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ABSTRACT

An efficient representation of a hierarchical structure is essential for developing
intelligent systems because most real-world objects are arranged in hierarchies. A
distributional representation has brought great success in numerous natural lan-
guage processing tasks, and a hierarchy is also successfully represented with
embeddings. Particularly, the latest approaches such as hyperbolic embeddings
showed significant performance by representing essential meanings in a hierarchy
(generality and similarity of objects) with spatial properties (distance from the
origin and difference of angles). To achieve such an effective connection in com-
monly used Euclidean space, we propose Polar Embedding that learns representa-
tions with the polar coordinate system. In polar coordinates, an object is expressed
with two independent variables: radius and angles, which allows us to separately
optimize their values on the explicit correspondence of generality and similarity
of objects in a hierarchy. Also, we introduce an optimization method combining
a loss function controlling gradient and iterative uniformization of distributions.
We overcome the issue resulting from the characteristics that the conventional
squared loss function makes distance apart as much as possible for irrelevant pairs
in spite of the fact the angle ranges are limited. Our results on a standard link-
prediction task indicate that polar embedding outperforms other embeddings in
low-dimensional Euclidean space and competitively performs even with hyper-
bolic embeddings, which possess a geometric advantage.

1 INTRODUCTION

Figure 1: Conceptual illustration represent-
ing structures of word hierarchies.

A hierarchy is structured information that enables
us to understand a specific object in a general sense
(e.g., dog is one instance of mammal). Such gener-
alization capability is or will be a basis of intelligent
systems such as comprehending causality (Hassan-
zadeh et al., 2019), common sense (Talmor et al.),
and logic (Yang et al., 2017). For example, species
information (e.g., carnivora vs. herbivore) will be
useful when predicting behavior of animals. Another
example is when developing a question answering
system. Hierarchical relations of words enable the
system to cover diverse inputs from a user (e.g., how
many paw pads does a (cat | kitten | tabby) → (cat) have?). Therefore, to deploy hierarchical in-
formation in such systems, it is critical to represent word hierarchies and meanings efficiently in a
machine-readable manner.

In natural language processing (NLP), distributional representations have brought significant ad-
vances to various applications (Collobert et al., 2011; Lample et al., 2016). Word embeddings such
as Word2Vec (Mikolov et al., 2013), Glove (Pennington et al., 2014), and FastText (Bojanowski
et al., 2017) express words as continuous vectors in Euclidean space. They enable a machine to
more efficiently cope with meanings through operations on those vectors.

Hierarchy-aware distributional representations have also been developed. Gaussian embedding (Vil-
nis & McCallum, 2015) represents words as Gaussian distributions of which variances encode word
generality. Order embedding (Vendrov et al., 2016) models the partially ordered structure of a hier-
archy between objects as inclusive relations of orthants in Euclidean space. More recently, models
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using hyperbolic space have been gaining researchers’ attention (Nickel & Kiela, 2017; Dhingra
et al., 2018; Tifrea et al., 2019). Since the volume of hyperbolic space increases exponentially to
the direction of the radii, the spreading-out structure of a hierarchy is compatible with such hyper-
bolic geometry and can be more efficiently embedded (Sala et al., 2018). For instance, Poincaré
embedding (Nickel & Kiela, 2017), Lorentz embedding (Nickel & Kiela, 2018), and hyperbolic
cone (Ganea et al., 2018b) perform excellently even with low dimensions.

The idea of Poincaré embedding representing a hierarchy with a ball is intuitive and promising. The
model learns embeddings of which (i) the distance from the origin of the ball represents generality
of objects (e.g., mammal and dog) and (ii) the difference of angles represents similarity between
objects (e.g., dog and cat), as shown in Figure 1. However, hyperbolic embeddings require other
components to also be developed under the same hyperbolic geometry (Ganea et al., 2018a). It
may be challenging to apply the model to downstream applications that are mostly developed in
Euclidean space (Du et al., 2018). To the best of our knowledge, no studies have explicitly used a
ball in Euclidean space. By taking into account a ball when learning representations, we can fully
leverage available areas and achieve efficient hierarchical embeddings in Euclidean space.

In this paper, we propose polar embedding for learning representations on the polar coordinate
system. Polar coordinates consist of two types of values, i.e., radius and angles. In terms of the
relationship between a hierarchy and a ball, radius represents word generality and angles represent
word similarity. In short, polar coordinates provide us with a useful system to achieve the intuitive
distribution of a hierarchy. We also introduce techniques for learning hierarchy-aware representa-
tions while efficiently using an area in low-dimensional Euclidean space with the polar coordinate
system. To sum up, the contributions of this paper are threefold;

1. We introduce polar coordinates to learn hierarchy-aware embedding in Euclidean space.
2. We introduce two methods for distributing word angles for fully using limited spaces, i.e.,

Welsch loss function (Dennis & Welsch, 1978) and minimization of Kullback-Leibler (KL)
divergence with Stein variational gradient descent (SVGD; Liu et al. (2016)).

3. We show polar embedding performs competitively or better than other models learned in
low-dimensional Euclidean and hyperbolic spaces on the link prediction benchmark.

2 RELATED WORK

In this section, we review previous studies on word embedding in Euclidean and hyperbolic spaces.
We discuss how to train embeddings and how to express word hierarchies of these spaces.

Embedding in Euclidean space. Popular word embeddings train word vectors by minimizing the
Euclidean distance between words appearing in the same context (Mikolov et al., 2013; Pennington
et al., 2014). Although such word embeddings have shown significant progress in numerous NLP
research, there is no explicit modeling of hierarchical relationships. Rather, they discard a vector
norm, which is useful to represent a hierarchical structure, by normalizing vectors to the unit length
and using a cosine distance to measure word similarities (Mikolov et al., 2013; Levy et al., 2015).

Subsequent studies have shed light on the issue and extended word embeddings to be aware of
hierarchical information. Nguyen et al. (2017) introduced a loss function to reflect pairwise hyper-
nymy relations in similarity of word vectors, and Vulić & Mrkšić (2018) proposed a post-processing
method for adjusting vector norms to enhance hierarchical relationships. Order embedding (Ven-
drov et al., 2016) represents a hierarchy by preserving the partial order between words. Gaussian
embedding (Vilnis & McCallum, 2015) considers a hierarchy as an inclusion relation and represents
it as Gaussian distributions with different variances so that general words have higher variance.

Embedding in hyperbolic space. Hyperbolic space has gained significant interest as a word em-
bedding space, especially for representing a hierarchical structure (Nickel & Kiela, 2018; Tifrea
et al., 2019). It is useful to represent tree-like structures because the space increases exponentially
to the direction of the radii (Nickel & Kiela, 2017). While geometric modeling is different depend-
ing on studies such as a ball (Nickel & Kiela, 2017), cone (Ganea et al., 2018b) or disk (Suzuki et al.,
2019), it is all common in terms of leveraging the analogy between a hierarchy and the hyperbolic
geometry. Experimentally, those hyperbolic embeddings have outperformed Euclidean embeddings
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Figure 2: Angle optimization in
polar coordinates.

Figure 3: Loss functions (left) and their gradients
(right) of Welsch loss (blue) and squared loss (black).

on benchmark tasks of assessing the capability of a model’s hierarchy-awareness (e.g., lexical en-
tailment prediction and link prediction) even with much smaller dimensions.

While the performance of hyperbolic embeddings is fascinating, it is not easy to implement them in
existing models built in Euclidean space due to the difference in the metrics among these spaces (Du
et al., 2018). Given the cost of re-deploying existing models in hyperbolic space, it is still meaningful
to pursue a better hierarchical representation in Euclidean space.

3 POLAR EMBEDDING

We propose polar embedding that learns word representations in the polar coordinate system. The
most essential feature of polar coordinates is that it holds the radius and angles of a position vec-
tor as separate parameters. Given that the intuitive distribution of a hierarchical structure shown in
Figure 1, we can naturally associate the radius with word generality and the angles with word sim-
ilarity. In this section, we describe methods of optimizing the radius and angles towards the simple
but efficient representation of a hierarchy in low-dimensional Euclidean space.

3.1 PRELIMINARIES

First, let us introduce the notations throughout the following sections. Let Wn = {w ∈ Rn |
‖w‖ < rmax} be the open n-dimensional ball where rmax ∈ R is the radius and ‖ · ‖ denotes
the Euclidean norm. In an n-dimensional ball Wn, a word w is represented by a vector w =
(r, θ, ϕ1, ϕ2, ..., ϕn−2), where r ∈ (0, rmax), θ ∈ [0, 2π), ϕk ∈ (0, π), for k = 1, 2, ..., n− 2.

Given two words wi and wj , in the range of θ ∈ [0, 2π) which forms a circle by regarding θ = 2π as
θ = 0 (the left of Figure 2), the distance between θwi and θwj is defined with an absolute difference:

d(θwi , θwj ) = min
(
2π − |θwi − θwj |, |θwi − θwj |

)
, (1)

where min(·, ·) selects the shorter arc. In the range of ϕk ∈ (0, π) which forms a half-circle (the
right of Figure 2), the distance between ϕkwi

and ϕkwj
is defined as an absolute difference:

d(ϕkwi
, ϕkwj

) = |ϕkwi
− ϕkwj

|, ∀k ∈ {1, n− 2}. (2)

Note that the maximum distance is bounded by at most π in the θ dimension and less than π in the
ϕk dimensions according to the above definitions.

In representation learning, distances are optimized so that semantically relevant words become
closer and irrelevant words become farther apart. Let us define w(t) as a target word, w(+) as a
relevant word to w(t), and w(−) as an irrelevant word to w(t). Common approaches such as Skip-
gram with negative sampling (Mikolov et al., 2013) minimize a loss function L = Lpos − Lneg ,
where Lpos is a cumulative loss of positive samples (a set of relevant pairs), and Lneg is of negative
samples (a set of irrelevant pairs). Given a word hierarchical tree, a word pair connected by an edge
is a positive sample, and a non-connected word pair is a negative sample. An example of the angle
update with these positive and negative samples is illustrated in Figure 2.
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3.2 RADIUS

Radius (r) is expected to represent word generality. Specifically, general words (e.g., mammal,
furniture) should have smaller values of r (i.e., near the origin) and specific words (e.g., bulldog,
wooden chair) should have larger values (i.e., far from the origin). The radius r can be defined in
arbitrary ways as long as it satisfies the above characteristics. In the case of learning embeddings
from word pairs in a hierarchical tree, for example, the number of edges of a target word (i.e., how
many words are connected to the target word) can be used as a definition of r because a word at an
upper level in a hierarchy is likely to be connected to more words. If a whole or partial hierarchical
tree(s) is available, information related to hierarchical levels such as node height and number of
descendants, can represent generality more precisely.

3.3 ANGLES

Angles (θ, ϕk) are expected to represent the similarity of words. We optimize them basically with the
same approach as most embeddings; making angles closer for positive samples and far for negative
samples as shown in Figure 2. However, the polar coordinate system has limits with respect to the
value ranges in the optimization; a word can move on the circle of θ and on the half-circle of ϕk.
Note that the learning of θ and ϕk is independent from r, and we fix r to 1 during the process of
updating angles. Given the characteristics of polar coordinates, we propose optimization methods to
utilize a whole sphere broadly for the effective use of a limited space. More specifically, we embed
the similarity of words while maintaining a uniform distribution on a sphere.

3.3.1 OPTIMIZATION

We now introduce a method to optimize the angle vectors. A conventional approach for optimizing
the embedding vectors is to use the squared loss function. In polar coordinates, however, the con-
ventional approach results in a highly biased distribution over words in terms that majority of the
words is likely to accumulate near the limits of the angle ranges. Specifically, words were likely
to gather at the positions at which the distance becomes near the maximum value (i.e., π). This is
because the squared loss function has large gradients for distantly separated samples but their angles
have value range limitations. We describe those details in Section 3.3.2.

To address the above issue, we adopt two techniques for optimizing angle vectors. First, we train
polar embedding using the Welsch loss function (Dennis & Welsch, 1978). This function is charac-
terized by the following fact; the gradient is bounded and takes small value with large d. Hence, the
Welsch loss function prevents words from gathering at certain positions by decreasing the gradient
for negative samples. Second, we use stein variational gradient descent (SVGD, Liu et al. (2016))
algorithm to correct the embedding vectors to the uniform distribution. Intuitively, SVGD is used to
reduce the KL divergence between the true uniform distribution, p(·) and current distribution, q(·).
This uniformization by SVGD is conducted during the training of the embedding vectors once in
every specific iterations. The pseudo code is described in Algorithm 1.

3.3.2 OPTIMIZATION AND UNIFORMIZATION BY WELSCH LOSS FUNCTION.

In this section, we explain why the squared loss function does not work in polar coordinates and
how we overcome the issue with the Welsch loss function.

Welsch loss function. The Welsch loss function is defined as follows:

Lw(d) =
c2

2

[
1− exp

(
− d2

2c2

)]
, (3)

where d is the angle distance of two words described in Equations (1) and (2), and c is a hyperpa-
rameter. The gradient is represented as:

∂Lw(d)

∂d
=
d

2
exp

(
− d2

2c2

)
. (4)

As seen in Figure 3, the gradient is bounded and takes a small value with large d.
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Algorithm 1 Learning procedure of angles
Input for the main loop: Iteration N , Dataset D, Vocabulary V , Learning rate α, Weight for
negative samples β, SVGD Interval S
Input for SVGD: Iteration M , Learning rate η, Early stopping criterion γ ∈ [0, 1]

1: pθ, pϕk ← approximate angle uniform distributions on a sphere with GMM
2: θ, ϕk ← Initialize vectors in Cartesian coordinates with a normal distribution, then convert them

into polar coordinates for starting with a uniform distribution on a sphere (Miller, 1995)
3: for n = 0 to N do
4: w(t), w(+), w(−) ← sample from D
5:
6: // Update of θ with the Welsch loss
7: θ̂w(t)

= θw(t)
+ α{L′w(d(θw(t)

, θw(+)
))− βL′w(d(θw(t)

, θw(−)
))}

8: θw(t)
← θ̂w(t)

mod 2π . mod2π for the update across 2π
9:

10: // Update of ϕk (∀k ∈ {1, n− 2}) with the Welsch loss
11: ϕ̂kw(t)

← ϕkw(t)
+ α{L′w(d(ϕkw(t)

, ϕkw(+)
))− βL′w(d(ϕkw(t)

, ϕkw(−)
))}

12: if ϕ̂kw(t)
∈ (0, π) then ϕkw(t)

← ϕ̂kw(t)
. No update if ϕ̂kw(t)

overflows from the range
13:
14: // Update of θ and ϕk (∀k ∈ {1, n− 2}) with SVGD
15: if n ≡ 0 mod S then
16: θ̂, ϕ̂k ← SVGD(θ, pθ),SVGD(ϕk, pϕ)
17: for wi ∈ V do . Update θ and ϕk for each word
18: θwi ← θ̂wi mod 2π
19: if ϕ̂kwi

∈ (0, π) then ϕkwi
← ϕ̂kwi

20:
21: procedure SVGD(x, p) . x is θ or ϕk
22: s← Compute a validation score before SVGD
23: X ← Create a set of batched samples from x
24: for m = 0 to M do
25: for x′ ∈ X do x′ ← x′ + ηφ∗p(x

′)
26: s′ ← Compute a validation score with the latest representation
27: if s′ < γs then break . Stop SVGD if the validation score drops much
28: return x′ . x′ denotes updated values of x

Why does the squared loss function not work? The issue stems from the two facts; (i) the gradi-
ent of the squared loss function can be arbitrarily large for negative samples, and (ii) the maximum
distance between two points in each angle dimension is bounded in the polar coordinate system. In
the squared loss function, the larger value (i.e., longer distance) gives a large gradient (the black lines
in Figure 3). Therefore, pairs of negative samples distribute farther and farther from each other dur-
ing learning. In the learning of standard Euclidean embeddings, it is not problematic because they
are allowed to use the space infinitely (e.g., the vector norm can be as large as needed). However,
polar coordinates has the limits in the value range: θ ∈ [0, 2π) and ϕk ∈ (0, π), and the maximum
distance in each dimension is at most or less than π (see Equations (1) and (2)). In other words,
the angles of negative samples cannot be apart more than π, and their optimization will stop after
reaching it. The squared loss function particularly causes words to be accumulated because it keeps
negative samples away, as mentioned above, which results in the biased distributions. Therefore,
with the squared loss function, it is difficult to obtain uniform distributions on a sphere or even learn
appropriate angles in polar coordinates.

How does the Welsch loss function solve the issue? As discussed above, the policy of the squared
loss function for negative samples — farther is better — causes a biased distribution. Therefore, we
need to modify it so that negative samples are regarded as sufficiently distant if they are a certain
distance apart. The Welsch loss function can naturally satisfy this requirement because the gradient
is bounded and takes a small value with large d. The peak of the gradient can be considered a thresh-
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old in which the gradient increases when approaching the boundary then decreases after passing it
(blue lines in the right of Figure 3). In other words, the Welsch loss function does not eagerly move
negative pairs of which distance is beyond the threshold. Hence, we can suppress the accumulation
problem of words with the appropriate threshold given by adjusting c. For example, we can define
ϕkw(t)

and ϕkw(−)
as sufficiently distant when d(ϕkw(t)

, ϕkw(−)
) = 0.5π.

3.3.3 OPTIMIZATION AND UNIFORMIZATION BY SVGD.

To further mitigate the issue of word accumulation discussed in the previous section, we use SVGD
for achieving a more uniform distribution of the embedding vectors because the Welsch loss func-
tion does not directly take into account uniformity. SVGD is a deterministic, gradient-based sam-
pling algorithm, which minimizes the KL divergence between the target (uniform) distribution p and
trained distribution q. With SVGD, we define the following Kernelized Stein Discrepancy (KSD)
S(·, ·) between the true posterior distribution p(x) and approximated posterior distribution q(x), in
a reproducing kernel Hilbert space (RKHS)Hd.

S(q, p) = max
φ∈Hd

{Ex∼q [Apφ(x)] } , (5)

where Apφ(x) = φ(x)∇x log p(x) +∇xφ(x). The optimal solution of (5) is given by

φ∗p(x
′) = Ex∼q [κ(x, x′)∇x log p(x′) +∇xκ(x, x′) ] , (6)

where κ : X × X → R is a positive definite kernel satisfying a certain condition on the
expectation value of differential of κ (Stein, 1972), and the radial basis function κ(x, x′) =

exp
(
−γ ||x− x′||2

)
satisfies this condition. Liu & Wang (2016) theoretically analyzed the re-

lationship between KSD and KL divergence and proved that

∇εKL(qε || p) |ε=0 = −Ex∼q [Apφ(x)] ,

where ε is a perturbation and qε is the perturbed density of the distribution x. This equation means
that φ∗p in (6) is the optimal perturbation direction providing the largest descent of the KL divergence.

To use this optimization method for our purpose, we need a mathematical representation of the
probability density of the uniform distribution on the sphere in the polar coordinate system. How-
ever, because there is no such analytical expression to our best knowledge, we approximate it by a
Gaussian Mixture model (GMM) with an appropriate kernel function (e.g. a radial basis function).

4 EXPERIMENTS

We evaluated polar embedding with a link prediction task. Following previous studies (Nickel &
Kiela, 2017; Ganea et al., 2018b), we used the transitive closure in WordNet (Miller, 1995) as our
experimental dataset and compared polar embedding with other hierarchy-aware embeddings.

4.1 SETTINGS

Dataset and Task. WordNet is a directed acyclic graph (DAG) consisting of edges that represent
is-a relations of words. Each word wi in WordNet represents a single node in the DAG. An edge
represents a word pair (wi, wj) where wi is a hypernym of wj , and a model is expected to embed
such relations in a latent space appropriately. In our experiment, we used the preprocessed noun
hierarchy provided by Ganea et al. (2018b). The number of words in the noun hierarchy is 82114.

On the WordNet noun hierarchy, we evaluated models with the link prediction task, which is a
binary classification to predict if an edge exists between two words. We first trained embeddings
with the training set then classified edges in the test set into existent or non-existent edges by using
the embeddings with a heuristic scoring function. We evaluated model with the F1 score.

Polar Embedding. We determined r in a deterministic manner and trained angles as explained
in Section 3.3. We tested two types of r for simulating different scenarios; re for the situation in
which no hierarchical information is available and only word pairs are given, and rg for the situation
in which hierarchical information is available. On the training set of the WordNet noun hierarchy,
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Table 1: Experimental results from link-prediction task on WordNet
noun hierarchy. (E) and (H) denote Euclidean and hyperbolic spaces.

Dimension = 5 Dimension = 10

Model (Space) Percentage of Available Edges in Training
10% 25% 50% 10% 25% 50%

Polar rg (E) 78.5% 79.9% 81.8% 82.2% 81.6% 82.3%
Polar re (E) 75.8% 77.2% 78.6% 78.5% 79.2% 80.1%
Simple (E) 71.3% 73.8% 72.8% 75.4% 78.4% 78.1%
Order (E) 70.2% 75.9% 81.7% 69.7% 79.4% 84.1%
Cone (E) 69.7% 75.0% 77.4% 81.5% 84.5% 81.6%
Disk (E) 38.9% 42.5% 45.1% 54.0% 65.8% 72.0%

Poincare (H) 70.2% 78.2% 83.6% 71.4% 82.0% 85.3%
Cone (H) 80.1% 86.0% 92.8% 85.9% 91.0% 94.5%
Disk (H) 69.1% 81.3% 83.1% 79.7% 90.5% 94.2%

Table 2: Ablation study
of Welsch loss function
and SVGD. Settings were
as follows: dimension =
5, percentage of training
edges = 10, and r = rg .

Loss - SVGD F1

Welsch - w/ 78.5%
Welsch - w/o 74.9%

Squared - w/ 69.1%
Squared - w/o 65.5%

re is defined as rei = 1 − z(log(ei + 1)) where ei is the number of edges of the i-th word. rg is
defined as rgi = 1 − z(hi + log(li + 1)) where hi is a maximum height and li is the number of
descendants of the i-th word in the hierarchy. The notation z is a min-max normalization function;
hence, re ∈ [0, 1] and rg ∈ [0, 1]. The intuitions of those definitions are simple. For re, a word
connected with many words is likely to be placed at an upper level in a hierarchy. For rg , a word
with a larger height and more descendants is likely to be placed at an upper level in a hierarchy.
The rg is expected to be more precise with respect to word generality because of the direct usage of
hierarchical relationships while re is only aware of local connections between words. For practical
use, we can set r from reliable word generality resources.

Finally, we introduced the following two scoring functions:

sa(wi, wj) =
f(wi) · f(wj)

‖f(wi)‖‖f(wj)‖
, sr(wi, wj) = |ri − rj |,

where f is a conversion function from polar to cartesian coordinates (Blumenson, 1960). We then
defined the criterion as:

s(wi, wj) =

{
1 if sa(wi, wj) > 1− τsr(wi, wj)2
0 otherwise,

where τ is a hyperparameter tuned in the validation set. This function detects an edge between wi
and wj when their angles are closer (i.e., higher similarity) and their radii are different (i.e., one is
more general than the other). Considering the spreading-out structure of a hierarchy, this scoring
function relaxes the condition for the angle similarity along with the increase in the radius difference.
We tested all models with 5 or 10 dimensions as in a previous study (Ganea et al., 2018b).

Baselines. We compared polar embedding with four Euclidean (Simple, Order, Cone, Disk) and
three hyperbolic models (Poincaré, Cone, Disk) (Vendrov et al., 2016; Nickel & Kiela, 2017; Ganea
et al., 2018b; Suzuki et al., 2019). The Euclidean simple model learns embeddings by minimizing
Euclidean distance in Cartesian coordinates (Ganea et al., 2018b).

4.2 RESULTS

The F1 scores on the WordNet noun benchmark are listed in Table 1. When the dimension was
5, polar embedding exhibited superior performance in most cases with both rg and re. It also
performed better than or competitively with hyperbolic models. When we increased the dimension
to 10, however, the performance gain of polar embedding was not large compared to the other
Euclidean models though it still showed competitive performance.

Table 2 shows the ablation study of the Welsch loss function and SVGD. The Welsch loss function
significantly increased the score compared to the squared loss function. In short, the gradient adjust-
ment for defining “sufficiently distant” was critical for learning angles in the polar coordinates. As
expected, SVGD enhanced the performance for the one using the Welsch loss function.

7



Under review as a conference paper at ICLR 2021

(a) Squared Loss (b) Welsch Loss (c) Welsch Loss + SVGD

Figure 4: Distributions of noun hierarchy with polar embedding.

Figure 4 illustrtes actual θ distributions of the models used in our ablation study. First, if we simply
used the squared loss function, most words gathered at either the left or right side (Figure 4a). The
distribution was highly biased, and the embedding trained with squared loss function failed to use
the full space effectively. By changing the loss function to the Welsch loss function, the bias largely
decreased, and the model used the broader area (Figure 4b). Finally, SVGD further improved the
biased distribution, and words distributed almost uniformly on the sphere (Figure 4c). While the
Welsch loss function implicitly prevents the biased distribution, SVGD more explicitly forces words
to distribute in uniform. It enabled the model to use Euclidean space more broadly, which resulted
in better performance. We also found the same trend for ϕk (see Appendix A.3).

4.3 MAMMAL SUBTREE REPRESENTATION

Figure 5 illustrates two-dimensional polar embedding trained on the WordNet mammal subtree.

Figure 5: Polar embedding: mammal subtree.

Thanks to our uniformization methods, words scat-
tered in the circle all around, and apparent hierar-
chies could be found. For example, cat and dog
are species of carnivore, the relationship was re-
flected with polar embedding. Also, it created a
sub-hierarchy; we could find hunting dog and ter-
rier at the outer of dog, and lion and wildcat at the
outer of cat. Such species hierarchies were well
embedded for others as well (e.g., aquatic mam-
mal → cetacean → seal, dolphin, and primate →
monkey→ gorilla, ape). Practically, we can extract
those hierarchical orders with r; obtaining hyper-
nyms by increasing r and hyponyms by decreasing
r. We can also extract similar words by using co-
sine similarity. For example, we can collect similar
words to dog such as canine, toy dog, and fox re-
gardless of the hierarchical orders. In addition, by
combining cosine similarity with r, we can filter
similar words with the levels in a hierarchy.

5 CONCLUSION

We proposed polar embedding, which represents hierarchical structures in low-dimensional Eu-
clidean space. Word generalities and similarities are intuitively expressed using radius and angles
in polar coordinates. We introduced the Welsch loss function and SVGD for training embeddings in
the angle limit of polar coordinates, which keeps angle distributions uniform and enables a model
to leverage a whole space effectively. Experimental results indicated that polar embedding outper-
formed other embeddings in Euclidean space.
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