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Abstract— A critical bottleneck limiting imitation learning
in robotics is the lack of data. This problem is more severe in
mobile manipulation, where collecting demonstrations is harder
than in stationary manipulation due to the lack of available and
easy-to-use teleoperation interfaces. In this work, we demon-
strate TeleMoMa, a general and modular interface for whole-
body teleoperation of mobile manipulators. TeleMoMa unifies
multiple human interfaces including RGB and depth cameras,
virtual reality controllers, keyboard, joysticks, etc., and any
combination thereof. We demonstrate the versatility of Tele-
MoMa by teleoperating several existing mobile manipulators —
PAL Tiago++, Toyota HSR, and Fetch — in simulation and the
real world. We demonstrate the quality of the demonstrations
collected with TeleMoMa by training imitation learning policies
for mobile manipulation tasks involving synchronized whole-
body motion. With a user study we demonstrate the importance
of TeleMoMa’s modularity. For more information and video
results, robin-lab.cs.utexas.edu/telemoma-web/.

I. INTRODUCTION

A core goal of robotics is to build generalist robots capable
of operating alongside humans in their environment. To this
end, learning from human-collected robot demonstrations has
shown promise in endowing robots with the capabilities to
solve complex tasks [1], [2], [3], boosted recently by the
advent of foundation models capable of learning from large
amounts of data [4], [5]. While these models demonstrate
an impressive understanding of the tasks [6], [7], [8], [9],
[10], these successes have been largely limited to stationary
manipulation. However, a large fraction of the tasks that we
would like generalist robots to perform require a combina-
tion of manipulation and mobility: e.g., sweeping the floor
requires moving the broom with both hands and walking
around to reach the dirty spots.

One of the reasons why stationary manipulation has en-
joyed the benefits of large models, while mobile manipu-
lation has not, is due to the availability of large datasets
of human-collected demonstrations [8], [11]. They were
obtained due to the multiple existing and easy-to-use tele-
operation frameworks for stationary manipulators [12], [13],
[14], [15], [16]. For mobile manipulation, however, the
existing stationary manipulation teleoperation systems are
not sufficient, due to the additional degrees of freedom
that the user has to control including mobility and possibly
multiple arms.

Several teleoperation frameworks for mobile manipulation
have been proposed in the past, with different capabilities
and limitations. They either enable accurate control with
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specific (and often expensive) hardware like motion capture
systems [17], [18], [19] or puppeteering interfaces [20],
[21], or achieve scalability by overloading simple and avail-
able devices that work for stationary manipulators such as
gamepads [16], virtual reality controllers [22], or mobile
phones [23], [24], limiting the expressiveness of the demon-
strations. Teleoperation based solely on vision [25], [15],
[26] promises an available and accessible interface at the
cost of accuracy and dexterity. Each device alone presents
a tradeoff between accuracy and availability, versatility and
expressiveness, and as a result, no single device enables scal-
able, expressive teleoperation for all mobile manipulators.

Inspired by the complementary capabilities of several of
the human interfaces for teleoperation, we introduce Tele-
MoMa (Teleoperation for Mobile Manipulation). TeleMoMa
enables users to teleoperate different mobile manipulators
with a variety of human interfaces or combinations thereof,
in simulation or the real world, providing users the means
to select the combination that best fits their teleoperation
needs. We evaluate the benefits of modularity in a user study
and find that a hybrid vision-VR interface is an efficient and
natural mode of teleoperation. We also successfully trained
several imitation learning policies on the data collected
using TeleMoMa, indicating that TeleMoMa can collect high
quality demonstrations. Further, in Appendix C, we perform
extensive evaluations on remote teleoperation under net-
work delays and comparison of teleoperation across different
embodiments and, sim and real.

II. RELATED WORK

Successes in learning from large collections of human
demonstrations has been limited to stationary manipula-
tors [8], [6], [7] or simple mobile manipulation tasks like
pick and place that do not require coordination between base
and arm motion [27], [10]. This is in part due to the lack of
accessible and intuitive ways to collect demonstrations for
mobile robots. Recently, some methods have tried to address
this using specialized hardware, such as motion capture
systems [17], [18], [28], [19], exoskeletons [20], [29], [30],
[31] and more sophisticated human-computer interfaces [32],
[33]. On the other hand, several works borrow from success-
ful teleoperation interfaces in stationary manipulation, using
interfaces such as VR [34], [22], [35], [36], [37], [38], [39],
kinesthetic teaching [29], visual motion tracking [25], key-
board and mouse [40] and mobile phones [24], by modifying
them to enable the control of mobile manipulators. Although
these interfaces are accessible, they lack the granularity
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Fig. 1: TeleMoMa System. TeleMoMa consists of three components: the Human Interface acquires commands from the human using different input
devices; the Teleoperation Channel defines the action command structure between the human and the robot interfaces, and, possibly, closes the loop with
observations from the robot; and the Robot Interface implements a robot-specific mapping of actions to low-level robot commands. This architecture enables
modularity and versatility – combining multiple devices to achieve intuitive whole-body teleoperation for multiple tasks and robots.

necessary to coordinate all degrees of freedom of a mobile
robot for a true mobile manipulation task. For a more detailed
overview of related works, see Appendix A.

III. TELEMOMA SYSTEM

TeleMoMa is a teleoperation system for mobile manipula-
tors. It is generally composed of a Teleoperation Channel that
defines the communication between a Human Interface and
a Robot Interface (Fig. 1). The Human Interface acquires
human inputs across different teleoperation modes such as
vision, VR, spacemouse, keyboard, and mobile phones, or
their combinations, and maps them to a general mobile
manipulation action command structure provided by the
Teleoperation Channel that includes fields such as base,
arm, gripper, and torso motion. Multiple input devices can
be combined through our Human Interface to acquire the
action commands in the best suited manner for a task. The
Teleoperation Channel hands over the action commands to
the Robot Interface, a robot-specific module that maps the
actions to robot motor commands. In the following, we
provide additional information about the three components
of TeleMoMa.

A. Human Interface

The Human Interface is responsible for processing the
captured data from various teleoperation input devices and
mapping them to a common action command structure.
For each input device, the data is processed independently
by a device-specific parser that maps the signals from the
input modality (keyboard strokes, motion of a VR controller,
location of human skeleton keypoints on an image, . . . )
into elements of the teleoperation channel’s action com-
mand. TeleMoMa supports input modalities such as vision,
keyboard, spacemouse, VR (Oculus Quest and HTC Vive)

and mobile phones. We explain the implementation specific
details of each of these interfaces in Appendix B.

B. Teleoperation Channel

The Teleoperation Channel defines how the Human Inter-
face communicates with the Robot Interface, and is the key
to TeleMoMa’s generality and modularity. Specifically, the
Teleoperation Channel defines an action command structure
that serves as a bridge between the human and the robot and
the way the active human interfaces populate the entries of
this structure.

During deployment, users can specify what input modality
they want to use to control each part of the robot’s embodi-
ment including left and right arms and hands, torso, and base.
The Teleoperation Channel automatically manages the action
assignment based on the user specification, and consolidates
the possible missing elements of the action commands due
to differences in hardware frequency or network delays.

Finally, the Teleoperation Channel also defines the mech-
anism by which humans close the loop with the robot and
observe the execution of the action commands. We consider
two methods of observation: on-site and remote. When on-
site, the human directly observes the robot executing the
action commands. When remote, the Teleoperation Channel
communicates the images from the onboard sensors of the
robot to the human interface to be displayed for the human,
enabling teleoperation from a different location.

C. Robot Interface

The Robot Interface is a robot-specific module that maps
the commands obtained from the Human Interface to the
motor commands on the robot. The specific controllers used
to compute the torques are not part of the TeleMoMa system
but they are necessary to map the action commands obtained



(a) Cover table (Fetch, simulation) (b) Cover table (Tiago, real world)
Grasp the table cloth and drape it over the

table

(c) Slide chair (Tiago, real world)
Orient towards the chair and push it under the

table

(d) Slide chair (Tiago, simulation) (e) Serve bread (Tiago, real world)
Pick up a packet of bread and deliver to the

breakfast table

(f) Open fridge (HSR, real world)
Open the door of a fridge

(g) Pick pot (Tiago, simulation)
Pick up a pot and transfer to another table

(h) Dusting (Tiago, real world)
Dust a table with books resting on top

(i) Re-shelve chips (HSR, real world)
Move the misplaced chips to the lower shelf

Fig. 2: Tasks in our evaluation of TeleMoMa. Shown above is the initial and goal state of each task.

from the Teleoperation Channel into low-level commands.
We do not deem our requirements for the robot platforms
too high: the robot should provide some controllers to move
either the end-effector(s) and the base in Cartesian space, the
joints, or combinations of both.

The action command structure in TeleMoMa relayed to the
Robot Interface can either contain values in task-space (end-
effector Cartesian relative motion), joint space (e.g., torso
commands or motion to other joints) and/or velocities (e.g.,
base commands), or different combinations of those, as
specified by the user during deployment. The Robot Interface
processes these commands based on the particular robot em-
bodiment, filters out the unusable action components (such
as left hand commands for a single-armed robot like Fetch),
and maps the rest to the robot using the preferred choices of
controllers such as operational space control [41] to control
one task frame, or whole-body control [42], [43] to command
the entire robot jointly.

IV. EXPERIMENTS

In our experiments we seek to answer the following
questions: (1) What are the benefits of TeleMoMa’s mod-
ularity? (Sec. IV-A) (2) Can TeleMoMa collect high-quality
data for imitation learning? (Sec. IV-B)

Additional experiments on remote teleoperation under net-
work delays and comparison of teleoperation across different
embodiments and, sim and real are explored in Appendix C.

A. User Study

To assess the performance of different teleoperation
modalities in the TeleMoMa framework, we performed a
user study with the PAL Tiago++ robot. We compared three
teleoperation modalities: VR, in which the user controls the
robot’s arms with the Oculus controllers and the base and

torso with the controller joysticks; Vision, in which the
user’s pose is tracked with an RGB-D camera to control
the arms, torso and base motion; and VR+Vision combining
both modalities, in which the robot’s arms are controlled
using the Oculus controllers and the base and torso motion
is controlled via human pose tracking from RGB-D data.

We compared the three modalities (VR, Vision, VR + Vi-
sion) to assess the completion time in two tasks: cover
table (Fig. 2(b)), in which the robot must grasp a tablecloth
with both hands and drape it over a table, and dusting
(Fig. 2(h)), in which the robot must dust a table with books
resting on top. Both tasks, but especially the dusting task,
benefit from the simultaneous motion of base and arm(s), i.e.,
whole-body motion, as enabled by TeleMoMa since the robot
is required to navigate around the desk while periodically
moving the hands to clear out any dust.

We recruited 12 participants with varying levels of tele-
operation experience. Each user was given the same instruc-
tions and a brief practice period with each modality. The
order in which users received the devices was randomized.
The completion times for successful trials are provided in
Fig. 3. The only failures observed occurred with the Vision
modality (3 fails out of 12 dusting trials) due to noise
and inaccuracies in the pose tracking. We observe that in
the cover table task, performance is comparable across
teleoperation modalities. However, in the dusting task,
pure VR is generally slower than VR + Vision or Vision
alone due to the lack of intuitive whole-body teleoperation:
because moving the base requires using the joysticks on
the controllers, users tended to only move the arm or the
base one at a given time. The results indicate that on their
own, both VR and Vision present drawbacks pertaining to
their individual modalities, but when combined in the form
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Fig. 3: User Study: Completion Time. Vision modalities outperform only-
VR for the more challenging dusting task. Error bars denote the standard
error of the mean.

of VR + Vision, TeleMoMa can overcome their individual
drawbacks to enable an improved teleoperation experience.
These results support empirically the importance of enabling
multiple input modalities and their combination for teleop-
eration of mobile manipulators.

B. Imitation Learning with TeleMoMa’s Data

To empirically evaluate the quality of data collected with
TeleMoMa, we train several visuomotor policies with behav-
ioral cloning [44] on a Tiago++ robot (real). We consider
three diverse mobile manipulation tasks:

• cover table: Similar to the one described in
Sec. IV-A, the tasks involves bimanual grasping of a
tablecloth and draping it over a table (Fig. 2(b)).

• slide chair: A bimanual task, that requires the
robot to navigate and align itself behind a chair, grasp
it, and push the chair under a table (Fig. 2(c)).

• serve bread: In a real kitchen setting, the robot is
required to navigate to the kitchen counter, pick a bag
of bread, and deliver it to the breakfast table (Fig. 2(e)).

We collected 50 demonstrations each for slide chair
and serve bread tasks and 100 demonstrations for
cover table task using the combined VR + Vision inter-
face of TeleMoMa. Additional demonstrations in the cover
table were necessary to allow the policies to learn the
necessary accurate grasps on the cloth.

Policy Architecture, Observations and Actions. We used
a feed-forward MLP (BC) and a recurrent LSTM based
network (BC-RNN) [3] with a sequence length of 10. The
inputs to all policies included RGB-D images obtained from
two realsense cameras attached on each shoulder of the robot,
end-effector poses of the hands, gripper state, and the change
in the mobile base pose obtained from the odometry of the
robot. The policies output a 17-dimensional action space:
6D Cartesian deltas and a gripper command for each of the
hands, and linear and angular velocities for the base.

Comparing Input Modalities. To analyze the importance
of depth sensing in learning mobile manipulation tasks, we
train two sets of policies: the first set was trained exclusively
on RGB observations, while the second combined RGB and

TABLE I: Performance between IL policies trained with RGB vs. RGBD
images as inputs. Successes measured over 10 rollouts.

Cover Table Slide Chair Serve Bread

Modality RGB RGB-D RGB RGB-D RGB RGB-D

BC 60 60 40 60 20 40
BC-RNN 70 90 50 80 30 70

TABLE II: IL Policy performance scale with data. Successes measured over
10 rollouts.

Cover Table Slide Chair Serve Bread

Fraction of data 50% 100% 50% 100% 50% 100%

BC 60 60 40 60 30 40
BC-RNN 60 90 70 80 40 70

Depth. The performance of the two sets of policies for each
of the tasks is summarized in Table I. Our analysis reveals
a consistent trend: irrespective of the policy architecture, the
inclusion of depth information markedly enhances perfor-
mance across all tasks. Qualitatively, we observe that policies
trained using depth can position better, significantly improv-
ing the efficacy of subsequent arm actions. These findings
suggest that depth information is a crucial component for
the development of effective mobile manipulation policies.

Performance with Different Amounts of Data. To in-
vestigate how data volume influences policy performance,
we experimented with two distinct policy groups: the first
group was trained using the complete dataset we gathered
for each task, while the second group utilized only 50%
of these collected demonstrations. The results are summa-
rized in Table II; we observe that policies trained with the
full dataset consistently outperform those trained with half
the data, demonstrating the importance of dataset size in
imitation learning, especially in this low-data regime. We
additionally notice that BC-RNN strictly outperforms regular
BC in all tasks, demonstrating the significance of temporal
dependencies for learning mobile manipulation tasks.

In general, the above experiments provide compelling
evidence that IL policies trained with data collected using
TeleMoMa can reliably perform complex mobile manipula-
tion tasks, thus indicating that TeleMoMa can facilitate high-
quality data collection for imitation learning. We demonstrate
more imitation results in the sim environment in Appendix C.

V. CONCLUSIONS
In closing, we have demonstrated TeleMoMa, a general,

modular, accessible teleoperation system that enables collec-
tion of high-quality expert demonstration data for a variety
of complex and novel mobile manipulation tasks. We showed
TeleMoMa’s generality by teleoperating multiple different
robots in simulation and reality, and conducted user studies
to verify the usability of the system’s various modalities.
We hope that our system lowers the barrier of entry for
researchers to collect high-quality demonstrations for mobile
manipulation, and helps unlock new mobile manipulation
capabilities.
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based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,” in 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018, pp. 3758–3765.

[53] J. DelPreto, J. I. Lipton, L. Sanneman, A. J. Fay, C. Fourie, C. Choi,
and D. Rus, “Helping robots learn: a human-robot master-apprentice
model using demonstrations via virtual reality teleoperation,” in 2020

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10 226–10 233.

[54] X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu, “Vrkitchen:
an interactive 3d virtual environment for task-oriented learning,” arXiv
preprint arXiv:1903.05757, 2019.

[55] J. I. Lipton, A. J. Fay, and D. Rus, “Baxter’s homunculus: Virtual
reality spaces for teleoperation in manufacturing,” IEEE Robotics and
Automation Letters, vol. 3, no. 1, pp. 179–186, 2017.

[56] A. Sivakumar, K. Shaw, and D. Pathak, “Robotic telekinesis: Learning
a robotic hand imitator by watching humans on youtube,” arXiv
preprint arXiv:2202.10448, 2022.

[57] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, Sept. 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913495721

[58] B. Wang, Z. Li, W. Ye, and Q. Xie, “Development of human-machine
interface for teleoperation of a mobile manipulator,” International
Journal of Control, Automation and Systems, vol. 10, pp. 1225–1231,
2012.

[59] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra, “First-person tele-
operation of a humanoid robot,” in 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids). IEEE, 2015, pp. 997–
1002.

[60] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. Yong, J. Lee, et al., “Mediapipe: A
framework for perceiving and processing reality,” in Third workshop
on computer vision for AR/VR at IEEE computer vision and pattern
recognition (CVPR), vol. 2019, 2019.

http://journals.sagepub.com/doi/10.1177/0278364913495721


APPENDIX
A. Extended Related Work

Teleoperation is almost as old as the field of robotics
itself [45], with early manipulators being controlled in kine-
matically identical master-slave systems [46] similar to the
very recent Mobile ALOHA [20]. More recently, teleopera-
tion has emerged as a critical means of data collection for
imitation learning methods [1], [2], as the ability to quickly
collect large scale robotic data has become paramount for
training large capacity behavior models [47], [48], [16].
Many teleoperation modalities have been proposed to address
these challenges, including kinesthetic teaching, joysticks,
virtual reality, mobile phones, RGB cameras, exoskeletons,
and motion capture.

Each modality has its benefits and shortcomings. Joysticks
(e.g. the SpaceMouse) offer intuitive control of a robot’s end-
effector(s), but fail to enable joint control or navigation [49].
Virtual reality enables users to perform tasks from the robot’s
perspective, but is limited by individual tolerance to motion
sickness and does not naturally enable simultaneous loco-
motion and manipulation [50], [51], [52], [53], [54], [55].
Mobile phones offer scalable data collection, but provide
a very limited interface, failing to naturally support joint
control or base motion [12], [47]. RGB cameras have been
explored as an accessible, scalable medium with limited
mobility and range of motion [26], [15], [56]. Exoskeletons
and master-slave devices enable dexterous control but are
typically platform-specific and costly [31], [13], [20], [21],
and do not naturally provide a way to coordinate base and
arm motion. Motion capture similarly enables high-quality
data collection, but is costly and difficult to scale [17], [19],
[18]. Kinesthetic teaching was the predominant teleoperation
paradigm for imitation learning for many years [1], [2], [57],
but fails to enable more complicated bimanual or mobile
manipulation tasks. Some works explore the combination
of different modalities [58], [59] but fail to be sufficiently
general and extensible. Thus, despite the plethora of available
options, there remains a need for a teleoperation system
capable of adapting to the needs of mobile manipulation in
a scalable, accessible way.

We summarize the main features of TeleMoMa and con-
trast it with related systems in Table III. We compare
across two primary dimensions: the teleoperation modalities
provided, and the robot capabilities enabled. TeleMoMa is
the only teleoperation system to provide modularity and
enable the flexible combination of multiple input modalities.

B. Method Details
Following we describe how TeleMoMa facilitates the

use of cameras (/vision), VR controllers, mobile phones,
spacemouse, and keyboards as part of its Human Inter-
face (Sec. III-A). We are also open-sourcing the code to
the community to facilitate plug-and-play teleoperation for
mobile manipulators to improve data collection efficiency.

1) Vision-Based Human Interface: TeleMoMa offers a
unique vision-based pipeline for the whole-body teleopera-
tion of a mobile manipulator using a single RGB-D camera.
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Fig. 4: IL Results in Simulation. Policy with RGBD input yields compa-
rable performance to policy with ground truth chair positions as input.

We use MediaPipe [60], a lightweight RGB-based model
that executes in real-time for body pose and hand keypoint
detection. Our proposed human interface uses the position
and rotation of the hips to control the movement of the base
of the mobile manipulator. Since the model only provides
the relative depth of the keypoints to the center of the
hip and not the absolute depth, we use the depth channel
of an RGB-D camera to obtain the absolute values. The
hand keypoints are mapped to the end-effector of the robot
based on the position and orientation of the palm with
respect to the hip. We compute the per-frame relative pose
displacement in Cartesian space of the hands and send them
in the teleoperation channel’s action command as arm delta
commands. Additionally, we use the distance between the
center of the hips and ankles to command the robot height
for robots with an actuated torso.

2) Virtual Reality Controllers: TeleMoMa supports Ocu-
lus Quest and HTC Vive virtual reality hardware devices as
inputs to the VR human interface. The controllers are tracked
with respect to the headset for Oculus and with respect to
the lighthouse for HTC Vive. Similar to [22], the tracked
hand poses in Cartesian space are used to command the end-
effector in the task-space. As in the vision-based interface,
we compute the per-frame relative pose displacement of
hands and use them in the teleoperation channel’s action
command. The joysticks integrated in the VR are used to
command the velocities of the mobile base and also control
the torso extension.

3) Mobile Phone: We use an app using the ARKit devel-
opment kit to track the position and orientation of the mobile
phone, which sends commands over the network. Similar to
Virtual Reality Controller, the end effector is commanded in
the task space and the relative pose displacement per frame
of the mobile phone is calculated and mapped to the robot
end effector. The gripper is controlled by dedicated buttons in
the mobile app. Additionally, simultaneous control of left and
right arms can be facilitated if two mobile phones are running
the app, each phone controlling one of the arms. Mobile
phones currently don’t support navigation capabilities, but
can be combined with other modalities such as the Vision-



TABLE III: Comparison of Existing Mobile Manipulation Teleoperation Systems

Teleoperation Support Robot Support

Cost / Modular Modality Bimanual Height Whole-Body Robot Action DomainAccessibility Control Teleop Agnostic Space

[17] ff Mocap ✓ ✓ ✓ EE Pose / Base Vel. Real

MoMaRT [24] f Phone ✓ EE Pose / Base Vel. Sim

MOMA-Force [29] fff Kinesthetic ✓ EE Pose and Wrench Real

SATYRR [21] fff Puppeteer ✓ ✓ Joint Pos. / Base Vel. Real

TRILL [22] f VR ✓ ✓ ✓ EE Poses / Gait Sim&Real

Mobile ALOHA [20] fff Puppeteer ✓ ✓ Joint Pos. / Base Vel. Real

TeleMoMa f ✓ * ✓ ✓ ✓ ✓ EE Poses / Base Vel. / Joint Pos. Sim&Real

based Human Interface to facilitate mobile base movements.
4) Spacemouse: Spacemouse has only 6-degrees of free-

dom, which is why we use mode switching, and control each
part of the robot independently. The users can switch modes
by pressing one of the side buttons of the spacemouse and
switch between controlling left arm, right arm, base and
torso. Two spacemouse’ can also be used simultaneously
for controlling each of the arms and minimizing the mode
switching. The displacement of the spacemouse in each of
the 6 degrees of freedom is tracked and sent as the delta
commands to control the arms. For the base and torso, only
the required displacements are used to send commands, while
the remaining ones are discarded. The gripper can be toggled
by pressing the remaining side button when the spacemouse
mode is controlling the corresponding arm. Spacemouse
gains significantly from modularity offered by TeleMoMa, by
minimizing mode switching thus gaining more fluid control
of the robot.

5) Keyboard: Keyboard presses are asynchronously read
by the device listeners and each key is mapped to a sin-
gle DoF of the mobile manipulator. Each key increases /
decreases one of the DoFs in the Cartesian space by some
preset amount. This results in a large number of keys that the
teleoperator has to remember for controlling the robot. In-
stead, using a smaller set of keys for controlling for instance,
just the base, while controlling arms with something more
intuitive such as the spacemouse can drastically improve the
teleoperation experience on both the interfaces, minimizing
the mode switching in case of spacemouse, and reducing the
number of keys to keep track of on the keyboard.

C. Additional Experiments

Imitation Results in Simulation. We show the imitation
results of the slide chair (Fig. 2(d)) task in simulation
here. We collected 100 demos in OmniGibson, and trained 2
policies using BC with different input observations: one with
RGB-D image from the head camera, and the other with
oracle chair positions in both world frame and robot base
frame from the simulation environment. Robot propriocep-
tion, including end effector poses for two arms in base frame,
and the base position and velocity in world frame, are also
provided as observation input. We evaluated the policy on
two task configurations: first with low randomness, where the

chair position is uniformly sampled within 0.2 meters parallel
to the robot, and second with high randomness, where the
sampling interval is 1 meters. Each policy is evaluated with
25 rollouts under these conditions.

The results are shown in Fig. 4. We observed that, the
performance of policies under high randomness is worse
than under low randomness, which is expected because
of the increased difficulty. We additionally observe that in
both low and high randomness settings, policy trained with
RGB-D input performs comparable to the one trained with
ground truth chair positions, indicating that the policies are
able to extract meaningful environment specific details from
images and depth. Qualitatively, we observe that the causes
of failure include misalignment between the robot and the
chair, slippage of robot grippers, and knocking over the chair
due to the application of excessive force.

Remote Teleoperation. TeleMoMa’s architecture allows
a remote demonstrator to control the robot from a client
computer connected over the internet. Instead of watching
the robot on-site, the demonstrator is provided with camera
streams transmitted by the teleoperation channel from the
robot’s onboard sensors. To minimize communication delays,
TeleMoMa 1) sends compressed sensor images from the
robot and decompresses them on the client, and 2) in the case
of a vision-based human interface, TeleMoMa processes the
RGB-D images from the vision interface on the client side
and only sends the action commands over the teleoperation
channel. For other interfaces, the demonstrated action com-
mands are directly sent to the TeleMoMa’s robot interface.

We demonstrate the remote teleoperation capability of
TeleMoMa on several combinations of robot hardware and
user interfaces. To evaluate the effects of communication
delays, we compare the task completion time between on-
site and remote demonstrations using Tiago++ and Toyota
HSR each on two different tasks. The cover table and
the slide chair tasks are completed using Tiago++ with
the on-site VR + Vision interface and three remote interfaces
(VR, Vision, VR + Vision). The re-shelve chips task,
in which the robot must move the misplaced chips to the
lower shelf (Fig. 2(i)), and the open fridge task, in
which the robot must open a fridge (Fig. 2(f)), are completed
using HSR with the Vision interface. The demonstrations
are provided by an expert user of each robot. The Wi-Fi
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Fig. 5: Completion times in different experiments with TeleMoMa. The bars indicate the mean and standard deviation of several trials (see text). From
left to right: Comparing completion times for tasks performed on-site and remote, with HSR and Tiago; Completion times for real vs. simulated tasks
with Tiago; Completion times for different robot embodiments on the same tasks in the real world and simulation. TeleMoMa allows for multiple tasks in
simulation and the real world, with several embodiments

speed is about 100 Mbps as measured on the HSR. Fig. 5(a)
shows the completion time in each modality averaged over
3 runs. We observe that remote human demonstrators have
slower reaction times due to delays and limited resolutions
of the camera streams, but TeleMoMa provides the capability
to successfully complete the tasks under regular network
conditions.

Comparing Different Embodiments and Sim vs. Real.
In the final set of experiments, we seek to study how the
domain (sim vs. real) and the type of robot (Tiago vs. HSR
and Tiago-sim vs. Fetch-sim) influence the teleoperation
behavior for the same tasks.

1) Sim vs. Real: Fig. 5(b) depicts the results of comparing
completion time for cover table and slide chair
tasks in simulation and real environment using a Tiago robot.
We use sim time for simulation evaluation because of Omni-
Gibson’s sub-realtime soft-body simulation. By maintaining
consistency across the robot, the task, and the teleoperation
interface, we find that for both tasks the completion time
in simulation and real are close, demonstrating that the
simulation environment in OmniGibson is a good proxy for
mobile manipulation in the real world, and that teleoperating
with TeleMoMa provides a natural mechanism to collect
demonstrations in sim.

2) Comparing Embodiments: We additionally compare
how the completion time varies as we change the robot being
teleoperated by maintaining the task, teleoperation interface
and reality to be consistent. We compare Tiago and HSR on
re-shelve chips and open fridge tasks and depict
the results in Fig. 5(c, right). We observe that the higher
number of degrees of freedom offered by Tiago compared
to HSR allows more fluid motion during teleoperation and
enables a more efficient (faster) completion of the task.

In simulation, we compare Tiago and Fetch on cover
table, slide chair, and pick pot tasks and depict
the results in Fig. 5(c, left). For the pick pot task, we
enabled sticky grasping (creating a controllable constraint
between hand and object) since the task would be infeasible
otherwise for a single-armed robot like Fetch. We observe

Hyperparameters Value
Behavior Cloning (BC)
train steps (x500) 500
batch size 32
optimizer Adam
learning rate 1e-4
image & depth encoder resnet-18
policy (w x d) 512x2
action parameterization GMM
Recurrent BC (BC-RNN)
train steps (x500) 500
batch size 16
optimizer Adam
learning rate 1e-4
image & depth encoder resnet-18
LSTM hidden dim 1000
LSTM num. layers 2
skill horizon 10
action parameterization GMM

TABLE IV: Hyperparameters for the imitation policies (the hyperparameter
values were kept consistent across tasks)

that Fetch is faster than Tiago on tasks requiring table-top
manipulations, possibly due to Fetch’s larger size and longer
arms, making manipulation easier for users.

D. Imitation Learning Policy Hyperparameters

We performed imitation learning on one
simulated (slide chair – Appendix C) and three
real world tasks – cover table, slide chair and
serve bread, that require synchronized hand and base
motions. We used RoboMimic [3] for training the policies.
Comprehensive details of the policy architecture and
hyperparameters used for training are provided in Table IV.
Note that the same hyperparameters were used across all
tasks, and across simulation and real environments.
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