
Under review as a conference paper at ICLR 2022

GENERALIZATION IN DEEP RL FOR TSP PROBLEMS
VIA EQUIVARIANCE AND LOCAL SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) has proved to be a competitive heuristic for
solving small-sized instances of traveling salesman problems (TSP), but its perfor-
mance on larger-sized instances is insufficient. Since training on large instances is
impractical, we design a novel deep RL approach with a focus on generalizability.
Our proposition consisting of a simple deep learning architecture that learns with
novel RL training techniques, exploits two main ideas. First, we exploit equivari-
ance to facilitate training. Second, we interleave efficient local search heuristics
with the usual RL training to smooth the value landscape. In order to validate the
whole approach, we empirically evaluate our proposition on random and realistic
TSP problems against relevant state-of-the-art deep RL methods. Moreover, we
present an ablation study to understand the contribution of each of its components.

1 INTRODUCTION

The traveling salesman problem (TSP) has numerous applications from supply chain management
(Snyder & Shen, 2019) to electronic design automation (Gerez, 1999) or bioinformatics (Jones &
Pevzner, 2004). As an NP-hard problem, solving large-sized problem instances is generally in-
tractable. Deep reinforcement learning (RL)-based heuristic solvers have been demonstrated (Bello
et al., 2016; Dai et al., 2017; Kool et al., 2019; Ma et al., 2019) as being able to provide compet-
itive solutions while being fast, which is crucial in many domains such as logistics for real-time
operations. However, this ability has only been demonstrated on small-sized problems where RL-
based solvers are usually trained and tested on small instances. When evaluated instead on larger
instances, such solvers perform poorly. Since the computational cost of training on large instances
is prohibitive, increasing the size of the training instances is not a practical option for obtaining
efficient solvers for larger instances. To overcome this limitation, this paper investigates techniques
to increase the generalization capability of deep RL solvers, which would allow to train on small
instances and then solve larger ones.

Generalization in deep RL (François-Lavet et al., 2018) can be improved by adjusting the follow-
ing three components: input/representation space, objective function, and learning algorithm. We
propose to achieve this by exploiting equivariance, local search, and stochastic curriculum learning,
which we explain next. Although our approach is demonstrated on TSP problems, we believe it
can be naturally extended to other combinatorial optimization problems, but also to more classic RL
domains. We leave this for future work.

Problems with spatial information, such as TSP problems, enjoy many spatial symmetries which
can be exploited for RL training and generalization. An RL solver is invariant with respect to some
symmetry, if its outputs remain unchanged for symmetric inputs. For instance, translating all the city
positions leave optimal solutions intact. More generally, an RL solver is equivariant, if its outputs
are also transformed with a corresponding symmetry for symmetric inputs. For instance, if cities
are permuted, a corresponding permutation is required on the outputs of the RL solver. Invariance
and equivariance of the solver with respect to some symmetries allows a smaller input space to be
considered during training and more abstract representation insensitive to those symmetries to be
learned while the trained solver still covers the whole input space.

Previous work has considered using local search as a simple additional step to improve the feasible
solution output by a RL-based solver. In contrast to most previous work, we further employ local

1

Under review as a conference paper at ICLR 2022

search as a tool to smooth the objective function optimized during RL training. To that aim, we
interleave RL training with local search using the improved solution provided by the latter to train
the RL solver via a modified policy gradient. Moreover, we propose a novel simple baseline called
the policy rollout baseline to reduce the variance of its estimation.

Curriculum learning (Soviany et al., 2021) can accelerate training, but also improve generalization
(Weinshall et al., 2018). By stochastically adjusting the difficulty of the training instances, as de-
scribed by instance sizes, the RL-based solver can learn more easily and faster. Since the solver sees
various sizes of instances, this may prevent it to overfit to one particular instance size.

The architecture of our model includes a graph neural network (GNN), a multi-layer perceptron
(MLP), and an attention mechanism. Due to all the used techniques, we name our model as eMAGIC
(e for equivariance, M for MLP, A for Attention , G for Graph neural network, I for Interleaved local
search, and C for Stochastic Curriculum learning). We demonstrate that it can be trained on small
random instances (up to 50 cities) and perform competitively on larger random or realistic instances
(up to 1000 cities). The only learning methods that can perform better than ours require learning on
the instance to be solved (see Section 2 for a discussion).

2 RELATED WORK

Research on exploiting deep learning (Vinyals et al., 2015; Li et al., 2018; Joshi et al., 2019a; Prates
et al., 2019; Xing & Tu, 2020) or RL (Bello et al., 2016; Dai et al., 2017; Kool et al., 2019; Deudon
et al., 2018; Ma et al., 2019; Da Costa et al., 2020; Zheng et al., 2021; Kwon et al., 2021; Wu et al.,
2021b) to design heuristics for solving TSP problems has become very active. The current achieve-
ments demonstrate the potential of machine-learning-based approaches, but also reveal their usual
limitation on solving larger-size instances, which has prompted much research on generalization
(Joshi et al., 2019b; Fu et al., 2021; Wu et al., 2021b). Some experimental work (Joshi et al., 2019b)
suggests that deep RL may provide more generalizable solvers than supervised learning, which is a
further motivation for our own work. Another advantage of deep RL is that it does not require opti-
mal solvers to train. We discuss next the related work that exploits equivariance or local search like
our method. To the best of our knowledge, no other work uses stochastic curriculum learning for
designing an RL-based solver for TSP, although Lisicki et al. (2020) evaluated deterministic curricu-
lum learning strategies on small TSP instances. For space reasons, our discussion below emphasizes
the approaches using deep RL as a constructive heuristic (which builds a solution iteratively).

Invariance and equivariance have been important properties to exploit for designing powerful deep
learning architectures (Bengio & Lecun, 1997; Gens & Domingos, 2014; Cohen & Welling, 2016).
They have also inspired some of the previous work on solving TSP problems, although they were
often not explicitly discussed like in our work. For instance, Deudon et al. (2018) use principal
component analysis to exploit rotation invariance as a single preprocessing step. In contrast to their
work, we compose various preprocessing transformations to be applied at every solving step. To the
best of our knowledge, we are the first to propose such technique. In addition, permutation invariance
is the motivation for using attention models (Kool et al., 2019; Deudon et al., 2018) or GNNs (Ma
et al., 2019) in RL solvers. Contrary to Deudon et al. (2018), Kool et al. (2019) select the next
city to visit based on the first and last visited cities while Ma et al. (2019) propose to use relative
positions for translation invariance. Our proposition combines those two ideas, but compared to
Kool et al. (2019), our model is based on GNN, while compared to Ma et al. (2019), it has a simpler
architecture that does not require an LSTM. For vehicle routing problems, Peng et al. (2020) propose
to remove visited cities from the RL agent’s input, a technique we also apply to TSP. In contrast to
their work, our GNN model is simpler and we investigate generalization from small instances to
very large instances. To summarize, compared to all previous work, our paper investigates in a more
systematic fashion the exploitation of equivariance to help training and improve generalization.

Several previous studies combine deep learning or RL with various local search techniques to find
better solutions: 2-opt (Deudon et al., 2018; Ma et al., 2019; Da Costa et al., 2020; Wu et al.,
2021b), k-opt (Zheng et al., 2021), or Monte-Carlo tree search (Fu et al., 2021). In contrast to these
methods, we use a combined local search technique, which applies several heuristics in an efficient
way. Moreover, to the best of our knowledge, no previous work considers interleaving local search
with policy gradient updates to obtain a more synergetic final method for solving TSP. For the bin
packing problem, Cai et al. (2019) use RL to learn a perturbative heuristics to provide a good initial

2

Under review as a conference paper at ICLR 2022

solution to a heuristic optimizer. Our interleaved training process is based on a similar idea, but our
RL agent learns a constructive heuristics and we provide an intuitive motivation why this approach
may work via our smoothed policy gradient.

All these machine-learning-based methods can be categorized as learning from a batch of instances
or as directly learning on the instance to be solved. Like our work, most methods are part of the
first category. However, some recent work belongs to the second category (Zheng et al., 2021) or
are hybrid (Fu et al., 2021). For instance, Zheng et al. (2021) apply RL to make the LKH algorithm
(Helsgaun, 2017), a classic efficient heuristic for TSP, adaptive to the instance to be solved. In Fu
et al. (2021)’s method, evaluations learned in a supervised way from a batch of instances are used
in Monte-Carlo tree search so that solutions can adaptively be found for the current instance. Being
adaptive to the current instance can undoubtedly boost the performance of the solver. We leave for
future work the improvement of our solver to become more adaptive to the instance to be solved.

3 PRELIMINARIES

Following previous work, we focus on the symmetric 2D Euclidean TSP, which we recall below. We
then explain how a TSP instance can be tackled with RL. We first provide some notations:
For any positive integerN ∈ N, [N] denotes the set {1, 2, . . . , N}. Vectors and matrices are denoted
in bold (e.g., x or X). For a set of subscripts I , XI denotes the matrix formed by the rows of X
whose indices are in I .

Traveling Salesman Problem A symmetric 2D Euclidean TSP instance is described by a set of
N cities (identified to the set [N]) and their coordinates in R2. The goal in this problem is to find
the shortest tour that visits each city exactly once. The coordinates of city i are denoted xi ∈ R2.
The matrix whose rows correspond to city coordinates is denoted X ∈ RN×2. A feasible solution
(i.e., tour) of a TSP instance is a permutation σ over [N] with length equal to:

Lσ(X) =

N∑
t=1

‖xσ(t) − xσ(t+1)||2 (1)

where ‖·‖2 denotes the `2-norm, σ(t) ∈ [N] is the t-th visited city in tour σ, and by abuse of notation,
σ(N + 1) denotes σ(1). Therefore, solving a TSP instance consists in finding the permutation σ
that minimizes the tour length Lσ(X) defined in Equation (1). Since TSP solutions are invariant to
scaling, we assume that the city coordinates are in the square [0, 1]2. In Appendix A, we recall some
heuristics (e.g., insertion, k-opt) that have been proposed for solving TSP.

RL as a Constructive Heuristic RL can be used to construct a TSP tour σ sequentially. Intu-
itively, at iteration t ∈ [N], an RL solver (i.e., policy) selects the next unvisited city σ(t) to visit
based on the current partial tour and the description of the TSP instance (i.e., coordinates of cities).
Therefore, this RL problem corresponds to a repeated N -horizon sequential decision-making prob-
lem. As noticed by Kool et al. (2019), the decision for the next city to visit only depends on the
description of the TSP instance and the first and last visited cities. In addition, we update the de-
scription of the TSP instance by removing the coordinates of visited cities. Surprisingly, to the best
of our knowledge, no previous work exploits this simplified RL model.

Formally, in the RL language, at time step t ∈ [N], an action at represents the next city to visit,
i.e., at = σ(t). Let I1 = [N] and It+1 = [N]\{σ(1), . . . , σ(t)} be the set of remaining cities after
t cities have been already visited. Moreover, let J1 = [N] and Jt = It ∪ {σ(1), σ(t)} be the set
of unvisited cities in addition of the first and last visited cities (σ(1) and σ(t)). Therefore, at ∈ It
for all t ∈ [N]. A state st can be represented by a matrix XJt with flags indicating the first and
last visited cities. This matrix includes the coordinates of unvisited cities (XIt) in addition to the
coordinates of the first and last visited cities (xσ(1) and xσ(t)). Note that at t = 1, no city has been
chosen yet, so the initial state s1 only contains the list of city coordinates. A state sN contains the
coordinates of the unvisited cities and those of the first and last visited cities. After choosing the last
city to visit in state sN , the tour σ is completely generated. The immediate reward r(st, at) for an
action at in a state st can be defined as the negative length between the last visited city and the next

3

Under review as a conference paper at ICLR 2022

chosen city, since we want the tour length to be small:

r (st, at) =


0 for t = 1

−||xσ(t) − xσ(t−1)||2 for t = 2, . . . , N − 1

−||xσ(N) − xσ(N−1)||2 − ||xσ(1) − xσ(N)||2 for t = N

(2)

After choosing the first city a1 = σ(1), the reward is zero since no length can be computed. After
the final action aN , an additional reward −||xσ(1) − xσ(N)||2 is added to complete the tour length.

In deep RL, a policy πθ is represented as a neural network parametrized by θ. The goal is then to
find θ∗ that maximizes the objective function J(θ):

θ? = argmax
θ

J(θ) = argmax
θ

Eτ∼pθ(τ)

[
N∑
t=1

rt

]
, (3)

where for all t ∈ [N], rt = r(st, at), τ = (s1, a1, s2, a2, . . . , sN , aN) is a complete trajectory, and
pθ is the probability over trajectories induced by policy πθ. This objective function J(θ) can be
optimized by a policy gradient (Williams, 1992) or actor-critic method (Sutton & Barto, 1998).

4 EQUIVARIANT MODEL

In this section, we present several techniques to exploit invariances and equivariances in the design
of an RL solver. Formally, a mapping f : A → B from a set A to a set B is invariant with respect
to a symmetry ρA : A→ A iff f(x) = f(ρA(x)) for any x ∈ A. More generally, given a symmetry
that acts on A with ρA : A→ A and on B with ρB : B → B, a mapping f : A→ B is equivariant
with respect to this symmetry iff ρB(f(x)) = f(ρA(x)) for any x ∈ A. This definition shows that
invariance is a special case of equivariance when ρB is the identity function. Intuitively, equivariance
for an RL solver (resp. its value function) means that if a transformation is applied to its input, its
output (resp. its value) can be recovered by a corresponding transformation.

In the remaining of the paper, for simplicity, we often use equivariance to refer to both equivariance
and invariance, since the latter is a special case of the former. Equivariance can be exploited in RL
in various ways. We consider some equivariant preprocessing methods on the description of TSP
instances to standardize the kinds of instances the solver is trained on and evaluated on. In addition,
we propose a simple deep learning model for which we apply some other equivariant preprocessing
methods on its inputs to further reduce the input space.

4.1 EQUIVARIANT PREPROCESSING OF TSP INSTANCE

An RL solver should be invariant with respect to any Euclidean symmetry (rotation, reflection, trans-
lations and their compositions) and to any positive scaling transformation applied on city positions.
To enforce these invariances, we can apply these transformations to preprocess the inputs of the
solver such that the transformed inputs are always in a standard form. Doing so allows the solver to
be trained on more similar inputs.

Concretely, for rotation invariance, we rotate and scale the city positions such that they are mostly
distributed along the first diagonal of the square [0, 1]2. This can be achieved by performing a
principal component analysis, rotating the first found axis by 45° anti-clockwise and scaling to fit
the cities in the [0, 1]2 square. This transformation, which is slightly different from (Deudon et al.,
2018), allows the cities to be as spread as possible in [0, 1]2. For scaling and translation invariance,
we apply a scaling and translation transformation to the city positions such that there are a maximum
number of cities (i.e., 2 or 3 depending on configuration) on the border of the square [0, 1]2. For
reflections, we only consider horizontal, vertical, and diagonal flips (with respect to the coordinate
axes) for simplicity. Cities are reflected such that a majority of them are in a fixed chosen region.

Since the symmetries can be composed, these preprocessing methods can be applied sequentially.
Theoretically, it would be beneficial to apply all of them in combination, however this has a com-
putational cost. It is therefore more effective to only use a selection of the most effective ones.
Moreover, these preprocessing methods can be applied either once on the initial TSP instance (X),
or at each solving step t on the remaining cities (XIt). Theoretically, performing these prepro-
cessings iteratively should help most, since the RL solver is only trained on standardized inputs.

4

Under review as a conference paper at ICLR 2022

Figure 1: Model Architecture of eMAGIC

This is confirmed by our experimental analysis. We find out that the combination that provides the
best results are rotation followed by scaling and translation, which will be used in the experimental
evaluation of our method. However, our overall approach is generic and could include any other
symmetries for which equivariance would hold for the RL solver. In Appendix F, we present the
details of the evaluation of the different preprocessing methods.

In the remaining, we assume that the set of equivariant transformations is fixed. For any set of in-
dices I ⊆ [N], we denote the matrix of positionsXI after preprocessing by X̃I and any coordinates
x after preprocessing by x̃. Note that the preprocessing step (e.g., if it includes the rotation trans-
formation described above) may depend on the initial matrix XI , but we prefer not to reflect it in
the notations to keep them simple.

4.2 EQUIVARIANT MODEL

Our proposed model, which represents the RL solver, has an encoder-decoder architecture (see Fig-
ure 1). In our model, the first city to visit is fixed arbitrarily, since the construction of the tour should
be invariant to the starting city. Therefore, the decisions of the solver starts at time step t ≥ 2. Our
model is designed to take into account other equivariances that are known to hold in the problem.
Invariance with respect to translation can be further exploited by considering relative positions with
respect to the last visited city instead of the original absolute positions, as suggested by Ma et al.
(2019). Therefore, we define the input of our RL solver to only include two pieces of information.
First, the information about the current partial tour now only needs the relative preprocessed position
of the first visited city (~xσ(1) = x̃σ(1) − x̃σ(t)). Since the last visited city is always represented by
the origin, it can be dropped. Second, the information about the remaining TSP instance corresponds
to the relative preprocessed positions of the unvisited cities (~xσ(n) = x̃σ(n) − x̃σ(t−1) for n ∈ It)
and of the first and last visited cities (~xσ(1) and the origin ~xσ(t) = 0). We denote the matrix of those

relative preprocessed positions by
−→
XJt , i.e., the matrix whose rows are the rows of X̃Jt (obtained

from XJt) minus x̃σ(t). The last visited city needs to be kept in this matrix, since it represents the
labels of the nodes of the remaining graph on which the tour should be completed.

Encoder With H denoting the embedding dimension, the encoder of our model is composed of a
graph neural network (GNN) (Battaglia et al., 2018), which computes an embedding X̂Jt ∈ R|Jt|×H

of the relative city positions
−→
XJt ∈ R|Jt|×2, and a multilayer perceptron (MLP), which computes

an embedding x̂σ(1) ∈ RH of the relative position of the first visited city −→x σ(1) ∈ R2. The GNN
encodes the information about the graph describing the remaining TSP problem. As a GNN, it
is equivariant with respect to the order of its inputs and its outputs depend on the graph structure
and information (i.e., city positions). The MLP encodes the information about the first city. Since
we exploit the independence with respect to the visited cities between the first and last cities (not
included), our model does not require any complex architecture, like LSTM (Hochreiter & Schmid-
huber, 1997) or GNN, for encoding the positions of the visited cities, in contrast to most previous
work. A simple MLP suffices since only the relative position of the first city is required.

5

Under review as a conference paper at ICLR 2022

Formally, the GNN computes its output X̂Jt ∈ R|Jt|×H from inputs
−→
XJt ∈ R|Jt|×2 through nGNN

layers, which allows each city to get information from its neighbors up to nGNN edges away:

X(0) =
−→
XΘ(0) (4)

X(`) = λ ·X(`−1)Θ(`) + (1− λ) · F(`)

(
X(`−1)

|Jt| − 1

)
(5)

where Θ(0) ∈ R2×H and Θ(`) ∈ RH×H are learnable weights, X(`−1) ∈ R|Jt|×H is the input
of the `th layer of the GNN for ` ∈ [nGNN], X(nGNN) = X̂Jt , F

(`) : R|Jt|×H → R|Jt|×H is the
aggregation function, which is implemented as a neural network, and λ ∈ [0, 1] is another trainable
parameter. Visual illustration of the GNN is deferred to Appendix H for space reasons.

Decoder Once the embeddings X̂Jt and x̂σ(0) are computed, the probability of selecting a next
city to visit is obtained via a standard attention mechanism (Bello et al., 2016) using X̂Jt and x̂σ(0)
as the keys and query respectively. Formally, the decoder outputs a vector u ∈ RN expressed as:

uj =

{
−∞ ∀j ∈ It
w · tanh

(
X̂Jt,jΘg + Θmx̂

)
otherwise

(6)

where uj is the jth entry of the vector u, X̂Jt,j is the jth row of the matrix X̂Jt , Θg and Θm are
trainable matrices with shape H ×H , w ∈ RN is another trainable weight vector. Then, a softmax
transformation turns u into a probability distribution p =

(
pj
)
j∈[N]

over unvisited cities:

p = softmax(u) =

(
euj∑N
j=1 e

uj

)
j∈[N]

(7)

where pj is the jth entry of the probability distribution p and uj is the jth entry of the vector u.
Note that the probability of any visited city j ∈ It is zero since uj = −∞ in Equation (6).

5 ALGORITHM & TRAINING

We introduce three innovative training techniques that we apply during our training process: com-
bined local search, smoothed policy gradient, and stochastic curriculum learning. Overall, these
techniques can help train a fast and generalizable policy, which is able to generate tours that can
easily be improved by local search. The overall algorithm1 can be found in appendix C.

Combined Local Search In contrast to previous work, which generally only considers 2-opt, we
propose to use a combination of several (possibly random) local search methods (i.e., local insertion
heuristic, random 2-opt, search 2-opt and search random 3-opt) to improve a tour generated by the
RL solver. For space reasons, we defer their presentations in Appendix A. A local search method
can heuristically improve a tour, but may get stuck in a local optimum. Using a combination of them
alleviates this issue, since different heuristics usually have different local optima. Another important
distinction with previous work is that we also use local search during training, not only testing.

Smoothed Policy Gradient For simplicity, we train our model with the REINFORCE algorithm
(Williams, 1992), which leverages the policy gradient for optimization. However, instead of using
the standard policy gradient, which is based on the value of the tour generated by the policy, we
compute the policy gradient with the value of the tour improved by our combined local search.
While standard RL training may yield policies whose outputs may not easily be improved by local
search, our new definition directly trains the RL solver to find solutions that can be improved by
local search, which allows RL and local search to have synergetic effects.

Intuitively, this new policy gradient amounts to smoothing the objective function J(θ) that is opti-
mized. Recall J(θ) = −E[Lσ(X)], where the expectation is taken with respect to σ, which is a

1Our implementation takes advantage of GPU acceleration when possible. The source code will be shared
after publication.

6

Under review as a conference paper at ICLR 2022

random variable corresponding to the tour generated by policy πθ. In our approach, this usual objec-
tive function is replaced by J+(θ) = −E[Lσ+

(X)], where σ+ is a random variable corresponding
to the improved tour obtained by our combined local search from σ. Therefore, this last expectation
is taken with respect to the probability distributions generated by policy πθ and our combined lo-
cal search. This objective function can be understood as J+(θ) = −E[minσ′∈N (σ) Lσ′(X)] where
N (σ) is a neighborhood of σ defined by local search. This stochastic min operation has a smoothing
effect on J(θ). That is why, we call the gradient of J+(θ) a smoothed policy gradient.

Formally, this novel policy gradient can be estimated on a batch of TSP instancesX(1), . . . ,X(B):

∇θJ+(θ) ≈ − 1

|B|

|B|∑
b=1

(
N∑
t=2

∇θ log πθ(a(b)t |s
(b)
t)

)(
L
σ
(b)
+
(X(b))− l(b)

)
, (8)

where σ(b) is the tour generated by the current policy πθ on instance X(b), σ(b)
+ is the improved

tour obtained by our combined local search starting from σ(b), and l(b) = −Lσ(b)(X(b)) is a novel
baseline, which we call policy rollout baseline, used to reduce the variance of the policy gradi-
ent estimation. It enjoys the nice property that it does not require additional calculations, since
Lσ(b)(X(b)) is computed when σ(b) is generated. In our experiments, the policy rollout baseline
easily outperforms the previous greedy baselines (Ma et al., 2019; Kool et al., 2019).

Note that by construction, L
σ
(b)
+
(X(b)) ≤ Lσ(b)(X(b)) = −

∑N
t=1 r

(b)
t . Therefore, the smoothed

policy gradient updates more if our combined local search can make more improvements upon this
certain policy. For completeness, we provide more details in Appendix B.

Stochastic Curriculum Learning Curriculum Learning (CL) is widely used in machine learning
(Soviany et al., 2021). Its basic principle is to control the increase of the difficulty of training
instances. CL can speed up learning and improve generalization (Weinshall et al., 2018). We apply
stochastic CL to train our model. Instead of a deterministic process, stochastic CL increases the
difficulty according to a probability distribution. We choose the TSP size (i.e., number of cities) as
a measure of difficulty for a TSP instance. We assume it to be in the range ofR = {10, 11, . . . , 50}.
For each epoch e, we define the vector g(e) ∈ R41 (since |R| = 41) to be:

g
(e)
k =

1√
2πσN

exp
− 1

2

(
(k+10)−e

σN

)2

, (9)

where g(e)k is the k-th entry of g(e) and hyperparameter σN is the standard deviation of this Gaussian
density function. Then, g(e) is turned into a categorical distribution p(e) ∈ [0, 1]41 via a softmax:

p(e) = softmax(g(e)) (10)

The k-th entry of p(e) gives the probability of choosing a TSP instance of size (k + 10) at epoch e.

6 EXPERIMENTAL RESULTS

We present three sets of experiments. First, to validate the effectiveness of eMAGIC, we train our
model on randomly-generated TSP instances (using stochastic CL with sizes up to 50), and test the
model on other randomly-generated TSP instances (TSPn where size n = 20 up to 1000). Second,
to further prove of its generalization capability, we directly evaluate models trained on random
instances on realistic symmetric 2D Euclidean TSP instances with sizes range from 51 to 1002 in
TSPLIB (Reinelt, 1991). Third, we conduct an ablation study to show the significance of every
component of eMAGIC (i.e., equivariance, stochastic CL, policy rollout baseline, combined local
search, and RL). We evaluate four versions of our model: eMAGIC(G), eMAGIC(S), eMAGIC(s1)
and eMAGIC(s10) where G means the tour is generated greedily from the RL policy, while the
other ones are based on random sampling and differ with respect to the number of times eMAGIC
is applied (once for s1, 10 times for s10 and 100 for S). The details about the experimental settings
and the used hyperparameters, which are the same for all experiments, are provided in Appendix D.

Performance on Randomly Generated TSP We compare the performance of our model with 12
other methods in Tables 1 and 2, which covers various types of TSP solvers including exact solvers,

7

Under review as a conference paper at ICLR 2022

Table 1: Results of eMAGIC vs baselines, tested on 10,000 instances for TSP 20, 50 and 100.
Method Type† TSP20 TSP50 TSP100

Len. Gap Time Len. Gap Time Len. Gap Time

Concorde∗ ES 3.830 0.00% 2.3m 5.691 0.00% 13m 7.761 0.00% 1.0h
Gurobi∗ ES 3.830 0.00% 2.3m 5.691 0.00% 26m 7.761 0.00% 3.6h

LKH3∗ H 3.830 0.00% 21m 5.691 0.00% 27m 7.761 0.00% 50m
2-opt H 4.082 6.56% 0.3s 6.444 13.24% 2.3s 9.100 17.26% 9.3s
Random] H 4.005 4.57% 3.3m 6.128 7.69% 12m 8.511 9.66% 17m
Farthest] H 3.932 2.64% 4.0m 6.010 5.62% 10m 8.360 7.71% 21m

GCN∗1 SL(G) 3.855 0.65% 19s 5.893 3.56% 2.0m 8.413 8.40% 11m
GCN∗1 SL(BS) 3.835 0.12% 21m 5.707 0.29% 35m 7.876 1.48% 32m
GCN∗1 SL(BST) 3.831 0.01% 22m 5.692 0.03% 38m 7.872 1.43% 1.2h
AGCRN+M∗2 SL+M 3.830 0.00% 1.6m 5.691 0.01% 7.9m 7.764 0.04% 15m
GAT∗3 RL(S) 3.874 1.14% 10m 6.109 7.34% 20m 8.837 13.87% 48m
AM∗4 RL(G) 3.841 0.29% 6.0s 5.785 1.66% 34s 8.101 4.38% 1.8m
AM∗4 RL(S) 3.832 0.05% 17m 5.719 0.49% 23m 7.974 2.74% 1.2h
GPN5 RL 4.074 6.35% 0.8s 6.059 6.47% 2.5s 8.885 14.49% 6.2s

eMAGIC(G) RL(LS) 3.841 0.29% 2.8s 5.732 0.74% 16s 7.923 2.09% 1.4m
eMAGIC(S) RL(LS) 3.830 0.00% 38s 5.691 0.01% 3.5m 7.762 0.02% 14.6m

∗ as reported in previous work.] Random - Random Insertion; Farthest - Farthest Insertion.
1 (Joshi et al., 2019a), 2 (Fu et al., 2021), 3 (Deudon et al., 2018), 4 (Kool et al., 2019), 5 (Ma et al., 2019)
† ES - Exact Solver; H - Heuristic; SL - Supervised Learning; RL - Reinforcement Learning; G - Greedy; S
- Sampling; M - Monte-Carlo Tree Search; LS - Combined Local Search; BS - Beam Search; BST - Beam
Search and Shortest Tour Heuristic.

Table 2: Results of eMAGIC vs baselines, tested on 10,000 instances for TSP 200, 500, and 1000.
Method Type† TSP200 TSP500 TSP1000

Len. Gap Time Len. Gap Time Len. Gap Time

Concorde∗ ES 10.72 0.00% 3.4m 16.55 0.00% 38m 23.12 0.00% 7h
Gurobi∗ ES - - - - - - - - -

LKH3∗ H 10.72 0.00% 2.0m 16.55 0.00% 11m 23.12 0.00% 38m
2-opt H 12.84 19.80% 34s 20.44 23.51% 3.3m 28.95 25.23% 14m
Random] H 11.84 10.47% 27s 18.59 12.34% 1.1m 26.12 12.98% 2.3m
Farthest] H 11.64 8.63% 33s 18.31 10.64% 1.4m 25.74 11.35% 2.9m

GCN∗1 SL(G) 17.01 58.73% 59s 29.72 79.61% 7m 48.62 110.3% 29m
GCN∗1 SL(BS) 16.19 51.02% 4.6m 30.37 83.55% 38m 51.26 122% 52m
GCN∗1 SL(BST) 16.21 51.21% 4.0m 30.43 83.89% 31m 51.10 121% 3.2h
AGCRN+M∗2 SL+M 10.81 0.88% 2.5m 16.97 2.54% 5.9m 23.86 3.22% 12m
GAT∗3 RL(S) 13.18 22.91% 4.8m 28.63 73.03% 20m 50.30 117.6% 38m
AM∗4 RL(G) 11.61 8.31% 5.0s 20.02 20.99% 1.5m 31.15 34.75% 3.2m
AM∗4 RL(S) 11.45 6.82% 4.5m 22.64 36.84% 16m 42.80 85.15% 1.1h
GPN∗5 RL - - - 19.61 18.49% - 28.47 23.15% -
GPN+2opt∗5 RL+2opt - - - 18.36 10.95% - 26.13 13.02% -
GPN5 RL 13.28 23.87% 2.5s 23.64 42.87% 7.1s 37.85 63.72% 18s

eMAGIC(G) RL(LS) 11.14 3.89% 36s 17.52 5.89% 2.0m 24.70 6.85% 4.9m
eMAGIC(S) RL(LS) 10.77 0.50% 2.4m 17.03 2.92% 9.7m 24.13 4.36% 27m

See footnotes of Table 1.

heuristics, and learning-based approaches. Column 1 and 2 of both Tables 1 and 2 correspond to
the method name and the method type, respectively. Columns 3, 4, and 5 provide the average tour
length, gap to the optimal (provided by Concorde (Applegate et al., 2004)), and computational time,
respectively. For space reasons, we only include results of eMAGIC(G) and eMAGIC(S) in Tables 1

8

Under review as a conference paper at ICLR 2022

Table 3: Gap to optimal for different ranges of instances in TSPLIB.

Size Range eMAGIC(S) Wu et al.∗1 S2VDQN∗2 OR3 AM∗4 L2OPT∗5 Furthest6

50− 199 0.46% 15.00% 3.77% 3.49% 78.73% 6.54% 7.60%
200− 399 1.37% 23.49% 6.87% 3.61% 293.76% 12.17% 9.54%
400− 1002 3.40% - - 3.57% - - 10.11%
∗ as reported in previous work.
1 (Wu et al., 2021a), 2 (Khalil et al., 2017), 3 (Perron & Furnon), 4 (Kool et al., 2019), 5 (de O. da Costa
et al., 2020), 6 (Furthest Insertion).

and 2, and leave results of other versions in Table 4 in Appendix E.1. Moreover, we provide the
result variances for our methods and evaluate them on TSP10,000 in resp. Appendices E.2 and E.3.

Tables 1 and 2 show that the computational times of exact solvers become prohibitive as the TSP size
increases. Note that Gurobi is not able to solve TSP instances larger than 200 under a reasonable time
budget. The classic heuristic methods are relatively fast, but their performances are not satisfactory.
Among all learning methods, Fu et al. (2021) provide excellent results, but it is based on Monte-
Carlo tree search, which adapts to the instance to be solved. Without this adaptivity, our model
with or without sampling provides competitive results. It can be better than Fu et al. (2021) up to
TSP200. This somewhat suggests the limit of our approach, which trains on small instances and
directly generalizes to large ones, without learning on the instance to be solved. We expect that our
approach could be improved by training on slightly bigger instances (e.g., up to 100) or adding an
adaptive component like in Fu et al. (2021).

Performance on Realistic TSP Table 3 compares the performances of a variety of learning-based
TSP solvers on instances from TSPLIB. Each column of Table 3 represents the average gap to
the optimal solution over the instances indicated by the corresponding rows. We treat the tested
instances as small instances if their sizes are under 200 and large instances otherwise. And we extend
the testing to larger instances with size up to 1002 and leave the performances of other models as
empty for size ranging from 400 to 1002 since in their papers, the testings stop at instances with
sizes around 400. We can observe from Table 3 that our model can perform much better than the
other learning-based solvers not only for small problems but also large ones, which demonstrates
the strong ability and the practical significance of eMAGIC to tackle realistic TSP problems. When
the testing size increases, most models suffer from a relatively big increasing of the average gap
while ours only increases less than 1% and remains in a good absolute value (3.40%) for even
larger instances, which indicates a strong generalization ability of our model. Further details and
experimental results are provided in Appendix I.

Ablation Study We demonstrate the strength of all the techniques we applied (including equivari-
ance, stochastic CL, policy rollout baseline, combined local search, and RL) using an ablation study.
We turn off each feature one at a time to see if the performance drops compared to the full version
of eMAGIC(s1). For space reasons, details of the ablation study are deferred to Appendix G. Table
10 and 11 demonstrate that each technique plays a role in our model.

7 CONCLUSION

We presented a combination of novel techniques (notably, equivariance, combined local search,
smoothed policy gradient) for designing an RL solver for TSP, which shows a good generalization
capability. We demonstrated its effectiveness both on random and realistic instances, which shows
that our model can reach state-of-the-art performance.

For future work, the approach can be further improved in various ways, e.g., extending it to the
actor-critic scheme and exploiting invariances with the critic; or making it adaptive and learn on
the instance to be solved. The approach could also be applied on other combinatorial optimization
problems and other RL problems.

9

Under review as a conference paper at ICLR 2022

REFERENCES

David Applegate, Bixby Ribert, Chvatal Vasek, and Cook William. Concorde tsp solver. 2004. URL
http://www.math.uwaterloo.ca/tsp/concorde.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks, 2018.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. CoRR, 2016.

Y. Bengio and Yann Lecun. Convolutional networks for images, speech, and time-series. 11 1997.

Qingpeng Cai, Will Hang, Azalia Mirhoseini, George Tucker, Jingtao Wang, and Wei Wei. Rein-
forcement learning driven heuristic optimization. In DRL4KDD, 2019.

Taco S. Cohen and Max Welling. Group equivariant convolutional networks. In ICML, 2016. URL
http://arxiv.org/abs/1602.07576. arXiv: 1602.07576.

Paulo R de O Da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning. In ACML, 2020.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial
Optimization Algorithms over Graphs. Advances in Neural Information Processing Systems, DE-
CEM2017:6349–6359, April 2017.

Paulo R. de O. da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning, 2020.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In CPAIOR, volume 10848 LNCS, pp. 170–181.
Springer Verlag, 2018.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle Pineau. An
introduction to deep reinforcement learning. Foundations and Trends in Machine Learning, 11
(3-4), 2018.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In AAAI, 2021.

Robert Gens and Pedro M Domingos. Deep symmetry networks. In NeurIPS, 2014.

Sabih H. Gerez. Algorithms for VLSI Design Automation, chapter Routing. Wiley, 1999.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press,
2004.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. CoRR, 2019a.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. On learning paradigms for the travelling
salesman problem. In NeurIPS 2019 Graph Representation Learning Workshop, 2019b.

10

http://www.math.uwaterloo.ca/tsp/concorde
http://arxiv.org/abs/1602.07576

Under review as a conference paper at ICLR 2022

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning, 2021.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial Optimization with Graph Convolu-
tional Networks and Guided Tree Search. In Advances in Neural Information Processing Systems,
volume 2018-Decem, pp. 539–548, 2018. URL http://arxiv.org/abs/1810.10659.

Michal Lisicki, Arash Afkanpour, and Graham W. Taylor. Evaluating curriculum learning strategies
in neural combinatorial optimization, 2020.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization
by graph pointer networks and hierarchical reinforcement learning. CoRR, 2019.

Christos H. Papadimitriou. The euclidean travelling salesman problem is np-complete. Theoretical
Computer Science, 4(3):237–244, 1977.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A Deep Reinforcement Learning Algorithm Using Dy-
namic Attention Model for Vehicle Routing Problems. In Kangshun Li, Wei Li, Hui Wang, and
Yong Liu (eds.), Artificial Intelligence Algorithms and Applications, Communications in Com-
puter and Information Science, pp. 636–650, Singapore, 2020. Springer. ISBN 9789811555770.
doi: 10.1007/978-981-15-5577-0 51.

Laurent Perron and Vincent Furnon. Or-tools. URL https://developers.google.com/
optimization/.

Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, Luis Lamb, and Moshe Vardi. Learning
to solve np-complete problems - a graph neural network for decision tsp. In AAAI, 2019. URL
http://arxiv.org/abs/1809.02721.

Gerhard Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing, 3
(4):376–384, 1991.

L.V. Snyder and Z.-J.M. Shen. Fundamentals of Supply Chain Theory, chapter The Traveling Sales-
man Problem, pp. 403–461. Wiley, 2019.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey,
2021.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. MIT Press, 1998.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NIPS, pp. 2692–2700,
2015.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
and experiments with deep networks. In ICML, 2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, pp. 229–256, 1992.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems.. IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–13, 2021a. doi: 10.1109/TNNLS.2021.3068828.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving the travelling salesman problem. IEEE Transactions on Neural Networks and
Learning Systems, 2021b.

11

https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
http://arxiv.org/abs/1810.10659
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://arxiv.org/abs/1809.02721

Under review as a conference paper at ICLR 2022

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach
to traveling salesman problem. IEEE Access, 8:108418–108428, 2020. doi: 10.1109/ACCESS.
2020.3000236.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforcement
learning with Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem. In AAAI,
2021.

12

Under review as a conference paper at ICLR 2022

A COMBINED LOCAL SEARCH

We first provide a brief introduction to TSP heuristics and then give the detailed presentation of each
local search method we used, together with our whole combined local search algorithm.

Since TSP is an NP-hard problem (Papadimitriou, 1977), solving exactly large TSP instances is
generally impractical. Hence, many heuristics have been proposed to solve TSP. Two important
categories of heuristics are constructive heuristics and local search heuristics. On the one hand,
constructive heuristics iteratively build a tour from scratch and therefore, do not rely on existing
tours. As an example, insertion heuristics are constructive: they first choose a starting city randomly,
then repeatedly insert an unvisited city into the partial tour that minimizes the increase of tour length
until all the cities are included in the tour. The unvisited city can be selected in different ways leading
to various versions of insertion heuristics: random insertion, nearest insertion, or farthest insertion
(see Kool et al. (2019) for implementation details). Among them, farthest insertion usually yields
the best results. On the other hand, local search heuristics try to improve a given complete tour
by perturbing it. They are widely used as post optimization for TSP solvers, such as Deudon et al.
(2018); Ma et al. (2019). One important class of local search heuristic is k-opt, which improves an
existing complete tour σ by repeatedly performing the following operation: remove k edges of the
current tour and reconnect the obtained subtours in order to decrease the tour length. For instance,
one 2-opt operation would replace:

σ =
(
σ(1), σ(2)..., σ(i), ..., σ(j), ..., σ(N)

)
by

σ′ =
(
σ(1), ..., σ(i), σ(j), σ(j − 1), ..., σ(i+ 1), σ(j + 1), ..., σ(N)

)
where i < j < N if Lσ′(X) < Lσ(X). Based on k-opt, the LKH algorithm (Helsgaun, 2017) can
often achieve nearly optimal solutions, but requires a long runtime.

Based on how many edges are removed and how the subtours are reconnected during one step, every
local search heuristic can be seen as a special case of k-opt. Since the number of possible k-opt
operations is O(Nk), 2-opt and 3-opt are usually preferred to efficiently search for fast improve-
ments of existing tours, although they can get stuck in local optima. Hence, in our work, we use
a combination of several local search methods, including local insertion heuristics, random 2-opt,
search 2-opt, and search random 3-opt (see below for their definitions), to efficiently find potential
2-opt and 3-opt operations to improve the solution proposed by the RL solver. Instead of running
each algorithm once for long enough, we run every local search shortly one by one and repeat this
process for multiple times so that the combined local search are able to avoid more local optima.
Intuitively, the rationale is that once a certain heuristic gets stuck in a local optimum, another can
help get it out by trying a different operation. Next, we explain the above four heuristics, and then
illustrate how we leverage them to form our combined local search.

A.1 RANDOM 2-OPT

For random 2-opt, we randomly try two edges for performing a 2-opt operation and repeat this
process for α×Nβ times, where α, β > 0 are two hyperparameters controlling the strength of this
heuristic as well as its runtime. Theoretically, random 2-opt can potentially cover all 2-opt operations
and such a procedure makes random 2-opt much more flexible than trying all N(N − 1)/2 possible
pairs of edges. In this paper, we set α = 0.5 and β = 1.5 for all experiments.

A.2 LOCAL INSERTION HEURISTIC

For local insertion heuristic, inspired by the insertion heuristic, we iterate through all cities and find
the best positions to insert them from their original locations. Let σ be the current tour and σt,t′ be
the tour where we exchange the positions of σ(t) with σ(t′). Namely,

σt,t′ =
(
σ(1), ..., σ(t′), σ(t), σ(t′ + 1), ..., σ(t− 1), σ(t+ 1), ..., σ(N)

)
. (11)

for t′ 6= t − 1 and σt,t−1 = σ. The local insertion heuristic (see Algorithm 1) iterates over every
t ∈ [N]. For each t, we need to find t∗ such that:

t∗ = argmin
t′

Lσt,t′ (X), (12)

13

Under review as a conference paper at ICLR 2022

where the definition of L is given in Equation (1). Then we replace σ by σt,t∗ . Theoretically, the
local insertion heuristic is a special case of 3-opt where two of the removed edges cover a same
node.

Algorithm 1 Local Insertion Heuristic
1: Input: A matrix of city coordinatesX = (xi)i∈[N], current tour σ
2: Output: An improved tour σ
3: for t = 1 to N do
4: t∗ = argmint′ Lσt,t′ (X)
5: σ ← σt,t∗
6: end for
7: return σ

A.3 SEARCH 2-OPT

For search 2-opt, we first iterate through all edges and for each first edge, we search for the best
second edge to do the 2-opt. Let σ be the current tour and σ(t,t′) be the tour where we reverse the
cities between σ(t) and σ(t′). Namely,

σ(t,t′) =
(
σ(1), ..., σ(t− 1), σ(t′), σ(t′ − 1), ..., σ(t+ 1), σ(t), σ(t′ + 1), ..., σ(N)

)
. (13)

where t < t′, and σ(t,t) = σ. Search 2-opt (see Algorithm 2) iterates over every t ∈ [N]. For each
t, we find t∗ such that:

t∗ = argmin
t′≥t

Lσ(t,t′)(X) (14)

Then we replace σ by σ(t,t∗). Search 2-opt potentially covers all possible 2-opt operations.

Algorithm 2 Search 2-opt
1: Input: A matrix of city coordinatesX = (xi)i∈[N], current tour σ
2: Output: An improved tour σ
3: for t = 1 to N do
4: t∗ = argmint′≥t Lσ(t,t′)(X)
5: σ ← σ(t,t∗)
6: end for
7: return σ

A.4 SEARCH RANDOM 3-OPT

For search random 3-opt, the algorithm first randomly picks two edges. Then for these two
randomly-picked edges, similar to search 2-opt, we search to find the best third edge to apply 3-
opt. Let σ be the current tour, edges from σ(t1) to σ(t1 + 1) and σ(t2) to σ(t2 + 1) be the two
randomly picked edges and σ∗(t1,t2,t3) be the optimal tour that differs from σ only in edges from
σ(t1) to σ(t1+1), σ(t2) to σ(t2+1) and σ(t3) to σ(t3+1). For randomly picked t1 and t2, search
random 3-opt (see Algorithm 3) iterates over every t3 ∈ [N] and find t∗3 such that:

t∗3 = argmin
t3

Lσ∗
(t1,t2,t3)

(X) (15)

We repeat this process for α × Nβ times, where α, β > 0 are the same two hyperparameters as in
random 2-opt. We set α = 0.5, β = 1.5 for all experiments. Search random 3-opt potentially covers
all possible 3-opt operation.

A.5 COMBINED LOCAL SEARCH

With these 4 different local search heuristics, our combined local search applies them one by one
sequentially and repeat this for I times (see Algorithm 4), where I is a hyperparameter, which we
set to I = 10 for all experiments in this paper.

14

Under review as a conference paper at ICLR 2022

Algorithm 3 Search random 3-opt
1: Input: A matrix of city coordinatesX = (xi)i∈[N], current tour σ, hyperparameters α and β
2: Output: An improved tour σ
3: for iter= 1 to αNβ do
4: Randomly pick t1, t2 ∈ [N] such that t1 6= t2
5: t∗3 = argmint3 Lσ∗(t1,t2,t3)

(X)

6: σ ← σ∗(t1,t2,t∗3)
7: end for
8: return σ

Algorithm 4 Combined Local Search Algorithm
1: Input: A matrix of city coordinates X = (xi)i∈[N], current tour σ, hyperparameters α, β and
I for local search.

2: Output: An improved tour σ
3: for t = 1 to I do
4: σ ← apply local insertion heuristic(X , σ)
5: σ ← apply random 2-opt on σ for αNβ times
6: σ ← apply search 2-opt on σ
7: σ ← apply search random 3-opt on σ for αNβ times
8: end for
9: return σ

B POLICY GRADIENT OF EMAGIC

As promised in Section 5 - Smoothed Policy Gradient, we elaborate on the detailed mathematical
derivation for Equation (8).

The objective function J(θ) in Equation (3) can be approximated with the empirical mean of the
total rewards using B trajectories sampled with policy πθ:

J(θ) = −E[Lσ(X)] ≈ −ÊB

[
N∑
t=1

r
(b)
t

]
= − 1

|B|

|B|∑
b=1

N∑
t=1

r
(b)
t , (16)

where ÊB represents the empirical mean operator, Lσ(X) is the tour length of σ output by the RL
policy and r(b)t is the t-th reward of the b-th trajectory. The policy gradient to optimize J(θ) can be
estimated by:

∇θJ(θ) = −Eτ

[(
N∑
t=1

∇θ log πθ(at|st)

)(
N∑
t=1

rt

)]

≈ −ÊB

[(
N∑
t=1

∇θ log πθ(a(b)t |s
(b)
t)

)(
N∑
t=1

r
(b)
t

)] (17)

However, Recall J(θ) is the standard objective used in most deep RL methods applied to TSP.
Instead, we optimize J+(θ) = −E[Lσ+(X)] where Lσ+(X) is the tour length of σ after applying
local search. This helps integrate better RL and local search by smoothing the value landscape and
training an RL agent to output a tour that can be improved by local search. This new objective
function can be rewritten:

J+(θ) = −Eσ∼πθ,σ+∼ρ(σ)[Lσ+
(X)]

= −Eσ∼πθ
[Eσ+∼ρ(σ)[Lσ+(X)|σ]]

(18)

15

Under review as a conference paper at ICLR 2022

where ρ(σ) denotes the distribution over tours induced by the application of the stochastic local
search on σ. Taking the gradient of this new objective:

∇θJ+(θ) = −Eτ

[(
N∑
t=1

∇θ log πθ(at|st)

)
Eσ+∼ρ(σ)[Lσ+

(X)|σ]

]

≈ −ÊB

[(
N∑
t=1

∇θ log πθ(a(b)t |s
(b)
t)

)(
L
σ
(b)
+
(X(b))

)]

≈ − 1

|B|

|B|∑
b=1

(
N∑
t=2

∇θ log πθ(a(b)t |s
(b)
t)

)(
L
σ
(b)
+
(X(b))− l(b)

)
,

(19)

where τ = (s1, a1, . . .) and σ is its associated tour. We simply approximate the conditional expecta-
tion over ρ(σ) by a sample. Therefore, our gradient estimate is an unbiased estimator of the gradient
of our new objective J+(θ).

Using our policy rollout baseline introduces some bias to the estimation of the smoothed policy
gradient. However, the variance reduction helps with achieving greater performance and smaller
variance, as we observed in our experiments.

C OVERALL ALGORITHM

We provide the pseudo-code of our overall training algorithm in Algorithm 5.

Algorithm 5 REINFORCE exploiting stochastic CL, equivariance, and smoothed policy gradient
1: Input: Total number of epochs E, training steps per epoch T , batch size B, hyperparameters α,
β, γ and I for local search

2: Initialize θ
3: for e = 1 to E do
4: N ← Sample from p(e) according to Stochastic CL
5: for t = 1 to T do
6: ∀b ∈ {1, ..., B}X(b) ← Random TSP instance with N cities
7: ∀b ∈ {1, ..., B}σ(b) ← Apply πθ onX(b) after all the equivariant preprocessing steps
8: ∀b ∈ {1, ..., B}σ(b)

+ ← Apply the combined local search on σ(b)

9: Use σ(b) and σ(b)
+ to calculate∇θJ+(θ) according to Equation (8)

10: θ ← Update in the direction of∇θJ+(θ)
11: end for
12: end for

D SETTINGS AND HYPERPARAMETERS

All our experiments are run on a computer with an Intel(R) Xeon(R) E5-2678 v3 CPU and a NVIDIA
1080Ti GPU. In consistency with previous work, all our randomly generated TSP instances are sam-
pled in [0, 1]2 uniformly. During training, stochastic CL chooses a TSP size inR = {10, 11, . . . , 50}
for each epoch e according to Equations (9) and (10), with σN set to be 3. We trained for 200 epochs
in each experiment, with 1000 batches of 128 random TSP instances in each epoch. We set the learn-
ing rate to be 10−3 and the learning rate decay to be 0.96 in each experiment. In each experiment, we
set α = 0.5, β = 1.5, γ = 0.25 and I = 10 for the parameters of our combined local search; As for
random TSP testing and the ablation study, we test on TSP instances with size 20, 50, 100, 200, 500
and 1000 to evaluate the generalization capability of our model; as for realistic TSP, we test on TSP
instances with sizes up to 1002 from the TSPLIB library. With respect to our model architecture,
our MLP encoder has an input layer with dimension 2, two hidden layers with dimension 128 and
256, respectively, and an output layers with dimension 128; for the GNN encoder, we set H = 128
and nGNN = 3.

16

Under review as a conference paper at ICLR 2022

E MORE EXPERIMENTS ON EMAGIC

E.1 MORE VERSIONS OF EMAGIC

As promised in Section 6, we illustrate all versions of eMAGIC in this section:

Table 4: Results of eMAGIC vs baselines, tested on 10,000 instances for TSP 20, 50, and 100.
Method Type† TSP20 TSP50 TSP100

Len. Gap Time Len. Gap Time Len. Gap Time

eMAGIC(G) RL(LS) 3.841 0.29% 2.8s 5.732 0.74% 16s 7.923 2.09% 1.4m
eMAGIC(s1) RL(LS) 3.844 0.37% 3.0s 5.763 1.27% 17s 7.964 2.61% 1.3m
eMAGIC(s10) RL(LS) 3.831 0.03% 9.0s 5.728 0.67% 49s 7.852 1.17% 2.9m
eMAGIC(S) RL(LS) 3.830 0.00% 38s 5.691 0.01% 3.5m 7.762 0.02% 14.6m

G: Greedily generate a solution from the RL policy and improve it by combined local search.
s1: Randomly sample only one solution from the RL policy and improve it by combined local search.
s10: Randomly sample 10 solutions from the RL policy and improve them by combined local search.
Finally, keep the best tour.
S: Randomly sample 100 solutions from the RL policy and improve by combined local search. Finally,
keep the best tour.

Table 5: Results of all versions of eMAGIC, tested on 128 instances for TSP 200, 500, and 1000.
Method Type† TSP200 TSP500 TSP1000

Len. Gap Time Len. Gap Time Len. Gap Time

eMAGIC(G) RL(LS) 11.14 3.89% 36s 17.52 5.89% 2.0m 24.702 6.85% 4.9m
eMAGIC(s1) RL(LS) 11.14 3.89% 34s 17.54 6.07% 1.8m 24.749 7.05% 4.9m
eMAGIC(s10) RL(LS) 10.95 2.12% 1.1m 17.29 4.50% 4.1m 24.503 5.99% 11m
eMAGIC(S) RL(LS) 10.77 0.50% 2.4m 17.03 2.92% 9.7m 24.126 4.36% 27m

See footnotes of Table 4.

E.2 VARIANCE ANALYSIS OF EMAGIC

As promised in Section 6, we provide the variance analysis of eMAGIC in this section. In our
experiments, we repeated all our experiments (training + testing) with 3 random seeds. The variances
are shown below:

Table 6: Variance Analysis of eMAGIC
Model TSP20 TSP50 TSP100 TSP200 TSP500 TSP1000

eMAGIC(G) 0.043 0.049 0.050 0.064 0.056 0.066
eMAGIC(s1) 0.0413 0.0407 0.0509 0.0510 0.0553 0.0655
eMAGIC(s10) 0.0446 0.0486 0.0434 0.0679 0.0652 0.0713
eMAGIC(S) 0.0478 0.0582 0.0680 0.1207 0.1288 0.1742

See footnotes of Table 4.

The variances are quite low, showing that our method gives relatively good and stable results. Note
the variances increase with the number of sampling (s1, s10 and S) for larger TSP instances since
there is more room for improvement.

E.3 EXPERIMENTS ON EXTREMELY LARGE TSP INSTANCES

In Table 7, we show the performances of eMAGIC on extremely large TSP instances (i.e., TSP
10,000) and the comparisons with a few methods that are able to generalize to TSP 10,000. For
the hyperparameters of the combined local search, we use I = 2 and β = 1.4. We modify the

17

Under review as a conference paper at ICLR 2022

hyperparameters in this way because we find that for large TSP instances, doing too many iterations
of local search is not efficient. The other experimental settings in this test are the same as Section 6.
Also, we test Fu et al. (2021)’s method with a limited the time budget, denoted by AGCRN+Mlim:
since we only reproduce their method successfully with CPU, we decrease their hyperparameter T
(the MCTS will end no longer than T seconds) from 0.04n to 0.04n/1.8 ∗ (28/60) = 0.010n (1.8h
and 28m are respectively the runtimes of their model and eMAGIC(G)). By this, we expect that their
model and eMAGIC(G) will have a similar running time.

Table 7: Results of eMAGIC vs baselines, tested on 16 instances for TSP 10,000.
Method Type† TSP 10,000

Len. Gap (to LKH3) Time

LKH3∗ Heuristic 70.78 0.00% 8.8h

AM∗4 RL(S) 431.6 501% 13m
AM∗4 RL(G) 141.7 97.4% 6.0m
AM∗4 RL(BS) 129.4 80.3% 1.8h
AGCRN+M∗2 SL+M 74.92 4.39% 1.8h
AGCRN+Mlim SL+M 80.11 13.2% -

eMAGIC(G) RL(LS) 79.28 10.5% 28m
eMAGIC(S) RL(LS) 78.79 9.76% 1.0h

∗ as reported in previous work.
2 (Fu et al., 2021), 4 (Kool et al., 2019)
lim with a time budget
† H - Heuristic; SL - Supervised Learning; RL - Reinforcement Learning; G - Greedy; S - Sampling; M -
Monte-Carlo Tree Search; LS - Combined Local Search; BS - Beam Search.

We can observe that our models outperform AM (Kool et al., 2019) to a large extent. Comparing
to AGCRN+M (Fu et al., 2021) and LKH3 (Helsgaun, 2017), our methods run much faster without
a big gap of performance. Plus, if we give AGCRN+M (Fu et al., 2021) a time budget comparable
to our method (i.e., run AGCRN+M and eMAGIC(G) for the same amount of time), we can see
that our algorithm outperforms AGCRN+M. Note that MCTS in AGCRN+M is written in C++. We
could reduce our runtime if we had also written our code in C++ instead of Python. Therefore, our
method offers a better trade-off in terms of performance vs runtime: it can generate relatively good
results in much less time.

F EVALUATION OF EQUIVARIANT PREPROCESSING METHODS

F.1 COMPARISONS BETWEEN DIFFERENT SYMMETRIES USED DURING PREPROCESSING

We present the comparison results of applying rotation, translation and reflection. The comparisons
are done by testing on random TSP instances followed the same setting in the experiment section.
As in table 8, the rotation has the best performance on small and large TSP instances. By this, we
choose rotation for our final algorithm.

Table 8: Comparisons between rotation, translation and reflection
TSP Size Rotation Reflection Translation

Len. Gap Len. Gap Len. Gap

TSP 20 3.844 0.37% 3.850 0.51% 3.848 0.47%
TSP 50 5.763 1.27% 5.786 1.67% 5.807 2.05%
TSP 100 7.964 2.61% 8.050 3.72% 8.020 3.33%
TSP 200 11.14 3.89% 11.22 4.71% 11.19 4.39%
TSP 500 17.54 6.01% 17.65 6.69% 17.68 6.85%
TSP 1000 24.75 7.05% 24.81 7.33% 24.86 7.55%

18

Under review as a conference paper at ICLR 2022

F.2 COMPARISONS BETWEEN ONE PREPROCESSING APPLICATION AND ITERATION
PREPROCESSING APPLICATIONS

We present the comparison results of one preprocessing application and iteration preprocessing ap-
plications. The comparisons are done by testing on random TSP instances followed the same setting
in the experiment section. As in table 9, the iteration preprocessing applications has better perfor-
mance on small and large TSP instances. By this, we choose iteration preprocessing applications for
our final algorithm.

Table 9: Comparisons between iteration preprocessing and one preprocessing

TSP Size Iteration† One]

Len. Gap Len. Gap

TSP 20 3.844 0.37% 3.873 1.12%
TSP 50 5.763 1.27% 5.871 3.17%
TSP 100 7.964 2.61% 8.102 4.40%
TSP 200 11.136 3.89% 11.347 5.85%
TSP 500 17.541 6.01% 17.742 7.23%
TSP 1000 24.749 7.05% 24.978 8.05%
† Iteration preprocessing application.
] Once preprocessing application.

G ABLATION STUDIES

This section illustrates the details of Section 6 - Ablation Study.

G.1 ABLATION STUDY ON KEY TRAINING TECHNIQUES

In this section, as promised in Section 6 - Ablation Study, we will illustrate the details of the ablation
study regarding some key training techniques of eMAGIC. For equivariance, we remove all the
equivariant procedures during training/testing (e.g., deleting visited cities, preprocessing, and using
relative positions). For the policy rollout baseline, we replace it with the self-critic baseline, which
is a greedy baseline implemented in Ma et al. (2019). For combined local search, we only apply
it during testing to check if it can help improve the training process. For RL, we directly apply
combined local search without performing any learning. Table 10 demonstrates that each technique
plays a role in our model.

Table 10: Ablation study on equivariance, policy rollout baseline, combined local search, and RL,
tested on 10,000 instances for TSP 20, 50 and 100, and 128 instances for TSP 200, 500 and 1000.

TSP Size Full w/o Equiv.] w/o BL] w/o LS] w/o RL

Len. Gap Len. Gap Len. Gap Len. Gap Len. Gap

TSP20 3.844 0.37% 3.857 0.69% 3.875 1.17% 3.874 1.15% 3.879 1.27%
TSP50 5.763 1.27% 5.808 2.07% 5.859 2.96% 5.837 2.58% 5.901 3.70%
TSP100 7.964 2.61% 8.086 4.19% 8.124 4.68% 8.100 4.37% 8.178 5.38%
TSP200 11.14 3.89% 11.27 5.16% 11.33 5.71% 11.32 5.64% 11.43 6.67%
TSP500 17.54 6.01% 17.72 7.10% 17.74 7.22% 17.82 7.71% 17.86 7.96%
TSP1000 24.75 7.05% 24.94 7.86% 24.99 8.10% 25.12 8.67% 25.15 8.80%
] Equiv. - equivariance; BL - Baseline; LS - Combined Local Search.

G.2 ABLATION STUDY ON OTHER TRAINING TECHNIQUES

In this section, we first perform an ablation study of stochastic CL, meaning we fixed our TSP size
to be 50 during training. Moreover, we perform an ablation study on each component of our equiv-
alent model, which includes deleting the visited cities during training, equivariant preprocessing

19

Under review as a conference paper at ICLR 2022

operation, and using relative positions during training, as mentioned in Section 6 - Ablation Study.
For the ablation study of these three components, we remove them during training and testing. Ta-
ble 11 illustrates the results of our ablation study (including the full version for comparison), which
demonstrate that each component is effective in our model.

Table 11: Ablation study on stochastic CL, Deleting, Preprocessing and Relative Position, tested on
10,000 instances for TSP 20, 50 and 100, and 128 instances for TSP 200, 500 and 1000.

TSP Size Full w/o CL w/o Delete w/o Pre† w/o RP†

Len. Gap Len. Gap Len. Gap Len. Gap Len. Gap

TSP20 3.844 0.37% 3.861 0.79% 3.855 0.66% 3.855 0.64% 3.852 0.57%
TSP50 5.763 1.27% 5.821 2.30% 5.824 2.34% 5.811 2.11% 5.823 2.33%
TSP100 7.964 2.61% 8.062 3.88% 8.064 3.90% 8.084 4.16% 8.093 4.28%
TSP200 11.14 3.89% 11.29 5.29% 11.28 5.18% 11.27 5.17% 11.30 5.44%
TSP500 17.54 6.01% 17.69 6.93% 17.67 6.80% 17.68 6.85% 17.72 7.07%
TSP1000 24.75 7.05% 24.89 7.68% 24.88 7.63% 24.88 7.63% 24.89 7.66%
† Pre - Preprocessing; RP - Relative Position.

G.3 COMPARING PURE RL ALGORITHM WITH FULL ALGORITHM

In Section 6, when doing the ablation study for the combined local search, we do not apply it during
training, but we still apply it during testing to check if it can help improve the training process. Here,
we compare the pure RL algorithm (full algorithm without local search both in training and testing)
and the full algorithm to demonstrate the strength of Combined Local Search:

Table 12: Comparisons between pure RL algorithm and the full algorithm
TSP Size Full Pure RL

Len. Gap Len. Gap

TSP 20 3.844 0.37% 3.874 1.14%
TSP 50 5.763 1.27% 6.172 8.46%
TSP 100 7.964 2.61% 8.688 12.0%
TSP 200 11.136 3.89% 12.19 13.7%
TSP 500 17.541 6.01% 19.31 16.7%
TSP 1000 24.749 7.05% 27.10 17.2%

20

Under review as a conference paper at ICLR 2022

H GNN ENCODER DETAILS

Figure 2 is a detailed illustration of the GNN architecture introduced in Section 4.2. Please notice
that Figure 2 could be regarded as a zoom-in version of the GNN part in Figure 1. The aggregation
function used in GNN is represented by a neutral network followed by a ReLU function on each
entry of the output.

Figure 2: Detailed Architecture of GNN

I REALIST TSP INSTANCES IN TSPLIB

As promised in Section 6, Tables 14 to 16 list the performances of various learning-based TSP
solvers and heuristic approaches upon realistic TSP instances in TSPLIB. The bold numbers show
the best performance among all the approaches. We can observe that most bold numbers are provided
by eMAGIC, meaning our approach provides excellent results for TSPLIB. In addition, we also
provide our results for the larger instances (with size up to 1002) from TSPLIB in Table 13. Table
13 only contains the experiments of our model since no other model can generalize to large size TSP
instances with adequate performance.

Table 13: Comparison of Performance on large size TSP instances in TSPLIB
Problems OPT eMAGIC(S) OR-Tools Furthest Insertion

Length Gap Length Gap Length Gap

rd400 15,281 15,707 2.79% 15,821 3.53% 16,851 10.00%
f1417 11,861 11,961 0.84% 11,996 1.14% 12,845 8.23%
pr439 107,217 109,610 2.23% 117,171 9.28% 121,341 12.89%
pcb442 50,778 51,868 2.15% 52,508 3.41% 57,741 13.42%
d493 35,002 36,184 3.38% 36,599 4.56% 38,869 10.69%
u574 36,905 38,486 4.28% 38,467 4.23% 40,570 9.562%
rat575 6,773 7,105 4.90% 6,851 1.15% 7,632 12, 09%
p654 34,643 35,001 1.03% 35,199 1.60% 35,706 3.04%
d657 48,912 50,826 3.91% 50,585 3.42% 53,796 9.61%
u724 41,910 43,853 4.64% 43,585 4.00% 46,367 10.16%
rat783 8,806 9,324 5.88% 8,974 1.91% 9,904 11.78%
pr1002 259,045 271,370 4.76% 271,095 4.65% 285,797 9.86%

21

Under review as a conference paper at ICLR 2022

Table 14: Comparison of Performances on TSPLIB - Part I

Problems OPT eMAGIC(S) Wu et al.∗1 S2V-DQN∗2

Len. Gap Len. Gap Len. Gap

ei151 426 429 0.70% 438 2.82% 439 3.05%
ber1in52 7,542 7,544 0.03% 8,020 6.34% 7,542 0.00%
st70 675 677 0.30% 706 4.59% 696 3.11%
ei176 538 546 1.49% 575 6.88% 564 4.83%
pr76 108,159 108,159 0.00% 109,668 1.40% 108,446 0.27%
rat99 1,211 1,223 0.99% 1,419 17.18% 1,280 5.70%
kroA100 21,282 21,285 0.01% 25,196 18.39% 21,897 2.89%
kroB100 22,141 22,141 0.00% 26,563 19.97% 22,692 2.49%
kroC100 20,749 20,749 0.00% 25,343 22.14% 21,074 1.57%
kroD100 21,294 21,361 0.31% 24,771 16.33% 22,102 3.79%
kroE100 22,068 22,068 0.00% 26,903 21.91% 22,913 3.83%
rd100 7,910 7916 0.08% 7,915 0.06% 8,159 3.15%
ei1101 629 636 1.11% 658 4.61% 659 4.77%
1in105 14,379 14,379 0.00% 18,194 26.53% 15,023 4.48%
pr107 44,303 44,346 0.10% 53,056 19.76% 45,113 1.83%
pr124 59,030 59,075 0.08% 66,010 11.82% 61,623 4.39%
bier127 118,282 119,151 0.73% 142,707 20.65% 121,576 2.78%
ch130 6,110 6,162 0.85% 7,120 16.53% 6,270 2.62%
pr136 96,772 97,264 0.51% 105,618 9.14% 99,474 2.79%
pr144 58,537 58,537 0.00% 71,006 21.30% 59,436 1.54%
ch150 6,528 6,592 0.98% 7,916 21.26% 6,985 7.00%
kroA150 26,524 26,727 0.77% 31,244 17.80% 27,888 5.14%
kroB150 26,130 26,282 0.58% 31,407 20.20% 27,209 4.13%
pr152 73,682 73,682 0.00% 85,616 16.20% 75,283 2.17%
u159 42,080 42,080 0.00% 51,327 21.97% 45,433 7.97%
rat195 2,323 2,377 2.32% 2,913 25.40% 2,581 11.11%
d198 15,780 15,874 0.60% 17,962 13.83% 16,453 4.26%
kroA200 29,368 29,840 1.61% 35,958 22.44% 30,965 5.44%
kroB200 29,437 29,743 1.04% 36,412 23.69% 31,692 7.66%
ts225 126,643 126,939 0.23% 158,748 25.35% 136,302 7.63%
tsp225 3,916 3,981 1.66% 4,701 20.05% 4,154 6.08%
pr226 80,369 80,436 0.08% 97,348 21.13% 81,873 1.87%
gi1262 2,378 2,417 1.64% 2,963 24.60% 2,537 6.69%
pr264 49,135 49,908 1.57% 65,946 34.21% 52,364 6.57%
a280 2,579 2,635 2.17% 2,989 15.90% 2,867 11.17%
pr299 48,191 48,905 1.48% 59,786 24.06% 51,895 7.69%
lin318 42,029 42,948 2.19% − − 45,375 7.96%

∗ as reported in previous work.
1 (Wu et al., 2021a), 2 (Khalil et al., 2017)

22

Under review as a conference paper at ICLR 2022

Table 15: Comparison of Performances on TSPLIB - Part II

Problems OPT L2OPT∗1 AM∗2 Furthest3

Len. Gap Len. Gap Len. Gap

ei151 426 427 0.23% 435 2.11% 467 9.62%
ber1in52 7,542 7,974 5.73% 7,668 1.67% 8,307 10.14%
st70 675 680 0.74% 690 2.22% 712 5.48%
ei176 538 552 2.60% 563 4.64% 583 8.36%
pr76 108,159 111,085 2.71% 111,250 2.85% 119,692 10.66%
rat99 1,211 1,388 14.62% 1,319 8.91% 1,314 8.51%
kroA100 21,282 23,751 11.60% 38,200 79.49% 23,356 9.75%
kroB100 22,141 23,790 7.45% 35,511 60.38% 23,222 4.88%
kroC100 20,749 22,672 9.27% 30,642 47.67% 21,699 4.58%
kroD100 21,294 23,334 9.58% 32,211 51.60% 22,034 3.48%
kroE100 22,068 23,253 5.37% 27,164 23.09% 23,516 6.56%
rd100 7,910 7,944 0.43% 8,152 3.05% 8,944 13.07%
ei1101 629 635 0.95 % 667 6.04% 673 7.00%
lin105 14,379 16,156 12.36% 51,325 256.94% 15,193 5.66%
pr107 44,303 54,378 22.74% 205,519 363.89% 45,905 3.62%
pr124 59,030 59,516 0.82% 167,494 183.74% 65,945 11.71%
bier127 118,282 121,122 2.40% 207,600 75.51% 129,495 9.48%
ch130 6,110 6,175 1.06% 6,316 3.37% 6,498 6.35%
pr136 96,772 98,453 1.74% 102,877 6.36% 105,361 8.88%
pr144 58,537 61,207 4.56% 183,583 213.61% 61,974 5.87%
ch150 6,528 6,597 1.06% 6,877 5.34% 7,210 10.45%
kroA150 26,524 30,078 13.40% 42,335 59.61% 28,658 8.05%
kroB150 26,130 28,169 7.80% 35,511 60.38% 27,404 4.88%
pr152 73,682 75,301 2.20% 103,110 39.93% 75,396 2.33%
u159 42,080 42,716 1.51% 115,372 174.17% 46,789 11.19%
rat195 2,323 2,955 27.21% 3,661 57.59% 2,609 12.31%
d198 15,780 − − 68,104 331.57% 16,138 2.27%
kroA200 29,368 32,522 10.74% 58,643 99.68% 31,949 8.79%
kroB200 29,437 − − 50,867 72.79% 31,522 7.08%
ts225 126,643 127,731 0.86% 141,628 11.83% 140,626 11.04%
tsp225 3,916 4,354 11.18% 24,816 533.70% 4,280 9.30%
pr226 80,369 91,560 13.92% 101,992 26.90% 84,130 4.68%
gi1262 2,378 2,490 4.71% 2,683 13.24% 2,623 10.30%
pr264 49,135 59,109 20.30% 338,506 588.93% 54,462 10.84%
a280 2,579 2,898 12.37% 11,810 357.92% 3,001 16.36%
pr299 48,191 59,422 23.31% 513,673 938.83% 51,903 7.70%
lin318 42,029 − − − − 45,918 9.25%

∗ as reported in previous work.
1 (de O. da Costa et al., 2020), 2 Kool et al. (2019), 3 (Furthest Insertion Heuristic)

23

Under review as a conference paper at ICLR 2022

Table 16: Comparison of Performances on TSPLIB - Part III

Problems OPT OR-Tools1 GPN2 2-opt

Len. Gap Len. Gap Len. Gap

ei151 426 436 2.35% 430 0.94% 446 4.69%
ber1in52 7,542 7,945 5.34% 8,820 16.95% 7,788 3.26%
st70 675 683 1.19% 734 8.74% 753 11.56%
ei176 538 561 4.28% 604 12, 27% 591 9.85%
pr76 108,159 111,104 2.72% 124,404 15.02% 115,460 6.75%
rat99 1,211 1,232 1.73% 1,856 53.26% 1,390 14.78%
kroA100 21,282 21,448 0.78% 29,676 39.44% 22,876 7.49%
kroB100 22,141 23,006 3.91% 31,396 41.80% 23,496 6.12%
kroC100 20,749 21,583 4.02% 29,638 42.84% 23,445 12.99%
kroD100 21,294 21,636 1.61% 31,343 47.19% 23,967 12.55%
kroE100 22,068 22,598 2.40% 33,666 52.56% 22,800 3.32%
rd100 7,910 664 5.56% 772 22.73% 702 11.61%
1in105 14,379 14,824 3.09% 24,271 68.79% 15,536 8.05%
pr107 44,303 46,072 3.99% 80,744 82.25% 47,058 6.22%
pr124 59,030 62,519 5.91% 103,785 75.82% 64,765 9.72%
bier127 118,282 122,733 3.76% 190,187 60.79% 128,103 8.30%
ch130 6,110 6,284 2.85% 8,785 43.78% 6,470 5.89%
pr136 96,772 102,213 5.62% 156,543 61.76% 110,531 14.22%
pr144 58,537 59,286 1.28% 116,692 99.35% 60,321 3.05%
ch150 6,528 6,729 3.08% 9,973 52.77% 7,232 10.78%
kroA150 26,524 27,592 4.03% 47,457 78.92% 29,666 11.85%
kroB150 26,130 27,572 5.52% 43,600 66.86% 29,517 12.96%
pr152 73,682 75,834 2.92% 145,698 97.74% 77,206 4.78%
u159 42,080 45,778 8.79% 87,468 107.86% 47,664 13.27%
rat195 2,323 2,389 2.84% 4,960 113.42% 2,605 12.14%
d198 15,780 15,963 1.16% 37,267 136.17% 16,596 5.17%
kroA200 29,368 29,741 1.27% 61,493 109.93% 32,760 11.55%
kroB200 29,437 30,516 3.67% 64,139 117.89% 33,107 12.47%
ts225 126,643 128,564 1.52% 265,886 109.93% 138,101 9.05%
tsp225 3,916 4,046 3.32% 9,501 142.62% 4,278 9.24%
pr226 80,369 82,968 3.23% 198,299 146.74% 89,262 11.07%
gi1262 2,378 2,519 5.93% 4,510 89.66% 2,597 9.21%
pr264 49,135 51,954 5.74% 151,429 208.19% 54,547 11.01%
a280 2,579 2,713 5.20% 6,247 142.23% 2,914 12.99%
pr299 48,191 49,447 2.61% 172,390 257.72% 54,914 13.95%
lin318 42,029 − − 103,643 146.60% 45,263 7.69%

∗ as reported in previous work.
1 (Perron & Furnon), 2 (Ma et al., 2019)

24

	Introduction
	Related Work
	Preliminaries
	Equivariant Model
	Equivariant Preprocessing of TSP Instance
	Equivariant Model

	Algorithm & Training
	Experimental Results
	Conclusion
	Combined Local Search
	Random 2-opt
	Local Insertion Heuristic
	Search 2-opt
	Search Random 3-opt
	Combined Local Search

	Policy Gradient of eMAGIC
	Overall Algorithm
	Settings and Hyperparameters
	More Experiments on eMAGIC
	More versions of eMAGIC
	Variance Analysis of eMAGIC
	Experiments on Extremely Large TSP Instances

	Evaluation of Equivariant Preprocessing Methods
	Comparisons between different symmetries used during preprocessing
	Comparisons between one preprocessing application and iteration preprocessing applications

	Ablation Studies
	orange Ablation Study on Key Training Techniques
	orange Ablation Study on Other Training Techniques
	orange Comparing Pure RL Algorithm with Full Algorithm

	GNN Encoder Details
	Realist TSP Instances in TSPLIB

