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Abstract

Recently, neural network architectures have been developed to accommodate when
the data has the structure of a graph or, more generally, a hypergraph. While useful,
graph structures can be potentially limiting. Hypergraph structures in general
do not account for higher order relations between their hyperedges. Simplicial
complexes offer a middle ground, with a rich theory to draw on. We develop a
convolutional neural network layer on simplicial 2-complexes.

1 Introduction and related work

In the last decade, neural networks have gained much popularity in the field of machine learning, in
large part due to their modularity, flexibility, and ability to be successfully applied to many different
types of problems. Recently there has been extensive work to formulate neural networks in settings
where the data comes structured as a graph [8, 7, 1, 9, 3, 11, 12, 7], or a hypergraph [2, 6].

Graph structures in neural networks have proven extremely useful; however they are limited to
pairwise connections of nodes. One drawback of the framework of hypergraphs is that they, in
general, do not account for higher order relations among the edges of a hypergraph. Simplicial
complexes offer a middle ground between graphs and hypergraphs, and have a rich theory to draw
from. This document aims to begin to make the case for using the simplicial complex structure in
machine learning by introducing a convolution layer on simplicial 2-complexes, akin to the popular
convolution layer on graphs defined in [7].

1.1 Simplicial complexes

Definition 1. A simplicial complex is a collection of subsets S of a finite set X that is closed under
taking nonempty subsets.
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The finite sets comprising S are called the faces of S, and the dimension of a face s is defined as
dim(s) = |s| − 1. The zero-dimensional faces of S will be referred to as the vertices of S, and will
be denoted vi. Denote by Sk the collection of all k-dimensional faces of S. We will write an element
of Sk as s = (v0, v1, . . . , vk−1), where the vi’s are the vertices comprising the face s. We say that
the dimension of S is the maximum dimension of all its faces. We can see that a simplicial complex
of dimension one is equivalent to a graph.

Let S be a simplicial complex, and assume that we have a specific enumeration of the vertices of
of S: v0, . . . , vn. A k-chain of S is defined to be a finite formal sum

∑N
i=0 aisi, where ai ∈ R, and

si ∈ Sk such that si = (vi0 , vi1 , . . . , vik−1
) where i0 < i1 < · · · < ik−1. We will denote collection

of k-chains of S by Ck. Each Ck forms a finite dimensional vector space over R, where a choice of
basis will be taken to be the collection Sk of k-dimensional faces of S. If the collection Sk is empty,
we take Ck to be the zero vector space. We also define C0 = 0. For each k = 1, 2, . . . , there is a
linear map ∂k : Ck → Ck−1 defined by

∂k(v0, . . . , vk−1) =

k−1∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vk−1) (1)

where (v0, . . . , v̂i, . . . , vk−1) = (v0, . . . , vi−1, vi+1, . . . , vk−1) ∈ Ck−1. We also define ∂0 : C1 →
C0 to be the zero map.

Given the bases described, the linear maps ∂k can be written as nk−1 × nk matrices, which we will
denote by Bk, following [10]. For each ∂k, there exists a map ∂∗k : Ck → Ck+1, which is the adjoint
of ∂k. The matrix representation of ∂∗k is B∗

k. Then we define the kth Laplacian of S to be the
nk × nk matrix

Lk = B∗
kBk +Bk+1 B

∗
k+1 . (2)

We can see that since ∂0 is the zero map, that L0 = B1 B
∗
1. In the case when S is a one dimensional

complex (i.e. a graph), L0 coincides with the usual definition of the graph Laplacian, which is
typically defined as L = D −A, where D and A are the diagonal degree matrix and the adjacency
matrix respectively of the graph.

As is the case with graph Laplacians, the Lk describe how to appropriately propagate a signal on S.
We will use these Lk as well as the Bk and B∗

k construct a convolutional neural net that generalizes
graph neural nets.

2 Simplicial 2-complex convolution layer

Let S be a simplicial complex of dimension 2. For each k = 0, 1, 2, we write nk = |Sk|, and we
assume we have matrices Xk of dimension nk × Fk. These will be our feature matrices, and Fk is
the feature dimension. Intuitively, we think of Xk as describing an Fk-dimensional signal on the
dimension k faces of S. One benefit of this approach is that the feature dimension, Fk, can vary with
k, allowing us to encode multimodal features.

One crucial step in this setup is properly normalizing the Lk. There are a variety of ways to approach
this, either through normalizing the Lk directly [10], to use a theory of weightings on the simplicial
complex itself [5], or to appeal to a more abstract setting [4]. We choose here to follow [10] due in
part to ease of implementation, and in part to the impracticality of structuring a typical data set as a
high-dimensional simplicial complex.

2.1 Normalization

We follow [10], Def. 3.3 and define the matrices
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D̃2 = max(diag(|B1|1), I)
D̃3 = I

D1 = 2diag(|B1|D2 1)

D2 = max(diag(|B2|1), I)

D3 =
1

3
I

D4 = I

D5 = diag(|B2|1)

We also follow [10] and define

L̃0 = B1 D̃3 B
∗
1 D̃

−1

2

L̃1 = D2 B
∗
1 D

−1
1 B1 +B2 D3 B

∗
2 D

−1
2

L̃2 = D4 B
∗
2 D

−1
5 B2

Define the following

Au
0 = D̃2 −B1 D̃3 B

∗
1

Au
1 = D2−B2 D3 B

∗
2

Ad
1 = D−1

2 −B∗
1 D

−1
1 B1

Ad
2 = D−1

4 −B∗
2 D

−1
5 B2 .

Finally, we define

Ã
u

0 = (Au
0 + I)(D̃2 + I)−1

Ã
u

1 = (Au
1 + I)(D2 + I)−1

Ã
d

1 = (D2 + I)(Ad
1 + I)

Ã
d

2 = (D4 + I)(Ad
2 + I).

The Aα
i are meant to generalize the adjacency matrix of a graph, and the Ã

α

i are meant to play the
role of normalized adjacency matrices with added self-loops, as used in [7].

2.2 Convolution layer

We define a convolutional neural network layer using the simplicial complex structure in the following
way. Assume we have hidden features at level h: {X(h)

k }2k=0, where X(h)
k is a matrix of dimension

nk × F (h)
k , and X(0)

k = Xk. Then X(h+1)
k can be obtained by

X
(h+1)
0 = σ

(
D−1

1 B1X
(h)
1 W

(h)
0,1 + Ã

u

0X
(h)
0 W

(h)
0,0

)
(3)

X
(h+1)
1 = σ

(
B2 D3X

(h)
2 W

(h)
1,2 + (Ã

d

1 + Ã
u

1 )X
(h)
1 W

(h)
1,1 +D2 B

∗
1 D

−1
1 X

(h)
0 W

(h)
1,0

)
(4)

X
(h+1)
2 = σ

(
Ã
d

2X
(h)
2 W

(h)
2,2 +D4 B

∗
2 D

−1
5 X

(h)
1 W

(h)
2,1

)
(5)

where σ is an activation function, the W (h)
i,j ’s are matrices of learnable weights of dimensions

F
(h)
i × F (h)

j . One can see that if we have a simplicial complex of dimension one (i.e. a graph), and
the features X1 are all zeros, then the hidden layer output of the simplicial complex convolutional
layer in Eq. 3 becomes

X
(h+1)
0 = σ

(
Ã
u

0X
(h)
0 W

(h)
0,0

)
. (6)

This coincides with the definition of a convolution layer in a graph convolutional network [7].

3 Experiments

Once we have all the X(h)
k , for k = 0, 1, 2, and h = 0, . . . ,H , we horizontally concatenate

the features to form X
[0:H]
k = [X

(0)
k : X

(1)
k : · · · : X(H)

k ] to form an nk × FH matrix, where
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FH =
∑H
h=0 F

(h)
k . Then we have 3 feature matrices {X [0:H]

k }2k=0. These can then be used for
further downstream learning tasks, e.g. classifying faces of a certain dimension (akin to node or
edge classification in graph learning), joint tasks, or classifying a simplicial complex itself when it is
among a collection of simplicial complexes. The latter setting in general requires ways of dealing
with simplicial complexes with differing structures.

3.1 MNIST classification

We give a brief explanation of how an image can be encoded as a simplicial 2-complex with feature
matrices, and employ simplicial complex convolution layers in a network to classify handwritten digits
in the MNIST data set. We detail a proof of concept for how these simplicial complex convolution
layers can be used to augment traditional convolution layers through an ablation study.

Given an image of size h×w pixels, and a choice of kernel size k and step size s (the same idea from
traditional CNNs), we form a grid of zero faces that is

(
bh−ks c+ 1

)
×
(
bw−k

s c+ 1
)
. We then add

1-faces to connect any zero faces that are horizontally, vertically, or diagonally adjacent. We then add
two faces wherever possible; that is, a triplet of zero faces holds a two face whenever they are all
pairwise connected by a one face. Figure 1 gives an example depiction of such a simplicial complex.
The feature vector attached to a zero face is the k2 × 1 vector resulting from flattening the k × k
square of pixel values corresponding to that zero face. These are collected into an n0 × k2 matrix
X0, with rows indexed by zero faces, and columns indexed by feature values. To both one faces and
two faces, the features attached are 1× 1 vectors with the value 1.

Figure 1: Depiction of the type of 2-
simplicial complex structure constructed
for the experiments described.

The ablation study takes as the base a neural net that has
one traditional convolution layer, followed by a fully con-
nected network with one hidden layer. Next, a single graph
convolution layer is prepended to this network to form the
first comparison. The graph is taken to be the one formed
by taking only the zero and one faces of the simplicial
complex described above. For the final comparison, a sin-
gle simplicial complex convolution layer is prepended to
the initial architecture described.

We describe first a particular 1D convolution layer. For a
feature matrix X of dimension n× F , we flatten X to a
matrix of dimension 1×nF . We denote by CONV1DF

a 1D convolution layer with kernel size of F and step size
F . We write CONV1D when the input feature size is
understood. We can see that in the setting described above,
CONV1Dk2 applied to a flattened X0 (of size 1×n0k2)
is equivalent to a 2D convolution layer with kernel size k
and step size s.

We denote by FC a fully connected network with one hidden layer of size 32, and output layer
of size 10 (for the 10 classes of MNIST). We denote by GCONV a graph convolutional layer
with embedding dimension 32. We denote by SCCONV a simplicial complex convolutional layer
with embedding dimensions of 32 for each face dimension. In the ablation study, the combination
SCCONV −CONV1D applies a 1D convolution layer to each of the three feature matrices; one
for each face dimension.

Each model was trained (tested) on a stratified sample of 1000 images from the designated training
(testing) portion of the MNIST data set. Each model was trained for 300 epochs with a batch size of
8, learning rate of 10−4, dropout rate of 10% on the fully connected layers, and batch normalization.
The kernel size and step size are both taken to be 4 for all models. The metrics reported in Table 1 are
the average accuracy, with the standard deviation denoted in the usual fashion, for five iterations of
the experiment setup described above. On each experiment, the test and train set are sampled anew.

We note that these metrics are not state of the art, and there is still a great deal to still investigate in
this direction. The results of this ablation study are suggestive enough to warrant further study of the
simplicial complex convolution layer in general.
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Model acc. ± std.
CONV1D− FC 87.40 ± 0.70

GCONV −CONV1D− FC 87.42 ± 0.59
SCCONV −CONV1D− FC 91.10 ± 0.40

Table 1: Ablation study results. Statistics are calculated over five experiments.
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