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Abstract

Emotion recognition using electroencephalography (EEG) signals faces challenges
due to inter-subject variability. While domain adaptation techniques have been ex-
plored, achieving domain invariant and emotion-specific feature extraction remains
difficult. To address this, we propose the adversarial training based domain adaptive
representation learning method. The proposed model focuses on learning domain
invariant and emotion-specific features for a generalized emotion recognition model
across subjects. It uses a deep architecture with channel-wise and feature-wise
attention mechanisms to separate emotion-specific and domain-specific features.
These features assist the domain discriminator in learning generalized EEG rep-
resentations. Experiments on SEED show that our model significantly improves
emotion recognition and mitigates domain shift by learning generalized EEG signal
representations.

1 Introduction

Emotions are complex psycho-physiological responses that are essential to human cognition[16, 35,
37]. In the field of Human-Computer Interaction (HCI), emotion recognition plays a crucial role by
enabling computers to understand human emotional states[5] and assisting healthcare professionals
in comprehending the behavior of mental patients[2]. Emotion recognition methods are generally
categorized into two types: those based on physical signals (such as speech, body posture, and facial
expressions) [33, 23]and those based on physiological signals (such as EEG, ECG, and GSR)[12, 9].
Among these, EEG signals, which reflect brain activity with high temporal resolution, are regarded as
the most reliable for recognizing true emotions.

Despite extensive research, EEG-based emotion recognition faces significant challenges. One major
issue is the selective reflection of brain activity by different channels and the presence of irrelevant
features, which can degrade classification performance[38, 14]. Therefore, the automatic selection of
relevant EEG channels and features is crucial. Another significant challenge is the data distribution
shift caused by the non-stationary nature of EEG signals and inter-subject variability[6, 13], which
limits model generalizability.

To address these challenges, we propose the Adversarial Training based Domain Adaptation method.
Our model learns domain-invariant and emotion-specific features by using an attention mechanism to
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highlight relevant EEG characteristics. It employs adversarial domain adaptation to align features
across different subjects. Experiments conducted on the SEED dataset demonstrate that our model
significantly enhances emotion recognition and mitigates domain shift.

2 Related Work

Recent research on emotion recognition using EEG signals has shifted from traditional machine
learning methods, like SVM[1], k-NN[11], LDA[27], QDA[14], and Naive Bayes[34], to deep
learning techniques. Deep learning models, including 1D, 2D, and 3D CNNs[8], LSTMs[6, 24, 32],
and GCNNs[26], have shown significant improvements by capturing spatio-temporal dependencies
and relationships between EEG channels. Additionally, VAEs[30] and GANs[36] have been employed
to enhance emotion classification performance.

Attention mechanisms have been incorporated into deep learning models to address the challenge of
selecting relevant EEG channels and features[3, 21, 31]. These mechanisms adaptively highlight vital
information, improving the extraction of discriminative features[29]. CNNs, LSTMs, and GCNNs
have all been enhanced with attention modules to refine spatial and temporal feature extraction,
boosting classifier performance.

EEG signals vary between individuals, causing distribution shifts that hinder model generalization.
Recent studies have applied domain adaptation techniques to mitigate this issue, using methods like
domain discriminators, joint distribution adaptation, and adversarial inference[6, 19, 20]. Solutions
addressing both global and local distribution shifts[17, 18], such as multi-stage adaptation and center
loss, have also been proposed to improve model robustness across different subjects.

3 Methodology

The proposed method aims to extract emotion-specific and domain-invariant features from EEG
signals to enhance model generalization. The approach involves an adversiral learning based do-
main adaptation strategy, which aligns features to mitigate distribution shift problems, improving
classification performance.

Figure 1: The proposed method for EEG-based emotion recognition includes (1) a feature extractor Gf
integrated with feature and channel attention module; (2) a classifier Gy; (3) a domain discriminator
Gd. The proposed deep model takes the differential entropy (DE) features of all bands in each EEG
channel as input. The attention modules highlight the emotion-specific features and provide a domain
discriminator with a set of peripheral features f̂c,l. The domain discriminator adversarially optimizes
the feature extractor to project the target and source data features into a unified feature space.
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3.1 Model Architecture

The proposed model consists of a feature extractor (CNN and LSTM layers), a classifier, and a domain
discriminator, integrated with attention modules. The feature extractor learns inter-relationships
between EEG channels, while the attention modules highlight emotion-specific and domain-invariant
features.

Feature Extractor uses CNN and LSTM layers to learn inter-relationships between EEG channels
and extract high-level representations. Attention modules refine these features, highlighting the most
relevant emotion-specific channels and features.

Figure 2: Proposed attention module with the most relevant and peripheral set of features.

The attention module scales each feature or channel based on its significance to the target objective,
emphasizing task-relevant information. It generates both target-specific and peripheral features,
aiding the domain discriminator in handling data distribution shifts.

The feature classifier uses fully connected layers to map features to emotion classes, utilizing
cross-entropy loss to enhance discriminative feature learning.

The domain discriminator, composed of dense layers, aligns source and target domain features
using adversarial training, encouraging the feature extractor to learn domain-invariant representations.
Peripheral features from attention modules further assist in this alignment.

3.2 Adversarial Training based Domain Adaptation Strategy

The strategy involves pre-training the model on source data and employing adversarial training to
align source and target feature distributions. The loss functions used include cross-entropy and binary
cross-entropy for domain discrimination.

Algorithm 1 Adversarial training based domain adaptation
Input: Source dataset S = {(xs

i , y
s
i )}; Target dataset T = {(xt

i)} A pre-trained model
M(xs,Gf ,Gy). Learning rate λ and number of iterations N .

Output: Domain-invariant modelM(θf , θc, θd)

1: for i = 0 to N do
2: Using (xs, ys), compute emotion-specific and peripheral features {fm

c,l, f̂
m
c,l}

3: Compute Lce

4: Update parameters of feature extractor Gf (θf ) and classifier Gy(θc)
θf ← θf − λ∂Lce

∂θf
, θc ← θc − λ∂Lce

∂θc

5: Compute Ladv using {(xs, ŷs), (xt, ŷt)} and {f̂m
c,l}

6: Update parameters of feature extractor Gf (θf )
θf ← θf − λ∂Ladv

∂θf

7: Compute Ldis using {(xs, ys), (xt, yt)} and {f̂m
c,l}

8: Update parameters of domain discriminator Gd(θd)
θd ← θd − λ∂Ldis

∂θd
9: end for

10: ReturnM(θf , θc, θd)
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The Lce is cross-entropy loss and optimized over Gsf and Gy using labeled data from source dataset.
This optimization assists the model in classifying emotion classes. For the domain prediction task,
the domain discriminator is trained using binary cross-entropy loss function Ldis. For domain
discrimination, source labels are assigned as 0, and target labels are assigned as 1. The loss function
Ldis optimizes the domain discriminator module Gd to determine whether the sample belongs to the
source data or the target data.

Furthermore, adversarial training is performed to match the feature distribution of the source and
target domain. In this regard, the parameters of the feature extractor Gf are optimized to learn a
domain-invariant representation that projects source and target domain features into a unified features
space for efficient classification. During adversarial training, the domain labels of source and target
data are flipped to confuse the feature extractor to distinguish between the source and target domain.
For adversarial loss Ladv , we employed binary cross-entropy loss as given below.

Ladv = α× Lce(ŷs, ŷt) (1)

where α is a hyper-parameter that controls the impact of adversarial training, ŷs, ŷt are the flipped
labels of corresponding source and target data samples. The above loss function optimizes the feature
extractor’s parameters during adversarial training and enforces the model to learn a domain invariant
representation for alleviating the problem of distribution shift in EEG-based emotion recognition.

The approach is detailed in the provided algorithm 1, outlining steps for computing losses, updating
model parameters, and optimizing the domain-invariant model for efficient classification of data from
different individuals.

4 Experiments

4.1 Dataset

Publically available datasets, namely SEED[21, 7] is used to evaluate the proposed adversarial training
based domain adaptation method. SEED includes EEG recordings for three emotions (positive,
neutral, negative) elicited by 15 movie clips, recorded from 15 subjects. Data is downsampled to
200Hz and a bandpass filter (0-75Hz) is applied to eliminate different noises and artifacts.

4.2 Feature Extraction

Differential entropy is used as the feature extraction method, breaking EEG signals into five frequency
bands (delta, theta, alpha, beta, gamma) and computing differential entropy for each band in each
channel. Following that, we estimate differential entropy for each of these bands over all channels as
follows:

f(x) =

∫ ∞

−∞

1√
2πσ2

exp
(x− µ)2

2πσ2
log

1√
2πσ2

(2)

exp
(x− µ)2

2πσ2
=

1

2
log 2πeσ2 (3)

We computed differential entropy using a 1-second long window. For each band in each channel, the
differential entropy is computed to generate an input array with a size of (62, 5).

4.3 Experimental Settings

Experiments are conducted under subject-independent evaluation paradigms. In the subject-
independent evaluation, leave-one-subject-out cross-validation (LOSOCV) is used, with the data of
14 subjects for training and the left-out subject for testing.
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5 Results and Discussion

5.1 Evaluation on SEED

The proposed emotion recognition method is evaluated on the SEED dataset using subject-independent
paradigms. The SEED dataset includes three distinct emotion classes: positive, neutral, and negative,
which were used for classification in this study. Table 1 presents the experimental results of the
proposed method on the SEED dataset. Compared to the baseline model, the proposed model
achieves higher classification accuracy, demonstrating its generalization capability with an accuracy
improvement from 85.76% to 91.28%.

Table 1: Classification Performance on SEED Dataset

Method Average Accuracy (± Std.)
Base model 85.76% (±7.80)

Proposed model 91.28% (±6.45)

5.2 Visualizations

This section provides a visual illustration of the proposed model’s effectiveness in recognizing human
emotions. The objectives of these studies include the selection of emotion-specific information and the
calibration of features across different domains. To achieve these goals, a channel and feature attention
module, along with a domain discriminator, are incorporated. Additionally, an adversarial training
method is proposed to assist the domain discriminator in learning a domain-invariant representation.
The following subsections demonstrate the potential of these components.

5.2.1 Attention

To evaluate the attention modules’ effectiveness, we visualized the channel attention masks for 62
electrode channels from the SEED dataset samples. These topographic maps show the correlation
between channel activation and brain regions. Literature indicates negative emotions link to the
brain’s right hemisphere and positive emotions to the left[15, 1]. These maps confirm previous
findings and validate that the proposed channel attention mechanism effectively highlights the most
relevant channels for emotion classification.

Similarly, selecting relevant features and constraining irrelevant ones is crucial for EEG-based emotion
classification[28, 14]. The proposed feature attention module focuses on the most contributing
features. Heat maps of feature attention scores for SEED samples illustrate that the module assigns
varying ratings to each feature based on its contribution to classification and relevance to the target
emotion.

Figure 3: The Visualization of Channel attention(Left) and Feature attention(Right) masks

5.2.2 Representation Learning

This study uses domain adaptation to address inter-subject variation, enhancing classification accuracy
and model generalization by aligning features across different domains. Comparisons between models
trained with and without domain adaptation show that the proposed model significantly aligns source
and target domain features, capturing intrinsic and domain-invariant features and alleviating intra-
source distribution shifts as shown by t-SNE visualizations of SEED dataset.
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Figure 4: T-SNE visualization of the learned feature representations of Source and Target domain for
the base model(Left) and the proposed model(Right)

5.3 Comparison with Previous Work

We compared the proposed method with recent studies on EEG-based emotion recognition using
domain adaptation, focusing on those reporting classification performance on the SEED dataset.
Table 2 summarizes these studies. Most studies focus only on feature selection and treat all channels
uniformly. In contrast, our method uses an attention mechanism to highlight relevant features and
channels. Unlike other studies [17, 19, 22, 10, 4, 25], the proposed domain adaptation method is
assisted by the peripheral features (domain-specific features) extracted by attention mechanisms to
accelerate feature calibration between source and target domains.

Table 2: Classification comparison with previously published results on SEED
Authors (Year) Average Accuracy (± Std.)

Jinpeng Li et al.[17] (2019) 88.28% (±11.44)
Xiaobing Du et al.[6] (2020) 90.92% (±1.05)
Hao Chen1 et al.[4] (2021) 89.63% (±6.79)
Zhunan Li et al.[19] (2022) 91.08% (±7.70)

Qingshan She et al.[25] (2023) 86.16% (±7.87)
Proposed 91.28% (±6.45)

6 Conclusion

This paper proposes a adversarial traning based domain adaptation method to recognize emotion
using EEG signals. To highlight the most contributing and relevant features and channels (EEG
electrodes), an attention mechanism is introduced in this study. In addition to target-specific informa-
tion, the proposed attention module also highlights peripheral features representing domain-specific
information. Additionally, to reduce the distribution shift between source and target data, we adopted
a adversarial learning method governed by a novel supervision strategy. The experimental results
demonstrate that the proposed model can significantly learn a domain-invariant representation of
EEG signals for classifying different emotions. The reported results also validate the effectiveness of
the proposed attention mechanism in refining emotion-specific information for improved classifica-
tion performance. Future work on EEG-based emotion recognition should concentrate on handling
distribution shifts in source data adversarially. Moreover, further investigation on the connectivity
between human emotion and EEG channels (electrodes) would be of great interest.
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