
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AN EFFICIENT ALGORITHM FOR COMPUTING OPTI-
MAL WASSERSTEIN BALL CENTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Wasserstein Barycenter (WB) is a fundamental problem in machine learning, whose
objective is to find a representative probability measure that minimizes the sum
of Wasserstein distance to given distributions. WB has a number of applications
in various areas. However, in some applications like model ensembling, where
it aggregates predictions of different models on the label space, WB may lead to
unfair outcome towards underrepresented groups (e.g., a “minority” distribution
may be far away from the obtained WB under Wasserstein distance). To address
this issue, we propose an alternative objective called “Wasserstein Ball Center
(WBC)”. Specifically, WBC is a distribution that encompasses all input distributions
within the minimum Wasserstein distance, which can be formulated as a minmax
optimization problem. We show that the WBC problem with fixed support is
equivalent to solving a large-scale linear programming (LP) instance, which is
quite different from the previously studied LP model for WB. By incorporating
some novel observations on the induced normal equation, we propose an efficient
algorithm that accelerates the interior point method by O(Nm) times (N is the
number of distributions and m is the support size). Finally, we conduct a set
of experiments on both synthetic and real-world datasets. We demonstrate the
computational efficiency of our algorithm, and showcase its better accuracy on
model ensembling under imbalanced data distributions.

1 INTRODUCTION

To find a representative of several given probability distributions is a natural problem in machine
learning. One popular approach is to compute the geometric center on probability space with induced
distances between probabilities, such as the Wasserstein distance ((Villani, 2021)). Given a weight
vector (ω1, ω2, . . . , ωN) for N ≥ 2, the Wasserstein barycenter (WB) of N probability measures
{µk}Nk=1 is defined as the weighted Frechet mean under Wasserstein distance. Namely, it is the
solution of the following problem

min
µ∈Pp(Ω)

N∑
k=1

ωkWp
p (µ, µk), (1)

where Pp(Ω) is the set of Borel probability measure on Ω with finite p-th moment, andWp is the
Wasserstein distance of order p, which will be formally defined in Section 2. WB has found various
applications in many fields, such as economics (Carlier & Ekeland, 2010; Chiappori, 2017), physics
(Benamou et al., 2014; Koehl et al., 2019), statistics (Goldfeld et al., 2024; Backhoff-Veraguas et al.,
2022; Kroshnin et al., 2021), and machine learning (Dognin et al., 2019; Zhuang et al., 2022; Cheng
et al., 2021).

As the Frechet mean under Wasserstein distance, WB tends to assign more measure to the region
where the input density functions "cluster". In other words, to minimize the average distance from
the barycenter to the input probabilities, if the support of most distribution is concentrated with high
probability in a region, then the WB should also have measure concentrated in that region. But this
property may behave “unfairly” to “minority”, i.e. the distributions with support deviated from the
majority of others could be too far away from the WB. Figure 1 gives an intuitive demonstration for
this issue.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The unfairness could cause negative impact in some scenarios. To shed some light, we take the
application of WB in model ensembling as an example (Dognin et al., 2019; Lin et al., 2023; Qin
et al., 2021). The high-level idea of model ensembling is as follows. In multi-class prediction, our task
is to train a model that outputs a probability vector where each coordinate corresponds to a semantic
class. If we obtain multiple such models, then WB can be adopted as an appropriate candidate to
ensemble them, because it usually exhibits better generalization than simple arithmetic and geometric
mean, due to its diversity and smoothness (Dognin et al., 2019). However, the prediction models can
be trained separately with quite different datasets (Wen et al., 2020). If there is an “outlier” dataset
distinguished from others, the model trained on it could be neglected in this WB-induced ensemble
model.

To address this unfair issue, we propose a different objective function. Rather than minimizing the
summation of Wasserstein distances, we try to find a distribution that is of minimal distance from the
farthest input distribution:

min
µ∈Pp(Ω)

max
k∈[N]

Wp(µ, µk). (2)

From a geometric perspective, we can think of it as the center of the ball in Wasserstein space, who
covers all input distributions with minimum radius. In this setting, the output distribution does not put
extra measure to the region where input distributions cluster with high density. Please see Figure 1
for an illustrative comparison. We call the solution for Problem (2) the Wasserstein Ball Center
(WBC), and aim to design an efficient algorithm for solving it. It should be noted that “Wasserstein
ball” is not a new concept and actually has been studied by several works before (Yue et al., 2022;
Pesenti & Jaimungal, 2023; Chen et al., 2024), yet these previous works usually assume the ball
center is given and take the ball as a feasible region for constraining some optimization objective.
But in this paper, we focus on how to compute an optimal center so that the induced radius (under
Wasserstein distance) is minimized.

Figure 1: Four probability measures, with their WB enclosed in purple ellipse, WBC enclosed in
brown ellipse. Note that the red cloud has measures distributed distinctly from the others. In the
histogram on the right, the y-axis denote the Wasserstein distance to the WBC. We show that WBC
treats the outlier more equally, while keeps the other three clustered distributions adequately near.

1.1 OUR MAIN CONTRIBUTIONS

Solving the problem WBC (2) is not an easy job due to its “minmax” nature, more specifically, it
is challenging to find a proper subgradient for its objective function. When all distributions are
of discrete support, the problem can be formulated as a linear programming (LP) problem, where
the details are shown in Section 2. Partly inspired by the recent interior point method (IPM) based
algorithms for solving the WB problem (1) (e.g., (Ge et al., 2019)), we also consider to develop an
efficient IPM based algorithm for the WBC problem, though the formulation for WB has a much
simpler structure without the minimax issue.

Technically, there are several significant challenges for directly applying IPM to the WBC problem,
e.g., the computational cost and space complexity are both very large. The linear programming
formulation of WBC hasm

∑N
i=1mi+m+N+1 variables andNm+

∑N
i=1mi+N+1 constraints,

where the integer N denotes number of distributions, mi and m denote the size of support for the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

i-th distribution and WBC respectively. This brings the challenge that to compute the inner loop of
IPM requires a time complexity of O(N3(mi +m)3). To tackle this difficulty, we grind the intrinsic
information of constraint matrix to simplify the Newton normal equation, which is a linear system
with a large positive definite constraint matrix, and is the most expensive part in each inner loop of
IPM. Specifically, we simplify the matrix inverse occurred in the solution of Newton path, based on
an important observation:

The seemingly dense matrix can be decomposed into a sum of two matrices, one is block diagonal,
and the other is a matrix that is highly duplicated, implying low rank.

Then, we can apply the renowned Woodbury’s equality (Hager, 1989) to reduce the complexity
for inversion of the sum of a simple matrix and a low-rank matrix. We obtain a O(N2m3) time
complexity for each iteration, whereas the vanilla IPM requires O(N3m4) by straight matrix
inversion (for simplicity we just assume mi = O(m) here). The latter one is beyond acceptable scope
in many real-world scenarios. For example, for a problem that N = 102 and the order of magnitude
of m = 103. The complexity of our algorithm is 1013, while the vanilla IPM requires 1018, which is
105 times higher. The formal description on this result is presented in Theorem 3.2. We also conduct
a set of experiments to evaluate our algorithm. As for the practical effectiveness, our algorithm can
be significantly faster than the popular commercial solver Gurobi. For example, if given an instance
with N = 1000,m = 100, our implementation can solve the problem in 5 minutes while Gurobi
takes about 18 minutes, on a workstation with Intel(R) Core(TM) i5-9400 CPU.

1.2 RELATED WORKS

Wasserstein distance. The Wasserstein distance, also known as the Earth Mover’s distance when
p = 2, quantifies the dissimilarity between two probability distributions, particularly when their
supports are discrete sets. Computing the discrete Wasserstein distance actually is equivalent to
solving a min-cost max flow problem (Ahuja et al., 1991; Khesin et al., 2021). Several more
efficient discrete Wasserstein distance algorithms were proposed, such as (Ling & Okada, 2007;
Pele & Werman, 2009). It is also a classic topic in machine learning (Rüschendorf, 1985; Pele &
Werman, 2009). By using matrix scaling technique, Cuturi (2013) introduced the "Sinkhorn Distance",
which incorporates an entropic regularization term to smooth the transportation problem, offering
significantly faster solutions than exact computation of the discrete Wasserstein distance. Following
Cuturi’s work, recent years have seen the development of several improved Sinkhorn algorithms (Lin
et al., 2019; Altschuler et al., 2019; Benamou et al., 2015; Altschuler et al., 2017).

Wassertein barycenter. Cuturi & Doucet (2014) showed that the computation for WB can be
improved by using an entropic regularization, leading to a simple gradient-descent scheme that was
later improved and generalized under the iterative Bregman projection (IBP) algorithm (Benamou
et al., 2015). Further progress includes the semi-dual gradient descent (Cuturi & Peyré, 2018),
accelerated primal-dual gradient descent (APDAGD) (Kroshnin et al., 2019), alternating direction
method of multipliers (ADMM) (Ye et al., 2017), deterministic IBP (Lin et al., 2020), and the IPM
algorithm MAAIPM (Ge et al., 2019).

Interior Point Method. The interior point method was discovered by Dikin (1967). The method was
reinvented in 1984, when Karmarkar developed a method for linear programming called “Karmarkar’s
algorithm” that runs in polynomial time (Karmarkar, 1984). Since then IPM has attracted a great
amount of attention, where one of the most successful IPM methods is the class of primal-dual
approaches. Mehrotra’s predictor-corrector algorithm (Mehrotra, 1992) provides the basis for most
implementations of this class of methods, which is also the type of IPM applied in this paper (the
details of predictor-corrector IPM are presented in Section 3.2). (Mizuno et al., 1993) proposed
the Mizuno-Todd-Ye method, which has the best iteration complexity O(

√
nL) and quadratic con-

vergence (Ye et al., 1993). For more information on IPM, we refer the reader to the survey paper
(Gondzio, 2012). Recently, there are also some new studies on reducing the exponent of IPM in
theoretical computer science (Jiang et al., 2020; Cohen et al., 2021), which relies on a technique
called “matrix maintenance” to reduce the update time for each iteration.

Fairness and class imbalance. The fairness issue has attracted a great amount of attention in
machine learning (Joseph et al., 2016; Mehrabi et al., 2021; Caton & Haas, 2024). The proposed
solutions include adjusting labels from sensitive groups to reconstruct unbiased mapping (Dwork
et al., 2012; Jiang & Nachum, 2020), and removing sensitive attributions (Krasanakis et al., 2018).
Our work was inspired by socially fair clustering (Ghadiri et al., 2021; Makarychev & Vakilian, 2021),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

which proposed an objective to minimize the maximal distances from the centers to groups. It is also
connected with class imbalance of data. Unfairness can result from the issue of representation bias,
which arises due to insufficient amount of data in certain groups or subgroups (Lohaus et al., 2020;
Chai & Wang, 2022). Existing methods include fair data generation (Jang et al., 2021), multi-objective
optimization (Martinez et al., 2020) and boosting (Gong & Kim, 2017).

2 PRELIMINARIES

For two discrete probability vectors u ∈ Rn1
,v ∈ Rn2

, define the set of matricesM(u,v) = {Π ∈
Rn1×n2

+ : Π1n2
= u,Π>1n1

= v} as the coupling matrices, which consists of all joint distributions
of margin u and v. Let Q = {(ai, qi) : i = 1, . . . ,m} denote the discrete probability measure
supported on m points q1, . . . , qm in Rd with weights a1, . . . , am respectively. The Wasserstein
distance of the two discrete probability measures Q = {(ai, qi) : i = 1, . . . ,m1} and P =
{(bj ,pj) : j = 1, . . . ,m2} is

Wp(Q,P) := min

(

m1∑
i=1

m2∑
j=1

πij‖qi − pj‖pp)
1
p : Π = [πij] ∈M(a, b)

 (3)

where a = (a1, . . . , am1
)> and b = (b1, . . . , bm2

)>. A set of probability measure {P(t), t =

1, · · · , N} is denoted by P(t) = {(a(t)
i , q

(t)
i) : i = 1, . . . ,mt}, with probability vector a(t) =

(a
(t)
1 , . . . , a

(t)
mt)
>. The optimal Wasserstein ball center (WBC) Popt = {(wi,xi) : i = 1, · · · ,m}

is another probability measure such that the maximum Wasserstein distance to these given N
probability measures is minimized, as defined in the objective function (2) when Ω = {x1, · · · ,xm}.

The probability w of Popt and its coupling matrices with {a(t) : t = 1, · · · , N} must
be in a solution set S =

{
(w,Π(1), . . . ,Π(N)) ∈ Rm+ × Rm×m1

+ × · · · × Rm×mN
+ :

1>mw = 1,w ≥ 0; Π(t)1mt = w,
(
Π(t)

)>
1m = a(t),Π(t) ≥ 0,∀t = 1, · · · , N

}
. For a given sup-

port Ω, the distance matrices is defined asD(t)(Ω) = (‖xi−q(t)
j ‖pp)(i,j) ∈ Rm×mt for t = 1, . . . , N .

Then Problem (2) is equivalent to

min
w,Ω,Π(t)

max
t∈[N]

〈
D(t)(Ω),Π(t)

〉
s.t. (w,Π(1), . . . ,Π(N)) ∈ S, x1, . . . ,xm ∈ Rn. (4)

For most practical applications, we can assume that all measures in {P(t)}Nt=1 have the same set
of support points, and the barycenter should also take the same set of support points (e.g., fixed
support WB (Dognin et al., 2019)). Thus we focus on the case when the support Ω is given. This
fixed-support assumption turns WBC into the following linear programming:

min
w,Π(t)

max
t∈[N]

〈
D(t),Π(t)

〉
s.t. (w,Π(1), . . . ,Π(N)) ∈ S (5)

where D(t) denotes Dt(Ω) for simplicity. To make the LP formulation clear, we use slack variable
γ ∈ R, turning problem (5) into the following

min
w,Π(t),γ

γ

s.t. (w,Π(1), . . . ,Π(N)) ∈ S, x1, . . . ,xm ∈ Rn〈
D(t)(X),Π(t)

〉
≤ γ, 1 ≤ t ≤ N.

(6)

3 OPTIMIZATION FRAMEWORK FOR WBC

In this section, we introduce our optimization framework for WBC. Specifically, we first formalize
WBC to be the standard LP form and ensure that the constraint matrix is full row-rank in Section 3.1.
In Section 3.2, we introduce the IPM framework we implement. In Section 3.3, we illustrate how to
eliminate unnecessary computations in IPM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 PRECONDITIONING

We use vec(A) to denote the vectorization of a matrix A. To reduce the problem to the standard-form
linear program, we vectorize the constraints Π(t)1mt

= w and
(
Π(t)

)>
1m = a(t) to be:

(1>mt
⊗ Im)vec(Π(t)) = w, (Imt

⊗ 1>m)vec(Π(t)) = a(t), t = 1, · · · , N.

Thus, Problem (6) is formulated as:

min c>x s.t. Ax = b,x ≥ 0 (7)

with x = (vec(Π(1)); ...; vec(Π(N));w; γ1; . . . ; γN , γ), γi = γ − 〈D(i),Π(i)〉, b = (a(1); ...

a(N);0m; ...;0m; 1), c = (0, . . . , 1) and A =

[
E1

E2 E3

1>m
D IN −1N

]
, where E1 = diag(Im1

⊗

1>m, ..., ImN
⊗ 1>m), E2 = diag(1>m1

⊗ Im, ...,1
>
mN
⊗ Im), E3 = −1N ⊗ Im and D =

diag(vec(D(1)), . . . , vec(D(N)). Let M :=
∑N
i=1mi, and then we have nc := Nm+M +N + 1

constraints and nv := mM + m + N + 1 variables. Based on these notations, we know that the
problem can be written as a standard form LP with nv variables and nc constraints.

To implement IPM, it is essential that A is of full row-rank. We defer the reason to the next section.
The following lemma eliminates all redundant constraints, turning A into a full row-rank matrix
Ā. Specifically, Ā ∈ R(nc−N)×nv is the matrix obtained from A by removing the (M + 1)-th,
(M +m+ 1)-th, · · · , (M + (N − 1)m+ 1)-th rows of A, and b̄ ∈ Rnc−N be the vector obtained
from b by removing the (M + 1)-th, (M +m+ 1)-th, · · · , (M + (N − 1)m+ 1)-th entries of b.
Lemma 3.1. 1) Ā has full row-rank; 2) solving the equation Ax = b is equivalent to solving the
equation Āx = b̄.

Due to Lemma 3.1 (proof of which is left in appendix), we can now focus on Ā instead of A in the
following subsections.

3.2 PREDICTOR-CORRECTOR IPM

We choose the classic predictor-corrector scheme (Mehrotra, 1992; Wright, 1997), which was also
applied previously to accelerate the computation for WB (Ge et al., 2019). As a second order method,
it is proved to have quadratic convergence rate (Ye et al., 1993), which surpasses first-order methods.
When we deal with a primal-dual system of linear programming, from Karush–Kuhn–Tucker theory,
we have search direction found by applying a Newton-like method to equations. The equations are
in the following system with current barrier parameter µ+, which is taken as the coefficient of a
logarithm barrier function. Writing in matrix form, the search direction at a feasible point (x,y, s)
should be the solution of the following nonlinear system of equations: 0 Ā> I

Ā 0 0
S 0 X

[∆x
∆y
∆s

]
=

 Ā>y + s− c
Āx− b

−Xs+ ∆X∆s+ µ+1

 , (8)

where y, s are dual variables for the constraints Ax = b and x ≥ 0 respectively, and X is a diagonal
matrix with Xii = xi. To reduce this nonlinear system to linear cases, first we obtain a predictor
step by removing the “∆X∆s+ µ+1” term on the RHS of eq. (8), then compute the corrector step
by assigning the predictor steps to the RHS of eq. (8). For a fixed µ+, we update the solution by
step descent with corrector step until convergence, then update µ+ to a smaller value and do above
procedure all over again. As µ+ approaches to 0, the current position convergences to the optimal
solution of LP (7).

The solution of Eq. (8) can be obtained by sequentially computing ∆y,∆s and ∆x, where their
values are detailed in Appendix B. In both predictor and corrector steps, the hardest part is to compute
∆y, as the solution of

(ARA>)∆y = f , (9)
where R = diag(s)−1X , f is a vector computed at last step. Equation (9) is often referred as
normal equation (Wright, 1997), and we elaborate on our idea for solving it in the next section.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 SOLVING THE NORMAL EQUATIONS EFFICIENTLY

In this section, we introduce an efficient algorithm for solving the normal equation (ĀRĀ>)∆y = f ,
whose complexity is summarized in the following theorem.
Theorem 3.2. There exists an IPM algorithm, such that in each inner iteration, the time complexity
in terms of flops is O(m2

∑N
i=1mi +Nm3 +N2m2 +N3).,

Roadmap of the proof. To prove Theorem 3.2, we need to simplify the reverse of ĀRĀ>. Propo-
sition 3.3 illustrates the structure of ĀRĀ>, lemma 3.4 essentially reduces the ranks of blocks of
ĀRĀ>. Lemma C.1 and lemma 3.5 analyse how to break some matrix inverses into simple forms,
turning a multiplication between one vector with a big matrix into that with multiple small matrices,
and give respective time complexity.

Let r be the nv-dimensional vector with its i-th entry ri = Rii. Let M2 = N(m− 1), which is the
rank of the matrix (E2 E3). First, we present the basic block-wise structure of ĀRĀ>.
Proposition 3.3. Let z = r(Mm+ 1 : Mm+m). ĀRĀT can be written as the following format:

ĀRĀT =

B1 B2 0 K1

B>2 B3 +B4 α K2

0 α> c 0
K>1 K>2 0 W

where B1 ∈ RM×M is a diagonal matrix with positive diagonal entries; B2 ∈ RM×M2 is a
block-diagonal matrix with N blocks, the i-th block is of size mi × (m − 1); B3 ∈ RM2×M2 is a
diagonal matrix with positive diagonal entries, then B4 = (1N1>N) ⊗ diag(z); α = −1N ⊗ z;
c = 1>mr(nv −m+ 1 : nv −N). K1 ∈ RM×N is a block-diagonal matrix with N blocks, with the
i-th block of size mi × 1,K2 ∈ RM2×N is a block-diagonal matrix with N blocks, with the i-th block
of size (m− 1)× 1. W = W1 + rnv

11>, W1 ∈ RN×N is a diagonal matrix with positive diagonal
entries.

Proof. All through direct computation. The identity (U1⊗V1)(U2⊗V2) = (U1U2)⊗ (V1V2) (when
the RHS exists) can be used to simplify the computation.

Now we simplify the coefficient matrix ĀRĀ> of the linear system by performing several elementary
transformation, such that it turns into a block diagonal matrix. Then we solve the system with the
transformed coefficient matrix, and finally transform the obtained solution back for the original
solution of (ĀRĀ>)z = f . Define

Q1 :=

[
IM

−B>2 B
−1
1 IM2

1
−1 IN

]
, Q2 :=

[
IM

IM2
−α/c

1
IN

]
, Q3 :=

[
IM

IM2
1

−B−1
1 K>1 IN

]
.

Let A1 := B3 − B>2 B−1
1 B2 and A2 := B4 − 1

cαα
>, K̄2 and W̄ in Q3 are the matrices in place

of K2 and W after eliminating B2 and K1 by applying Q1 and Q2 to ĀRĀ>. Then, we have the
transformation:

Q3Q2Q1ĀRĀ
TQ>1 Q

>
2 Q
>
3 =:

[
B1

A1+A2 K̄2
c

K̄>2 W̄

]
.

Now we want to eliminate K̄2 in order to obtain a block diagonal matrix that is easy to invert.

Therefore, we need to compute Q4 :=

[
IM

IM2
1

−K̄>2 (A1+A2)−1 IN

]
. With some calculation, we have

the following lemma.
Lemma 3.4.

1. A2 = (1N1>N)⊗ Z, where Z = diag(Z)− 1
czz

>(z is the vector defined in proposition 3.3),

2. A1 is a block-diagonal matrix with N blocks Aii. The size of each block is (m− 1)× (m− 1).

According to lemma 3.4(1), let A1 = diag(A11, A22, ..., ANN), where each Aii ∈ R(m−1)×(m−1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 3.5.

(A1 +A2)−1 = A−1
1 −A

−1
1

(
(1N1>N)⊗ (Z−1 +

N∑
i=1

A−1
ii)−1

)
A−1

1 . (10)

The time complexity for applying a vector to the RHS of eq. (10) is O(Nm2).

Proof. We defer the proof of eq (10) to appendix. For the time complexity, notice that (1) A−1
1 is a

diagonal matrix with onlyN(m−1)2 nonzero term, thus multiplying a vector to it costs no more than
O(Nm2). (2)(1N1>N ⊗ (Z−1 +

∑N
i=1A

−1
ii)−1) duplicates N2 copies of (Z−1 +

∑N
i=1A

−1
ii)−1).

Therefore, if you multiply by a column vector on the right, it will result inN set of identical operations.
The same applies to left multiplication.

To eliminate K̄2, W̄ will be replaced by W̃ = W̄ − K̄>2 (A1 + A2)−1K̄2. This is done in only
O(N2m2) time, since K̄ can be viewed as N vectors.

Now we are ready to present Algorithm 1. The following algorithm is a step-by-step procedure for
solving the normal equation given the above diagonalized coefficient matrix.

Algorithm 1: Solver for (ĀRĀ>)∆y = f

Input: R ∈ Rnv×nv ,f ∈ Rnc−N as described in eq. (9).
Output: The solution ∆y.

1 Compute B1, B2, B3,K1,K2,W ; // Initialization
2 Compute Q1, Q2, Q3;
3 K̄2 ← K2 −B>2 B−1

1 K1, W̄ ←W −K>1 B−1
1 K1; ; // Eliminate K1

4 Compute Q3, A1, A2;
5 z(1) ← Q1f , z

(2) ← Q2z
(1), z(3) ← Q3z

(2); // Process RHS of eq. (9) in sync
6 Decompose (A1 +A2)−1 according to Lemma 3.5 ;
7 Compute Q4, z

(4) ← Q4z
3;

8 W̃ ← W̄ − K̄>2 (A1 +A2)−1K̄2; ; // Eliminate K̄2

9 z(5)(1 : M)← B−1
1 z(4)(1 : M) ; // First M rows of z(4)

10 z(5)(nc −N + 1 : nc)← W̃−1z(4)(nc −N + 1 : nc); z(5)(nc −N)← c−1z(4)(nc −N);
// Last N+1 rows of z(5)

11 Compute (A1 +A2)z(4)(M + 1 : nc −N − 1) = z(3)(M + 1 : nc −N − 1)

; // other entries of z(5)

12 z(6) ← Q>4 z
(5) , z(7) ← Q>3 z

(6), z(8) ← Q>2 z
(7), ∆y ← Q>2 z

(8) ; // recover ∆y.
13 return ∆y

With Lemma 3.5 tackling the hardest parts of algorithm 1, theorem 3.2 can be easily concluded.

Proof. We count the flops required in each step in Algorithm 1:

step 1 : O(m

N∑
t=1

mt)); step 2 : O(1); step 3 : O(N2m2); step 4 : O(

N∑
t=1

mt)

step 5 : O(Nm+

N∑
t=1

mt); step 6 : O(Nm3 +Nm

N∑
t=1

mt); step 7 : O(Nm); step 8 : O(N2m2)

step 9 : O(M); step 10 : O(N3); step 11 : O(Nm3); step 12 : O(Nm

N∑
t=1

mt)

The computation of step 3, step 6 and step 10 requires most flops.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 COMPUTATIONAL EFFICIENCY

We conduct three experiments to investigate the real performance of our algorithm. (1) The first
experiment demonstrates our advantages on computational speed and memory usage over commercial
solver Gurobi, a powerful optimization solver widely used across various fields such as operations
research, finance, and data science. (2) The second experiment reflects the fairness of WBC over the
standard WB. For these two experiments, the entries of the weight of (q

(t)
1 , ..., q

(t)
m) in distribution

P(t) are generated uniformly at random. (3) The third experiment further illustrates the performance
on a real-world dataset FairFace (Karkkainen & Joo, 2021) with considering the racial issue. We
choose 700 (100 for each race) images including seven racial groups of "Black", "East Asian",
"Indian", "Latino-Hispanic", "Middle Eastern", "Southeast Asian" and "White" as 700 distributions
(each image actually can regarded as a distribution). All the experiments are implemented on a
workstation, Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz and 8GB for RAM, equipped with win64 -
Windows 11+.0.

The baseline we choose is Gurobi Optimizer version 11.0.0 (academic license) . Comparison with
Gurobi Firstly, we conduct two experiments to compare the computational performance of our
method and Gurobi, then conduct another two experiments to show the computational performance
when the variables size Nm3 grows over 105. Without loss of generality, we set m of all distributions
to be equal for brevity.

As Fig. 2 shows, our algorithm is always faster than Gurobi, and the gap between the two methods is
expanding as the scale increases. Moreover, Gurobi can not solve the instance with m > 500 due to
memory limitation, which showcases the superiority of the space complexity in Theorem 3.2.

Figure 2: The first two column figures are the computation time and feasibility error of Gurobi
and our method. For (a), (c) , m = 100. For (b), (d) , N = 30. The third column figures are the
computation time of our method when the problem scale is very large. For (e) , m = 50. For (f) ,
N = 10.

We also illustrate the convergence speed of our algorithm. From Fig. 3 , we can see that our algorithm
displays a super-linear convergence rate for the objective value, which is consistent with the result of
(Ye et al., 1993).

Second Experiment For the performance of fairness, we compare the max Wasserstein distance
between WBC and standard WB to input distributions. We divide all distributions into two parts,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60
Iteration

0

500

1000

1500

2000

ob
je

ct
 v

al
ue

Figure 3: N = 90,m = 200. Performance of
our algorithm which converges in 67 steps.

0% 10% 20% 30% 40% 50%
w

0

200

400

600

800

ob
je

ct
 v

al
ue

WBC
WB
WB box plot

Figure 4: m = 200, N = 30. Performances of
our algorithm and standard WB when distribu-
tions are imbalanced.

each part is similar internally, yet very different from the other. Indeed, the measure of the first
part concentrates in the first 10 points (among all 200 points), while measure of the second part
concentrates in the last 10 points. We demonstrate the fairness performance of these two methods
in Fig. 4. An “imbalanced factor” is defined to measure the imbalance between two parts, which
represents the proportion of the first part, denoted by w. Let "object value" denote the maximum
Wasserstein distance between the barycenter and input distributions.

In Figure 4 , we use box plot to represent the distribution of the Wasserstein distance for barycenter
to all distributions. We can observe that, when w = 0%, which means all the distributions are
similar, or w = 50%, which means the two parts of distributions have same quantity, the cost of
standard WB are relatively balanced. When w = 10% ∼ 40%, standard WB has many outliers and
an extremely uneven Wasserstein distance distribution. Especially when w = 10%, which means the
distributions are extremely imbalanced, some objective values significantly higher than the mean,
reaching nearly 900, while most objective values are under 100. Our algorithm effectively eliminates
this bias by calculating a barycenter with minimize the maximum Wasserstein distance for individual
distributions. We observe a very small difference in the Wasserstein distance over the distributions in
our algorithm no matter the distributions are balanced or not. Thus, the object values of our method
are always much lower than standard WB.

Experiments on FairFace Dataset: For WBC, the objective value denotes the maximum of all
Wasserstein distance between WBC and given distributions. For standard WB, the objective value
denotes the mean of Wasserstein distance between barycenter and distributions of each races. From
Figure 5 , we can observe that the standard WB has a significant gap between the object values in
different races, with significantly higher for Middle Eastern. The object value of “Middle Eastern”
is 78.30, which far greater than the object value of our algorithm (45.37). At the same time, our
algorithm controls the object value within a range only slightly above the mean of WB (38.70).

4.2 FAIR ENSEMBLE

Learning from noisy labels is one of the fundamental problems in deep learning (Natarajan et al.,
2013; Karimi et al., 2020; Song et al., 2022; Karim et al., 2022; Yang et al., 2024), where previous
studies use distillation (Kontonis et al., 2024), regularization techniques (Liu et al., 2020; Cheng
et al., 2022), teacher model (Han et al., 2018), etc. Those studies has two features: 1). The goal is
always trying to select or to create a clean subset of training data; 2) They treat models that only have
one data source. What we consider here is to ensemble models trained with different types of noise
into one model, such that it gives better predictions than each one of them.

In this experiment, we uses Resnet18 (He et al., 2016) to train 10 classifiers on CIFAR-100. For
each classifier, only data labeled in 10 classes are clean, others are added noise with noise rate
u. For each item, the model outputs an probability vector of dimension 100, each coordinate
corresponds to the measure on that label. Inspired by Dognin et al. (2019), where they com-
pute the WB of all predictions, we use WBC as the final probability vector. As is shown in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the table 1, WBC obtains an astonishing accuracy when the noise rate u is 100%, and keeps
obtaining better accuracy than WB even though the leading gap shrinks as noise rate declines.

u(%) 100 98 96 94 92 90 80 50 0 (no noise)

WBC 63 54 52 55 56 61 68 75 75
WB 3 27 39 44 52 58.4 67 75 75
AA 3 22 36 40 46 56 61 75 74
Max 8.3 14.8 28.4 64 41.5 49.1 53 67 70.3

Table 1: Ensemble accuracy with label noises. AA denotes arithmetic average, Max denote the
maximum accuracy among models.

race
0

10

20

30

40

50

60

70

80

ob
je

ct
 v

al
ue

WBC
White
Black

Southeast Asian
East Asian
Middle Eastern

Latino-Hispanic
Indian

Figure 5: Performance of our algorithm and stan-
dard WB on Fairface Dataset. The first column
marked "WBC" is the object value of our algo-
rithm, and the others represents the Wasserstein
distance from WB to different races respectively.

5 CONCLUSION

We give an efficient algorithm to compute the
Wasserstein ball center, outperforming Gurubi
on both speed and treatable problem scale.
WBC shows better fairness than WB, which
makes it more suitable for tasks that is sensi-
tive to minorities, such as model ensembling
under imbalanced datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Some recent advances in network flows.
SIAM review, 33(2):175–219, 1991.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via sinkhorn iteration. Advances in neural information processing
systems, 30, 2017.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. Massively scalable
sinkhorn distances via the nyström method. Advances in neural information processing systems,
32, 2019.

Julio Backhoff-Veraguas, Joaquin Fontbona, Gonzalo Rios, and Felipe Tobar. Bayesian learning with
wasserstein barycenters. ESAIM: Probability and Statistics, 26:436–472, 2022.

Jean-David Benamou, Brittany D Froese, and Adam M Oberman. Numerical solution of the optimal
transportation problem using the monge–ampère equation. Journal of Computational Physics, 260:
107–126, 2014.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Itera-
tive bregman projections for regularized transportation problems. SIAM Journal on Scientific
Computing, 37(2):A1111–A1138, 2015.

Guillaume Carlier and Ivar Ekeland. Matching for teams. Economic theory, 42:397–418, 2010.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. ACM Computing Surveys,
56(7):1–38, 2024.

Junyi Chai and Xiaoqian Wang. Fairness with adaptive weights. In International Conference on
Machine Learning, pp. 2853–2866. PMLR, 2022.

Zhi Chen, Daniel Kuhn, and Wolfram Wiesemann. Data-driven chance constrained programs over
wasserstein balls. Operations Research, 72(1):410–424, 2024.

De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and Tongliang
Liu. Class-dependent label-noise learning with cycle-consistency regularization. Advances in
Neural Information Processing Systems, 35:11104–11116, 2022.

Kevin Cheng, Shuchin Aeron, Michael C Hughes, and Eric L Miller. Dynamical wasserstein
barycenters for time-series modeling. Advances in Neural Information Processing Systems, 34:
27991–28003, 2021.

Pierre-André Chiappori. Matching with transfers: The economics of love and marriage. Princeton
University Press, 2017.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International
conference on machine learning, pp. 685–693. PMLR, 2014.

Marco Cuturi and Gabriel Peyré. Semidual regularized optimal transport. SIAM Review, 60(4):
941–965, 2018.

II Dikin. Iterative solution of problems of linear and quadratic programming. In Doklady Akademii
Nauk, volume 174, pp. 747–748. Russian Academy of Sciences, 1967.

Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Cicero Dos Santos, and Tom Sercu. Wasser-
stein barycenter model ensembling. In International Conference on Learning Representations,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp.
214–226, 2012.

Dongdong Ge, Haoyue Wang, Zikai Xiong, and Yinyu Ye. Interior-point methods strike back: Solving
the wasserstein barycenter problem. Advances in neural information processing systems, 32, 2019.

Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means clustering. In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.
438–448, 2021.

Ziv Goldfeld, Kengo Kato, Gabriel Rioux, and Ritwik Sadhu. Statistical inference with regularized
optimal transport. Information and Inference: A Journal of the IMA, 13(1):iaad056, 2024.

Jacek Gondzio. Interior point methods 25 years later. European Journal of Operational Research,
218(3):587–601, 2012.

Joonho Gong and Hyunjoong Kim. Rhsboost: Improving classification performance in imbalance
data. Computational Statistics & Data Analysis, 111:1–13, 2017.

William W Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239, 1989.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Taeuk Jang, Feng Zheng, and Xiaoqian Wang. Constructing a fair classifier with generated fair data.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7908–7916, 2021.

Heinrich Jiang and Ofir Nachum. Identifying and correcting label bias in machine learning. In
International conference on artificial intelligence and statistics, pp. 702–712. PMLR, 2020.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. arXiv preprint arXiv:2004.07470, 2020.

Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. Advances in neural information processing systems, 29, 2016.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah.
Unicon: Combating label noise through uniform selection and contrastive learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9676–9686, 2022.

Davood Karimi, Haoran Dou, Simon K Warfield, and Ali Gholipour. Deep learning with noisy labels:
Exploring techniques and remedies in medical image analysis. Medical image analysis, 65:101759,
2020.

Kimmo Karkkainen and Jungseock Joo. Fairface: Face attribute dataset for balanced race, gender,
and age for bias measurement and mitigation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 1548–1558, 2021.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for the geometric
transportation problem. Journal of Computational Geometry, 11(2):234–259, 2021.

Patrice Koehl, Marc Delarue, and Henri Orland. Statistical physics approach to the optimal transport
problem. Physical review letters, 123(4):040603, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal, Gaurav Menghani, and Erik Vee. Slam:
Student-label mixing for distillation with unlabeled examples. Advances in Neural Information
Processing Systems, 36, 2024.

Emmanouil Krasanakis, Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos, and Yiannis Kom-
patsiaris. Adaptive sensitive reweighting to mitigate bias in fairness-aware classification. In
Proceedings of the 2018 world wide web conference, pp. 853–862, 2018.

Alexey Kroshnin, Nazarii Tupitsa, Darina Dvinskikh, Pavel Dvurechensky, Alexander Gasnikov,
and Cesar Uribe. On the complexity of approximating wasserstein barycenters. In International
conference on machine learning, pp. 3530–3540. PMLR, 2019.

Alexey Kroshnin, Vladimir Spokoiny, and Alexandra Suvorikova. Statistical inference for bures–
wasserstein barycenters. The Annals of Applied Probability, 31(3):1264–1298, 2021.

Lin Lin, Wei Shi, Jianbo Ye, and Jia Li. Multisource single-cell data integration by maw barycenter
for gaussian mixture models. Biometrics, 79(2):866–877, 2023.

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In International Conference on Machine Learning, pp.
3982–3991. PMLR, 2019.

Tianyi Lin, Nhat Ho, Xi Chen, Marco Cuturi, and Michael Jordan. Fixed-support wasserstein barycen-
ters: Computational hardness and fast algorithm. Advances in neural information processing
systems, 33:5368–5380, 2020.

Haibin Ling and Kazunori Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE transactions on pattern analysis and machine intelligence, 29(5):840–853,
2007.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
regularization prevents memorization of noisy labels. Advances in neural information processing
systems, 33:20331–20342, 2020.

Michael Lohaus, Michael Perrot, and Ulrike Von Luxburg. Too relaxed to be fair. In International
Conference on Machine Learning, pp. 6360–6369. PMLR, 2020.

Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering. In
Conference on Learning Theory, pp. 3246–3264. PMLR, 2021.

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective
perspective. In International conference on machine learning, pp. 6755–6764. PMLR, 2020.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35, 2021.

Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on
optimization, 2(4):575–601, 1992.

Shinji Mizuno, Michael J Todd, and Yinyu Ye. On adaptive-step primal-dual interior-point algorithms
for linear programming. Mathematics of Operations research, 18(4):964–981, 1993.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. Advances in neural information processing systems, 26, 2013.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
international conference on computer vision, pp. 460–467. IEEE, 2009.

Silvana M Pesenti and Sebastian Jaimungal. Portfolio optimization within a wasserstein ball. SIAM
Journal on Financial Mathematics, 14(4):1175–1214, 2023.

Ruizhe Qin, Mengying Li, and Hu Ding. Solving soft clustering ensemble via k-sparse discrete
wasserstein barycenter. Advances in Neural Information Processing Systems, 34:900–913, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ludger Rüschendorf. The wasserstein distance and approximation theorems. Probability Theory and
Related Fields, 70(1):117–129, 1985.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE transactions on neural networks and learning
systems, 34(11):8135–8153, 2022.

Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. Springer, 1993.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Stephen J Wright. Primal-dual interior-point methods. SIAM, 1997.

Fuchao Yang, Yuheng Jia, Hui Liu, Yongqiang Dong, and Junhui Hou. Noisy label removal for
partial multi-label learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3724–3735, 2024.

Jianbo Ye, Panruo Wu, James Z Wang, and Jia Li. Fast discrete distribution clustering using
wasserstein barycenter with sparse support. IEEE Transactions on Signal Processing, 65(9):
2317–2332, 2017.

Yinyu Ye, Osman Güler, Richard A Tapia, and Yin Zhang. A quadratically convergent o (l)-iteration
algorithm for linear programming. Mathematical programming, 59(1):151–162, 1993.

Man-Chung Yue, Daniel Kuhn, and Wolfram Wiesemann. On linear optimization over wasserstein
balls. Mathematical Programming, 195(1):1107–1122, 2022.

Yubo Zhuang, Xiaohui Chen, and Yun Yang. Wasserstein k-means for clustering probability distribu-
tions. Advances in Neural Information Processing Systems, 35:11382–11395, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF LEMMA 3.1

Lemma 3.1 of (Ge et al., 2019) proved that A′ :=

[
E1

E2 E3

1>m

]
has full row-rank, therefore it suffices to

prove that the remaining part A′ a) has full row-rank. b). A′x = b is equivalent to Ā′ = b̄.

a). As the IN in the last N rows og A is of full row-rank, and there are no nonzero terms in the
columns of IN , A has full row-rank. b). There is no rows removed from the last N rows. Thus
Ax = b is equivalent to Āx = b.

B ALGORITHM: PREDICTOR-CORRECTOR INNER POINT METHOD

For detailed information, see page. 411 of Wright (1997).

Algorithm 2: Predictor-Corrector Inner Point Method for Linear Programming
1: Input: Linear programming problem in standard form:

min cTx

s.t. Ax = b, x ≥ 0

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.
2: Initialization: Set initial feasible point (x0, y0, s0), where x0 > 0, s0 > 0 (dual variables).

Choose tolerance ε > 0 and set iteration counter k = 0.
while ‖rb‖ > ε and ‖rc‖ > ε do

3:
Compute residuals:

rb = Ax− b (primal residual)

rc = AT y + s− c (dual residual)
rs = XSe− µe (complementarity residual)

where X = diag(x), S = diag(s), and µ = xT s
n is the duality measure.

4: Predictor Step: Solve the linear system for affine scaling direction (∆xaff,∆yaff,∆saff):0 AT I
A 0 0
S 0 X

∆xaff

∆yaff

∆saff

 = −

[
rc
rb
rs

]

5: Compute the step size αaff by finding the maximum step length that maintains x+ αaff∆x
aff ≥ 0

and s+ αaff∆s
aff ≥ 0.

6: Corrector Step: Compute the corrector directions using central path perturbation with updated
µ:

∆rs = XSe− σµe
and solve the system again to get (∆xcorr,∆ycorr,∆scorr).

7: Compute the total search direction:

∆x = ∆xaff + ∆xcorr, ∆y = ∆yaff + ∆ycorr, ∆s = ∆saff + ∆scorr

8: Compute the step size α by updating with both predictor and corrector directions.
9: Update variables:

xk+1 = xk + α∆x, yk+1 = yk + α∆y, sk+1 = sk + α∆s

10: Update the duality measure µ and increment the iteration counter k = k + 1.
11:
12: Output: Optimal solution (x∗, y∗, s∗) or termination if stopping criteria met.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF LEMMA 3.4

Noticing that A1 + A2 are of a pattern of one simple, easily invertible matrix plus a matrix with
low-rank structure, we apply the following
Lemma C.1.

W̄−1 = W̄−1
1 − W̄−1

1 1N (1 + 1>NW̄
−1
1 1N)1>NW̄

−1.

Proof. This is a corollary of the Woodbury identity (Hager, 1989),

(P +QLQ>)−1 = P−1 − P−1Q(L−1 +Q>P−1Q)−1Q>P−1 (11)

for any matrices P,Q,L with legal dimension.

Now we prove eq. (10) in Lemma 3.4.

Proof. Since Y is positive definite, let Y = U>U , U ∈ R(m−1)×(m−1). ThenA2 = (1N1>N)⊗Y =
(1N ⊗ U>)(1>N ⊗ U) (Van Loan & Pitsianis, 1993). Thus we have

(A1 +A2)
−1

=
(
A1 + (1N ⊗ U>)(1>N ⊗ U)

)−1

= A−1
1 −A

−1
1 (1N ⊗ U>)(I + (1>N ⊗ U)A−1

1 (1N ⊗ U>))−1(1>N ⊗ U)A−1
1 (12)

= A−1
1 −A

−1
1 (1N ⊗ U>)(I +

N∑
i=1

UA−1
ii U

>)−1(1>N ⊗ U)A−1
1 (13)

= A−1
1 −A

−1
1 (1N1>N)⊗ (U>(I +

N∑
i=1

UA−1
ii U

>)−1U)A−1
1 (14)

= A−1
1 −A

−1
1

(
(1N1>N)⊗ (Y −1 +

N∑
i=1

A−1
ii)−1

)
A−1

1 (15)

Eq. (12) comes from Woodbary inequality (11). Eq. (13) and (14) are done by block-wise calculation,
since both A1 and 1>N ⊗ U are naturally divided into N matrices in R(m−1)×(m−1).

16

	Introduction
	Our Main Contributions
	Related works

	Preliminaries
	Optimization Framework for WBC
	Preconditioning
	Predictor-Corrector IPM
	Solving the Normal Equations efficiently

	Experiments
	Computational Efficiency
	Fair Ensemble

	conclusion
	Proof of lemma 3.1
	Algorithm: Predictor-Corrector Inner Point Method
	Proof of lemma 3.4

