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Abstract

The inherent ambiguity of cause and effect001
boundaries poses a challenge in evaluating002
causal event extraction tasks. Traditional met-003
rics like Exact Match and BertScore poorly004
reflect model performance, so we trained evalu-005
ation models to approximate human evaluation,006
achieving high agreement. We used them to per-007
form Reinforcement Learning with extraction008
models to align them with human preference,009
prioritising semantic understanding. We suc-010
cessfully explored our approach through multi-011
ple datasets, including transferring an evaluator012
trained on one dataset to another as a way to de-013
crease the reliance on human-annotated data. In014
that vein, we also propose a weak-to-strong su-015
pervision method that uses a fraction of the an-016
notated data to train an evaluation model while017
still achieving high performance in training an018
RL model.1019

1 Introduction020

Causal event extraction is a crucial task in natu-021

ral language understanding. It involves identifying022

cause and effect clauses within an event and the023

relationship between them. An example text along024

with its causal event annotations from the Fine-025

grained Causal Reasoning (FCR) dataset (Yang026

et al., 2022) is shown in Figure 1. The emergence027

of powerful generative models leads to a shift from028

span-based extraction to the generation of struc-029

tured information (Guo et al., 2023; Sainz et al.,030

2023). However, recent studies suggest that Chat-031

GPT (OpenAI, 2023) struggles to surpass smaller032

supervised models (Han et al., 2023), even when033

augmented with Chain-of-Thought (CoT) (Wei034

et al., 2022b) and few-shot In-Context Learning035

(ICL) (Brown et al., 2020).036

We focus on fine-tuning smaller language mod-037

els using text annotated with causal and effect spans038

for causal event extraction. However, we observe039

1Our code is available at https://github.com/...

Source Text
The firm’s gross margin is set to stabilize as Harley refocuses its
efforts on more profitable markets, and our base case assumes
that it stabilizes around 32% in 2029, helped by a more mea-
sured approach to entering new markets.

Gold Extraction
Cause: Harley refocuses its efforts on more profitable markets
Effect: The firm’s gross margin is set to stabilize
Relation: cause

Figure 1: Example instance from the Fine-grained
Causal Reasoning (FCR) dataset.

that unlike traditional named entity recognition, 040

where entities have clear and often unambiguous 041

boundaries, cause or effect spans may include in- 042

termittent text and could have blurred word bound- 043

aries. This means that even with minor word omis- 044

sions, the semantic meaning of the cause and effect 045

spans remains the same. Consequently, the same 046

text could have multiple valid annotations. There- 047

fore, training supervised models based on strictly 048

matching only one set of valid human annotations 049

may result in less robust models. 050

Evaluating causal event extraction is not straight- 051

forward. Evaluation metrics based on direct token- 052

level overlapping tend to neglect semantically valid 053

variations. Recent studies show that they do not 054

align well with human evaluations (Han et al., 055

2023). This issue could be exaggerated under the 056

generative settings (Qi et al., 2023). While Large 057

Language Models (LLMs) are considered an al- 058

ternative in evaluating the generation tasks due to 059

their flexibility and ability to capture high-level se- 060

mantics, discrepancies still exist between GPT-3.5 061

evaluation outputs and human evaluations, so hu- 062

man evaluators remain crucial to provide reliable 063

feedback (Min et al., 2021), despite the high cost. 064

To address the high expense of human evalua- 065

tion, we explore training evaluators for causal event 066

extraction to account for semantic variations. We 067

sample event extraction results from GPT-3.5 and 068

a fine-tuned FLAN-T5 (Chung et al., 2022) model, 069
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inviting human annotators to label the correctness070

of these extractions as ‘valid’ or ‘invalid’. These071

human evaluation results are then used to train an072

evaluator. Our experiments demonstrate that an073

evaluator trained on a subset of human evaluations074

from one dataset can be transferred to other datasets075

without losing alignment with the actual human076

evaluation results.077

Furthermore, we propose using the evaluator as078

a reward model to fine-tune the causal event ex-079

traction model, FLAN-T5, through reinforcement080

learning instead of traditional cross-entropy loss to081

prioritise semantic similarity over exact matching.082

The Policy Proximal Optimisation (PPO) (Schul-083

man et al., 2017) algorithm is used to align gener-084

ative models’ behaviours with human preferences.085

In this method, a reward model is first trained on086

human preference data and is used to produce feed-087

back scores, guiding the policy model to reinforce088

high scoring and penalise low-scoring generations.089

In this paper, we incorporate the trained evalua-090

tor as the reward model into PPO for causal event091

extraction. Our contributions are threefold:092

• We built a causal relation extraction platform093

to collect human evaluation data, which is then094

used to train an evaluator (i.e. a reward model). It095

shows a 0.94 correlation with human evaluations.096

• The reward model is integrated into the PPO al-097

gorithm for fine-tuning a FLAN-T5 model for098

causal event extraction. It achieves an average099

improvement of 4% across three datasets.100

• To decrease the reliance on human evaluations101

and ground-truth references, we propose a weak-102

to-strong framework to fully exploit data effi-103

ciency of our proposed approach. We succeeded104

in using 50% of the supervised data augmented105

by weak supervision with dynamic filtering as a106

reward model for RL training, obtaining compa-107

rable performance with the full reward model.108

2 Related Work109

We will introduce the recent work in causal ex-110

traction tasks, reward models for reinforcement111

learning, weakly-supervised reward models and112

data augmentation for generative models.113

2.1 Causal event extraction114

The goal of causal event extraction is to iden-115

tify and extract cause and effect events from116

an input text. Prior works focus on identi-117

fying relations between entities, often trigger118

words (Huguet Cabot and Navigli, 2021; Chen 119

et al., 2020; Ma et al., 2022). The works that fo- 120

cused on relations between events focus exclusively 121

on simple causal (Mirza and Tonelli, 2016; Mariko 122

et al., 2020) relations, with no fine-grained rela- 123

tions considered. 124

Existing works employed span-based extrac- 125

tion (Becquin, 2020) and sequence tagging (Saha 126

et al., 2022), but they are limited to single cause 127

and effect scenarios, with simple relations. How- 128

ever, the recent increase in generative models, such 129

as T5 (Raffel et al., 2020), GPT-3.5 and GPT- 130

4 (OpenAI, 2023) highlight another possibility. 131

They have shown the outstanding generalisation 132

to not only learn from IE training data through 133

fine-tuning (Paolini et al., 2021), but also extract 134

information in few-shot and even zero-shot sce- 135

narios relying solely on in-context examples or 136

instructions (Wei et al., 2022a; Wang et al., 2022a). 137

However, other works (Nasar et al., 2021; Zhou 138

et al., 2022) have shown deficiencies in scenarios 139

where there is a shortage of training data, an area 140

that has not been fully explored. 141

Traditional metrics such as exact match (EM) 142

and token F1 rely on the idea that a correct ex- 143

traction is one that completely matches the an- 144

notation. There are other automated metrics 145

such as ROUGE (Lin, 2004), BLEU (Papineni 146

et al., 2001), BLEURT (Sellam et al., 2020) and 147

BERTScore (Zhang et al., 2020) that attempt to 148

solve this problem, but we found them to not corre- 149

late well with human annotations. Our solution was 150

to train our own evaluation models so that they cor- 151

respond well with human evaluation. (Section 3). 152

2.2 Reward model in generative model 153

Reinforcement Learning through Human Feedback 154

(PPO) (Ouyang et al., 2022) has seen applica- 155

tions for instruction tuning (Shu et al., 2023; Lai 156

et al., 2023), controlled text generation (Castri- 157

cato et al., 2022; Shulev and Sima’an, 2024), sum- 158

marisation (Roit et al., 2023) and other generative 159

tasks (Cetina et al., 2021; Pang et al., 2023). How- 160

ever, to the best of our knowledge, it has not been 161

applied to causal event extraction as a mechanism 162

to combat the limitations of automated metrics. 163

Feedback acquisition is one of the significant com- 164

ponents, where humans or reward models assess 165

the quality of the base model’s responses to serve 166

as a supervision signal for generative models. 167

A critical aspect of this paradigm is to accu- 168

rately model human preferences, which involves 169
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the costly and time-consuming process of collect-170

ing feedback data. Therefore, many recent works171

focus on how to fully steer the capabilities of gener-172

ative models with minimum supervision (Yu et al.,173

2020; Otani et al., 2022).174

Several methods have improved LLMs by (self-)175

creating training data to augment fine-tuning. Self-176

Instruct (Wang et al., 2022b) is a method for177

self-instruction creation of prompts and responses,178

which can be used to improve a base LLM. Several179

approaches have also created training data by dis-180

tilling from powerful LLMs, and shown a weaker181

LLM can then perform well. For example, Al-182

paca (Taori et al., 2023) fine-tuned a Llama 7B183

model with text-davinci-003 instructions created in184

the style of self-instruct. Alpagasus (Chen et al.,185

2024) employed a strong LLM-as-a-Judge (Chat-186

GPT) to curate the Alpaca dataset and filter to a187

smaller set, obtaining improved results.188

3 Approximating Human Evaluation189

Automated metrics for the evaluation of generated190

text have limitations in aligning with human eval-191

uation. Metrics such as F1 score can measure the192

overlap between the gold standard extraction and193

model outputs, but fail to recognise the semantic194

aspects of such comparisons. In causal event extrac-195

tion, we often have situations where the output is196

different and has incomplete overlap with the gold197

standard but is nonetheless correct. Automated met-198

rics are unable to deal with these situations since199

they cannot account for semantic differences, such200

as when adding or removing words does not change201

the meaning of an extraction.202

One way to circumvent this issue is to em-203

ploy human annotators to evaluate model out-204

puts. While effective, it is expensive and time-205

consuming, severely limiting experimentation and206

the development of new approaches.207

To address these limitations, we propose to col-208

lect human feedback to train an evaluation model209

for high-quality feedback generation. The goal is to210

have an automated way to evaluate model outputs211

that approximates the judgement a human would212

have made without the time-consuming and expen-213

sive aspects of human evaluation.214

3.1 Human Feedback Collection215

Platform setup. We built a platform to collect hu-216

man annotations for causal-effect extraction tasks.217

For each sample, annotators are given the Source218

Text, Cause and Effect. For both Cause and Ef- 219

fect, we provide the Reference and Model Output. 220

Annotators are asked to make a binary decision on 221

whether the Model Output is a valid extraction for 222

the given source text, with a sample only being 223

valid if both Cause and Effect are correct. See 224

Section E (Appendix) for more details. 225

To enhance the generalisability of the annotation 226

data, we first apply two different generative models, 227

FLAN-T5 and GPT-3.5, to generate the cause and 228

effect results for evaluation. We remove instances 229

where the generated outputs are exact matches with 230

the reference, as those cases are trivial to evalu- 231

ate. The remaining generated outputs are organised 232

using our tagged template. Figure 2 shows an ex- 233

ample instance from the FinCausal (Mariko et al., 234

2020) dataset, including the Source Text, the Cause 235

and Effect spans, and the equivalent version in our 236

tagged format. 237

Source Text
It found that total U.S. health care spending would be about
$3.9 trillion under Medicare for All in 2019, compared with
about $3.8 trillion under the status quo. Part of the reason is
that Medicare for All would offer generous benefits with no
copays and deductibles, except limited cost-sharing for certain
medications .

Gold Extraction
Cause: Part of the reason is that Medicare for All would offer
generous benefits with no copays and deductibles, except limited
cost-sharing for certain medications.
Effect: It found that total U.S. health care spending would be
about $3.9 trillion under Medicare for All in 2019, compared
with about $3.8 trillion under the status quo.

Structured output (tagged format)
[Cause] Part of the reason is that Medicare for All would offer
generous benefits with no copays and deductibles, except limited
cost-sharing for certain medications. [Relation] cause [Effect]
It found that total U.S. health care spending would be about
$3.9 trillion under Medicare for All in 2019, compared with
about $3.8 trillion under the status quo.

Figure 2: An example instance from the FinCausal
dataset. Top to Bottom: Source text in original dataset,
Gold Standard Extraction, Structured output.

The gold standard extractions for cause and ef- 238

fect are formatted into the same structured output. 239

Finally, both the formatted model output and the 240

reference, along with the Source Text, are presented 241

to the annotators (shown in the following Exam- 242

ples). Our instructions for annotators primarily 243

address the shortcomings of the current evaluation 244

methods. We identify the two most common issues: 245

Wording Variation and Hallucination. 246

Pitfalls of Existing Evaluation Schema. Two 247

representative cases are shown below. GPT-3.5 was 248
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used as an evaluator. In both cases, GPT-3.5’s eval-249

uation results differ from those of human evaluators.250

The evaluator errors for Wording Variation always251

occur in the span border, either adding some to-252

kens or removing some tokens. The Hallucination253

issue happens when the generative model copies254

the text correctly but generates incorrect numbers255

and symbols. These examples illustrate how even256

a competent model struggles to reproduce human257

responses, motivating the need for a specialised258

evaluation method.259

Example 1
Source Text: Our near-term earnings forecast is depressed due to the
incorporation of crack spread futures curves despite a recent uptick.

Reference: [Cause] the incorporation of crack spread futures curves
despite a recent uptick [Relation] cause [Effect] Our near-term
earnings forecast is depressed.

Output: [Cause] the incorporation of poor crack spread futures
curves [Relation] cause [Effect] Our near-term earnings forecast is
depressed.

Evaluator: Invalid Human: Valid
260

Example 2
Source Text: Analyst Ratings This is a breakdown of recent ratings
and recommmendations for Auris Medical and Elite Pharmaceuticals,
as provided by MarketBeat.com. Auris Medical currently has a
consensus price target of $75.00, indicating a potential upside of
2,383.44

Reference: [Cause] Auris Medical currently has a consensus price
target of $75.00 [Relation] cause [Effect] a potential upside of
2,383.44%.

Output:[Cause] Auris Medical currently has a consensus price target
of $9.50 [Relation] cause [Effect] a potential upside of 655.21%
Evaluator: Valid Human: Invalid

261

Instructions For Human Annotators. To alle-262

viate the issues observed in the existing evaluation263

methods, we establish criteria for annotators. Only264

entries where both Cause and Effect satisfy all265

conditions should be considered as valid.266

• Wording may differ between Reference and267

Model Output. This is fine, as long as the Model268

tokens come from the source text.269

• There are no significant discrepancy between270

Model Output and Reference, such as numbers,271

subjects, time.272

• If Cause and Effect happened to be in the same273

sentence but not overlapping, make sure the to-274

kens in Cause are not included in the Effect and275

vice versa.276

• In the rare cases where the Reference is obvi-277

ously incorrect, ignore it and analyse the Model278

Output with relation to the source text only.279

3.2 Alignment with Human Feedback280

We conducted human evaluation on the extraction281

results from GPT-3.5 (10-shot) and FLAN-T5 on282

the training sets of the three datasets: FCR (Yang 283

et al., 2022), FinCausal (Mariko et al., 2020) and 284

SCITE (Li et al., 2021).2 The Cohen’s Kappa is 285

0.75, 0.51 and 0.84 for FCR, FinCausal and SCITE, 286

respectively, showing a good level of agreement 287

between annotators on all datasets. 288

We use the extraction results from GPT-3.5 (10- 289

shot) and FLAN-T5 to train evaluation models by 290

obtaining human evaluations for the outputs of the 291

training sets for FCR and FinCausal. These human- 292

evaluated outputs were then used to train the eval- 293

uation models, while the development set outputs 294

were used to evaluate their performance3, with the 295

guiding metric being agreement between evaluator 296

outputs and the human annotation (Zheng et al., 297

2023). Our goal is for these trained evaluators to 298

approximate human judgement so we can use them 299

as proxies for human evaluation in our experiments. 300

Our evaluation model is the DeBERTa-v3- 301

based (He et al., 2022) classifier, specifically the 302

xsmall variant, which we call DeBERTa-Valid. It 303

takes both the source text and the gold standard 304

extraction as inputs, along with the model output, 305

to produce a classification. It is a binary classifier, 306

with the positive class referring to ‘valid’ examples 307

and the negative class to ‘invalid’. We also explore 308

variations of the DeBERTa classifier: 309

• DeBERTa-Entailment: an instance is considered 310

correct if there is an entailment between the ex- 311

tracted output and the original source text. Its 312

inferior performance shows its inefficiency in 313

evaluating the generated cause/effects. 314

• DeBERTa-Valid variants: one variant excludes 315

the reference extraction, and another excludes 316

the source text. The poor performance of the vari- 317

ant without the reference shows its importance 318

to our evaluator. Notably, the version without 319

the source text also shows decreased agreement, 320

indicating that the evaluator still needs it, as the 321

references are not always reliable. 322

In addition, we use GPT-3.5 with or without 323

self-consistency as additional automated evaluators 324

for the causal event extraction task. To verify the 325

effectiveness of our trained evaluator models, we 326

calculate the agreement between our evaluator out- 327

puts and human evaluations on the development set, 328

along with categorical metrics such as Exact Match 329

in Table 1. We also examine the correlation be- 330

2Dataset statistics are shown in Table 4.
3We did not train an evaluator on SCITE because the num-

ber of training samples is too small.
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tween continuous metrics commonly used to eval-331

uate extraction results, such as F1 and BertScore,332

and human evaluations. Pearson correlation results333

are shown in Tables 2. In both tables, we observe334

the low scores of existing automated metrics, high-335

lighting their inability to replicate human evalu-336

ations. In contrast, our trained DeBERTa-based337

model achives higher agreement and correlation338

scores.339

The results lead to the following observations:340

(a) automatic metrics do not align well with hu-341

man evaluation. (b) LLMs demonstrate simi-342

lar results to SentenceTransformer (Reimers and343

Gurevych, 2019) (SentTF), even with advanced344

prompting techniques, such as CoT and Self-345

Consistency (Wang et al., 2022a). (c) Supervised346

classification models (DeBERTa-*) perform the347

best. The inclusion of the reference is particularly348

crucial, which allows the reward model to achieve349

near-complete agreement with human evaluation.350

We use DeBERTa-Valid, the best-performing351

model, as our proxy for human evaluation and the352

primary reward model in the following sections.353

Metric T5 GPT-3.5
(10-shot)

Exact Match 55.60 72.04

GPT-3.5 64.85 35.88
GPT-3.5-SELF-CONSISTENCY 85.58 77.92

DeBERTa-entailment 68.61 43.19
DeBERTa-Valid-w/o-Reference 65.03 35.98
DeBERTa-Valid-w/o-SourceText 92.51 82.47
DeBERTa-Valid 94.08 86.26

Table 1: Agreement between human annotations and
different metrics/evaluators on FCR (continuous metrics
omitted). Various metrics are used to evaluate causal
event extraction results from T5 and GPT-3.5 (10-shot)

Metric T5 GPT-3.5 (10-shot)

ROUGE-L 80.94 67.15
BLEU 76.73 66.46
BLEURT 77.93 68.63
BertScore 75.94 65.83
F1 80.61 65.64

SentTF 63.70 47.53

DeBERTa-Valid 87.04 72.98

Table 2: Pearson correlation between human evaluations
and different metrics/evaluators on FCR.

Transfer to other datasets. While using human 354

evaluation to train an evaluation model leads to 355

high-performing evaluators, this approach can be 356

costly, especially for large datasets. We propose an 357

alternative: train an evaluation model in one dataset 358

and transfer it to others with similar structure. This 359

is supported by the agreement between different 360

combinations of evaluators and datasets, as shown 361

in Table 3. We observe high agreement between the 362

FCR evaluator and the transferred datasets’ human 363

evaluations, demonstrating the evaluator’s transfer- 364

ability. As a result, we use the FCR evaluator as the 365

default reward model and the evaluator for causal 366

event extraction in our experiments. 367

Source i → Target j

FCR FinCausal SCITE

FCR 94.08 92.04 96.86
FinCausal 73.57 91.58 88.48

Table 3: Agreement between the feedback generated by
the reward model trained on dataset i and human evalu-
ation, when applying this model to generate feedback
for dataset j4.

4 Causal Event Extraction with Weak 368

Reward Model 369

In this section, we introduce our Reinforcement 370

Learning (RL) framework designed to align our 371

generative extractor with human preferences. We 372

also describe our process for training a weakly su- 373

pervised reward model, which aims to minimise 374

the data needed for train the reward model. 375

4.1 Reinforcement Learning for Cause Event 376

Extraction 377

Our goal is to leverage the feedback from the 378

trained evaluator described in Section 3 to improve 379

the generative extractor to be better aligned with 380

human preferences. See Figure 3 for an overview 381

of our method. 382

We initialise an RL policy from the FLAN-T5 su- 383

pervised fine-tuned extractor (our reference model). 384

It takes as input the source text and generates a 385

structured output representing the cause and effect 386

using our tagged format (Figure 2). Both input 387

and output are sequences of tokens from the model 388

vocabulary, which represents the action space. The 389

policy itself is a probability distribution over the 390

4Because SCITE is a small dataset, we could not train an
effective evaluator with it. See Table 4 for dataset statistics.
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Output

Extractor

Reward

Evaluator

Source 
Text

Gold 
Extraction

Figure 3: Architecture of our RL framework. PPO is
used to optimise the extractor given the reward from the
evaluator.

action space conditioned on the input tokens from391

the source text.392

The RL objective is to find the optimal policy393

that maximises the reward. Our reward is generated394

by the evaluation model described in Section 3. It395

takes as input the source text, the gold standard396

extraction and the output from the RL policy, gen-397

erating a scalar score. This is done at the sequence398

level, as a complete extraction is needed to deter-399

mine the validity of the policy’s output. Therefore,400

the score indicates whether the RL-generated ex-401

traction is valid, relative to the source text and the402

gold standard.403

In addition to the reward model, we calculate the404

Kullback-Leibler (KL) divergence to measure the405

disparity between our policy and reference mod-406

els. This helps us regulate the policy’s ability to407

maintain the structured output format and prevent408

it from forgetting how to extract causes and effects.409

The final loss is a combination of the reward score410

and the KL divergence. We use the Proximal Policy411

Optimisation (PPO) algorithm to update the policy412

parameters by optimising this loss. During training,413

only the policy parameters are updated, while the414

reference and reward models are frozen.415

4.2 Training a Weak Reward Model using416

Semi-Supervised Learning417

Our approach works well but relies on the perfor-418

mance of the reward model. While we have trained419

a robust reward model, we explored scenarios with420

more limited data. To investigate this, we designed421

a weak-to-strong supervision process where we422

used a small portion of our dataset to train the eval-423

uator, treating the remaining data as unlabelled for424

further improvements.425

We randomly sampled x% of our training data, 426

where x is a hyperparameter. We first trained a De- 427

BERTa classifier reward model on the x% data. We 428

then used this classifier to generate labels for the 429

remaining data. To gauge the model’s confidence 430

in each example, we applied softmax to its outputs 431

and retained only those examples where the pre- 432

dicted class probability ranked in the top 75% sep- 433

arately for each class (’valid’ and ’invalid’). This 434

ensured an equal proportion of ’valid’ and ’invalid’ 435

weak labels. Next, we combined these filtered ex- 436

amples with the original partial dataset to create 437

the final weakly-supervised dataset, and trained a 438

new DeBERTa model using this dataset. 439

Once we obtained a weakly-supervised reward 440

model, we integrated it into our RL process to de- 441

velop an RL-trained model. We then compared the 442

performance of this new model with the original 443

RL model trained with the full reward model. We 444

find that the weakly-supervised RL model has com- 445

petitive performance with the original RL model, 446

demonstrating the effectiveness of our method. 447

5 Experiments 448

Datasets. We employ three causal extraction 449

datasets: FCR, FinCausal and SCITE. Table 4 450

shows statistics about them regarding the number 451

of examples in each split. Figure 2 shows an exam- 452

ple. Table A1 (Appendix) shows more information. 453

Each entry contains an input context, cause and 454

effect spans. These are converted to our tagged 455

format, which represents the relations textually. 456

Dataset Number of examples
Train Dev Test

FCR 19892 2482 2433
FinCausal 3397 641 817
SCITE 1078 191 -

Table 4: Dataset statistics.

Inplementation and Metrics. We use FLAN- 457

T5-Large as our policy model and DeBERTa-v3- 458

xsmall trained on human annotation data as our 459

reward model (Section 3). For evaluation, we ob- 460

tained the formatted outputs from FLAN-T5-Large 461

and gave them to our Human Proximal evaluator5, 462

along with the references and source text. We also 463

5This is the DeBERTa-Valid model trained with FCR de-
fined in Section 3
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include automatic metrics such as Exact Match,464

Precision, Recall and F1 for comparison.465

Baselines. We compare with another extractive466

IE model, Seq-tagging, which is a sequence la-467

belling model to predict cause/effect BIO labels for468

each token. For the generative IE models, we com-469

pare with our backbone model FLAN-T5-Large.470

We also compare with the commercial large lan-471

guage models GPT-3.5 and GPT-4, both prompted472

with a structure generative format, using in-context473

learning. We also report metrics from the original474

dataset papers (Yang et al., 2022; Mariko et al.,475

2020; Li et al., 2021).476

5.1 Main results477

Table 5 shows the causal relation extraction results478

of various models across three datasets. We see479

that GPT-3.5 and GPT-4 underperform, along with480

the other baselines, such as sequence tagging.481

Our models perform much better, with the RL482

variant achieving an improvement over the SFT483

version. This includes both automated metrics and484

our Human Proximal (Human Prox.) evaluator.485

Our Human Proximal evaluator is the trained486

metric described in Section 3, which approximates487

the human preference. We show that our super-488

vised models achieve big improvement over both489

baselines and GPT models, with the RL models490

further improving on them. As this happens on all491

three datasets, we establish the superiority of our492

approach over the baselines.493

5.2 Ablation results of our Reward model494

To analyse the effects of our reward model495

trained on the human annotation dataset, we496

replace it with two representative alternatives:497

an entailment-based Natural Language Inference498

model (Williams et al., 2018) and SentenceTrans-499

former (SentTF). Entailment represents whether500

the model output is a logical consequence of the501

input text, indicating the cause-effect relation. Sen-502

tenceTransformer is a pre-trained sentence embed-503

ding method, which we use to embed the gold504

extraction and model outputs, with the score be-505

ing their normalised cosine similarity. Our reward506

model achieves the best Human Proximal score507

across the three datasets (Figure 4).508

Tolerance to Wording Variance. Our reward509

model trained on the human annotation data cap-510

tures the high-level semantic overlapping between511

P R F1 EM Human
Prox.

FCR

GPT-3.5 74.07 70.23 67.64 33.99 47.02
GPT-4 74.53 69.27 64.70 28.24 39.66
FCR-Baseline - - 74.54 23.01 -
Seq-tagging 77.76 77.78 77.74 41.30 52.82
FLAN-T5-Large (SFT) 80.02 80.48 80.96 54.13 64.42
FLAN-T5-Large (RL) 82.85 82.03 81.23 55.58 68.29

FinCausal

GPT-3.5 57.76 56.11 61.58 17.32 52.73
GPT-4 63.35 61.92 66.58 26.99 55.85
FinCausal-Baseline 50.99 51.74 51.06 11.11 -
Seq-tagging 21.59 27.05 60.82 01.56 05.62
FLAN-T5-Large (SFT) 78.19 77.93 78.52 66.61 81.12
FLAN-T5-Large (RL) 88.60 88.70 88.64 64.74 84.40

SCITE

GPT-3.5 46.66 86.08 60.48 53.66 52.88
GPT-4 37.97 83.70 52.23 46.86 57.59
SCITE-Baseline 83.33 85.81 84.55 - -
Seq-tagging 92.94 92.25 92.59 88.48 91.10
FLAN-T5-Large (SFT) 92.29 91.73 92.01 87.43 90.58
FLAN-T5-Large (RL) 94.54 93.70 94.12 93.98 92.67

Table 5: Causal relation extraction results on three
datasets with automatic metrics and human evaluation
showing our RL method performs the best in all three
datasets.

Figure 4: Ablation results for reward model with Human
Proximal metric showing our reward model performs
the best.

gold extraction and model outputs. It is also capa- 512

ble of identifying the correctness of model outputs 513

through source text understanding. Therefore, we 514

use the "without EM (w/o EM)" metric to measure 515

the percentage of correctly generated samples that 516

are not exactly matched with the provided refer- 517

ence. This highlights the main improvement over 518

automated metrics, where we can recognise results 519

that are correct but would have otherwise been 520

marked as incorrect because of their inexact result, 521

showing clear advantages for our evaluator over 522

using Entailment or SentenceTransformer. 523
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5.3 Weak Supervision Evaluation524

The results in Table 2 show an evaluator model525

highly aligned with human preference data. How-526

ever, this requires a time-consuming and expensive527

process of manual annotation. To decrease the528

reliance on this process, we looked for ways to529

decrease the training set size.530

We chose the FCR-based DeBERTa-Valid evalu-531

ator from Section 3, as it showed the highest agree-532

ment with human evaluation and other datasets.533

We experimented with subsets of different sizes534

and evaluated their performances. The results (Fig-535

ure 5) show we can decrease the training set size536

with a small impact on the human agreement of the537

resulting evaluator. This motivated us to pursue a538

way to train a high-quality evaluator with less data.539

Our weak supervision process has three steps.540

First, we sample a random subset of the training541

data as our initial supervised dataset and use it to542

train a partial evaluator. Second, we apply this par-543

tial evaluator to the remaining data, which we treat544

as unsupervised. We obtain the weak classifica-545

tion labels and the confidence of the evaluator for546

each entry and use a filtering process to determine547

which ones to keep. Third, we combine the filtered548

entries with the original subset and train a final549

evaluator. Our filtering process separates the weak550

labels into positive and negative sets, and for each551

set, takes the top 75% entries by confidence, so the552

final filtered set has an equal number of positive553

and negative entries.554

Table 6 shows the results of our weak supervi-555

sion experiments. We experimented with different556

subset sizes and found that the 50% subset achieves557

the best performance in terms of the Human Prox-558

imal and w/o EM metrics. It also matches the559

performance of the Full RL model, showing we560

can successfully decrease the reliance on human-561

annotated data without a performance cost.562

Model P R F1 HumanProx. w/o EM ↑

SFT 80.02 80.48 80.96 64.42 10.29
Full RL 82.85 82.03 81.16 68.29 12.71
30% + weak 80.28 84.19 82.18 68.37 12.63
50% + weak 80.11 84.18 82.09 68.86 13.07
80% + weak 81.18 82.23 81.72 67.41 11.60

Table 6: RL with weakly-supervised models, showing
the weakly-supervised variants are able to match the
fully-trained model performance.

0.00

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation VS Percentage of Full Training Samples

Figure 5: Evaluator agreement with human annotation
by percentage of FCR data used.

6 Conclusion 563

We have explored several evaluation approaches 564

to address the inherent ambiguity of the causal 565

event extraction task. We find that using a gener- 566

ative model to perform extraction performs well, 567

but that evaluation with automated metrics is chal- 568

lenging. Our findings demonstrate the ability to 569

faithfully reproduce human evaluation results us- 570

ing a DeBERTa-based classifier trained on human 571

evaluation of extraction outputs. We also apply 572

the evaluator as a reward model to Reinforcement 573

Learning, further aligning our generative extractor 574

model to human preferences. 575

We explore multiple datasets, showing how our 576

approach can be generalised and employed our 577

trained evaluator in a transfer setting, reducing 578

the need for further annotation of new data. Fi- 579

nally, we propose a weak-to-strong approach where 580

we only use a subset of annotated data to train a 581

weakly-supervised evaluator that can match the per- 582

formance of the fully-trained version. 583

Limitations 584

The datasets we used are limited to ones where 585

the causes and effects are spans of the source text. 586

Our approach does not work well with datasets 587

where the events are instead represented by trigger 588

words, as is common in other datasets, or when the 589

answers are free text, not spans of the source text. 590

Another limitation is how we define the input 591

of our evaluation. We require the reference and 592

without it, the evaluator does not perform well. 593

This means we are limited to datasets where we 594

have such a reference, preventing us from applying 595

the evaluator to those with blind data where we 596

only have the source text. 597
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A Dataset Transformation875

Our chosen datasets come in different formats,876

which we must transform into our tagged format.877

FCR is a collection of JSON files, where each entry878

contains the text and character indices for the cause879

and effect spans. FinCausal contains semicolon-880

separated CSVs, where each entry contains the in-881

put text and each cause effect spans as text. SCITE882

comprises XML files, where each item is a tagged883

representation of the sentences and their spans.884

We convert them to a common format that is885

used as the base for all of our models: a tagged886

representation, shown in Figure 2. For FinCausal887

and SCITE, which do not contain relations like888

FCR does, we hard-code the Relation to ‘cause’.889

The original SCITE dataset has examples with890

more than one relation, which our models do not891

support. We opted to use only the first causal rela-892

tion for each example.893

B Further Dataset Statistics894

Table 4 in the main text shows the count of in-895

stances per dataset and split. We now show the896

average number of words for the source text, cause897

and effect clauses in Table A1.898

Dataset Average number of words
Context Cause Effect

FCR 31.37 10.43 10.79
FinCausal 42.77 18.23 17.20
SCITE 18.68 2.15 2.03

Table A1: Dataset statistics: average number of words
per part.

C Implementation Details899

We used the KL divergence during training to en-900

sure that the policy does not deviate too much from901

the format it learned during supervised fine-tuning902

(SFT). We found that some of the batches during903

RL training would lead to very high KL values,904

which would move the model too far in a given905

direction, often leading to parameter collapses (i.e.906

model weights going to NaN or infinity) or degen-907

erate output (no longer recognisable as structured908

text).909

To prevent this, we found that skipping batches910

with high KL values (over 2) made training con-911

siderably more stable, as we only applied updates912

from batches whose output was not too far from the 913

reference model. The downside is that this slows 914

down training, as skipping batches means fewer 915

updates, potentially leaving the policy in a local op- 916

timum. In our experience, this trade-off was worth 917

it, considering we still achieved improvements in 918

all our main RL experiments. 919

Hyperparameters. The SFT models used 920

FLAN-T5-Large as the base. The hyperparameters 921

were the same across all datasets: input sequence 922

length of 128 tokens, 20 training epochs, fixed 923

learning rate of 0.0001 and greedy decoding for 924

generation. We used an early-stopping scheme 925

with the patience of 5 epochs without improvement 926

based on the token F1 metrics. 927

The RL models were mostly similar, too: we 928

used a single epoch, with the PPO process using a 929

learning rate of 0.00014. The initial KL coefficient 930

varied by dataset, with FCR using 0.4, SCITE us- 931

ing 0.2 and FinCausal 0.05. For generation, the RL 932

models used beam search (2 beams) with multino- 933

mial sampling. Other parameters used the default 934

values from the Transformers and TRL libraries. 935

Other configuration options, such as reward nor- 936

malisation and scaling, did not lead to any improve- 937

ments. We found the RL models to be highly sensi- 938

tive to the hyperparameters. 939

The evaluation (reward) model was based on 940

DeBERTa-V3-xsmall. Its input sequence length 941

was 400 tokens (to fit the input context and refer- 942

ence extraction), learning rate of 0.00001 and 100 943

epochs, with early stopping patience of 10 epochs 944

without improvement based on the classification 945

F1 score. The reward models were largely robust 946

across different hyperparameter values and even 947

sizes: with larger DeBERTa models not leading to 948

significant improvements, we preferred using the 949

smallest model to decrease memory concerns when 950

using it alongside the larger FLAN-T5 model 951

D Software Used 952

Versions. We used Transformers6 4.33 to train 953

the FLAN-T5 and DeBERTa LLMs. For RL train- 954

ing, we used TRL7 0.8.6. All experiments were 955

run using Python 3.12 on Ubuntu 20.04 with an 956

NVIDIA A100 40 GB GPU running CUDA 12.2. 957

We also used NumPy8 1.24 and PyTorch9 2.0. 958

6https://github.com/huggingface/transformers
7https://github.com/huggingface/trl
8https://numpy.org
9https://pytorch.org
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Licenses. From the software mentioned above,959

NumPy and PyTorch use the BSD license, TRL960

and Transformers use Apache-2.0, and Python uses961

the PSF license. The original code for this project962

is licensed under GPL-3.0.963

AI assistance. GitHub Copilot10, ChatGPT11964

and Claude12 were used to assist in the develop-965

ment of the code, while Perplexity13 was used for966

general queries.967

E Human Annotation968

We built an online annotation platform using969

Streamlit14 version 1.35. It was deployed on a970

Digital Ocean15 Droplet. Figure 6 shows a screen-971

shot of the annotation page of the platform with an972

example from the FinCausal dataset16.973

The users were able to read the source text and974

compare the reference and model outputs for each975

entry before selecting whether the entry was ‘valid’976

or ‘invalid’. The platform saved the answers as977

soon as they were confirmed and allowed the users978

to leave and return later to continue from where979

they stopped.980

Figure 6: Screenshot of our annotation platform show-
ing an example from the FinCausal dataset

10https://github.com/features/copilot
11https://chat.openai.com/
12https://claude.ai
13https://perplexity.ai/
14https://streamlit.io
15https://www.digitalocean.com
16The source code for the tool is available at https://

github.com/...
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