniform convergence

	Network structure and training hyperparameters
	Linear parabolic PDE
	Semi-linear parabolic PDE
	Generative modeling

	Ablation study
	Definitions of canonical PDEs
	Fokker Planck equation
	Multi-dimensional Black-Scholes equation
	Hamilton-Jacobi-Bellman equation
	Black-Scholes-Barrenblatt equation

	Algorithm for Lg of semi-linear parabolic PDEs
	Other parameters for meta-learning
	Meta-learning the base Lg
	Meta-learning the base Lg

	Maximization problems

