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ABSTRACT

We present TWIST, a novel self-supervised representation learning method by
classifying large-scale unlabeled datasets in an end-to-end way. We employ a
siamese network terminated by a softmax operation to produce twin class dis-
tributions of two augmented images. Without supervision, we enforce the class
distributions of different augmentations to be consistent. In the meantime, we
regularize the class distributions to make them sharp and diverse. Specifically,
we minimize the entropy of the distribution for each sample to make the class
prediction for each sample assertive and maximize the entropy of the mean distri-
bution to make the predictions of different samples diverse. In this way, TWIST
can naturally avoid the trivial solutions without specific designs such as asym-
metric network, stop-gradient operation, or momentum encoder. Different from
the clustering-based methods which alternate between clustering and learning, our
method is a single learning process guided by a unified loss function. As a result,
TWIST outperforms state-of-the-art methods on a wide range of tasks, including
unsupervised classification, linear classification, semi-supervised learning, trans-
fer learning, and some dense prediction tasks such as detection and segmentation.

1 INTRODUCTION

Deep neural networks learned from large-scale datasets have powered many aspects of machine
learning. In computer vision, the neural networks trained on the ImageNet dataset (Deng et al.,
2009) can perform better than or as well as humans in image classification (Krizhevsky et al., 2012;
Szegedy et al., 2015; He et al., 2016; Huang et al., 2017). In addition, the obtained representations
can also be adapted to other downstream tasks such as object detection (Ren et al., 2015; He et al.,
2017; Redmon & Farhadi, 2017) and semantic segmentation (Long et al., 2015). However, learning
from large-scale labeled data requires expensive data annotation, making it difficult to scale.

Recently, self-supervised learning has achieved remarkable performance and largely closed the gap
with supervised learning. The contrastive learning approaches (Wu et al., 2018; He et al., 2020;
Chen et al., 2020a;b; Grill et al., 2020; Chen & He, 2021) learn representations by maximizing
the agreement of different augmentations and pushing away the representations of different images.
BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) propose to abandon the negative sam-
ples, and design the asymmetric architecture and momentum encoder (or stop-gradient) to avoid
collapsed solutions. Clustering-based methods (Caron et al., 2018; Asano et al., 2019; Caron et al.,
2020; 2021) usually employ the clustering algorithms to generate supervision signals from one aug-
mentation and use them to guide the learning process for other augmentations.

In this paper, we present TWIST (Twin Class Distributions Estimation), a novel self-supervised
learning method to learn representations by classifying large-scale unlabeled datasets. Unlike the
clustering-based methods that alternate between clustering and learning, our method is a single
learning process guided by a unified loss function. We employ a siamese network terminated by a
softmax operation to produce the class distributions of two augmented images. The whole network
is trained by the proposed TWIST loss which embodies the following properties: (1) augmentation
consistency, (2) distribution sharpness, and (3) prediction diversity. Specifically, optimizing the
TWIST loss leads to force the two augmentations of the same image to be classified into the same
class, which is achieved by minimizing the divergence between the twin class distributions. In the
meantime, TWIST loss minimizes the entropy of the class distribution for each sample to make
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Figure 1: Examples of unsupervised top-3 predictions of TWIST. The predicted class indices are
mapped to the labels in ImageNet by Kuhn–Munkres algorithm (Kuhn, 1955). Note that the labels
are only used to map our predictions to the ImageNet labels, we do not use any label to participate
in the training process. More examples are given in Appendix.

the class distribution sharp and maximize the entropy of the mean class distribution to make the
predictions for different samples diverse. This is inspired by the fact that in supervised learning,
the class distribution for each sample is sharp (low-entropy), and the class predictions for different
samples are diverse. TWIST can naturally avoid the trivial solution problem (outputting the same
class for all images). However, in practice, optimizing the TWIST loss is challenging. We discover
that the output predictions are prone to be low-diverse, which causes the network to generate sub-
optimal solutions. To address the issue, we add a batch normalization layer before the softmax
function to ensure that the distributions of the samples in a mini-batch are more scattered. Detailed
analysis is given in the Ablation section. With the TWIST loss and the design of batch normalization
before softmax, we can successfully classify images without labels. Fig. 1 shows some examples.

TWIST is different from both contrastive learning methods and clustering-based methods. Com-
pared with contrastive learning methods which learn instance-invariant features, TWIST takes into
consideration the relation of different samples and learns category-invariant features. In contrast,
TWIST is more similar to the clustering-based methods, which also learn the category-invariant fea-
tures. However, TWIST is different from the clustering-based methods in the following aspects:
(1) Clustering-based methods share a common two-stage paradigm. They first generate the pseudo-
labels for images and then use the pseudo-labels as supervision to guide the learning process. TWIST
has no concept of pseudo-labels. The TWIST loss will guide the network to automatically estimate
the class distribution for each image. (2) TWIST does not require any labeling process, so we do not
rely on any non-differentiable clustering technique such as K-means (Caron et al., 2018), Sinkhorn-
Knopp algorithm (Asano et al., 2019; Caron et al., 2020), or momentum encoder (Caron et al.,
2021).

We evaluate the efficacy of TWIST on both unsupervised classification and downstream representa-
tion learning tasks. For unsupervised classification on ImageNet, our model outperforms previous
state-of-the-art methods by a large margin (+6.5 AMI). For representation learning, we surpass pre-
vious state-of-the-art methods on a wide range of downstream tasks. Specifically, with a ResNet-50
(He et al., 2016), (1) TWIST achieves 75.5% (+0.2) top-1 accuracy on ImageNet linear classifica-
tion. (2) For semi-supervised learning, TWIST achieves 61.2% (+6.2) top-1 accuracy on 1% label
semi-supervised classification. (3) For fine-tuning on small-scale datasets, we surpass supervised
baseline and other methods on 7(/11) datasets. (4) We also achieve the state-of-the-art performance
on dense predictive tasks, including object detection, instance segmentation, and semantic segmen-
tation. Some of the results even surpass the densely designed self-supervised learning methods.
These results show that TWIST successfully connects unsupervised classification and representation
learning, and could serve as a strong baseline for both purposes.

2 RELATED WORK

Self-supervised Learning. Self-supervised Learning has been a promising paradigm to learn useful
image representations. Many self-supervised methods try to design handcrafted auxiliary tasks to
acquire common knowledge useful for other vision tasks. Examples include context prediction (Do-
ersch et al., 2015), colorization (Zhang et al., 2016), context encoder (Pathak et al., 2016), jigsaw
puzzle (Noroozi & Favaro, 2016), and rotation prediction (Gidaris et al., 2018). Although these
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self-supervised methods have achieved remarkable performance, the design of pretext tasks depends
on domain-specific knowledge, limiting the generality of the learned representations.

Recently, contrastive learning has drawn much attention and achieved state-of-the-art performances.
Representative methods include Instance Discrimination (Wu et al., 2018), MoCo (He et al., 2020;
Chen et al., 2020b), and SimCLR (Chen et al., 2020a). Contrastive methods learn an embedding
space where features of different augmentations from the same image are attracted, and features of
different images are separated. BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) propose
to abandon the negative samples and design some special techniques such as asymmetric architec-
ture, momentum encoder and stop gradients to avoid the collapsed solution. Barlow Twins (Zbontar
et al., 2021) and VICReg (Bardes et al., 2021) propose to learn informative representations by re-
ducing the redundancy or covariance of different representation dimensions.

The clustering-based methods (Caron et al., 2018; Asano et al., 2019; Caron et al., 2019; 2020; 2021)
have also exhibited remarkable performances. They first use a clustering tool to generate pseudo-
labels for images and then classify the images with the generated pseudo-labels. The two processes
alternate with each other. For example, DeepCluster (Caron et al., 2018) uses the K-means algorithm
to generate pseudo-labels for every epoch. SwAV (Caron et al., 2020) uses the Sinkhorn-Knopp
algorithm (Asano et al., 2019) to generate soft pseudo-labels for images and updates the pseudo-
labels online for every iteration. The most recent DINO (Caron et al., 2021) updates pseudo-labels
using the output of the momentum teacher together with the sharpening and centering operations.

Unsupervised Classification. There are many unsupervised classification methods developed.
Some methods use an EM-like algorithm to optimize the pseudo-labels and the networks alternately.
Examples like DEC (Xie et al., 2016), JULE (Yang et al., 2016), and SeLa (Asano et al., 2019). They
use the clustering algorithms to generate the pseudo-labels to guide the learning of neural networks,
which is similar with the clustering-based self-supervised learning methods, while they focus on the
task of clustering or unsupervised classification. Some methods propose to maximize the mutual in-
formation of output features between an image and its augmentations. IIC (Ji et al., 2019) proposes
a clustering objective to maximize the mutual information of different views. IMSAT (Hu et al.,
2017) also uses data augmentations to impose the invariance on discrete representations, and in the
mean time maximizes the information theoretic dependency between data and their predicted dis-
crete representations. SCAN (Van Gansbeke et al., 2020) advocates a two-step approach to achieve
this task. They use representation learning methods such as SimCLR (Chen et al., 2020a) to extract
the high-level features and then clusters the features with their proposed loss function which takes
into consideration of the nearest neighbors, achieving state-of-the-art performance. Our method is
an end-to-end single process method with an effective objective for training, achieving significant
advantages on large-scale unsupervised classification and representation learning.

3 METHOD
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Figure 2: Network architecture of TWIST.

Our goal is to learn an end-to-end unsupervised clas-
sification network to make accurate predictions and
learn good representations. Without labels, we design
the TWIST loss to make the predictions of two aug-
mented images be recognized as the same class. In the
meantime, we regularize the class distribution to make
it sharp and diverse, which helps the network avoid
the trivial solution problem and learn category-level
invariant representations. The motivation is based on
the observation of supervised leaning that the class dis-
tributions in a mini-batch are both sharp and diverse.
Next, we will give detailed descriptions and analyses.

3.1 FORMULATION

Given an unlabeled dataset S, we randomly sample a batch of images X ⊂ S with a batch-size
of B, and generate two augmented version X1 and X2 according to a predefined set of image
augmentations. The two augmented images are fed into a siamese neural network (terminated by
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a softmax operation) fθ(·) with parameters θ. The outputs of the neural networks fθ(·) are two
probability distributions over C categories P k = fθ(X

k) (k ∈ {1, 2}). The process is shown in Fig.
2. Note that P k ∈ RB×C , and P ki denotes the i-th row of P k, i.e., probability distribution of the
i-th sample.

With the probability distributions of two augmented views P 1 and P 2, we define the learning objec-
tive as follows:

L(P 1, P 2) =
1

2
(L(P 1||P 2) + L(P 2||P 1)), (1)

where

L(P 1||P 2) =
1

B

B∑
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1
i ||P 2

i )︸ ︷︷ ︸
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+
1
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i )︸ ︷︷ ︸

sharpness term

−H(
1

B

B∑
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i )︸ ︷︷ ︸

diversity term

, (2)

and L(P 2||P 1) is defined in the same way. DKL(·||·) denotes the Kullback–Leibler diver-
gence (Kullback & Leibler, 1951) between two probability distributions. H(·) denotes the En-
tropy (Shannon, 1948) of a specific probability distribution.

We next give analysis to the above loss function. Specifically, minimizing the consistency term
makes the predictions of different views consistent. Namely, different augmentations of the same
image are required to be recognized as the same class. For the sharpness term, we minimize the
entropy of class distribution for each sample to regularize the output distribution to be sharp, which
makes each sample have a deterministic assignment (i.e., one-hot vector in the ideal case). Besides,
features of samples assigned to the same category will be more compact. For the diversity term, we
try to make the predictions for different samples be diversely distributed over C classes to avoid the
network assigning all images to the same class. This is achieved by maximizing the entropy of the
mean distribution across different samples H( 1

B

∑B
i=1 P

1
i ).

Relations to previous methods: To give a comprehensive understanding of Eq. (2), we rewrite it
as

L(P 1||P 2) =
1

B

B∑
i=1

CE(P 1
i , P

2
i )−H(

1

B

B∑
i=1

P 1
i ), (3)

where CE denotes the cross entropy. The equivalence of Eq. (2) and Eq. (3) is because of the fact
that CE(p, q) = DKL(p||q) + H(p), for two probability distributions p and q. The above loss
function is similar to the cross-entropy loss in supervised learning. Without ground-truth label, we
minimize the cross-entropy loss between the class distributions of two augmentations. In addition
to the cross-entropy term, we have the additional diversity term to maximize the diversity of the
network predictions.

Eq. (3) differentiates our method from previous clustering-based methods. Previous methods usually
transform the probability distribution P 1 to a deterministic vector V 1 to create pseudo-labels. The
transformations vary in different methods, hard or soft, e.g., K-Means in Deep Cluster (Caron et al.,
2018), the Sinkhorn-Knopp algorithm in SwAV (Caron et al., 2020; Asano et al., 2019), and soft-
max over samples in Self-classifier (Amrani & Bronstein, 2021). In contrast, we provide a simpler
and more unified solution, i.e., using a single loss function to simultaneously learn the probability
distributions of P 1 and P 2.

3.2 BATCH NORMALIZATION BEFORE SOFTMAX

In practice, directly optimizing the TWIST loss will derive sub-optimal solutions. Specifically, we
find that the consistency term and the sharpness term are easy to minimize while the diversity term
is difficult to maximize. Furthermore, we visualize the standard deviations of each row and each
column of the features before softmax. As illustrated in Fig. 3, we find that the column standard
deviation keeps small during the training process, which makes the probability of each class tend to
be similar across different samples in a mini-batch. This will cause the low diversity of classification
results. Our solution is simple: adding a batch normalization (Ioffe & Szegedy, 2015) before the
softmax to force the probabilities in the same column be separated. Actually, after adding the batch
normalization (without affine parameters), the standard deviation for each column is forced to be
1. By adding the batch normalization layer, the diversity term is well optimized. As a result, the
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batch normalization before softmax brings about 5% improvements in ImageNet linear classifica-
tion. More analyses and experiments are shown in the Ablation section.

3.3 TRAINING STRATEGY

Multi-crop: We adopt the multi-crop augmentation strategy proposed in SwAV (Caron et al., 2020).
For a comprehensive comparison, we also report the performance without multi-crop. For multi-
crop, we generate global views and local views. For each combination of two different views, we
calculate the TWIST loss and use the average as the final loss.

Self-labeling for CNN: For convolutional neural networks, the multi-crop strategy helps us improve
the linear classification performance from 72.6% to 74.3%, shown in Tab. 10. However, compared
with the performance improvements of SwAV (from 71.8% to 75.3%), the performance gain of
TWIST is much smaller (3.5% v.s. 1.7%). Such phenomenon has also been observed by Caron et al.
(2021). Specifically, SwAV uses the global crops to generate relatively accurate pseudo-labels as
supervision to train the local crops. However, in our method, the global crops and local crops are
regarded equally. Thus the noisy local crops can also affect the accurate predictions of global crops,
which will not happen in self-labeling methods such as SwAV and DINO. To take full advantage of
the multi-crop strategy, we add a self-labeling stage after the regular training stage. Specifically, we
use the outputs of the global crops as supervision to train other crops. Different with SwAV: (1) we
use the outputs of our network as supervision, instead of the outputs of the Sinkhorn-Knopp algo-
rithm, (2) we only use the samples in a mini-batch whose confidences surpass a predefined threshold.
With only 50 epochs of self-labeling after finishing the regular training, we have another 1.2% per-
formance gains (from 74.3% to 75.5%). We empirically show that the proposed self-labeling could
not improve the performance of SwAV (Caron et al., 2020) or DINO (Caron et al., 2021).

Momentum Encoder for ViT: For Vision Transformers (Dosovitskiy et al., 2020; Touvron et al.,
2021), we do not use the self-labeling process. Instead, we adopt the momentum encoder design,
which is widely adopted to train ViT-based self-supervised models (Caron et al., 2021; Chen et al.,
2021). Specifically, one tower of our siamese network is updated by the exponential moving average
of the parameters from the other tower, similar as He et al. (2020) and Grill et al. (2020). The whole
network is updated by the TWIST loss. Although we use the momentum encoder as the default
setting for ViT backbones, TWIST using ViT as backbone can also work without the momentum
encoder and achieves 72.5% ImageNet Top-1 linear accuracy for Deit-S 300 epochs. The momentum
encoder is only adopted in ViT-based models. We do not use it for CNN models.

4 MAIN RESULTS

We evaluate the performances of TWIST on unsupervised classification, as well as a wide range of
downstream tasks. We set C = 4096 for the downstream tasks and C = 1000 for the unsupervised
classification in accordance with the standard ImageNet class number. More implementation details
can be found in Appendix. For all downstream tasks, we strictly follow the common evaluation
procedures. All TWIST models are trained on the train set of ImageNet ILSVRC-2012 which has
∼1.28 million images (Deng et al., 2009).

Table 1: Unsupervised classification results on Im-
ageNet. All numbers are reported on the valida-
tion set of ImageNet. Comparison methods include
SCAN (Van Gansbeke et al., 2020), SeLa (Asano
et al., 2019), and Self Classifier (Amrani & Bron-
stein, 2021).

Method NMI ARI AMI ACC

SCAN 72.0 27.5 51.2 39.9
SeLa 65.7 16.2 42.0 -
SelfClassifier 64.7 13.2 46.2 -
TWIST 74.3 30.0 57.7 40.6

Unsupervised Classification: The TWIST
model can be regarded as a clustering func-
tion which takes images as input and outputs
the assignments. Therefore, we adopt the
measures for clustering in evaluation, includ-
ing normalized mutual information (NMI),
adjusted mutual information (AMI), and ad-
justed rand index (ARI). Besides, we map
the predicted assignments to the class la-
bels of ImageNet to evaluate the unsuper-
vised classification accuracy. We use the
Kuhn–Munkres algorithm (Kuhn, 1955) to
find the best one-to-one permutation map-
ping, following the settings in IIC (Ji et al., 2019) and SCAN (Van Gansbeke et al., 2020). Though
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this process uses the real labels, they do not participate in any training process and are only used
to map the prediction to the meaningful ImageNet labels. Tab. 1 shows the results of TWIST and
other state-of-the-art methods. We use ResNet-50 as backbone and set C = 1000 in accordance
with ImageNet. Our method surpasses other methods by large margins in terms of the clustering
measures and unsupervised classification accuracy. In Appendix, we show some randomly selected
results for qualitative evaluation.

Table 2: Linear classification results on
ResNet-50. We show results with and
without multi-crop training.

Method Epoch Top1 Top5

without multi-crop
MoCo v2 800 71.1 90.1
SimCLR 1000 69.3 89.0
BarlowT 1000 73.2 91.0
BYOL 1000 74.3 91.6
SwAV 800 71.8 -
TWIST 800 72.6 91.0

with multi-crop
SwAV 800 75.3 -
DINO 800 75.3 92.5
TWIST 300 75.0 92.4
TWIST 800 75.5 92.5

Table 3: Linear classification results with the back-
bones of wider ResNet-50 and Vision Transformer.

Method Network Param Epoch Top1 Top5

Wider ResNet
SimCLR RN50w2 94M 1000 74.2 92.0
CMC RN50w2 94M - 70.6 89.7
SwAV RN50w2 94M 800 77.3 -
BYOL RN50w2 94M 1000 77.4 93.6
TWIST RN50w2 94M 300 77.7 93.9

Vision Transformer
MoCo-v3 Deit-S 21M 300 72.5 -
DINO Deit-S 21M 300 75.9 -
TWIST Deit-S 21M 300 75.6 92.3
MoCo-v3 ViT-B 86M 300 76.5 -
DINO ViT-B 86M 800 78.2 93.9
TWIST ViT-B 86M 300 77.3 93.3

Linear Classification: We evaluate the performance of linear classification on ImageNet. Specif-
ically, we add a linear classifier on top of the frozen network and measure the top-1 and top-5
center-crop classification accuracies, following previous works (Zhang et al., 2016; He et al., 2020;
Chen et al., 2020a). The results are shown in Tab. 2. TWIST outperforms other state-of-the-art
methods, achieving 75.5% top-1 accuracy on ResNet-50.

Besides, we also train TWIST with other backbones of neural networks, including wider ResNet-
50 and Vision Transformers, obtaining the results shown in Tab. 10. For wider ResNet-50, the
superiority of TWIST becomes more apparent. TWIST outperforms SwAV and BYOL by 0.4% and
0.3% respectively using ResNet-50w2 and 300 training epochs. For Vision Transformers, TWIST is
also comparable with other state-of-the-art methods.

Table 4: Semi-supervised classification results on ImageNet. We report top-1 and top-5 one-crop
accuracies. Detailed settings can be found in Appendix.

Method Backbone Param 1% Labels 10% Labels 100% Labels
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SUP RN50 24M 25.4 48.4 56.4 80.4 76.5 -
SimCLR RN50 24M 48.3 75.5 65.6 87.8 76.5 93.5
BYOL RN50 24M 53.2 78.4 68.8 89.0 77.7 93.9
SwAV RN50 24M 53.9 78.5 70.2 89.9 - -
DINO RN50 24M 52.2 78.2 68.2 89.1 - -
BarlowTwins RN50 24M 55.0 79.2 69.7 89.3 - -
TWIST RN50 24M 61.2 84.2 71.7 91.0 78.4 94.6
SimCLR RN50 ×2 94M 58.5 83.0 71.7 91.2 - -
BYOL RN50 ×2 94M 62.2 84.1 73.5 91.7 - -
TWIST RN50 ×2 94M 67.2 88.2 75.3 92.8 80.3 95.4

Semi-supervised Classification: We fine-tune the pre-trained TWIST model on a subset of Ima-
geNet, following the standard procedure (Chen et al., 2020a; Grill et al., 2020). From Tab. 4, we
can see that TWIST outperforms all other state-of-the-art methods by large margins. With only
1% of labeled data, TWIST achieves 61.2% top-1 accuracy with ResNet-50, surpassing the previ-
ous best result by 6.2%. The trend is preserved when the backbone becomes larger. For example,
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TWIST achieves 67.2% (+5.0%) top-1 accuracy with ResNet-50w2. With 10% of labeled data, it
still achieves the best result.

We also fine-tune the pre-trained TWIST model on the full ImageNet. The results are shown in the
last two columns of Tab. 4. With our pre-trained model as initialization, ResNet-50 can achieve
78.4% top-1 accuracy, surpassing ResNet-50 trained from scratch by a large margin (+1.9%).

Transfer Learning: We also evaluate the performances of fine-tuning TWIST model on eleven dif-
ferent datasets, including Food101 (Bossard et al., 2014), CIFAR10, CIFAR100 (Krizhevsky et al.,
2009), SUN397 (Xiao et al., 2010), Cars (Krause et al., 2013), FGVC-Aircraft (Maji et al., 2013),
Pascal VOC2007 (Everingham et al., 2009), Describable Textures Dataset (DTD) (Cimpoi et al.,
2014), Oxford-IIIT Pet (Parkhi et al., 2012), Caltech101 (Li et al., 2004), and Flowers (Nilsback
& Zisserman, 2008). Tab. 5 shows the results. We also report the results of linear classification
models for a comprehensive comparison. We can observe that TWIST performs competitively on
these datasets. In some datasets, TWIST achieves improvements over 1%. TWIST outperforms the
supervised models on seven out of eleven datasets. We also observe that our method shows more
advantages over other methods in the fine-tune setting.

Table 5: Transfer learning results on eleven datasets, including linear evaluation and fine-tuneing.

Method Food Cifar10 Cifar100 Sun397 Cars Aircraft VOC DTD Pets Caltech Flowers

Linear evaluation:
SimCLR 68.4 90.6 71.6 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
BYOL 75.3 91.3 78.4 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SUP 72.3 93.6 78.3 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7
TWIST 78.0 91.2 74.4 66.8 55.2 53.6 85.7 76.6 91.6 91.1 93.4

Fine-tune:
Random 86.9 95.9 80.2 53.6 91.4 85.9 67.3 64.8 81.5 72.6 92.0
SimCLR 87.5 97.4 85.3 63.9 91.4 87.6 84.5 75.4 89.4 91.7 96.6
BYOL 88.5 97.8 86.1 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0
SUP 88.3 97.5 86.4 64.3 92.1 86.0 85.0 74.6 92.1 93.3 97.6
TWIST 89.3 97.9 86.5 67.4 91.9 85.7 86.5 76.4 94.5 93.5 97.1

Object Detection and Instance Segmentation: We evaluate the learned representations of TWIST
on object detection and instance segmentation. We conduct experiments on Pascal VOC (Evering-
ham et al., 2009) and MS COCO (Lin et al., 2014), following the procedure of Tian et al. (2020).
We use the Feature Pyramid Network (FPN) (Lin et al., 2017) as the backbone architecture. For Pas-
cal VOC, we use the Faster R-CNN (Ren et al., 2015) as the detector, and for MSCOCO, we follow
the common practice to use the Mask R-CNN (He et al., 2017) as the detector. In implementation,
we use Detectron2 (Wu et al., 2019), with the same configurations as Tian et al. (2020) and Wang
et al. (2021). Tab. 11 shows the results. We can see that TWIST performs better on all three tasks,
demonstrating the advantages of using TWIST as the pre-trained model in object detection and in-
stance segmentation. Besides, we find that the FPN architecture is important for the category-level
self-supervised learning methods to achieve good performance. Analysis is given in Appendix.

Table 6: Object detection and segmentation results. †means that we download the pre-trained models
and conduct the experiments. For the VOC dataset, we run five trials and report the average. The
performance is measured by Average Precision (AP). DC-v2 denotes the DeepCluster-v2.

Method VOC07+12 detection COCO detection COCO instance seg
APall AP50 AP75 APbb

all APbb
50 APbb

75 APmk
all APmk

50 APmk
75

Moco-v2 56.4 81.6 62.4 39.8 59.8 43.6 36.1 56.9 38.7
SimCLR † 58.2 83.8 65.1 41.6 61.8 45.6 37.6 59.0 40.5
SwAV 57.2 83.5 64.5 41.6 62.3 45.7 37.9 59.3 40.8
DC-v2 † 57.0 83.7 64.1 41.0 61.8 45.1 37.3 58.7 39.9
DINO † 57.2 83.5 63.7 41.4 62.2 45.3 37.5 58.8 40.2
DenseCL 56.9 82.0 63.0 40.3 59.9 44.3 36.4 57.0 39.2
TWIST 58.1 84.2 65.4 41.9 62.6 45.7 37.9 59.7 40.6
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Table 7: Results on semantic segmentation with different
architectures. All results are averaged over five trials.

Method FCN-FPN DeepLab-v3
VOC Cityscapes VOC Cityscapes

Rand init 37.9 62.9 49.5 68.3
Sup 67.7 75.4 76.6 78.6
Moco-v2 67.5 75.4 72.9 78.6
SimCLR 72.8 74.9 78.5 77.8
SwAV 71.9 74.4 77.2 77.0
DC-v2 72.1 73.8 76.0 76.2
DINO 71.9 73.8 76.4 76.2
TWIST 73.3 74.6 77.3 76.9

Semantic Segmentation: We also eval-
uate TWIST on semantic segmentation,
using FCN (Long et al., 2015) and
DeepLab v3+ (Chen et al., 2017) as ar-
chitectures. We use the MMSegmenta-
tion (Contributors, 2020) to train the ar-
chitectures. Tab. 7 shows the results on
Pascal VOC (Everingham et al., 2009)
and Cityscapes (Cordts et al., 2016).
The results indicate that TWIST is com-
petitive to other state-of-the-art meth-
ods.

5 ABLATION STUDY
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Figure 3: We show the statistical characteristics of the output before softmax operation with and
without NBS in (a),(b) and (c), and the loss change for each term, in (d),(e) and (f).

Table 8: Ablation study on NBS.
NBS Loss ACC NMI stdc stdr

! -5.05 70.6 59.0 2.37 1.12
% -3.78 65.5 47.0 0.26 1.14

Batch Normalization before Softmax: We study the
impact of the batch normalization before softmax (ab-
breviated as NBS in Tab. 8). From the loss values, we
can see that the model with NBS is optimized much
better than the model without NBS. NBS brings 5.1%
top-1 accuracy improvement and 12% NMI improvement on ImageNet, demonstrating the effective-
ness of NBS. To better understand how NBS works, we look at the behaviors of the models with and
without NBS. Fig. 3 (a) and (b) show the row and column standard deviations of the output before
softmax (input of BN for the NBS model). Although the intermediate processes are different, the
row standard deviations are closing when training is finished. For the column deviations, it is not the
case. The column standard deviation of NBS model is much larger than the model without NBS at
the end of the training, indicating that the samples in the same batch tend to give similar predictions.
This is also reflected in Fig. 3 (f), from which we see that the diversity term of the model with NBS
is better optimized than the model without NBS. The observation indicates that the model without
NBS tends to be column-collapsed. Although the solution is not fully collapsed, it tends to output
similar predictions for samples in a mini-batch. NBS can successfully avoid the degenerated solu-
tion because batch normalization will force the standard deviation of each column to be one. Fig. 3
(c) shows the magnitude and stability of the gradients from the optimization perspective.

Impact of Loss Terms: The loss of TWIST consists of three terms. We test the impact of these terms.
As shown in Tab. 9, the models trained without the sharpness term generate collapsed solutions:
The entropy for each sample is as large as the entropy of a uniform distribution, and the gradient
magnitude rapidly decreases to 0. In contrast, the models trained without the diversity term do not
generate collapsed solutions, but their performances deteriorate significantly. Theoretically, models
trained without the diversity term will also lead to collapsed solutions, i.e., outputting the same one-
hot distributions. However, the batch-normalization before the softmax operation helps avoid the

8
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Table 9: Ablation study on the loss terms. Here Ls and Ld
denote the sharpness and diversity term respectively. |g| de-
notes the mean magnitude of gradients before the last batch
normalization and “acc” is the linear accuracy.

Ls Ld value of Ls value of Ld |g| acc

% % 8.28 8.28 0 0.1
% ! 8.27 8.28 0 0.1
! % 2.59 6.42 0.01 56.1
! ! 1.51 7.87 0.02 70.9

Table 10: Ablation study on
multi-crop and self-labeling. We
report the linear accuracy.

multi-crop self-labeling acc

! ! 75.5
! % 74.0
% ! 73.8
% % 72.6

problem because it can separate the probabilities in different columns and force them to have a unit
standard deviation. Therefore, all three terms are indispensable for TWIST.

Multi-crop and Self-labeling: Tab. 10 shows the ablation results on multi-crop and self-labeling,
where the models are trained for 800 epochs. We observe that the multi-crop and self-labeling can
improve the performance respectively, and the best result comes from the combination of both two
techniques.
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Figure 4: (a) Effect of different numbers of classes in TWIST. (b) Effect of different training epochs
in TWIST, where ”mc” denotes multi-crop and ”sl” denotes self-labeling.

Number of Classes: We show the impact of class number C in Fig. 4 (a). To make a comprehensive
evaluation, we show the results of TWIST with and without multi-crop. The models are trained by
setting the number of classes from 1000 to 32768. With multi-crop, TWIST performs best when the
number of classes is 4096. Overall, the performances are quite stable and fluctuate within the range
of 1%, particularly when without multi-crop and C >= 2048.

Training Epochs: Fig. 4 (b) shows the performances of training TWIST with different epochs.
Training longer improves the performance of TWIST model without multi-crop, while has less im-
pact on the TWIST model with multi-crop (when the training epochs > 400).

6 CONCLUSION

In this paper, we have presented a novel self-supervised approach TWIST. With a single loss func-
tion, our method can learn to classify images without labels, reaching 40.6% top-1 accuracy on
ImageNet. The learned representations can be used in a wide range of downstream tasks to achieve
better results than existing state-of-the-art methods, including linear classification, semi-supervised
classification, transfer learning, and dense prediction tasks such as object detection and instance seg-
mentation. TWIST is very simple and do not rely on any clustering tools, making it easy to imple-
ment. There are many topics worth exploring in future work such as extensions to other modalities,
and applications of TWIST to larger datasets.
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A IMPLEMENTATION DETAIL

A.1 PRE-TRAINING

We add a non-linear projection head connected behind the backbone (Chen et al., 2020a; Grill et al.,
2020). The projection head is an MLP consisting of three layers with dimensions of 4096−4096−C.
The first two layers of the projection head are followed by a batch normalization layer and rectified
linear units. After the projection head, we add a batch-normalization layer without affine parameters
and a softmax operation to calculate the final probability distributions. For multi-crop, we set the
global scale to (0.4, 1.0) and local scale to (0.05, 0.4). For CNN backbones, we use 12 crops. For
ViT backbones, we use 6 crops.

For self-labeling, we choose the samples in a mini-batch whose classification confidence (the maxi-
mum of softmax output) is larger than a predefined threshold. In practice, we use a cosine annealing
schedule to choose the top 50% to 60% confident samples. We then use the chosen samples to
generate labels for the subsequent fine-tuning process. For augmentation, we use multi-crop aug-
mentations same as the regular training setting, except for that we change the global crop scale to
(0.14, 0.4) and the local crop scale to (0.05, 0.14). We use the predictions of global crops as labels
to guide the learning of local crops.

To train CNN backbones, we use LARS optimizer (You et al., 2017) with a cosine annealing learning
rate schedule (Loshchilov & Hutter, 2016). We use a batch-size of 2048 splitting over 16 Tesla-V100
GPUs for ResNet50, and a batch-size of 1920 splitting over 32 Tesla-V100 GPUs for ResNet50×2.
The learning rate is set to 0.5× BatchSize /256. The weight decay is set to 1.5e-6. The computation
and memory costs are mainly from the multi-crop augmentations. For model without multi-crop, it
can use 8 Tesla-V100 GPUs to achieve 72.6% top-1 linear accuracy on ImageNet.

For ViT backbones, we use the momentum encoder. The momentum is set to a variable value raised
from 0.996 to 1 with a cosine annealing schedule. We change the weight of the three different terms
of TWIST loss. Specifically, we set the coefficient as 1.0, 0.4, 1.0 for the consistency term, sharpness
term and diversity term, respectively. The optimizer is AdamW (Loshchilov & Hutter, 2017). We
use a batch-size of 2048 splitting over 32 Tesla-V100 GPUs. The learning rate is set to 0.0005×
BatchSize /256. The weight decay is set to 0.05.

B DISTRIBUTION VISUALIZATION

In this section, we will give visualizations to show how TWIST learns meaningful predictions. Fig.
6 shows the evolution of the softmax output when optimizing the TWIST loss (we set B = C = 64
for demonstration). We can see that the predictions become more deterministic and diverse, and the
predictions of two views are more consistent.

To give a more clear demonstration, we only optimize the sharpness term and the diversity term, and
setB = C = 8. Fig. 5 shows the visualization. We could clearly see the evolution of the predictions
(The largest value is not 1 because of the batch normalization before softmax operation).
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Figure 5: Evolution of the predictions for one view. We set B = C = 8 to give a clear demonstra-
tion.
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Figure 6: Evolution of the predictions for both two views. We set B = C = 64.

C PYTORCH-LIKE PSEUDO CODE

We give the PyTorch-like pseudo code, shown in Algorithm 1.

Algorithm 1 Pseudocode of TWIST in a PyTorch-like style.
1: # eps = 1e-7
2: # Definition of TWIST loss.
3: def twist loss(p1, p2, alpha=1, beta=1):
4: # calculate the consistency term: KL-divergency
5: kl div = ((p2 * p2.log()).sum(dim=1) - (p2 * p1.log()).sum(dim=1)).mean()
6: # calculate the sharp term: mean entropy
7: mean entropy = - (p1 * (p1.log() + eps)).sum(dim=1).mean()
8: # calculate the uniform term: entropy mean
9: mean prob = p1.mean(dim=0)

10: entropy mean = - (mean prob * (mean prob.log() + eps)).sum()
11: return kl div + alpha * mean entropy - beta * entropy mean
12: # f: encoder network.
13: # bn: batch normalization operation, with no affine parameter.
14: # B: batch-size.
15: # C: class number, hyper-parameter.
16: for x in loader do:
17: x1 = aug(x)
18: x2 = aug(x)
19: feat1 = f(x1) # feat1: B × C
20: feat2 = f(x2) # feat2: B × C
21: p1 = softmax(bn(feat1), dim=1) # p1: B × C
22: p2 = softmax(bn(feat2), dim=1) # p2: B × C
23: # symmetric twist loss loss
24: loss = (twist loss(p1, p2) + twist loss(p2, p1)) * 0.5
25: loss.backward()
26: update(f.params)
27: end for

D VISUALIZATION OF SIMILARITY

Fig. 7 shows the similarities of features sampling from the same or different classes of ImageNet.
Specifically, we collect the outputs of the last convolutional layer as features, and calculate the sim-
ilarities. For positive samples, we sample two images from the same ImageNet class. For negative
samples, we sample two images from different ImageNet classes. We then l2-normalize the features
and calculate the similarities of positive/negative samples. The similarity distributions are shown in
Fig. 7. We compare TWIST with SimCLR, SwAV and Supervised models. From Fig. 7, we observe
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TWIST
Twist
Twist

Figure 7: The distributions of positive/negative similarities. IoU is the area of overlap between
positive and negative distributions.

that the postive distributions and the negative distributions of TWIST are more separable than other
self-supervised methods.

E MORE RESULTS AND ANALYSES ON DENSE TASKS.

Table 11 shows the object detection performance on Pascal VOC and COCO datasets and the in-
stance segmentation performance on COCO. We compare different architectures, namely C4 and
FPN. From Table 11, we find some interesting phenomenons. (1) With architectures using feature
pyramid network, TWIST achieves state-of-the-art results. Clustering-based methods also perform
pretty well. (2) For C4 architectures, TWIST and clustering-based methods perform worse than
contrastive learning methods like MoCo-v2.

We thought the reason of the above phenomenons is that the classification-based methods (TWIST
and clustering-based methods) tend to capture category-level invariances instead of instance-level
invariances, which makes the outputs of the last convolutional layer discard intra-class variations that
is useful for dense predictive tasks. When using FPN-based detectors, features of different layers are
combined to compensate for the discarded information from the last layer. Less work concentrates
on the effect of the intermediate layers of self-supervised models, while we find the intermediate
features may preserve useful information for dense tasks. When using the FPN detectors, TWIST
even outperforms those self-supervised methods designed specifically for the dense tasks, such as
DenseCL (Wang et al., 2021), i.e., +1.6 AP on COCO detection.

We find the similar phenomenon on semantic segmentation, shown in Table 12. We give results of
semantic segmentation with different architectures. The FCN architecture has no fusion of different
layers, while FCN-FPN and DeepLab v3+ have the fusion operation. From Table 12, we could ob-
serve that when combining with feature pyramid network, our method achieves best or competitive
results. Without fusion of different layers of features, TWIST and other clustering-based models
perform worse than contrastive learning methods.
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Table 11: Object detection and instance segmentation results with different architectures. For meth-
ods marked with †, we download the pre-trained models and run the detection and segmentation by
ourselves. We report results both with C4 architecture and FPN architecture. For VOC dataset, we
run 5 times and report the average.

Method VOC07+12 det COCO det COCO instance seg
APall AP50 AP75 APbb

all APbb
50 APbb

75 APmk
all APmk

50 APmk
75

C4
Sup 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2
Moco-v2 57.4 82.5 64.0 39.3 58.9 42.5 34.4 55.8 36.5
SimCLR † 57.0 82.4 63.5 38.5 58.5 41.7 33.8 55.1 36.0
SwAV 56.1 82.6 62.7 38.4 58.6 41.3 33.8 55.2 35.9
DINO † 55.2 81.8 61.3 37.4 57.8 40.0 33.0 54.3 34.9
DC-v2 † 54.2 81.6 59.9 37.0 57.7 39.5 32.8 54.2 34.4
SimSiam 57 82.4 63.7 39.2 59.3 42.1 34.4 56.0 36.7
BarlowTwins 56.8 82.6 63.4 39.2 59.0 42.5 34.3 56.0 36.5
TWIST 55.3 82.2 61.2 38.0 58.4 40.8 33.5 54.9 35.5

FPN
Moco-v2 56.4 81.6 62.4 39.8 59.8 43.6 36.1 56.9 38.7
SimCLR † 58.2 83.8 65.1 41.6 61.8 45.6 37.6 59.0 40.5
SwAV 57.2 83.5 64.5 41.6 62.3 45.7 37.9 59.3 40.8
DC-v2 † 57.0 83.7 64.1 41.0 61.8 45.1 37.3 58.7 39.9
DINO † 57.2 83.5 63.7 41.4 62.2 45.3 37.5 58.8 40.2
DenseCL 56.9 82.0 63.0 40.3 59.9 44.3 36.4 57.0 39.2
TWIST 58.1 84.2 65.4 41.9 62.6 45.7 37.9 59.7 40.6

Table 12: Semantic segmentation with different architectures. All results are averaged over 5 trials.

Method FCN FCN-FPN DeepLab-v3
VOC Cityscapes VOC Cityscapes VOC Cityscapes

Rand init 40.7 63.5 37.9 62.9 49.5 68.3
Sup 67.7 73.7 70.4 75.4 76.6 78.6
Moco-v2 67.5 74.5 67.5 75.4 72.9 78.6
SimCLR † 68.9 72.9 72.8 74.9 78.5 77.8
SwAV 66.4 71.4 71.9 74.4 77.2 77.0
DC-v2 † 65.6 70.8 72.1 73.8 76.0 76.2
DINO † 66.0 71.1 71.9 73.8 76.4 76.2
TWIST 66.7 71.5 73.3 74.6 77.3 76.9
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Figure 8: Randomly chosen classes. We randomly choose 24 classes for visualization. For each
class, we randomly choose 25 pictures to display. Note we did not make any selections on the
pictures or the categories, all the categories and images are randomly chosen to give readers the
accurate impression.
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F EXAMPLES FOR UNSUPERVISED CLASSIFICATION

To give readers a qualitative impression on the performance of unsupervised classification, we dis-
play the top-5 predictions of some randomly selected pictures, shown as follows. Specifically, the
labels are mapped to the labels in ImageNet by Kuhn–Munkres algorithm. Note that the labels are
only used to map our predictions to the meaningful ImageNet label descriptions, we do not use
any label to participate in the training process.

guacamole

cheeseburger

carbonara

chocolate sauce

American lobster

0.005

0.007

0.010

0.044

0.808

ground-truth: American lobster

seashore

stone wall

rapeseed

yurt

megalith

0.000

0.000

0.000

0.001

0.968

ground-truth: megalith

grocery store

custard apple

cucumber

head cabbage

broccoli

0.000

0.000

0.000

0.000

0.993

ground-truth: broccoli

china cabinet

vending machine

refrigerator

comic book

beer bottle

0.001

0.002

0.016

0.126

0.680

ground-truth: pop bottle
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Tibetan mastiff

guenon

Norfolk terrier

wire-haired fox terrier

Border terrier

0.006

0.054

0.139

0.164

0.253

ground-truth: Lakeland terrier

restaurant

theater curtain

organ

altar

vault

0.000

0.000

0.002

0.048

0.910

ground-truth: church

chickadee

vulture

birdhouse

junco

indigo bunting

0.000

0.000

0.001

0.029

0.890

ground-truth: house finch

lifeboat

schooner

liner

steel arch bridge

fireboat

0.000

0.000

0.000

0.000

0.989

ground-truth: fireboat

jackfruit

hip

bell pepper

chickadee

yellow lady's slipper

0.000

0.000

0.000

0.000

0.994

ground-truth: yellow lady's slipper
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