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Abstract

We propose an instruction-based process for trustworthy data curation in materials1

science (MatSci-Instruct), which we then apply to finetune a LLaMa-based lan-2

guage model targeted for materials science (HoneyBee). MatSci-Instruct helps3

alleviate the scarcity of relevant, high-quality materials science textual data avail-4

able in the open literature, and HoneyBee is the first billion-parameter language5

model specialized to materials science. In MatSci-Instruct we improve the trust-6

worthiness of generated data by prompting multiple commercially available large7

language models for generation with an Instructor module (e.g. Chat-GPT) and ver-8

ification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct,9

we construct a dataset of multiple tasks and measure the quality of our dataset along10

multiple dimensions, including accuracy against known facts, relevance to materials11

science, as well as completeness and reasonableness of the data. Moreover, we iter-12

atively generate more targeted instructions in a finetuning-evaluation-feedback loop13

leading to progressively better performance for our finetuned HoneyBee models.14

Our evaluation on the MatSci-NLP benchmark shows HoneyBee’s outperformance15

of existing language models on materials science tasks and iterative improvement16

in successive stages of instruction refinement. We study the quality of HoneyBee’s17

language modeling through automatic evaluation and analyze case studies to further18

understand the model’s capabilities and limitations. 119

1 Introduction20

Natural language processing (NLP) holds considerable promise in expediting the discovery and21

understanding of novel material systems, which will be crucial for addressing contemporary societal22

challenges like climate change and drug discovery. The potential impact of NLP in materials science23

is chiefly underpinned by the vast reservoir of materials science knowledge contained in text-based24

resources, such as textbooks, scientific journals, and assorted reports. In spite of the prospective25

richness of materials science textual data available from diverse sources, a number of challenges26

continue to significantly hinder the effective digestion and comprehension of relevant materials27

science textual knowledge [Song et al., 2023, Kononova et al., 2021]. Some of the challenges relate to28

the general availability of data, while other relate to the ability to effectively process domain-specific29

information, such as chemical notation and data contained in figures and tables. This scarcity of30

readily accessible, high-quality text corpora suitable for efficient language model training has in31

turn slowed the development of comprehensive language models capable of spanning the extensive32

conceptual range within the highly interdisciplinary materials science field.33

While data availability remains an ongoing challenge in applying modern NLP tools for materials34

science, recent advancements have led to the emergence of large language models (LLMs) proficient35

1We plan to release all relevant code, datasets, and finetuned models upon publication.
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in handling general language tasks that concurrently demonstrate substantial aptitude in areas like36

chemistry and materials science [Bran et al., 2023, Boiko et al., 2023]. Such advancements provide37

the potential to harness the implicit knowledge encapsulated in these models, which have been trained38

on vast text corpora spanning a broad range of subjects, to generate accessible, instruction-based39

datasets for specialized domains like materials science.40

Figure 1: Example instruction generated by the
MatSci-Instruct process used to train the Honey-
Bee language model that contains general language
knowledge and is specialized in materials science.
The relevant text to correctly answer the instruc-
tion is highlighted. MatSci-Instruct follows a struc-
tured instruction generation template and ensures
instruction quality through an iterative verification
loop described in Section 3.1.

Yet, while we can generate targeted instruction-41

based data to make applying NLP for materials42

science more accessible, the quality of these in-43

structions requires rigorous evaluation before be-44

ing utilized for language model training. This is45

particularly salient in the context of complex sci-46

entific applications like materials science, which47

encompasses a wide range of subfields that to-48

gether describe the properties and behavior of49

matter that make up materials systems. This50

need for trustworthy and pertinent instructions51

necessitates the creation of a robust process to52

validate the quality of instructions for down-53

stream applications.54

Aside from data scarcity in scientific domains,55

another significant impediment to the applica-56

tion of NLP in materials science is the limited57

presence of specialized language models that in-58

corporate both in-depth materials science knowl-59

edge and a robust understanding of general lan-60

guage. The bulk of today’s available language61

models for materials science are built on the62

BERT architecture [Gupta et al., 2022, Walker63

et al., 2021, Huang and Cole, 2022], whose per-64

formance in general NLP tasks has been su-65

perseded by several more advanced language66

model architectures in recent years [Touvron67

et al., 2023, Scao et al., 2022, Brown et al., 2020,68

Chung et al., 2022]. This highlights the need69

for the development of more capable language70

models in materials science that can accommo-71

date a broader knowledge base while effectively72

performing pertinent materials science language tasks.73

This paper seeks to concurrently address the previously outlined challenges of trustworthy instruction74

generation and capable, open-source language models for materials science. We propose MatSci-75

Instruct to generate reliable, instruction-based data from large language models. This data is then76

used to train HoneyBee, a billion-parameter specialized materials science language model based on77

the LLaMa architecture [Touvron et al., 2023]. The key contributions of our research are as follows:78

• MatSci-Instruct – A Two-Step Framework for Trustworthy Instruction Generation: We79

propose a universally applicable methodology suited for instruction generation in scientific80

domains. MatSci-Instruct generates specialized instructions using a two-step framework -81

Generation and Verification. In the Generation step, an instructor model (Chat-GPT 2) creates82

domain-specific instructions focused on materials science. During the Verification step,83

these instructions are cross-verified by a separate verifier model (Claude 3) for accuracy and84

relevance as shown by the example in Figure 1. Moreover, we conduct human evaluations85

that suggest good alignment of our generated MatSci-Instruct Dataset with human experts86

2https://platform.openai.com/docs/api-reference/chat
3https://docs.anthropic.com/claude/docs
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across several dimensions: accuracy against known facts, relevance to materials science,87

and the completeness and reasonableness of the language model output. 488

• HoneyBee – A High-Performance LLaMa-Based Model Progressively Trained via89

MatSci-Instruct: Utilizing the MatSci-Instruct two-step framework, we apply a Progressive90

Refinement-Feedback strategy to finetune a LLaMa model, culminating in the HoneyBee91

model. In this strategy, the HoneyBee model’s performance on MatSci-Instruct instructions92

guides subsequent instruction generation. This iterative process results in further refined93

instructions, ensuring the progressive acquisition of specialized knowledge by the model.94

We evaluate the performance of HoneyBee using a materials science language benchmark95

[Song et al., 2023], and thoroughly analyze its strengths and limitations.96

2 Related Work97

Large Language Models Large Language Models (LLMs) have gained substantial attention from98

the NLP research and wider technology communities due to their remarkable proficiency in language99

understanding and generative tasks. Pioneers like GPT-3 [Brown et al., 2020], with its 175 billion100

parameters, demonstrated the capacity to capture complex linguistic patterns, and subsequent models101

like Gopher Rae et al. [2022], GLM Zeng et al. [2022], PaLM Chowdhery et al. [2022], BloomZ Scao102

et al. [2022], Chincilla [Hoffmann et al., 2022], and OPT Zhang et al. [2022] continue to drive103

progress. Commercial models like ChatGPT OpenAI [2022] and Claude Bai et al. [2022] further104

expand the landscape of performant LLMs. Compared to commercial LLMs, LLaMa Touvron105

et al. [2023] stands out for its greater accessibility and good performance, offering an efficient and106

accessible platform for domain-specific finetuning in various domains, including materials science.107

NLP for Materials Science NLP applications within materials science are constrained by the108

dual shortage of openly accessible, high-quality data and high-performing language models. While109

strides have been made towards enhancing data availability [Song et al., 2023, Olivetti et al., 2020,110

Kononova et al., 2021, Gao et al., 2020], the primary focus has been on generating expert-annotated111

data for finetuning BERT-based models, which lack the advanced capabilities of contemporary LLMs.112

For a detailed review of the performance of various BERT models on materials science language113

tasks, we refer the reader to Song et al. [2023]. The prevailing scarcity of data and specialized LLMs114

in materials science motivates us to propose MatSci-Instruct, an instruction-based method for data115

creation, and HoneyBee, a specialized LLM tailored for materials science.116

Instruction Finetuning LLMs LLMs consistently demonstrate profound improvements when117

finetuned for specialized tasks, as seen with biomedical models like ChatDoctor Li et al. [2023] and118

HuaTuo Wang et al. [2023]. While the large model size of LLMs poses a challenge for effective119

finetuning, several efficient methods have been proposed Mangrulkar et al. [2022], such as P-120

Tuning Liu et al. [2021], Prefix Tuning Li and Liang [2021], Prompt Tuning Lester et al. [2021], and121

LoRA Hu et al. [2021]. Among these, LoRA utilizes low-rank matrix decomposition to limit the122

additional parameters required for fine-tuning. For data curation in specialized fields, instructions-123

based fine-tuning extracts detailed data directly from LLMs [Ouyang et al., 2022], reducing human124

annotation effort and providing scalable solutions. For example, Alpaca [Taori et al., 2023, Wang125

et al., 2022] exploits LLMs to generate synthetic instructions for model finetuning. However, LLM-126

synthesized data still suffer from data quality issues, which is especially critical for science domains.127

To address these concerns, we design a generation-verification strategy for trustworthy data generation128

and a progressive refinement-feedback strategy for finetuning LLMs on specialized instructions.129

3 Method130

Our work consists of two interacting components: 1) MatSci-Instruct: a trustworthy instruction131

generation framework for obtaining scientific textual data from LLMs; 2) HoneyBee: a materials132

science LLM progressively finetuned from LLaMA [Touvron et al., 2023] using MatSci-Instruct133

generated data. We connect HoneyBee to MatSci-Instruct with a refinement-feedback loop to134

4We plan to release all MatSci-Instruct data upon publication given its high-quality and materials science
relevance.
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progressively generate new data and finetune HoneyBee based on its training status as shown in135

Figure 2.136

H!eyBee
Instructor Verifier Evaluator

Task/topic

<Instruction> <Input> <Output>

Sample arXiv

“Evaluate this example by …”

Accuracy

Completeness Relevance

Reasonableness

“Evaluate the model by …”

Accuracy

Completeness

Reasonableness

Model capability evaluation:
- Accuracy of output …
- Reasonableness of output …
- Completeness of output …
- …

MatSci-Instruct

Progressive Instruction Fine-tuning

Figure 2: MatSci-Instruct and HoneyBee training workflow. We start with a series of predetermined
structured instruction generation prompts that contain both topic and task descriptions. The Instructor
(Chat-GPT) then generates a series of instructions that are then passed through the Verifier (Claude).
The instructions that receive high scores with the Verifier are used for progressive finetuning in
HoneyBee. The Evaluator (GPT-4) then evaluates HoneyBee’s outputs and poor instructions that
lead to bad performance are subsequently regenerated from the beginning creating an instruction
generation feedback loop for greater instruction quality.

3.1 MatSci-Instruct137

MatSci-Instruct Statistics
# instructions for first stage 52,658

# open-ended instructions 9,931
# content-based instructions 39,170
# instructions with empty input 3,557

# instructions for subsequent stages 3,020
avg. input length (in words) 920.8
avg. instruction length (in words) 76.5
avg. output length (in words) 211.2

Table 1: Statistics of instruction data generated by
MatSci-Instruct spanning diverse instruction types.

The challenges of cost-effectively generating138

high-quality instruction data are not unique to139

materials science, but rather, pervasive across140

various scientific domains. Our proposed solu-141

tion, MatSci-Instruct, is an innovative, domain-142

agnostic methodology that leverages the power143

of large language models (LLMs) to gener-144

ate specialized instruction sets for subsequent145

model finetuning.146

Depicted in Figure 2, MatSci-Instruct employs a147

trifecta of distinct LLMs. The Instructor model148

crafts instructions using structured prompts en-149

capsulating topic and task details. The Verifier150

then evaluates these instructions against accuracy, relevance, completeness, and reasonableness crite-151

ria, ensuring only dependable instructions advance to fine-tuning. Finally, the Evaluator assesses the152

output of the fine-tuned model along similar dimensions as the Verifier. Poorly executed instructions153

are flagged for further refinement, verification, and evaluation. Ultimately, we generate 52k instruc-154

tions spanning content-based and open-ended tasks, some of which include empty inputs.Table 1155

shows that the number of instructions gets reduced in later stages of the progressive-refinement-156

feedback loop mainly due to greater emphasis on quality. A full example of iteratively finetuning157

with MatSci-Instruct is shown in Appendix B.158

3.1.1 Instructor Module159

The Instructor module of our framework, embodied by ChatGPT, performs the generation of material160

science instruction data. This module employs a concise instruction schema composed of three161

elements: <instruction>, <input>, and <output>. The <instruction> outlines the task using a162

standardized NLP task set, the <input> contains the relevant data, and the <output> generates a163

pertinent response to the task.164

We query ChatGPT with this schema, populating the <instruction> and <input> fields with a165

selection of 20 NLP tasks and 20 materials science subtopics shown in Figure 3, to ensure task and166

content diversity. These selections are manually verified before they’re utilized in structured prompts167

for generating detailed fine-tuning instructions. Detailed lists of prompts and materials science topics168

are available in Appendix D and Appendix G.169
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Figure 3: Wordcloud of diverse materials science
topics contained in the MatSci-Instruct instructions
dataset.

Following the schema, we engage in a random170

sampling process, selecting five candidate topics171

and five tasks, then applying them to the instruc-172

tion prompts for data generation. For robustness,173

we direct ChatGPT to flag in the <output> field174

any instruction that cannot be processed based175

solely on the <input> and <instruction>. To176

control task difficulty and boost diversity, we177

occasionally limit the length of <instruction>178

or <output>.179

To enhance the diversity and robustness of the180

instruction generation process, our design incor-181

porates several additional strategies. One such182

strategy employs an open-ended task where the183

<input> field remains intentionally blank, al-184

lowing the model to generate responses without185

pre-defined constraints. This approach tests the186

generative abilities of the model under uncer-187

tainty and promotes more varied outcomes. An-188

other key strategy is content-based instruction189

generation. Instead of relying on predefined top-190

ics and tasks, this approach utilizes real-world191

materials science literature. We select a random open-access paper from the materials science192

category on arXiv and extract a specific fragment to fill the <input> field. This method not only193

diversifies the instruction set but also aligns the generated instructions more closely with practical,194

domain-specific contexts.195

To conclude the instruction generation process, ChatGPT compiles ten representative instruction196

samples from the options above. These samples are formatted in a standardized JSON format, readily197

available for use in the subsequent steps of the MatSci-Instruct process. This approach ensures a198

comprehensive and diverse set of instructions, which in turn contributes to a robust and adaptable199

language model during finetuning.200

3.1.2 Verifier Module201

Generating high-quality instruction data can be challenging, and the presence of low-quality data in202

finetuning a model can lead to misleading results. To address this issue, MatSci-Instruct employs a203

two-step framework by incorporating a Verfier model to improve the trustworthiness of generated204

data. Specifically, we use Claude as the Verifier to ensure the quality of the instructions generated by205

the Instructor (Chat-GPT).206

Our evaluation is based on four dimensions: accuracy, relevance, completeness, and reasonableness.207

Similar to the instruction generation, instruction verification is based on a standard set of prompts,208

shown in Appendix G, which include precise definitions of the evaluation criteria along with the209

complete instructions generated by the Instructor. Concretely, the evaluation criteria are:210

• Accuracy: The accuracy of the instruction data is evaluated by comparing it with known211

facts or credible sources. This involves checking the accuracy of any claims or statements212

made in the text and verifying that they are supported by evidence.213

• Relevance: The relevance of the instruction data is assessed by determining how directly it214

relates to materials science. This is achieved by analyzing the text’s content and ascertaining215

its applicability to the field.216

• Completeness: Completeness is an essential dimension to ensure that the instructions com-217

prehensively address the given task, inclusive of all sub-questions. This involves considering218

both depth and conciseness to ensure that the output is complete and comprehensive.219

• Reasonableness: The reasonableness of the instruction data is about logical consistency.220

This dimension ensures no evident contradictions exist within the generated data.221
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The verifier module (i.e., Claude) evaluates the instruction data based on the four dimensions222

mentioned above and identifies any low-quality data that falls below a predetermined threshold. This223

rigorous verification ensures the use of high-quality data in model fine-tuning, thereby improving224

the overall efficacy and accuracy of the system. Our verification protocol is designed for modularity225

and extensibility. This modular design facilitates the incorporation of additional agents into a multi-226

agent system, each assessing instruction data based on the pre-defined criteria. The final decision227

on data quality is then reached through a consensus mechanism, augmenting the robustness and228

comprehensiveness of the verification process, ensuring high-quality data for model fine-tuning.229

3.1.3 Evaluator Module230

The Evaluator model assesses the output of the HoneyBee language model along similar evaluation231

dimensions as the Verifier, namely: accuracy, completeness, and reasonableness. We no longer232

consider relevance at this stage since the verification step filtered out all instructions with little233

relevance to materials science. In this paper, we use GPT-4 5 [OpenAI, 2023] as the Evaluator model,234

which provides an additional independent LLM that is different, and potentially more advanced, than235

the Instructor and Verifier LLMs. The Evaluator helps with the identification of poorly formulated236

instructions according to the performance of the HoneyBee model. These instructions are then passed237

back to the Instructor for additional iterative refinement.238

3.2 HoneyBee239

Upon obtaining a set of trustworthy instruction data from the Verifier, we can use the generated240

instruction dataset to finetune a LLaMa-based model for a specific domain. In this work, we finetune241

a model for materials science using a progressive finetuning technique to convert a standard LLaMa242

model to a specialized model in material science: HoneyBee.243

3.2.1 Progressive Instruction Finetuning244

In our approach, as depicted in Figure 2, we harness a progressive instruction finetuning methodology245

that relies on a feedback loop. This loop enables the progressive generation of new instruction data246

that takes into account the evaluated model’s performance on different criteria, tasks, and topics.247

Instructions leading to suboptimal performance by HoneyBee are returned to the Instructor, triggering248

the creation of more detailed and targeted instructions for future iterations. This iterative process249

also includes instruction evaluation by the Instructor, enabling the generation of more precise250

instruction data for subsequent rounds. For instance, should HoneyBee score low on ’Completeness’251

for a particular instruction, we inform the Instructor of this deficiency, providing the criteria for252

’Completeness’. Consequently, the Instructor generates enhanced instructions to improve HoneyBee’s253

completeness in responding to similar tasks.254

Our progressive finetuning process for the language model is based on LoRA [Hu et al., 2021], where255

we create and train a separate set of low-rank matrices ψ that bypass the need for changing the256

actual parameters of the language model ϕ. Since ψ consists of low rank-matrices, it is significantly257

more parameter and compute efficient for model finetuning. In our finetuning process, we assume258

that the Instructor + Verifier models act as the teacher model and the HoneyBee model acts as the259

student model. In this setting, the student model will continually learn from the instruction data and260

undergo testing during the learning process, allowing us to monitor its performance in real-time. The261

finetuning process continues for a set number of epochs with early stopping if the student model262

converges to a given loss value. Next, we evaluate the response quality of the student model for263

any given instruction with the Evaluator. In our progressive finetuning strategy, we monitor the264

evaluation scores after each stage, denoted as Svalbest , and terminate the process when the Svalbest265

stops yielding significant improvements. In our experiments in Section 4, we perform three stages of266

progressively finetuning both the instructions and the HoneyBee model parameters.267

5https://openai.com/research/gpt-4

6

https://openai.com/research/gpt-4


4 Experiments268

Our experiments mainly focus on assessing the ability of MatSci-Instruct to create high-quality, trust-269

worthy instructions relevant to materials science, as described in Section 3.1, along with understanding270

the capabilities and limitations of HoneyBee.271

4.1 MatSci-Instruct Evaluation272

Figure 4: Correlation between human evaluation
and LLM evaluation (Claude, GPT-4). Both Spear-
man and Pearson correlation coefficients consis-
tently exceed 0.6 between both methods indicating
good agreement.

A critical piece of the MatSci-Instruct pipeline273

is the independent verification and evaluation274

of the instructions generated by the Instructor275

model. Given the importance of the Verifier and276

Evaluator in ensuring the quality of the instruc-277

tion data, and the fact that understanding mate-278

rials science textual data requires deep domain279

understanding, we conducted an evaluation with280

human experts on the trustworthiness of the in-281

structions generated by MatSci-Instruct. In our282

human expert evaluation, we asked two graduate283

students majoring in material science to evalu-284

ate 50 randomly selected instruction data along285

the same evaluation dimensions as the Verifier286

module (accuracy, relevance, completeness, rea-287

sonableness). Next, we conducted a verification288

and evaluation of the same 50 instructions using289

Claude and GPT-4 respectively. We measure290

agreement between the human experts and the291

LLMs by calculating Spearman and Pearson cor-292

relation coefficients between the scores along293

each of the dimensions.294

As shown in Figure 4, both Claude and GPT-4 had correlation coefficients higher than 0.6 for each295

dimension and an overall coefficient as high as 0.8 when compared to manual evaluation. This296

indicates a decent level of consistency between manual and automatic evaluations for a random297

sample of instructions, which gives us confidence in the ability of MatSci-Instruct to generate298

trustworthy, high-quality instructions for HoneyBee finetuning.299

4.2 HoneyBee Task Evaluation300

The results in Table 2 show that HoneyBee gets progressively better with each iteration of MatSci-301

Instruct for both HoneyBee-7b and HoneyBee-13b. HoneyBee without verification also outperforms302

LLaMA and Alpaca LLMs of equal size indicating the value of the progressive finetuning approach303

on specialized materials science instructions. HoneyBee-13b closely matches, and in some exceeds,304

the evaluation performance of Chat-GPT which served as the Instructor. Notably, HoneyBee-13b is305

∼ 10x more parameter efficient than GPT-3.306

4.3 HoneyBee Performance on MatSci-NLP307

In addition to evaluating the performance of HoneyBee based on LLM assessment in Section 4.2, we308

investigate the performance of HoneyBee on MatSci-NLP, a broad benchmark of materials science309

NLP tasks [Song et al., 2023]. We study HoneyBee’s performance under two settings: 1. Low-data310

training setting as applied in the original paper by Song et al. [2023]; 2. Zero-shot performance311

on MatSci-NLP tasks shown in Table 3. MatSci-NLP contains a wide range of text data related to312

material science that spans a wide range of NLP tasks and types of materials, including but not limited313

to fuel cells, inorganic materials, glasses, and superconductors. For evaluation on MatSci-NLP, we314

follow the same convention as in Song et al. [2023] where we report both macro-F1 and micro-F1315

scores in Table 3.316
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Model Accuracy Completeness Reasonableness

Zero-Shot LLMs

Chat-GPT 92.55 98.74 99.84

Llama-7b 78.81 90.36 97.64
Llama-13b 84.22 91.22 98.33

Alpaca-7b 81.35 92.01 98.49
Alpaca-13b 86.24 92.17 98.80

HoneyBee without Verfication

HoneyBee-7b 85.42 93.24 98.49
HoneyBee-13b 88.76 93.99 98.93

HoneyBee with MatSci-Instruct

HB-7b-Stage1 88.81 93.42 99.07
HB-7b-Stage2 89.99 94.84 99.64
HB-7b-Stage3 91.95 95.78 99.90

HB-13b-Stage1 94.17 94.42 99.40
HB-13b-Stage2 96.42 95.42 99.78
HB-13b-Stage3 98.11 97.00 99.89

Table 2: Evaluation results for various LLMs based on performance on MatSci-Instruct data along
with accuracy, completeness, and reasonableness performed by GPT-4. HoneyBee performs better
with verification and gets progressively better with each iterative stage of MatSci-Instruct approaching
and exceeding the performance of Chat-GPT in the case of HoneyBee-13b. We highlight scores that
outperform Chat-GPT.

Low-Resource Finetuning: The results on low-resource finetuning in Table 3 show that both317

HoneyBee-7b and HoneyBee-13b perform best overall while outperforming MatBERT [Walker et al.,318

2021] and MatSciBERT [Gupta et al., 2022] among all tasks in MatSci-NLP with the exception319

of named entity recognition. MatBERT and MatSci-BERT are both BERT models pretrained on320

different corpora of materials science textual data. While the domain-specific pretraining significantly321

boosts the score of both models for MatSci-NLP tasks, HoneyBee shows better performance without322

requiring pretraining on materials science textual data. This is a significant advantage of HoneyBee323

and MatSci-Instruct given that large, high-quality corpora of materials science text are generally324

difficult to obtain as described in Section 2.325

Zero-Shot Performance: The zero-shot performance results in the lower part of Table 3 show326

that HoneyBee outperforms both LLaMa and Alpaca models. Notably, HoneyBee-7b-Stage1, which327

corresponds to only one round of MatSci-Instruct, outperforms both LLaMa and Alpaca models for328

equal (7b) and larger (13b) parameter sizes. The data in Table 3 further confirms the results from329

Table 2 that show progressive improvement with each stage of MatSci-Instruct where both HoneyBee-330

7 and Honey13b exhibit clear improvement in iterative stages. We also observe that model parameter331

size matters for zero-shot performance with 13b parameter models outperforming 7b for HoneyBee332

and Alpaca, both of which are instruction finetuned models. Interestingly, LLaMA-7b generally333

outperforms LLaMa-13b across most MatSci-NLP tasks and in the overall score on MatSci-NLP.334

4.4 HoneyBee — Case Study335

We perform a case study to further understand the capabilities and limitations of the various LLMs336

we studied, including HoneyBee, Alpaca, and Chat-GPT. Our case study results, with full data and337

text included in Appendix F, show that HoneyBee-13b generally produces outputs of the same quality338

as Chat-GPT while other models generally produce lower quality outputs. This provides additional339

weight to the results in Section 4.1 indicating that HoneyBee-13b can match the quality of Chat-GPT340

after multiple rounds of progressive refinement-feedback finetuning using MatSci-Instruct.341
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Table 3: Low-resource finetuning and zero-shot evaluation results for various HoneyBee on MatSci-
NLP tasks. For low-resource finetuning, we follow the method described in Song et al. [2023].
HoneyBee outperforms all models across the vast majority of tasks for both low-resource finetuning
and zero-shot settings. MatSci-Instruct’s Progressive-Refinement-Feedback method improves Hon-
eyBee’s performance for each consecutive stage. We report macro-F1 (top) and micro-F1 (bottom)
scores highlighting the best, second-best and third-best performing LLM. Honey-7b and HoneyBee-
13b outperform both ChatGPT and Claude and are generally competitive with GPT-4.

Model Named Entity
Recognition

Relation
Extraction

Event Argument
Extraction

Paragraph
Classification

Synthesis Action
Retrieval

Sentence
Classification

Slot
Filling

Overall
(All Tasks)

Low-Resource Finetuning on MatSci-NLP

MatSciBERT
[Gupta et al., 2022]

0.707
0.470

0.791
0.507

0.436
0.251

0.719
0.623

0.692
0.484

0.914
0.660

0.436
0.194

0.671
0.456

MatBERT
[Walker et al., 2021]

0.875
0.630

0.804
0.513

0.451
0.288

0.756
0.691

0.717
0.594

0.909
0.614

0.548
0.273

0.722
0.517

HoneyBee-7b
0.787
0.644

0.852
0.518

0.551
0.389

0.741
0.641

0.792
0.617

0.991
0.711

0.529
0.391

0.749
0.559

HoneyBee-13b
0.860
0.748

0.921
0.578

0.653
0.486

0.761
0.658

0.853
0.662

0.998
0.743

0.554
0.401

0.80
0.611

Zero-Shot LLM Performance

LLaMA-7b
[Touvron et al., 2023]

0.042
0.064

0.094
0.013

0.160
0.042

0.279
0.218

0.052
0.013

0.096
0.087

0.142
0.010

0.208
0.064

LLaMA-13b
[Touvron et al., 2023]

0.057
0.066

0.109
0.016

0.042
0.054

0.233
0.189

0.039
0.009

0.079
0.074

0.138
0.008

0.1
0.059

Alpaca-7b
[Taori et al., 2023]

0.031
0.018

0.053
0.037

0.029
0.009

0.375
0.294

0.179
0.129

0.180
0.180

0.139
0.039

0.141
0.101

Alpaca-13b
[Taori et al., 2023]

0.053
0.046

0.016
0.035

0.111
0.072

0.310
0.237

0.442
0.278

0.375
0.334

0.110
0.015

0.202
0.145

Chat-GPT
[OpenAI, 2022]

0.063
0.052

0.232
0.145

0.204
0.203

0.433
0.450

0.300
0.183

0.320
0.318

0.368
0.280

0.274
0.233

Claude
[Bai et al., 2022]

0.063
0.048

0.232
0.143

0.195
0.169

0.442
0.467

0.280
0.177

0.329
0.326

0.393
0.305

0.276
0.234

GPT-4
[OpenAI, 2023]

0.189
0.121

0.445
0.432

0.453
0.353

0.679
0.522

0.743
0.677

0.788
0.689

0.502
0.483

0.543
0.468

Zero-Shot HoneyBee with MatSci-Instruct

HoneyBee-7b-Stage1
0.173
0.148

0.138
0.120

0.196
0.096

0.380
0.207

0.592
0.208

0.416
0.334

0.292
0.105

0.301
0.174

HoneyBee-7b-Stage2
0.243
0.166

0.199
0.145

0.237
0.123

0.440
0.301

0.612
0.289

0.467
0.345

0.344
0.176

0.363
0.221

HoneyBee-7b-Stage3
0.267
0.190

0.245
0.178

0.290
0.189

0.490
0.343

0.688
0.342

0.490
0.365

0.393
0.289

0.409
0.271

HoneyBee-13b-Stage1
0.369
0.256

0.301
0.224

0.389
0.265

0.500
0.379

0.701
0.378

0.512
0.402

0.467
0.334

0.463
0.320

HoneyBee-13b-Stage2
0.391
0.299

0.367
0.290

0.437
0.303

0.576
0.411

0.765
0.401

0.557
0.461

0.508
0.379

0.514
0.363

HoneyBee-13b-Stage3
0.429
0.372

0.412
0.346

0.481
0.378

0.611
0.467

0.801
0.429

0.589
0.503

0.578
0.423

0.557
0.417

5 Conclusion342

In this work, we introduce MatSci-Instruct, an iterative instruction generation method for materials343

science, and HoneyBee, a state-of-the-art large language model for materials science. To the best of344

our knowledge, HoneyBee is the first billion-parameter scale language model that is specialized in345

materials science. HoneyBee outperforms current state-of-the-art general language models (LLaMa,346

Alpaca) and materials science BERT-based language models (MatBERT, MatSciBERT) in various347

materials science NLP with HoneyBee’s performance improvement with each successive instruction348

generation. MatSci-Instruct provides a valuable framework for generating instructions to progressively349

finetune LLMs where instructions from an Instructor are verified by a Verifier before being used350

for finetuning. Additionally, poor instructions are refined based on feedback from an Evaluator351

leading to higher quality instructions and model performance for the desired specialization as shown352

by the results in Section 4. Future work also remains in augmenting materials science LLMs with353

external knowledge, such as known scientific facts, which can further improve an LLM’s reliability354

and interpretability.355
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Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-445

parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.446

Yu Song, Santiago Miret, and Bang Liu. Matsci-nlp: Evaluating scientific language models on447

materials science language tasks using text-to-schema modeling. arXiv preprint arXiv:2305.08264,448

2023.449

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy450

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.451

https://github.com/tatsu-lab/stanford_alpaca, 2023.452

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée453

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and454

efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.455

11

https://aclantholivetti2020datagy.org/2021.acl-long.353
https://aclantholivetti2020datagy.org/2021.acl-long.353
https://aclantholivetti2020datagy.org/2021.acl-long.353
https://github.com/huggingface/peft
https://openai.com/blog/chatgpt
https://github.com/tatsu-lab/stanford_alpaca


Nicholas Walker, Amalie Trewartha, Haoyan Huo, Sanghoon Lee, Kevin Cruse, John Dagdelen,456

Alexander Dunn, Kristin Persson, Gerbrand Ceder, and Anubhav Jain. The impact of domain-457

specific pre-training on named entity recognition tasks in materials science. Available at SSRN458

3950755, 2021.459

Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo:460

Tuning llama model with chinese medical knowledge, 2023.461

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and462

Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.463

arXiv preprint arXiv:2212.10560, 2022.464

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,465

Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,466

Peng Zhang, Yuxiao Dong, and Jie Tang. Glm-130b: An open bilingual pre-trained model, 2022.467

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher468

Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language469

models. arXiv preprint arXiv:2205.01068, 2022.470

12



Appendix471

A Limitations472

While HoneyBee outperforms current state-of-the-art methods in various materials science NLP473

tasks, it remains unclear how well HoneyBee would generalize the tasks outside of the MatSci-NLP474

benchmark and MatSci-Instruct instructions to solve complex materials science challenges. Such475

challenges may include creating a synthesis recipe for a new materials or explaining the behavior of a476

materials system based on fundamental scientific concepts. Materials science remains a wide-ranging477

and complex field with many open questions remaining on the true capability of HoneyBee and478

other LLMs to understand important materials science concepts. MatSci-Instruct also relies on the479

availability of highly performant LLMs to serve as the Instructor, Verifier and Evaluator which can be480

limited in their own capabilities. Furthermore, our work focuses primarily on the materials science481

domain and additional studies are required to understand how applicable it would be to additional482

scientific domains.483

B MatSci-Intruct Example484

An example of the general procedure for MatSci-Instruct is as follows:485

1. Instruction Generation and Finetuning486

• Data Generation: Instructor creates training data (data_train0[1− 10]).487

• Verification: Veifier removes low-scored data (data_train0[1, 2])488

• Fine-Tuning: LLAMA-7b becomes HoneyBee-7b-stage-1 with data (data_train0[3−489

10]).490

2. Evaluation491

• HoneyBee-7b-stage-1 performs inference on new test data (data_test0), crafted by the492

Instructor, with outputs evaluated by the Evaluator.493

3. Feedback Response494

• Response Generation: HoneyBee-7b-stage-1 generates responses for the test data495

(data_test0).496

• Scoring Responses: The Evaluator spots weak responses (data_test0[7, 8]).497

4. Instruction Adaptation and Improvement498

• Focusing on Weaknesses: The Instructor crafts more training (data_train1) and test499

data (data_test1), focusing on issues identified by the Evaluator.500

• Fine-Tuning Stage 2: HoneyBee-7b-stage-1 refines to HoneyBee-7b-stage-2.501

• Re-Evaluation: HoneyBee-7b-stage-2 is tested with new test data (data_test1).502

This process is repeated in an iterative feedback loop for progressive refinement as shown in Figure 2.503

C Experimental Details504

We finetune LLaMA models with 7B and 13B parameters using instructions from MatSci-Instruct.505

As shown in Table 2, we analyze the effect of various rounds of iterative instruction feedback. For506

finetuning, we use the AdamW optimizer with an initial learning rate of 1e-4 on 2 A100 GPUs for507

LLaMa-7b and 4 A100 GPUs for LLaMa-13b. We assign a batch size of 4 to each GPU with a508

gradient accumulation step of 32 and a maximum sequence length of 2048.509

D Instruction Generation Details510

The full list of materials science topics and NLP tasks sampled for MatSci-Instruct instruction are511

included in Table 4 and Table 5. We sample a broad range of materials science topics and NLP that512

are generally balanced yielding a set of instructions that includes specialized materials science text as513

well as general language capabilities.514
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Table 4: MatSci-Instruct samples a diverse set of materials science topic areas.
MatSci-Instruct Topics

Bio-inspired Materials 221
Self-Healing Materials 209
Magnetic Materials 195
Smart Materials 190
Metals 189
Semiconductors 188
Carbon Nanotubes 184
Polymers 182
Thermoelectric Materials 180
Optical Materials 180
Superconductors 179
Graphene 177
Glass 174
Energy Materials 166
Composites 165
Electronic Materials 163
Construction Materials 158
Ceramics 155
Nanoaterials 153
biomaterials 149

Table 5: MatSci-Instruct samples a diverse set of NLP tasks to generate instructions including general
NLP tasks to main general language capabilities.

MatSci-Instruct NLP Tasks
Machine Reading Comprehension 224
Question Answering 224
Open-Ended Generation 214
Classification 203
Information Extraction 201
Relation Extraction 193
Analysis 189
Topic Modeling 188
Writing 180
Commonsense Reasoning 172
Code Interpretation 172
Event Extraction 167
Grammar Correction 165
Clustertin 162
Named Entity Recognition 160
Text Simplification 153
Summarization 149
Sentiment Analysis 149
Part-of-Speech Tagging 146
Editing 145

E Quality of Instructions for each MatSci-Instruct Stage515

The preset threshold for filtering low-quality data is an average score of 95 or above for all four516

dimensions and a score of no less than 90 for each individual dimension. As shown in Table 6, after517

filtering, the remaining instruction data exhibits significantly improved quality, approaching full518

marks making the data significantly more trustworthy for finetuning specialized LLMs.519

14



Table 6: Claude evaluation scores of MatSci-Instruct before and after removing low-quality instruction
data

Score/Stage 1 2 3

avg. Accuracy
before 92.45 92.20 92.56
after 100.0 100.0 100.0

avg. Relevance
before 86.01 87.18 86.96
after 100.0 100.0 100.0

avg. Completeness
before 88.80 86.13 89.33
after 99.98 99.99 99.99

avg. Reasonableness
before 97.75 98.21 98.16
after 100.0 100.0 100.0

F LLM Case Study520

This section provides the details for the case study in Section 4.4.521

F.1 Open-ended Instruction522

We analyze the response of different LLMs to the following open-ended query: Analyze the properties523

and applications of electronic materials.524

• Chat-GPT: Electronic materials are a class of materials that possess unique properties525

that make them suitable for use in electronic devices and technologies. These materials526

are characterized by their electrical conductivity, optical properties, magnetic properties,527

and thermal properties. The electrical conductivity of electronic materials is a critical528

property for materials used in electronic devices such as transistors, diodes, and integrated529

circuits. Semiconductors such as silicon and germanium are widely used in microprocessors530

and solar cells because of their unique electrical properties. Optical properties are also531

important for electronic materials used in displays, touch screens, and flat panel displays.532

Optoelectronic materials like indium tin oxide (ITO) and gallium nitride (GaN) possess533

unique optical properties that make them ideal for use in these devices. Magnetic properties534

are important for electronic materials used in magnetic sensors, hard drives, and magnetic535

memory. Magnetic materials like iron, cobalt, and nickel possess unique magnetic properties536

that make them ideal for use in these devices. Lastly, thermal properties are important for537

electronic materials used in high-temperature electronic devices such as microprocessors538

and power electronics. Materials like diamond and silicon carbide possess unique thermal539

properties that make them ideal for use in these devices.540

• HoneyBee-13b: Electronic materials have unique properties such as electrical conductivity,541

optical properties, magnetic properties, and thermal properties, making them suitable for542

use in electronic devices. Semiconductors such as silicon and germanium are used in543

microprocessors and solar cells due to their unique electrical properties. Optoelectronic544

materials like indium tin oxide (ITO) and gallium nitride (GaN) possess unique optical545

properties, ideal for use in displays, touch screens, and flat panel displays. Magnetic546

materials like iron, cobalt, and nickel are used in magnetic sensors, hard drives, and magnetic547

memory due to their unique magnetic properties. Materials like diamond and silicon carbide548

possess unique thermal properties ideal for use in high-temperature electronic devices. The549

properties of electronic materials are critical for modern electronic devices, and research is550

ongoing to discover new materials with even more unique properties.551

• HoneyBee-7B: Electronic materials possess unique properties that make them suitable for552

various applications. They exhibit high electrical conductivity, low resistivity, and excellent553

thermal conductivity. These materials are commonly used in electronic devices such as554

transistors, integrated circuits, and sensors. They also find applications in optoelectronics,555

energy storage devices, and flexible electronics. The properties of electronic materials556

enable efficient charge transport and facilitate the flow of electrons, making them essential557

components in modern technology.558
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• Alpaca-13b: Electronic materials are materials that have electrical properties and can be559

used in a variety of applications. These materials can be classified into two categories:560

conductors and insulators. Conductors are materials that allow the flow of electricity, while561

insulators are materials that do not allow the flow of electricity. Electronic materials can562

be used in a variety of applications, such as in semiconductors, transistors, and diodes.563

Semiconductors are materials that have properties that are intermediate between those of564

conductors and insulators and are used in the manufacture of integrated circuits. Electronic565

materials are also used in the manufacture of solar cells, which convert light into electricity.566

• Alpaca-7b: Electronic materials are materials that have the ability to control the flow567

of electrons. These materials are used in a variety of applications, such as electronics,568

optics, and sensors. Examples of electronic materials include semiconductors, which are569

materials that can be doped to control the flow of electrons, and metallic materials, which570

are conductors of electricity. Other examples include superconductors, which are materials571

that can conduct electricity with zero resistance, and dielectrics, which are materials that572

can store electricity. Electronic materials are used in a variety of applications, such as573

electronics, optics, and sensors.574

ChatGPT is the most comprehensive and relevant answer as it provides a detailed analysis of the575

properties and applications of electronic materials, covering electrical conductivity, optical properties,576

magnetic properties, and thermal properties. Chat-GPT also gives specific examples of materials and577

their applications in various electronic devices. HoneyBee-13b is the second-best answer as it also578

covers the key properties of electronic materials and their applications in various electronic devices.579

HoneyBee-13b provides specific examples of materials and their unique properties that make them580

ideal for use in different applications. However, HoneyBee-13b’s output lacks specificity and does581

not provide enough detail to fully address the question. HoneyBee-7b gives the third-best answer as582

it gives a general overview of the unique properties of electronic materials and their applications in583

various electronic devices. However, HoneyBee-7b’s output lacks specificity and does not provide584

enough detail. Alpaca-13b is the fourth-best answer as it provides a basic understanding of electronic585

materials and their use in various applications but lacks detail and specificity. Alpaca-7b is the least586

comprehensive and relevant answer as it provides a limited understanding of electronic materials587

and their use in various applications. Alpaca-7b’s output does not provide enough detail or specific588

examples to support its claims.589

F.2 Content-based Instruction590

Next, we analyze the response of different LLMs to the following query: What are the exciton591

interactions responsible for? with the following <input>: “ Inspired by the recent experimental592

observation of strongly coupled polaritons in a Moire heterobilayer, we study a model of dipole-593

interacting excitons localized on sites of a lattice and coupled to planar cavity photons. We calculate594

the phase diagram of this system by computing fluctuations around the mean field and determining595

the stability of the excitation spectrum. We find that the transition from the normal state to a polariton596

condensate is intermediated by a series of ordered states at partial fillings of the exciton lattice,597

stabilized by the exciton interactions. In particular we predict a supersolid phase in which a polariton598

condensate coexists with spatial order. ” The replies from the different LLMs are below:599

• Chat-GPT: The exciton interactions are responsible for stabilizing the ordered states at600

partial fillings of the exciton lattice, and in particular for predicting a supersolid phase in601

which a polariton condensate coexists with spatial order.602

• HoneyBee-13b: The exciton interactions are responsible for stabilizing the ordered states at603

partial fillings of the exciton lattice, which are intermediates between the normal state and a604

polariton condensate. In particular, they are responsible for the predicted supersolid phase,605

where a polariton condensate coexists with spatial order.606

• HoneyBee-7b: The exciton interactions are responsible for stabilizing the ordered phases607

that mediate the transition to the polariton condensate, including the supersolid phase.608

• Alpaca-13b: The exciton interactions studied in the given text are responsible for the phase609

transition from the normal state to a polariton condensate, as well as the supersolid phase610

• Alpaca-7b: The exciton interactions are responsible for the transition from the normal state611

to a polariton condensate, as well as the stabilization of the supersolid phase612
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The answers from HoneyBee-13b and Chat-GPT are better compared to the outputs of the other613

models. HoneyBee-13b and Chat-GPT directly address the question by mentioning the ordered614

states at partial fillings of the exciton lattice, which are intermediates between the normal state and a615

polariton condensate, and the predicted supersolid phase. The answers also use language that closely616

matches the language used in the original text, indicating a good understanding of the material.617

G LLM Prompts618

In this section we provide some of the prompts used for the different modules in MatSci-Instruct. We619

plan to make the full list of prompts, data and code available upon publication.620

• “Evaluate accuracy of the given text by comparing with known facts or credible sources. This621

involves checking the accuracy of any claims or statements made in the text, and verifying622

that they are supported by evidence. The next line directly provide the text. {output_text}623

Please return a score ranging from 0 to 100, with 0 being the worst and 100 being the best.624

Please use the strictest grading standard. The score should be in JSON format with a field625

name of ’score’. You should not output any other information or text.”626

• “Evaluate relevance of the given text by considering how directly the text is related to627

materials science. The next line directly provide the text. {output_text} Please return a score628

ranging from 0 to 100, with 0 being the worst and 100 being the best. Please use the strictest629

grading standard. The score should be in JSON format with a field name of ’score’. You630

should not output any other information or text.”631

• “Evaluate completeness of the given text (including input, instruction and output) by assess-632

ing how fully the output addresses the instruction, including all sub-questions. Consider633

both depth and conciseness. The next 3 lines directly provide the input, instruction and634

output respectively. {input_text} {instruction} {output_text} Please return a score ranging635

from 0 to 100, with 0 being the worst and 100 being the best. Please use the strictest grading636

standard. The score should be in JSON format with a field name of ’score’. You should not637

output any other information or text.”638

• “Evaluate reasonableness of the given text by considering how logically consistent the639

content is, with no obvious contradictions. The next line directly provide text. {output_text}640

The score should range from 0 to 100, with 0 being the worst and 100 being the best. Please641

use the strictest grading standard. The score should be in JSON format with a field name of642

’score’. You should not output any other information or text.”643

H Broader Impact644

Both HoneyBee and MatSci-Instruct can help promote research on NLP for material science both for645

applying and training LLMs for practical applications in the field. The general frameworks described646

in this paper can also be transferred to other scientific domain, such biology, physics and chemistry,647

where trustworthy textual data is required.648

Our research does not raise major ethical concerns.649
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