R1-RANKER: TEACHING LLM RANKERS TO REASON

Anonymous authors

000

001 002 003

004

006 007

008

009

010

011

012

013

014

015

016

017

018

019

021

024

025

026

027 028

029

031

033

034

037

038

040 041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently shown strong reasoning abilities in domains like mathematics, coding, and scientific problem-solving, yet their potential for ranking tasks, where prime examples include retrieval, recommender systems, and LLM routing, remains underexplored. Ranking requires complex reasoning across heterogeneous candidates, but existing LLM-based rankers are often domain-specific, tied to fixed backbones, and lack iterative refinement, limiting their ability to fully exploit LLMs' reasoning potential. To address these challenges, we propose R1-Ranker, a reasoning-incentive framework built on reinforcement learning, with two complementary designs: DRanker, which generates full rankings in one shot, and IRanker, which decomposes ranking into an iterative elimination process with step-wise rewards to encourage deeper reasoning. We evaluate unified R1-Rankers on nine datasets spanning recommendation, routing, and passage ranking, showing that IRanker-3B consistently achieves state-of-the-art performance, surpasses larger 7B models on some tasks, and yields a 15.7% average relative improvement. Ablation and generalization experiments further confirm the critical role of reinforcement learning and iterative reasoning, with IRanker-3B improving zero-shot performance by over 9% on out-of-domain tasks and reasoning traces boosting other LLMs by up to 22.87%. These results demonstrate that unifying diverse ranking tasks with a single reasoning-driven foundation model is both effective and essential for advancing LLM reasoning in ranking scenarios.

1 Introduction

Large language models (LLMs) have recently emerged as powerful reasoners in the text space, where tasks such as mathematics (Ahn et al., 2024; Zhang et al., 2024; Ma et al., 2025), coding (Yang et al., 2024b; Zhang et al., 2025), and scientific problem-solving (Rueda et al., 2025; Wysocki et al., 2024) can be framed as structured reasoning over natural language representations. Building on this progress, it is natural to ask whether other text-centric tasks can similarly benefit from LLM reasoning. Ranking tasks, including information retrieval (Nogueira & Cho, 2019; Khattab & Zaharia, 2020), recommender systems (Cremonesi et al., 2010; He et al., 2017), and LLM routing (Li et al., 2023b; Zhang et al., 2023), are compelling, as they require reasoning across heterogeneous candidates, weighing contextual signals, and making comparative judgments (Li et al., 2023a; Qin et al., 2023). Yet, despite their significance, ranking tasks have received far less attention in the LLM reasoning literature. Therefore, our paper aims to raise attention to this pressing research question: *can we teach LLM-based text rankers to reason effectively?*

Existing LLM-based text rankers (Sun et al., 2023; Yoon et al., 2024; Hou et al., 2024b; Li et al., 2023a; Qin et al., 2023) leverage the reasoning and instruction-following capabilities of large language models to directly generate candidate rankings in a unified text-based format, e.g., GPT4Rec (Li et al., 2023a) explores the use of generative LLMs for relevance ranking in information retrieval tasks, and LLM4Ranking (Liu et al., 2025) provides a framework that enables users to adopt various ranking methods using open-source or API-based LLMs for document reranking tasks. However, existing text rankers are often domain-specific (e.g., passage ranking or recommendation), largely rely on fixed LLM backbones, and lack mechanisms for iterative refinement. These limitations constrain the potential of LLMs to fully exploit their reasoning capabilities in ranking scenarios.

Constructing an ideal reasoning-incentive text ranker is a non-trivial task, which mainly involves two challenges: (1) Building a foundation model that generalizes across domains. An ideal ranking foundation model should be able to reason about diverse ranking tasks in a unified manner, capturing the common principles behind relevance, preference, and prioritization. Such a model would eliminate the need for task-specific customization, reduce implementation complexity, and more importantly,

058

060

061

062

063

064

065

066 067 068

069

071

072

073 074

075

076

077

078

079

081

082

083

084

085

087

880

089

091

092

094

095

096

098

099

100

101

102

103 104

105

106

107

Figure 1: **Example ranking tasks that a proposed R1-Ranker can solve.** (a) The recommendation task aims to model the user's preferences based on their historical behaviors. It will rank the current item candidates and predict which items the user is most likely to prefer. (b) The routing task is to recommend suitable LLMs to respond to different user queries. The recommendation process takes into account the effectiveness and cost of each LLM's response, and performs ranking to generate the final recommendation list. (c) Passage ranking involves retrieving a set of passages from candidate passages based on a given user query for retrieval-augmented generation. It ranks the passages by modeling the relevance between the query and the passages to produce the final list of passages.

unlock the potential of LLMs to generalize their reasoning across domains. (2) Adapting LLMs in the post-training phase. Current state-of-the-art LLMs are not explicitly optimized for ranking, even though ranking fundamentally requires decision-making capabilities. While API-based adaptations have shown promise, their effectiveness remains constrained by the inherent limitations of the underlying LLMs. We argue that ranking should be incorporated into the post-training "recipe" of LLMs to unlock their full potential for reasoning in ranking scenarios.

In this paper, we introduce R1-Ranker, a reasoning-based LLM ranker built on a reinforcement learning (RL) framework, which is designed to reason about diverse ranking tasks in a unified manner. R1-Ranker includes two variants, DRanker and IRanker, which offer different perspectives on incorporating reasoning into ranking. We first consider a basic design, DRanker, which directly leverages the LLM's reasoning ability to generate a complete candidate ranking and then optimizes it with RL based on task-specific rewards. While intuitive and able to exploit the LLM's basic reasoning ability for ranking decisions, this approach requires the model to directly rank multiple candidates, leading to an excessively large output space and limited room for deeper reasoning within the LLM's context window. To address these limitations, we further propose IRanker, a refined framework that integrates RL with iterative decoding. Instead of directly generating the entire ranking, IRanker decomposes the task into a step-wise elimination process: the model incrementally reasons about candidate quality and excludes the worst candidate from the pool until the final order is obtained by reversing the exclusion sequence. This design dramatically reduces the output space, alleviates context-length constraints, and enables more deliberate reasoning during training.

We meticulously train and evaluate unified R1-Rankers on nine representative datasets spanning three scenarios: recommendation, routing, and passage ranking. Our results show that a single IRanker-3B not only matches or surpasses domain-specific methods for each task but also achieves state-ofthe-art (SOTA) performance compared to general ranker baselines, highlighting the effectiveness of reasoning-based approaches for ranking. Remarkably, IRanker-3B even outperforms larger 7B LLMs on some tasks and achieves a 15.7% relative improvement on average. We further conduct extensive ablation studies, which confirm that both our RL design and the iterative mechanism are key to stimulating deeper reasoning and ensuring robustness across different LLM sizes. In addition, both in-domain and out-of-domain zero-shot generalization experiments demonstrate the transferability of reasoning for ranking: IRanker-3B improves over the base model by at least 5% on in-domain ranking tasks, and by over 9% on out-of-domain tasks such as GSM8K, IFEval, and MathQA. Notably, we show that the intermediate reasoning traces generated during training further enhance the zero-shot ranking capabilities of other LLMs. For example, based on the 3B backbone model, these reasoning traces can lead to a 23% relative improvement in zero-shot performance for the base model. In sum, our key contributions are: (1) a single R1-Ranker that works well across recommendation, routing, and retrieval without retraining or task-specific designs; (2) a novel iterative decoding algorithm that simplifies LLM output space for efficient reasoning with limited context window.

2 PRELIMINARIES

Ranking tasks. Given a query q, a ranking task (Liu et al., 2009; Li, 2011; Cao et al., 2007) is to learn a ranker f that ranks a set of candidates $D = \{c_1, \ldots, c_n\}$ with n elements. The candidate set is typically divided into a positive candidate set D_p and a negative candidate set D_n . The positive

candidate set refers to the items selected by the user, for example, the items a user purchased in a recommendation system. To evaluate how well the ranker recovers these positive candidates, the performance of the ranking task is measured by an evaluator E, which is usually a ranking metric such as Mean Reciprocal Rank (MRR) (Voorhees et al., 1999). The goal of the ranker π is to learn a function that maps a query q and its candidate set D to a ranking order $O = \{c_1^{r_1}, c_2^{r_2}, \dots, c_n^{r_n}\} \in \mathbb{S}_n$ with r_i as the rank of candidate c_i , such that the evaluation metric E is maximized:

$$\pi: (q, D) \to O, \quad O \in \mathbb{S}_n,$$
 (1)

where \mathbb{S}_n denotes the set of all possible permutations over n = |D| elements. Formally, the optimal ranker π^* is learned by solving:

 $\pi^* = \arg \max_{f \in \mathcal{F}} \mathbb{E}_{(q,D) \sim \mathcal{Z}} \left[E(\pi(q,D)) \right], \tag{2}$

where \mathcal{F} is the function class and \mathcal{Z} is the data distribution over queries and candidate sets.

Examples. As shown in Figure 1, we have listed some representative instantiations that can be unified into a ranking foundation model from three aspects. (a) **Recommendation**, shown in Figure 1(a), the goal of the recommendation (Ricci et al., 2010; Adomavicius & Tuzhilin, 2005; Covington et al., 2016) is to capture user preferences by analyzing their histories, rank the current set of candidate items, and predict those that the user is most likely to favor. Here, the user history is modeled as query q, each element of the candidates is an item, and positive candidate set D_p contains the real items that the user would choose. (b) Routing, routing task (Ong et al., 2024; Feng et al., 2024; Huang et al., 2025; Hu et al., 2024) aims to recommend appropriate LLMs for handling diverse user queries by ranking them based on both effectiveness and response cost, shown in Figure 1(b). The final LLM recommendation list is generated through a ranking process that balances performance with efficiency. Specifically, a user query is regarded as query q, each element of the candidates is a LLM name or LLM description (Feng et al., 2024), and the positive candidate set D_p means the ground truth LLMs for the query. (c) Passage ranking, passage ranking (Guu et al., 2020; Karpukhin et al., 2020; Lewis et al., 2020) aims to identify and reorder the most relevant passages from a set of candidates given a user query, often arises in retrieval-augmented generation, shown in Figure 1(c). This is achieved by modeling the relevance between the query and each passage to produce a final ranking list. For this task, the user query is regarded as query q, each element of the candidates is a passage, and the positive candidate set D_p contains the ground truth passages.

3 DRANKER: TRAINING A BASIC TEXT-RANKER TO REASON WITH RL

3.1 TRAINING AND INFERENCE VIA RL

We leverage RL to enhance the reasoning ability of DRanker π_{θ} , enabling it to not only optimize candidate rankings based on performance feedback from the evaluator E but also to progressively refine its reasoning strategies across diverse ranking tasks.

Ranking reward. We first model the evaluator E as a ranking reward $r_a = E(O_d)$, with the objective of maximizing E. Specifically, since the number of candidates varies across different ranking tasks, we choose MRR as the evaluator E. However, due to the limited instruction-following ability of LLMs, the output candidate rankings often miss or add candidates, which violates the standard requirements of a valid ranking. To regularize the output of the DRanker and guide more faithful reasoning, we introduce a format reward as a penalty term $r_g = \Omega(O_d, D) - 1$, where Ω calculates the F1 score measuring the overlap between O_d and D. Thus, the final reward is defined as $r_d = r_a + r_g$, combining both task-specific ranking quality and reasoning faithfulness to the input candidate set.

Training and inference via PPO. To optimize the reasoning-driven DRanker π_{θ} for maximizing the final reward r_d , we adopt the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017), a widely used actor-critic RL method for LLMs. PPO trains the policy by maximizing the objective:

$$\mathcal{J}_{PPO}(\theta) = \mathbb{E}_{(q,D)\sim\mathcal{Q}, y\sim\pi_{\theta}^{\text{old}}(\cdot|P_{t}(q,D))} \left[\sum_{t=1}^{|y|} \min\left(\frac{\pi_{\theta}(y_{t} \mid P_{t}(q,D), y_{< t})}{\pi_{\theta}^{\text{old}}(y_{t} \mid P_{t}(q,D), y_{< t})} A_{t}, \right. \right.$$

$$\left. \text{clip}\left(\frac{\pi_{\theta}(y_{t} \mid P_{t}(q,D), y_{< t})}{\pi_{\theta}^{\text{old}}(y_{t} \mid P_{t}(q,D), y_{< t})}, 1 - \epsilon, 1 + \epsilon\right) A_{t}\right) \right]$$

$$(3)$$

where π_{θ} and $\pi_{\theta}^{\text{old}}$ denote the current and previous policies, respectively. The pair $(q, D) \sim \mathcal{Q}$ is sampled from the training distribution, where q denotes the input query and D the associated

163

164

165 166

167

169 170

171 172

173

174 175

176177178

179

181

182

183

184

185

187

188

189 190

191

192

193

194

195

196

197

198 199

200201

202

203

204

205

206

207

208

209

210

211

212

213214

215

Figure 2: **Framework of our proposed R1-Ranker.** Both DRanker and IRanker are RL-enhanced LLM frameworks that exploit the reasoning ability of LLMs to solve ranking tasks. They take as input the candidate information in text form, along with user information (such as user history or a query), and utilize LLM reasoning to produce a final candidate ranking. This ranking is then evaluated by an evaluator to generate a corresponding reward signal, which is used to optimize the decision-making of both rankers. The key distinctions are: 1) DRanker performs reasoning once to generate the full ranking in a single step, whereas IRanker conducts step-wise reasoning by iteratively excluding the least likely item from the candidate pool. 2) The reward in DRanker is a ranking reward based on the final candidate list, while the reward in IRanker is an exclusion reward provided for each individual decision, which encourages finer-grained reasoning. 3) DRanker always receives the full set of candidates as input with a fixed size, whereas IRanker's input candidates are dynamically updated based on the excluded items, enabling adaptive reasoning throughout the ranking process.

candidate set. $y = \{y_1, y_2, \dots, y_{|y|}\}$ is the token-level sequence generated by the policy model. This sequence is parsed into a ranking candidate list $O_d = \texttt{Parse}(y, D)$ using a matching function based on string similarity or identifier alignment with D. The advantage estimate A_t is computed using Generalized Advantage Estimation (GAE) (Schulman et al., 2015), based on future rewards $\{r_{\geq t}\}$ and a learned value function V_ϕ . The clipping parameter ϵ is used to ensure stable policy updates. In this way, PPO not only stabilizes learning but also encourages the policy to explore more effective reasoning trajectories for ranking. After obtaining the optimal π_θ^* , we can obtain the final ranking candidate list $O_d = \texttt{Parse}(\pi_\theta^*(P_t(q, D)), D)$.

4 IRANKER: ADVANCED TEXT RANKER WITH RL AND ITERATIVE DECODING

4.1 DECOMPOSE CANDIDATES RANKING INTO SINGLE CANDIDATE SELECTIONS

Although DRanker can rank candidates in a simple and direct manner, it is limited by the large action space and the constrained context length for reasoning. To address this problem, we propose IRanker, as shown in the lower part of Figure 2. The key insight of IRanker is to decompose the complex global ranking task into a sequence of localized reasoning steps, where the model iteratively excludes one candidate from the pool. This formulation transforms ranking into an incremental decision-making process that not only reduces the combinatorial complexity but also allows the LLM to perform more fine-grained reasoning at each step. Similar to the method introduced in Section $\ref{eq:condition}$, we design a prompt P_d (details in Appendix A) that encodes the query q and the current candidate set $D^{(k)}$, and instructs the IRanker π_ω to reason about candidate quality and exclude one candidate $c_k \in D^{(k)}$ at each iteration k. The process is defined as:

$$c_k = \pi_\omega(P_d(q, D^{(k)})), \quad D^{(k-1)} = D^{(k)} \setminus \{c_k\}, \quad r_k = |D| - k + 1$$
 (4)

After |D| iterations, we obtain the complete ranking list:

$$O_d = \left[c_1^{r_1}, c_2^{r_2}, \dots, c_{|D|}^{r_{|D|}}\right] \tag{5}$$

Table 1: **Detailed summarization of tasks used in our ranking tasks.** We summarize the task names, scenarios, candidate sizes, training/test case counts, and positive/negative ratios.

Dataset	Scenario	Candidate Size	# Train Cases	# Test Cases	Positive/Negative Ratio
Movie	Recommendation	20	9975	2508	1:19
Music	Recommendation	20	9975	2508	1:19
Game	Recommendation	20	9424	2337	1:19
Performance	Routing	10	1467	153	1:9
Cost	Routing	10	1467	153	1:9
Balance	Routing	10	1467	153	1:9
5 Passage	Passage ranking	5	10000	1448	1:4
7 Passage	Passage ranking	7	9996	3894	1:6
9 Passage	Passage ranking	9	10000	1792	1:8

Here, candidates excluded later receive higher ranks, and the final ranking O_d is constructed by reversing the exclusion order. This iterative exclusion mechanism provides a natural way for the LLM to reason step by step, narrowing down the candidate space progressively instead of making all decisions at once.

4.2 Training and inference with iterative RL

Exclusion reward. To train this iterative reasoning process, we first define the exclusion reward r_e^k for each step k:

$$r_e^k = \begin{cases} 1, & \text{if } c_k \in D_n \\ 0, & \text{otherwise} \end{cases} \tag{6}$$

where D_n is the negative candidate set illustrated in Section 2. The exclusion reward encourages IRanker π_{ω} to reason about relevance at each step by prioritizing the removal of negative candidates, thereby promoting positive candidates to be ranked higher.

Training and inference via iterative PPO. Similar to Section 3.1, we utilize PPO to optimize the reasoning policy of IRanker π_{ω} by maximizing the following objective:

$$\mathcal{J}_{PPO}(\omega) = \mathbb{E}_{(q,D^{(k)}) \sim \mathcal{B}, \ y \sim \pi_{\omega}^{\text{old}}(\cdot|P_{d}(q,D^{(k)}))} \left[\sum_{t=1}^{|y|} \min \left(\frac{\pi_{\omega}(y_{t} \mid P_{d}(q,D^{(k)}), y_{< t})}{\pi_{\omega}^{\text{old}}(y_{t} \mid P_{d}(q,D^{(k)}), y_{< t})} A_{t}, \right. \\
\left. \text{clip} \left(\frac{\pi_{\omega}(y_{t} \mid P_{d}(q,D^{(k)}), y_{< t})}{\pi_{\omega}^{\text{old}}(y_{t} \mid P_{d}(q,D^{(k)}), y_{< t})}, 1 - \epsilon, 1 + \epsilon \right) A_{t} \right) \right]$$
(7)

where $(q, D^{(k)}) \sim \mathcal{B}$ is sampled from the training distribution; $P_d(q, D^{(k)})$ is the prompt encoding the query q and current candidate pool $D^{(k)}$; π_ω and π_ω^{old} denote the current and previous policies, respectively; A_t is the estimated advantage at decoding step t; ϵ is the PPO clipping threshold; $y = (y_1, y_2, \ldots, y_T)$ is the response sequence generated by the policy; $c_k = \text{Parse}(y, D^{(k)})$ is the excluded candidate parsed from y. By optimizing this objective, PPO encourages IRanker to develop consistent reasoning strategies across iterations. Once the optimal π_ω^* is obtained, the final ranking list O_d is constructed via Equation (5) by repeatedly applying Equation (4) with π_ω^* .

5 EXPERIMENTS

We conduct comprehensive training and evaluation of the proposed R1-Ranker, DRanker and IRanker. Notably, the same R1-Ranker is being evaluated across diverse 9 interdisciplinary tasks, which is compared against general ranking methods and domain-specific methods. First, we introduce the tasks within the R1-Ranker framework.

Task description. The details of the tasks are summarized across three aspects in Table 1. (1) **Recommendation (Rec)**: For the recommendation ranking task, we utilize three widely-used sequential recommendation datasets: MovieLens ml-1m (Hou et al., 2024a), Amazon's CD and Vinyl dataset (McAuley et al., 2015; Ni et al., 2019), and Amazon's Video Game dataset (McAuley et al., 2015; Ni et al., 2019). For each user across all datasets, following the settings of (Hou et al., 2024a), we extracted 20 consecutive interactions as the historical sequence and designated the 21st interaction as the ground truth item. To create a balanced candidate set, we randomly sampled 19 items from the complete item catalog (excluding items in the user's history and the ground truth item)

271

272

273

274275276277278279

281

284

287

289

291292293

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Table 2: Model performance comparison with general baselines across nine ranking tasks of three scenarios on MRR. Bold and <u>underline</u> denote the best and second-best results. We can observe the following: 1) Compared to the baselines, *IRanker-3B* achieves state-of-the-art performance in almost all tasks. 2) The comparison between methods with and without RL validates the enhancement effect of RL on ranking tasks. 3) The comparison between iterative-based ranking and direct ranking demonstrates the suitability of the iterative design for models of different sizes.

	Recor	nmenda	ation	Rot	ıting		Passage Ranking			
Model	Movie	Music	Game	Performance	Cost	Balance	5 Passages 7	Passages 9	Passages	
Retrieval-based Models										
BM25	17.56	18.09	14.96	18.41	13.52	13.39	53.63	44.95	39.69	
Contriever	18.29	17.04	23.98	20.75	16.29	16.74	41.91	36.41	33.10	
Representative Text Rankers										
GPT4Rec	23.62	24.53	15.86	10.39	13.96	11.30	28.89	24.37	21.81	
PRP	27.30	16.52	30.52	19.52	16.97	18.50	45.67	30.67	17.72	
Direct-Rank LLMs without RI	,									
Qwen2.5-3B-Instruct-direct	16.92	16.68	13.17	10.00	10.00	10.00	38.08	22.47	15.94	
Qwen2.5-7B-Instruct-direct	16.59	17.29	18.63	13.38	13.51	18.41	44.57	23.69	17.79	
Iterative LLMs without RL										
Qwen2.5-3B-Instruct-iter	22.01	21.97	29.49	20.87	20.22	12.42	57.74	43.47	39.40	
Qwen2.5-7B-Instruct-iter	22.11	23.36	<u>33.14</u>	19.13	21.06	26.09	62.01	<u>50.94</u>	<u>48.74</u>	
Direct-Rank LLMs with RL										
DRanker-3B	18.71	15.70	15.77	20.63	9.06	13.38	43.85	22.86	16.11	
Iterative LLMs with RL										
IRanker-3B	34.69	29.18	42.49	23.62	30.39	24.44	60.98	53.22	49.96	

and combined them with the ground truth item to form a candidate list of 20 items. This approach creates a realistic recommendation scenario with a 5% chance of randomly selecting the relevant item, while maintaining a manageable evaluation space. (2) Routing (Router): For the LLM routing task, following the setting of (Feng et al., 2024), we selected four datasets from (Feng et al., 2024) and ten large language models (LLMs). Based on different weights of LLM response effectiveness and cost, we followed three settings in (Feng et al., 2024): Performance First (Performance), Balance, and Cost First (Cost), corresponding to scenarios where users prioritize high performance, value both high performance and low cost equally, or prioritize low cost, respectively. For each query, we computed the reward based on the weighted sum of effectiveness and cost, and selected the LLM with the highest reward as the ground-truth LLM. The remaining nine LLMs were treated as negative LLMs. (3) Passage Ranking (Passage): For the passage ranking task, we employ the MS MARCO passage dataset (Bajaj et al., 2016), a large-scale information retrieval benchmark derived from Bing search logs. To evaluate models under different retrieval complexity scenarios, we created three distinct settings with varying candidate passage sizes: 5, 7, and 9 passages per query. For each query, these candidate sets include one relevant passage (as judged by human annotators in the dataset) and 4, 6, or 8 irrelevant passages respectively. This configuration allows us to assess how model performance scales with increasing candidate pool sizes and how effectively models can identify the single relevant passage among varying numbers of distractors.

Baselines and metrics. We evaluate a variety of baseline methods across three scenarios. The baselines are categorized into two groups: (a) General baselines that apply across tasks, and (b) Task-specific baselines tailored to each scenario. For all methods, we primarily use Mean Reciprocal Rank (MRR) (Voorhees et al., 1999; Cremonesi et al., 2010) to evaluate ranking performance in the main text. A full evaluation with additional metrics and generation cases are provided in Appendix D and B for details. (a) General baselines: We consider three categories: retrieval-based, text rankers, and LLM-based methods. For retrieval, we adopt BM25 (Robertson et al., 2009), a classical probabilistic retrieval model with keyword matching, and Contriever (Izacard et al., 2021), a dense retriever trained with contrastive learning and hard negatives. For text rankers, we include GPT4Rec (Li et al., 2023a), which reformulates recommendation as a text-to-text generation task using LLMs with task-specific prompts, and PRP (Qin et al., 2023), which casts ranking as pairwise preference prompting and aggregates LLM-comparisons to form the final list. For LLM-based baselines, we use Qwen2.5-3B/7B-Instruct (Yang et al., 2024a), and design two variants: LLM-direct, which produces rankings in a single step, and *LLM-iter*, which performs iterative candidate selection for improved accuracy. (b) Task-specific baselines: For recommendation, we compare three sequential models: SASRec (Kang & McAuley, 2018), a Transformer-based sequential recommender; BPR (Rendle et al.,

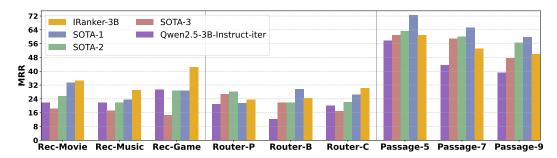


Figure 3: IRanker-3B matches the performance of domain-specific methods across multiple tasks with fewer training samples and smaller model size. We compared the performance of IRanker-3B against three representative SOTA methods and Qwen2.5-3B-Instruct-iter across three scenarios. SOTA-1, SOTA-2, and SOTA-3 correspond to SASRec (Kang & McAuley, 2018), BPR (Rendle et al., 2012), and R1-Rec (Lin et al., 2025) in the recommendation (Rec) scenario; GraphRouter (Feng et al., 2024), RouterBert (Ong et al., 2024), and RouterKNN (Hu et al., 2024) in the routing (Router) scenario; RankLLama-8B (Ma et al., 2024), RankBERT (Nogueira & Cho, 2019), and MonoT5 (Nogueira et al., 2020) in the passage ranking (Passage) scenario.

Table 3: **Zero-shot performance comparison across different ranking tasks on MRR. Bold** and <u>underline</u> denote the best and second-best results. The results for each ranking scenario were obtained by training on the data from the other two ranking scenarios and then performing zero-shot testing on the target scenario.

	Recommendation			Ro	uting		Passage Ranking			
Model	Movie	Music	Game	Performance	Cost	Balance	5 Passages	7 Passages	9 Passages	
Qwen2.5-3B-Instruct-iter IRanker-3B	22.01 34.69	21.97 29.18	29.49 42.49	20.87 23.62	20.22 30.39	12.42 24.44	57.74 60.98	43.47 53.22	39.40 49.96	
IRanker-3B (zero-shot)	25.95	23.21	31.16	20.41	23.10	21.89	56.42	<u>51.19</u>	42.45	

2012), which optimizes pairwise item preferences; and *R1-Rec* (Lin et al., 2025), a reinforcement learning framework that optimizes retrieval-augmented LLMs via task feedback. For routing, we use *RouterKNN* (Hu et al., 2024), which assigns queries by nearest-neighbor voting; *RouterBERT* (Ong et al., 2024), a lightweight BERT-based classifier for routing decisions; and *GraphRouter* (Feng et al., 2024), a state-of-the-art graph-based router balancing accuracy and cost. For passage ranking, we evaluate *RankBERT* (Nogueira & Cho, 2019), a BERT reranker fine-tuned on MS MARCO; *MonoT5* (Nogueira et al., 2020), which generates relevance labels with a T5 model; and *RankLLama-8B* (Ma et al., 2024), a Llama-2 variant fine-tuned with pairwise and listwise objectives for passage ranking.

Implementation details. We train and evaluate a single R1-Ranker across all tasks, comparing its performance against both general-purpose ranking baselines and domain-specific methods tailored for each task. For reinforcement learning, we adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017), following the implementation details provided in VeRL (Sheng et al., 2024). Both the DRanker and IRanker are initialized from Qwen-2.5-3B-Instruct, and optimized using KL-regularized policy gradients. To manage policy divergence, we incorporate a low-variance KL loss with a regularization coefficient of 1e-4. Rollouts are conducted using vLLM with a maximum GPU memory utilization cap of 40%, temperature set to 0.9, and a maximum response length of 1024 tokens. Training is performed over 5 epochs, using a learning rate of 1e-6 for the actor and 2e-6 for the critic. The optimization uses a global mini-batch size of 36 and a micro-batch size of 8. To ensure memory efficiency, we enable gradient checkpointing and apply Fully Sharded Data Parallelism (FSDP) with both parameter and gradient offloading. All experiments are conducted on NVIDIA A6000 GPUs.

5.1 IRANKER ACHIEVES SOTA PERFORMANCE COMPARED WITH GENERAL RANKING METHODS

We train a unified IRanker-3B on all tasks and test it across all tasks without further fine-tuning, compared with general ranking methods. We report the comparison results in Table 4.2. We can observe that: (1) IRanker-3B surpasses all baseline models in the majority of ranking tasks. Notably, it even outperforms the larger Qwen2.5-7B-Instruct-iter model in 7 out of 9 tasks, despite having fewer parameters. On average, IRanker-3B achieves a 15.7% relative improvement in MRR over

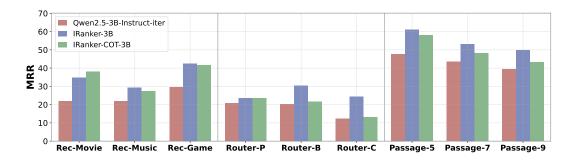


Figure 4: **Thoughts emerged by IRanker during training can enhance zero-shot performance of the base model.** IRanker-COT-3B is an iterative framework that, for each test query, retrieves similar queries and their corresponding thoughts that emerged during the training of IRanker, using them as thought templates to guide zero-shot responses. We evaluate IRanker-COT-3B on nine tasks and compare its performance with IRanker-3B and Qwen2.5-3B-Instruct-iter. The results show that IRanker-COT-3B consistently outperforms Qwen2.5-3B-Instruct-iter and even surpasses IRanker-3B in the Rec-Game task.

Qwen2.5-7B-Instruct-iter across the nine evaluated tasks, showing that reasoning-oriented ranking design can achieve superior efficiency and accuracy compared to scaling alone. (2) The performance gap between models with and without reinforcement learning (RL), particularly when comparing IRanker-3B to its counterparts without RL, confirms that RL plays a critical role in stimulating deeper reasoning for ranking. For example, IRanker-3B significantly improves over Qwen2.5-3B-Instructiter in routing tasks (e.g., Cost: 30.39 vs. 20.22) and recommendation tasks (e.g., Game: 42.49 vs. 29.49), demonstrating that RL not only improves optimization but also enhances the model's ability to reason about candidate relevance. (3) When comparing direct ranking models to their iterative counterparts, iterative designs (e.g., Qwen2.5-7B-Instruct-iter and IRanker-3B) consistently outperform direct methods across all task domains. This suggests that decomposing global ranking into step-wise elimination enables more deliberate reasoning at each decision step, leading to stronger task alignment and more robust generalization across tasks of varying complexity.

5.2 IRANKER MATCHES THE PERFORMANCE OF DOMAIN-SPECIFIC METHODS ACROSS MULTIPLE TASKS

We further compared IRanker-3B with domain-specific methods as shown in Figure 3. Specifically, we compared IRanker-3B with three representative SOTA methods (denoted as SOTA-1, SOTA-2, and SOTA-3) and Qwen2.5-3B-Instruct-iter across three domains. In the recommendation scenario, SOTA-1, SOTA-2, and SOTA-3 refer to SASRec, BPR, and R1-Rec, respectively; in routing, they correspond to GraphRouter, RouterBert, and RouterKNN; and in passage ranking, they denote RankLLama-8B, RankBERT, and MonoT5. We can observe that: (1) IRanker-3B matches the performance of domain-specific methods across multiple tasks, showing that unified reasoning-driven ranking can rival highly specialized models. (2) In the recommendation scenario, IRanker-3B outperforms all baselines and achieves state-of-the-art results, suggesting that iterative reasoning allows the model to capture user—item relevance signals more effectively than handcrafted domain-specific designs. (3) Even in the passage ranking scenario, IRanker-3B performs on par with models that have significantly larger parameter sizes (e.g., RankLLama-8B) or were trained with much more data samples (e.g., RankBERT and MonoT5). This highlights that reasoning-centric optimization can serve as a competitive alternative to brute-force scaling or domain-specific engineering.

5.3 IRANKER ENHANCES ZERO-SHOT REASONING FOR RANKING TASKS AND TRANSFERS TO BROADER DOMAINS

To further investigate the generalization ability of IRanker as a reasoning-driven foundation model, we conduct analyses from the following three aspects.

IRanker strengthens reasoning transfer across in-domain ranking tasks. We first examine the ability of IRanker to generalize reasoning strategies across ranking tasks, by training it on two different ranking tasks and then conducting zero-shot testing on a target ranking task (Table 3). IRanker-3B (zero-shot) consistently outperforms Qwen2.5-3B-Instruct-iter and even approaches the performance of fully trained IRanker on tasks such as Performance and 7 Passages. This shows that

Table 4: **IRanker outperformed the base model on three out-of-domain generic LLM tasks.** Bolded values indicate higher performance. This table compares the performance of IRanker-3B and Qwen2.5-3B-Instruct across eight widely-used benchmarks. IRanker-3B leads in five out of eight tasks, especially on math and reasoning-heavy datasets like GSM8K, IFEval, and MathQA. Qwen2.5-3B-Instruct performs better on code generation tasks, including MBPP and HumanEval. The models are nearly tied on general QA tasks like OpenBookQA and HellaSwag. These results highlight IRanker-3B's strength in structured reasoning, while Qwen2.5-3B-Instruct maintains a slight edge in coding ability.

Model	GSM8K	IFEval		MBPP	HumanEval	OpenBookQA	HellaSwag	MathQA
Metric	Exact Match Acc.	Loose Acc.		Pass@1	Pass@1	Acc.	Acc.	Acc.
Qwen2.5-3B-Instruct IRanker-3B	0.6353 0.7369	0.6799 0.7122	0.6537 0.6510	0.5280 0.4560	0.4756 0.4573	0.3280 0.3300	0.5633 0.5634	0.3538 0.3856

the reasoning patterns learned during training can be effectively transferred across ranking tasks, leading to strong in-domain generalization.

Emergent reasoning traces boost other LLMs' zero-shot capability. To investigate whether the intermediate reasoning traces generated by IRanker can further enhance the base model, we propose IRanker-COT-3B. This model adopts an iterative framework that, for each test query, retrieves semantically similar queries along with their reasoning traces produced during IRanker training. These retrieved thoughts serve as templates (Appendix C) to guide zero-shot inference. As shown in Figure 4, IRanker-COT-3B consistently outperforms Qwen2.5-3B-Instruct-iter and even exceeds IRanker-3B on the Rec-Game task, highlighting the transferable value of reasoning traces.

IRanker improves reasoning ability on out-of-domain tasks. Finally, we test whether IRanker's reasoning capability transfers beyond ranking by evaluating IRanker-3B and Qwen2.5-3B-Instruct on eight generic LLM benchmarks (Table 4). IRanker-3B outperforms Qwen2.5-3B-Instruct on five of the eight tasks, with notable gains on reasoning-intensive datasets such as GSM8K, IFEval, and MathQA. Conversely, Qwen2.5-3B-Instruct remains stronger on code generation tasks (MBPP and HumanEval), while performance is comparable on general QA tasks (OpenBookQA and HellaSwag). These results demonstrate that IRanker is particularly effective at structured reasoning, extending its benefits beyond ranking scenarios.

6 ADDITIONAL RELATED WORK

Generative large language models (LLMs) have recently been applied to ranking tasks across diverse domains such as information retrieval, recommendation, and document reranking, leveraging their natural language understanding and generation capabilities. Prompting-based methods (Qin et al., 2023; Hou et al., 2024a) exploit LLM generalization to produce rankings with minimal modification, while instruction tuning and alignment approaches such as GPT4Rec (Li et al., 2023a) and RankRAG (Yu et al., 2024) further adapt LLMs to ranking-specific signals. Beyond these, reinforcement learning has emerged as a powerful tool to enhance reasoning in ranking, with methods like Rank-R1 (Zhuang et al., 2025) and Rec-R1 (Lin et al., 2025) demonstrating that reward-driven optimization can align LLM outputs with downstream ranking objectives and improve performance in both general and personalized scenarios.

7 Conclusion

In this work, we address the challenge of unifying diverse ranking tasks by introducing IRanker, an iterative R1-Ranker optimized via reinforcement learning. By decomposing ranking into a step-wise exclusion process and leveraging the reasoning capabilities of large language models, IRanker overcomes limitations of traditional embedding-based and direct-ranking methods. Our proposed IRanker-3B achieves competitive or state-of-the-art performance across nine datasets from recommendation, routing, and passage ranking scenarios. Extensive experiments demonstrate its strong generalization abilities, achieving over 5% improvement in in-domain zero-shot settings and over 9% gains in out-of-domain LLM tasks. These results highlight IRanker's effectiveness as a unified and scalable R1-Ranker framework, setting a foundation for future advances in LLM-based ranking systems with wide applications in recommendation, retrieval, and decision making.

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our work does not involve human subjects, personal data, or sensitive attributes. We followed best practices for data usage, ensured compliance with licensing terms, and considered potential risks of bias or misuse.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Details of the model architecture, training settings, and hyperparameters are described in Section 5. All datasets we used are publicly available. The training scripts and evaluation code will be released upon publication to facilitate replication.

REFERENCES

- Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. *IEEE transactions on knowledge and data engineering*, 17(6):734–749, 2005.
- Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges. *arXiv preprint arXiv:2402.00157*, 2024.
- Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated machine reading comprehension dataset. *arXiv preprint arXiv:1611.09268*, 2016.
- Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise approach. In *Proceedings of the 24th international conference on Machine learning*, pp. 129–136, 2007.
- Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In *Proceedings of the 10th ACM conference on recommender systems*, pp. 191–198, 2016.
- Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on top-n recommendation tasks. In *Proceedings of the fourth ACM conference on Recommender systems*, pp. 39–46. ACM, 2010.
- Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections. *arXiv preprint arXiv:2410.03834*, 2024.
- Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented language model pre-training. In *International conference on machine learning*, pp. 3929–3938. PMLR, 2020.
- Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative filtering. In *Proceedings of the 26th International Conference on World Wide Web*, pp. 173–182, 2017.
- Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin Zhao. Large language models are zero-shot rankers for recommender systems. In *European Conference on Information Retrieval*, pp. 364–381. Springer, 2024a.
- Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin Zhao. Large language models are zero-shot rankers for recommender systems. In *Advances in Information Retrieval: 46th European Conference on IR Research, ECIR 2024, Glasgow, UK, March 24*–28, 2024, *Proceedings, Part II*, volume 14685 of *Lecture Notes in Computer Science*, pp. 364–381. Springer, 2024b. doi: 10.1007/978-3-031-56060-6_24. URL https://arxiv.org/abs/2305.08845.
- Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing system. *arXiv preprint arXiv:2403.12031*, 2024.

- Zhongzhan Huang, Guoming Ling, Vincent S Liang, Yupei Lin, Yandong Chen, Shanshan Zhong,
 Hefeng Wu, and Liang Lin. Routereval: A comprehensive benchmark for routing llms to explore
 model-level scaling up in llms. arXiv preprint arXiv:2503.10657, 2025.
 - Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning. *arXiv* preprint arXiv:2112.09118, 2021.
 - Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.
 - Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP* (1), pp. 6769–6781, 2020.
 - Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 39–48, 2020.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33: 9459–9474, 2020.
 - Hang Li. A short introduction to learning to rank. *IEICE TRANSACTIONS on Information and Systems*, 94(10):1854–1862, 2011.
 - Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec: A generative framework for personalized recommendation and user interests interpretation. *arXiv* preprint arXiv:2304.03879, 2023a.
 - Yining Li, Wenhao Ma, Yizhe Wang, et al. Llmrouter: Enhancing large language model inference via expert selection. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2023b.
 - Jiacheng Lin, Tian Wang, and Kun Qian. Rec-r1: Bridging generative large language models and user-centric recommendation systems via reinforcement learning. *arXiv preprint arXiv:2503.24289*, 2025.
 - Qi Liu, Haozhe Duan, Yiqun Chen, Quanfeng Lu, Weiwei Sun, and Jiaxin Mao. Llm4ranking: An easy-to-use framework of utilizing large language models for document reranking. *arXiv* preprint *arXiv*:2504.07439, 2025.
 - Tie-Yan Liu et al. Learning to rank for information retrieval. *Foundations and Trends*® *in Information Retrieval*, 3(3):225–331, 2009.
 - Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage text retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2421–2425, 2024.
 - Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner: Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.
 - Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations on styles and substitutes. In *Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval*, pp. 43–52, 2015.
 - Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)*, pp. 188–197, 2019.

- Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics* (NAACL), 2019. URL https://arxiv.org/abs/1901.04085.
 - Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained sequence-to-sequence model. *arXiv* preprint arXiv:2003.06713, 2020.
 - Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In *The Thirteenth International Conference on Learning Representations*, 2024.
 - Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise ranking prompting. *arXiv* preprint arXiv:2306.17563, 2023.
 - Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. *arXiv preprint arXiv:1205.2618*, 2012.
 - Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems handbook. In *Recommender systems handbook*, pp. 1–35. Springer, 2010.
 - Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond. *Foundations and Trends*® *in Information Retrieval*, 3(4):333–389, 2009.
 - Alice Rueda, Mohammed S Hassan, Argyrios Perivolaris, Bazen G Teferra, Reza Samavi, Sirisha Rambhatla, Yuqi Wu, Yanbo Zhang, Bo Cao, Divya Sharma, et al. Understanding llm scientific reasoning through promptings and model's explanation on the answers. *arXiv preprint arXiv:2505.01482*, 2025.
 - John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*, 2015.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv:2409.19256*, 2024.
 - Yixin Sun, Yiqun Zhang, Jiaxin Ma, Yanyan Liu, Yanyan Shao, and Shaoping Zhou. Rankgpt: Enhancing zero-shot ranking with instruction-finetuned large language models. *arXiv* preprint *arXiv*:2304.09542, 2023.
 - Ellen M Voorhees et al. The trec-8 question answering track report. In *Trec*, volume 99, pp. 77–82, 1999.
 - Oskar Wysocki, Magdalena Wysocka, Danilo Carvalho, Alex Teodor Bogatu, Danilo Miranda Gusicuma, Maxime Delmas, Harriet Unsworth, and Andre Freitas. An Ilm-based knowledge synthesis and scientific reasoning framework for biomedical discovery. *arXiv preprint arXiv:2406.18626*, 2024.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024a.
 - Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao Wang, Yiquan Wang, et al. If llm is the wizard, then code is the wand: A survey on how code empowers large language models to serve as intelligent agents. *arXiv preprint arXiv:2401.00812*, 2024b.
 - Jinhyuk Yoon, Minbyul Jeong, Chan Kim, and Minjoon Seo. Listt5: Listwise reranking with fusion-in-decoder. *arXiv preprint arXiv:2402.15838*, 2024.

- Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms. *Advances in Neural Information Processing Systems*, 37:121156–121184, 2024.
- Boxin Zhang, Han Zhang, Jindou Liu, et al. Llm as a judge: Revisiting llm-augmented evaluation for instruction tuning. *arXiv preprint arXiv:2306.05685*, 2023.
- Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer, 2024.
- Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language models reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25949–25957, 2025.
- Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, and Guido Zuccon. Rank-r1: Enhancing reasoning in llm-based document rerankers via reinforcement learning. *arXiv preprint arXiv:2503.06034*, 2025.

A PROMPT USAGE

This section provides a detailed overview of the prompt templates used for each task scenario, corresponding to DRanker and IRanker. Specifically, P_t denotes the prompt template used for DRanker, and P_d refers to the template used for IRanker. Each prompt is carefully designed with explicit formatting instructions and consistently requires the model to articulate its reasoning process before producing a final answer, which is enclosed within <answer> and </answer> tags for ease of parsing. Illustrative examples of the P_t templates are shown in Tables 5, 6, and 7, while representative P_d templates are presented in Tables 8, 9, and 10.

Table 5: Prompts for DRanker in recommendation task.

```
<|im_start|>
```

system

You are a helpful assistant that ranks products by how likely the user is to buy them, based on their previous purchase history.

```
<|im_end|>
<|im_start|>
```

user

I've purchased the following items in the past, in order:

{historical_interactions}

Now there are 20 candidate items that I might purchase next:

{candidate_items}

Please rank these items by measuring the possibilities that I would like to buy next most, according to my purchase history. Please think step by step.

Split your output with line break. You MUST rank the given candidate items. You can not generate items that are not in the given candidate list. Show your work in <think> <think> tags. And return the final answer in <answer> </answer> tags.

```
<|im_end|>
<|im_start|>
```

assistant

Let me solve this step by step.

<think>

B CASE STUDIES OF DRANKER AND IRANKER

This appendix presents a comprehensive set of case studies illustrating the behavior of **DRanker** and **IRanker** across different ranking scenarios. For each model, we provide detailed examples from three distinct tasks, each further divided into three subtasks, resulting in **nine case tables per ranker**.

Each case study table includes the following components:

- Question: The input query or prompt that initiates the ranking task.
- Positive Sample: The ground-truth relevant passage or item that should ideally be highly ranked.
- Answer: The model's output, including its ranked list and any intermediate reasoning (when applicable).

These examples serve to highlight both the strengths and failure modes of each ranker, offering qualitative insights into their decision-making processes. DRanker case studies are provided in Tables 11 to 19, while IRanker case studies are shown in Tables 20 to 28.

C EXAMPLES OF THOUGHT TEMPLATE GENERATED BY IRANKER

This section presents examples of *thought templates* generated by IRanker and DRanker's thinking process, each summarizing the model's step-by-step reasoning for representative queries. These templates are derived from model inference traces and can be used as in-context learning exemplars for models not explicitly trained on the ranking tasks. See Tables 30, 29 and 31

756 757 Table 6: **Prompts for DRanker in routing task**.

<|im_start|>

system

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779780781782

783

784

785

786

787

788

789

790

791

792

793

794

796

797

798

799

800

801

802

803 804 805

807

808

809

You are a helpful assistant that selects the most suitable large language model (LLM) for a given query, based on performance and token cost.

<|im_end|>
<|im_start|>

user

{llm_descriptions}

This scenario is analyzing a set of sales data to uncover trends and insights. Please provide useful insights with reasonable depth, balancing accuracy and efficiency. Here is a query: {query} and LLM candidates: {llm_candidates}. Please think step by step according to the description of each query and LLM, and evaluate from the perspectives of performance in answering the query and token price. Rank all LLMs from most suitable to least suitable for this query. Return the LLM names in order, one per line. Split your output with line break. You MUST rank all LLMs from the candidate list. You can not generate content that is not in the given candidate list.

Show your work in <think> <think> tags. And return the final answer in <answer> </answer> tags.

<|im_end|>

<|im_start|>

assistant

Let me solve this step by step.

<think>

Table 7: Prompts for DRanker in passage ranking task.

<|im_start|>

system

You are a helpful assistant that ranks passages by relevance to a given query.

<|im_end|>

<|im_start|>

user

Here is a query: {query}

{formatted_passages}

Please think step by step according to the content of each passage and how well it supports or relates to the query. Rank all passages from most relevant to least relevant. Return the passage IDs in order, one per line (e.g.,

passage 1

passage 3

passage 2). You MUST rank all passages from the candidate list. You can not generate content that is not in the given candidate list.

Show your work in <think> <think> tags. And return the final answer in <answer> </answer> tags.

<|im_end|>

<|im_start|>

assistant

Let me solve this step by step.

<think>

D ADDITIONAL RESULTS ON EXTENDED METRICS

This section presents supplementary results using additional evaluation metrics including nDCG@k. The detailed outcomes can be found in Tables 32, 33, and 34. While zero-shot performance can be found in Tables 35, 36, and 37.

Table 8: Prompts for IRanker in recommendation task. <|im_start|> system You are a helpful assistant that ranks products by how likely the user is to buy them, based on their previous purchase history. <|im_end|> <|im_start|> user I've purchased the following items in the past, in order: {historical_interactions} Now there are 20 candidate items that I might purchase next: {candidate_items} Please select the one item that is least likely to be my next purchase, according to my purchase history. Please think step by step. You MUST choose exactly one item from the given candidate list. You can NOT generate or reference items that are not in the given candidate list. Show your work in <think> <think> tags. And return the final answer in <answer> </answer> tags. <|im_end|> <|im_start|> assistant Let me solve this step by step. <think>

Table 9: **Prompts for IRanker in routing task**.

```
system
You are a helpful assistant that selects the most suitable large language model (LLM) for a
given query, based on performance and token cost.
<|im_end|>
<|im_start|>
user
{llm_descriptions}
```

This scenario is analyzing a set of sales data to uncover trends and insights. Please provide useful insights with reasonable depth, balancing accuracy and efficiency. Here is a query: {query} and LLM candidates: {llm_candidates}. Please think step by step according to the description of each query and LLM, and evaluate from the perspectives of performance in answering the query and token price, and select the least likely LLM from the LLM candidates. Only return the LLM name corresponding to the LLM. You MUST choose one LLM name from LLM candidates. You can not generate content that are not in the given LLM candidates. Show your work in <think> <think> tags. And return the final answer in <answer>

```
</answer> tags.
</im_end|>
</im_start|>
```

<|im_start|>

assistant

Let me solve this step by step.

<think>

859 E BROADER IMPACTS

Our work on IRanker, a unified ranking foundation model, has several potential positive societal implications. By creating a single model capable of handling multiple ranking tasks across recommendation systems, LLM routing, and passage retrieval, we significantly increase efficiency and reduce computational resources needed across various applications. This could lead to more sustainable AI

885

889

890

891

892

893

894

895

896

897

898 899

900 901

902

903

904

Table 10: Prompts for IRanker in passage ranking task.

```
865
866
            <|im_start|>
867
           system
868
           You are a helpful assistant that ranks passages by relevance to a given query.
           <|im_end|>
869
           <|im_start|>
870
           user
871
           ## Here is a query: {query}
872
            {formatted_passages}
873
           Please think step by step according to the content of each passage and how well it supports or
874
           relates to the query. Select the least likely passage from the candidate list. Only return the
875
           passage ID corresponding to the excluded passage (e.g., "passage 3"). You MUST choose one
876
           passage from the candidate list. You can not generate content that is not in the given candidate
877
           list.
878
           Show your work in <think> <think> tags. And return the final answer in <answer>
879
           </answer> tags.
           <|im_end|>
           <|im_start|>
           assistant
882
           Let me solve this step by step.
883
            <think>
```

deployment and democratize access to high-quality ranking technologies for smaller organizations with limited resources. The improved zero-shot capabilities demonstrated by IRanker could enhance information retrieval in low-resource domains or for underrepresented languages where task-specific training data is scarce. This has the potential to bridge information access gaps across different communities. Furthermore, IRanker's ability to perform well on out-of-domain tasks suggests that the techniques developed in this work may have beneficial spillover effects to other AI domains beyond ranking. Our iterative decoding approach, which decomposes complex ranking tasks into simpler decisions, represents a more interpretable way of understanding how AI systems make ranking decisions. This improved transparency could foster greater trust in recommendation and information retrieval systems. Additionally, the efficient use of context length in our approach enables more effective reasoning with limited computational resources, potentially reducing the environmental footprint of deploying such systems at scale while maintaining high performance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

An LLM was used during the preparation of this manuscript to improve the clarity of writing. Specifically, the tool assisted in correcting grammatical errors, refining sentence structures, and polishing the overall readability of some passages. All substantive ideas, analyses, and conclusions are solely those of the authors.

918 919 920 921 922 Table 11: DRanker's case study in rec-movie scenario. 923 Ouestion: ['0. My Fair Lady', '1. Top Hat', '2. Next Karate Kid, The', '3. Gone with the Wind', '4. Dave', 924 '5. Raiders of the Lost Ark', '6. Englishman Who Went Up a Hill, But Came Down a Mountain, The', '7. 925 Star Trek: First Contact', '8. Star Trek: The Motion Picture', '9. Star Trek VI: The Undiscovered Country', 926 '10. Star Trek V: The Final Frontier', '11. Star Trek: The Wrath of Khan', '12. Star Trek III: The Search for Spock', '13. Star Trek IV: The Voyage Home', '14. Star Trek: Insurrection', '15. Star Trek: Generations', '16. From Russia with Love', '17. Goldfinger', '18. Star Wars: Episode I - The Phantom Menace', '19. Star 927 928 Wars: Episode IV - A New Hope'] 929 **Ground Truth**: Lassie 930 <think> First, I will analyze each genre to determine which types of movies align with those previously 931 viewed: 932 **Historical / Period Films:** '0. My Fair Lady', '3. Gone with the Wind', '9. Star Trek: The Undiscovered Country' 933 **Hollywood Musicals:** 934 '1. Top Hat', '11. William Shakespeare's Romeo and Juliet' 935 936 '6. The Englishman Who Went Up a Hill, But Came Down a Mountain', '19. Star Wars: Episode IV - A New Hope', '18. Star Wars: Episode I - The Phantom Menace', 937 '1.1 Star Trek: First Contact', '13. Star Trek: The Wrath of Khan' 938 939 '2. The Next Karate Kid', '16. From Russia with Love', '17. Goldfinger' 940 **Modern Classics:** 941 '4. Dave', '2. West Side Story', '5. Raiders of the Lost Ark' Based on this analysis, I grouped the movies into genre categories. Now I'll predict the most likely category 942 for your next movie choice: 943 - Given the chronological pattern in your movie consumption, it's likely that upcoming selections will 944 continue from the genres you've recently explored. 945 - You also appear to be a fan of Westerns or horseback-themed films. Movies such as 'Tashunga', which 946 blends Western themes with action, support this trend. - Your interest in 'Shakes the Clown'—a unique Western-style Elvis movie—suggests a preference for genre 947 blends that combine entertainment and classic elements. 948 - Among your top movies, 'Frankenstein Meets the Wolfman' (a part of the Universal Monsters collection) 949 reveals your appreciation for B-movies with gothic or Poe-like undertones. 950 This pattern suggests your next movie choice will likely fall into a Western, Classic, or genre-blended 951 category, with potential interest in entertainment-leaning or horror-inspired classics. 952 </think> <answer> 1. 'Tashunga' 953 2. 'Clean Slate' 954 3. 'West Side Story' 955 4. 'Lassie' 956 5. 'From Russia with Love' 6. 'Home for the Holidays' 957 7. '8MM' 958 8. 'Cemetery Man' 959 9. '16. From Russia with Love' 960 10. 'Shakes the Clown' 961 11. 'Untouchables, The' 12. 'West Side Story' 962 13. 'Beauty and the Beast' 963 14. 'Beauty and the Beast' 964 15. 'The Friggerito' 965 16. 'Lassie' 966 17. 'Clean Slate' 967 18. 'West Side Story'

</answer>

975976977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1005

1007

1008

1009

1010

1011

1012

1013

1015

1016

1017

1018

1020

Table 12: DRanker's case study in rec-music scenario.

Question: ['0. Horny House', '1. Mozart: Piano Sonatas KV 282, 310 & 545', '2. Mozart: Complete Piano Trios', '3. Mozart: Piano Sonatas KV. 281/KV. 330/KV. 333/Rondo, KV. 485/Adagio, KV. 540', '4. Mozart: The Sonatas for Piano and Violin', '5. Beethoven: Piano Sonatas No. 8, Pathétique/ No. 14, Moonlight/ No. 21, Waldstein/ No. 23, Appassionata', '6. Mozart: Violin Concertos Complete', '7. You Took My Heart By Surprise', '8. Revenge', '9. Prokofiev: Romeo & Juliet - Scenes from the Ballet', '10. Ian Bostridge - The English Songbook', '11. Hawaiian Slack Key Christmas', '12. The Sinatra Christmas Album - Chorus and Orchestra Conducted By Gordon Jenkins', '13. Niki Nana', '14. Distant Fields', '15. Whenever You Need Somebody', '16. Free', '17. Somewhere My Love', '18. Shared Vision: Songs of the Beatles', '19. American Live Debut']

Ground Truth: Classical Hits

<think> First, it's important to analyze the relationship between the albums I have purchased in the past and the genres represented in the current list. To do this, I'll group the albums by musical genre and determine how likely it is that my future selections will align with those genres.

Genre Clusters:

Classical:

'Horny House', 'Mozart: Piano Sonatas', 'Mozart: Complete Piano Trios', 'Mozart: Piano Sonatas', 'Mozart: Piano Sonatas', 'Mozart: Violin Concertos Complete', 'Beethoven: Piano Sonatas No. 8, Pathétique / No. 14, Moonlight / No. 21, Waldstein / No. 23, Appassionata' *Pop/Rock*:

'Niki Nana', 'Somewhere My Love', 'American Live Debut', 'Shared Vision: Songs of the Beatles' Alternative / New Music:

'World of Absence', 'Fabriclive 54:'

Jazz:

'Big Band = Jazz'

The most frequently purchased genres are Classical and Pop/Rock, suggesting a strong preference. Therefore, future purchases are likely to align with these categories.

Non-classical albums such as 'Wild World' are more thematic and require additional context to fully assess their appeal. Similarly, 'World of Absence' is described as an ambient album, which, while intriguing, stands apart from the dominant genres.

Albums like 'Timeagain', 'Now', and 'Pop: Remixed' show a focus on distinct thematic or remix elements, which may still capture my interest, albeit less frequently.

In summary, judging from past purchases, Classical and Pop genres are the most likely candidates for future music selections. This aligns well with my historical preferences.

</think>

<answer> Classical Hits

- 2. Timeagain
- 3. Motif
- 4. Diamond Life
- 5. Now
 - 6. Original Good Ol' Boy
 - Niki Nana
 - 7. Shared Vision: Songs of the Beatles
 - 7. Now He Sings Now He Sobs
- 1014 8. Lone Justice
 - A Broken Frame
 - World of Absence
 - 11. Fabriclive 54:
 - 12. Pop: Remixed
 - 13. Upon This Rock
 - 14. Wild World
 - 15. I Don't Want to Be

1 </answer>

1022

1026 1027 1028 1029 1030 1031 1032 1033 1034 Table 13: DRanker's case study in rec-game scenario. 1035 Question: ['0. WWE 2K15 - PS3 [Digital Code]', '1. WWE 2K15 - PS3 [Digital Code]', '2. NBA 2K15 -1036 PlayStation 3', '3. Madden NFL 15: 2,200 Points - Xbox One Digital Code', "4. Injustice: Gods Among Us - Collector's Edition - Playstation 3", "5. Injustice: Gods Among Us - Collector's Edition - Playstation 3", "6. 1037 Injustice: Gods Among Us - Collector's Edition - Playstation 3", '7. LEGO: Marvel - PC', '8. Madden NFL 15: 2,200 Points - Xbox One Digital Code', '9. Lego: Marvel Super Heroes, XBOX 360', '10. WB Games 1039 Middle Earth: Shadow of Mordor - Playstation 4', '11. The Amazing Spider-Man 2 - Nintendo 3DS', '12. 1040 Teenage Mutant Ninja Turtles - Nintendo Wii', '13. Disney Epic Mickey 2: The Power of Two - Playstation 1041 3', '14. Disney Epic Mickey 2: The Power of Two - Playstation 3', "15. Assassin's Creed IV Black Flag -PC", '16. Dead Rising 3', '17. NBA 2K14 - Xbox 360', '18. Grand Theft Auto V: Premium Edition - Xbox One [Digital Code]', '19. NBA 2K14 - Xbox 360'] 1043 Ground Truth: Call of Duty Ghosts - PS3 [Digital Code] 1044 <think> Firstly, I need to understand patterns in my historical purchases. I have bought several games over time, including franchise titles such as WWE, NBA, Madden NFL, and Injustice: Gods Among Us. I also 1046 seem to favor unique items, like WWE digital codes, which appeared in different variants multiple times. 1047 On the PC side, I am drawn to games that offer more freedom, such as LEGO: Marvel and The Amazing Spider-Man 2. This suggests a preference for open-world or exploratory gameplay on that platform. 1048 Next, I'll consider how the sequence of past purchases might influence future decisions. Since I've con-1049 sistently purchased games, it is likely that my next purchase will also be a game. This reflects a strong 1050 continuity in gaming content consumption. 1051 Additionally, I've noticed some imbalance between console and PC purchases. To address this, I may lean 1052 toward buying more individual titles rather than digital codes or bundles to diversify my collection. Finally, considering my history of PC-centric games and smaller discrete items like accessories, these 1053 categories could also shape my upcoming choices. 1054 </think> 1055 <answer> 1. Call of Duty Ghosts - PS3 [Digital Code] 1056 2. Rise of the Tomb Raider - Xbox One Digital Code 3. Xbox One S Vertical Stand 1057 4. Hermitshell Hard Travel Case for 8Bitdo Sn30 Pro Bluetooth Gamepad (SN30PRO-GB) 5. Mind's Eye: Secrets of the Forgotten [Download] 6. MLB 2K16 - Xbox One Digital Code 7. Microsoft Combat Flight Simulator 2: Pacific Theater - PC 1061 8. The Amazing Spider-Man 2 - Nintendo 3DS 1062 9. Family Feud [Download] 10. Amazing Match 3 Games - Volume 3 1063 11. Phineas and Ferb: Across the 2nd Dimension - Playstation 3 1064 12. Evil Dead: A Fistful of Boomstick 13. Turtle Beach - Ear Force PX51 Wireless Gaming Headset - Dolby Digital - PS3, Xbox 360 14. Red Black & Blue Silicone Skin Case Combo for PS3 Controller 1067 Gabriel Knight Mysteries: Limited Edition - PC 16. Family Feud [Download] 1068 17. Untold Legends: Brotherhood of the Blade - Sony PSP 1069 18. Batman: The Animated Series 1070 19. NBA 2K16 - Xbox One Digital Code 1071 20. WB Games Middle Earth: Shadow of Mordor - Playstation 4 </answer>

20

Table 14: DRanker's case study in router-performance scenario.

Question: Explain why the given definition is wrong. A mole is an animal that lives underground.

Ground Truth: Llama-3.1-Turbo (70b)

<think> The task here is to critique a definition and provide insights with reasonable depth. The given definition is "A mole is an animal that lives underground." From the description provided, LLaMA-3 (8b) and Mistral-7b are the two models that mentions less capacity for detailed explanations and comprehensive insights due to their lower token price and model sizes.

Mixtral-8x7B was described as excelling at instruction-based tasks, step-by-step reasoning, solid reading comprehension, and structured summaries. NousResearch (34b) was ideal for complex research queries, multi-step reasoning, deep reading comprehension, and thorough summaries. LLAma-2 (7b) has similar token price and capacity to LLaMA-3 (8b) and is lightweight for straightforward reasoning and comprehension. Qwen-1. 5 (72b) is described as versatile for challenging reasonsing, extended reading comprehension, and comprehensive summaries.

Given the need to find a model that can provide detailed, clear insights and reasoning, Qwen-1. 5 (72b) stands out as the most suitable for the task given its higher token price and better description. Next, NousResearch (34b) would be suitable for producing detailed reasonings with its higher capacity as well. LLaMA-3 (8b) and Mistral-7b are less suitable as they have limitations in capacity also with lower token prices. Lastly, Mixtral-8x7B could also be a suitable model, but LLaMA-3-Turbo (70b) and LLaMA-3-Turbo (8b) are better choices given their upgrades in capacity and token prices. LLaMA-3-Turbo (70b) specifically deals with strong reasoning validation, which fits well with the essence of the query. Therefore, we're left with only one model for comprehensive reasoning and analyses - Qwen-1. 5 (72b).

```
<answer> Qwen-1. 5 (72b)
LLaMA-3-Turbo (70b)
```

NousResearch (34b)

LLaMA-3-Turbo (8b)

</answer>

Table 15: DRanker's case study in router-balance scenario.

Question: How many teams have played in the Super Bowl eight times?

Ground Truth: LLaMA-3-Turbo (8b)

<think> For this query, we're looking for information where the answer is likely to be a specific number (a count of teams) rather than a detailed explanation of a process or interpretation of data. The information required is factual but not too advanced, as there is no need for extensive reasoning or deep reading comprehension here. We need a straightforward and concise response using LLMs.

Given the description, the most suitable LLMs would be those in the categories of *Lightweight* and *Fast*, as they are best at simple Hybrid QA and short reading comprehension tasks, ensuring a brief and efficient answer.

Starting with the LLMs:

- LLaMA-3 (8b) Lightweight chat model for straightforward Hybrid QA with concise summaries which is well-suited for this straightforward query.
- Mistral-7b Fast for moderate Hybrid QA with brief summaries, consistent with the straightforward nature of the query.
- LLaMA-2 (7b) Similar in lightweight category, but more moderate in reasoning and responses versus the more detailed LLaMA-3. It is still suitable for our task.
- Qwen-1.5 (72b) Versatile for challenging Hybrid QA. Although it's described as versatile, this level of versatility isn't essential for a simple query like this and it could be a bit overpowered.
- The other LLMs, like Mixtral-8x7B, NousResearch (34b), LLaMA-3 (70b), LLaMA-3-Turbo (70b), and LLaMA-3.1-Turbo (70b), all indicate more advanced reasoning, which is not necessary for this query.

```
</think>
<answer> LLaMA-3 (8b)
Mistral-7b
LLaMA-2 (7b)
</answer>
```

1134 1135 1136 1137 1138 1139 1140 Table 16: DRanker's case study in router-cost scenario. 1141 **Question**: How many fumbles did Von Miller force in Super Bowl 50? Ground Truth: LLaMA-3-Turbo (8b) 1142 <think> First, we need to determine the suitability of each LLM for the given query. The query is quite 1143 straightforward, asking for a specific statistic (number of fumbles) specifically about Von Miller in a Super 1144 1145 Now, we'll look at the requirements and capabilities mentioned for each of the available LLMs in relation to 1146 simple fact queries: 1147 1. **LLaMA-3 (8b):** Simplified information, extremely short comprehensions, and brief summaries. 1148 2. Mixtral-8x7B: Instruction-based tasks, step-by-step reasoning, solid reading comprehension, and 1149 structured summaries. 1150 3. NousResearch (34b): Comprehensively searches through complex questions, but assumes ad-1151 vanced understanding. 1152 4. LLaMA-2 (7b): Moderately deeper understanding, yet fairly limited reasoning among others. 1153 5. **Mistral-7b:** Moderate Hybrid QA, short reasoning time, and brief summaries. 1154 LLaMA-3 (70b): Advanced Hybrid QA, deep reasoning, detailed comprehension, and extensive 1155 summaries. 1156 7. LLaMA-3-Turbo (8b): Balanced and reasonable reasoning time, moderate summarization. 1157 1158 8. LLaMA-3-Turbo (70b): Powerful, strong reasoning, deep reading comprehension, and highquality summaries. 1159 1160 9. LLaMA-3.1-Turbo (70b): Specific to instructional tasks, thorough reasoning, structured reason-1161 1162 10. **Qwen-1.5** (72b): For challenging tasks, versatile reasoning, extended reading comprehension, and comprehensive summaries. 1163 1164 Given the simple nature of the query, LLaMA-3 (8b) is most suitable as the information retrieval and 1165 fact-checking might be straightforward for it. However, since the query is fact-dependent and balances between a high-quality summary and accuracy across simple fact-checks, LLaMA-3 (8b) might struggle 1166 with accuracy due to its limitations in handling complex reasoning. 1167 Mixtral-8x7B and LLaMA-3.1-Turbo (70b), on the other hand, seem well-suited as they can handle concise and brief information retrieval, though they are likely not strong in advanced reading or fact extraction. 1169 LLaMA-3-Turbo (8b) and LLaMA-3-Turbo (70b) may be marginal choices given their balance of perfor-1170 mance across reasoning, summaries, and fact retrieval. **Mistral-7b** is not the best choice as it is mostly focused on efficiency rather than balance. 1171 **LLaMA-3** (70b) is a powerful model but better suited for more complex tasks and reasoning. 1172 NousResearch (34b) and Qwen-1.5 (72b) could also handle the query but may not provide the level of 1173 detail and accuracy required for this specific fact-checking task. 1174 Hence, the rough order of suitability for this query might be: 1175 • Mistral-7b (efficient) 1176 • LLaMA-3-Turbo (8b) (balanced) 1177 • LLaMA-3-Turbo (70b) (advanced) 1178 </think> 1179 <answer> Mistral-7b 1180 LLaMA-3-Turbo (8b) 1181 LLaMA-3-Turbo (70b) 1182 </answer> 1183

```
1188
1189
1190
1191
                                Table 17: DRanker's case study in passage-5 scenario.
1192
           Question: How much to print at staples?
1193
           Ground Truth: passage 1
1194
           <think> First, I will analyze each passage to determine how well it supports or relates to the query "how
1195
           much to print at Staples".
1196
           Passage 1: This passage discusses the cost variability of printing at Staples but does not provide specific
1197
           pricing details.
           Passage 2: This passage provides specific pricing for black and white copies, which is relevant to the query.
1198
           Passage 3: This passage highlights benefits like clean, crisp copies and low pricing recommendations, but
1199
           does not directly address pricing at Staples.
           Passage 4: This passage includes specific pricing for both black and white and color copies at Staples,
1201
           making it highly relevant.
           Now, I will rank the passages according to their relevance:
1202
          - Passage 4 provides the most detailed pricing information.
1203
          - Passage 2 gives specific pricing for black and white copies.
          - Passage 1 discusses cost variability without giving exact prices.
          - Passage 3 is the least relevant, as it does not provide any specific pricing details.
1206
           </think>
1207
           <answer> passage 4
           passage 2
1208
           passage 1
1209
           passage 3
1210
           </answer>
1211
1212
1213
1214
1215
1216
1217
1218
                                Table 18: DRanker's case study in passage-7 scenario.
1219
           Question: How long leave cooked chicken at room temperature?
1220
           Ground Truth: passage 6
           <think> First, I will analyze each passage to determine their relevance to the query about cooked chicken
1222
           and room temperature. The query asks how long cooked chicken can be kept at room temperature and what
           action should be taken.
1223
           All passages discuss food safety related to perishable items like chicken. While several mention the danger
1224
           of room temperature exposure, I will prioritize those that clearly state a specific time limit and recommended
1225
1226
           Passages 0 through 3 reiterate general safety concerns but lack a specific timeframe.
           Passage 4 mentions the two-hour limit (also noted in Passage 3) but does not clearly recommend refrigeration
1227
1228
           Passage 5 is the most directly relevant, clearly stating that cooked chicken should not remain at room
1229
           temperature for more than two hours.
1230
           Passage 6 also provides full guidance, including the two-hour limit and the recommendation to freeze the
1231
           chicken, making it highly informative.
           </think>
1232
           <answer> passage 5
1233
           passage 6
           passage 4
           passage 3
```

1236

1237

1238

1239 1240 1241 passage 0

passage 1 passage 2

</answer>

Table 19: DRanker's case study in passage-9 scenario. Question: How much weight can a floor joist support? **Ground Truth**: passage 5 <think> Firstly, we need to establish which information from the given passages is directly relevant to the weight capacity of a floor joist. Passage 5 is highly relevant, as it calculates the weight a 3-foot by 12-foot section of flooring can support based on standard floor loads. Passage 2 references weight in pounds but focuses on joist dimensions, which is less directly relevant than explicit weight calculations. Passage 7 provides the most direct answer by specifying the weight a single floor joist can support in load-bearing situations. Passage 3 supports the calculations presented in Passage 5, confirming its accuracy. Passage 6 essentially duplicates the relevant content from Passage 5 using nearly identical language. Passage 8 discusses general safety factors, which are important contextually but do not directly answer the Passage 1 contains technical material that does not pertain specifically to joist weight calculations. Passage 4 mentions joists in the broader context of floor framing requirements, making it less relevant to our focused question. </think> <answer> passage 7 passage 5 passage 6 passage 2 passage 1 passage 3 passage 8 passage 7 </answer>

1296 1297 1298 1299 1300 1301 1302 1303 Table 20: IRanker's case study in rec-movie scenario. 1304 **Question**: ['0. Cop Land', '1. Great White Hype, The', '2. Toys', '3. Mummy, The', '4. Frighteners, The', '5. Blair Witch Project, The', '6. Pleasantville', '7. Midsummer Night's Dream, A', '8. Haunting, The', '9. 1305 1306 Home Alone 2: Lost in New York', '10. Addams Family Values', '11. Fatal Attraction', '12. Brady Bunch 1307 Movie, The', '13. White Men Can't Jump', '14. I Still Know What You Did Last Summer', '15. Mighty Ducks, The', '16. Jingle All the Way', '17. Jack', '18. Dunston Checks In', '19. Santa Clause, The'] 1309 Ground Truth: Stuart Saves His Family <think> First, let's consider the genre and style of the movies I've watched. My previous 17 movies cover 1310 a range of genres and styles: 1311 - Action: Cop Land, Toys, Frighteners, White Men Can't Jump, Dick Tracy, Edge, Shallow Grave - Comedy: Toys, Frighteners, Pleasantville, I Still Know What You Did Last Summer, Jingle All the Way, S Curve, Dunston Checks In 1314 - Drama: The Mummy, Midsummer Night's Dream, Sense and Sensibility, From the Journals of Jean Seberg, 1315 Stuart Saves His Family, Bonfire of the Vanities - Horror: The Blair Witch Project, Frighteners, Halloween, Addams Family & Addams Families, Addams 1316 1317 - Fantasy: Alice in Wonderland, Santo vs. Frankenstein, Santo vs. Werewolf 1318 - Family: Home Alone, The Mummy, The Christmas Rush, Under the Cherry Tree, The Santa Clause, The 1319 Vampire Bros. - Romance: Pleasantville, Fatal Attraction, Shallow Grave, Six Ways to Sunday 1320 - Psychological Thriller: Fatal Attraction, Frighteners, The Mummy 1321 - Crime: Budgerigar, Doll Face, Star, Searchers 1322 - Sports: The Mighty Ducks 1323 Now, let's examine my candidate list for each genre and style: 1324 1. Action: No movies. 2. Comedy: No movies. 1325 3. Drama: No movies. 1326 4. Horror: Sense and Sensibility is the only drama. 1327 5. Fantasy: Desiree is the only fantasy. 6. Family: *Unzipped*, *Welcome to Woop-Woop*, *Fred Claus* are the only family movies. 7. Romance: *Desperate* is the only romance. 8. Psychological Thriller: There are no movies that fit 'psychological thriller' perfectly, but *Jane Eyre* is a psychological drama. 1331 9. Crime: Unzipped. 1332 10. Sports: Without adding new sports movies. 1333 Looking at this, *Unzipped* (Drama/Horror) is the most common genre among my previous movies. In 1334 contrast, among the list we're given, only Dick Tracy and Stuart Saves His Family fit the Drama and Action genres, respectively. From the Journals of Jean Seberg and Sense and Sensibility fall more in the drama 1335 range, but not in my usual combined movie tastes. 1336 Considering the genres, Dick Tracy stands out as it's a good comic book buddy cop movie, but it doesn't 1337 feature the action elements in my watching history. However, since it's a new addition and not part of my 1338 past genre preferences, it's still slightly out of place. Between the two, Stuart Saves His Family might be 1339 slightly more out of place as it's a bit dated in terms of its style and is closer to my usual genre than Dick 1340 Tracy. So, Stuart Saves His Family is the one that does not seem to align with my usual pattern in my watching 1341 history. </think> 1342 <answer> Stuart Saves His Family </answer> 1344

Table 21: IRanker's case study in rec-music scenario.

Question: ['0. Wildewoman', '1. True North', '2. Platinum & Gold Collection', '3. The Very Best of Ben E. King', '4. All My Life', '5. Opera Goes to the Movies', '6. Charo and Guitar', '7. Greatest Hits', '8. Carole King Tapestry', '9. Cheers to the Fall', "10. Ravel: Ma Mere L'oye / Bolero / la Valse / Pavane", '11. Rimski Korsakov, Borodin: Sheherazade Op.35', '12. Without You: The Best of Harry Nilsson', '13. Blue Film', '14. The Very Best Of Aaron Neville', '15. American Bach: Cello Suite No. 1 in G Major, BWV 1007; Cello Suite No. 3 in C Major, BWV 1009 / Miles: Suite for the Americas', '16. Martha Argerich: The Collection 1 - The Solo Recordings', '17. Eagles: The Very Best Of', "18. Didn't He Ramble", '19. Greatest Hits']

Ground Truth: Pli selon pli

<think> First, let's consider the patterns in your purchase history. We see that you have mostly purchased music albums by various artists like Ben E. King, Carole King, Aaron Neville, and the Eagles. Additionally, you own a few classical music albums by composers like Ravel and Rimsky-Korsakov.

Now, looking at the list of candidate items you might purchase next:

- **0. Pli selon pli** This is a track from an electronic duo, so we don't have a past history of purchasing this type of music.
- 1. In Through the Out Door 2015 This is also an artist-based product, but the name of the album is quite specific and not aligned with your past purchase history.
- 2. Love Deluxe It's another artist-based product, likely by Coldplay, and similar to your past albums.
- **3. Exposed Valerie Simpson** This is an artist-based product that matches the pattern of your past purchases with traditional artists.
- **4. State of Emergency** This is another artist-based product, possibly by a punk rock band, though it somewhat resembles the classical/classical fusion albums you've bought.

We need to determine which item feels the least likely based on patterns in your past purchases. Observing your history, we see a strong trend toward:

- 1. Popular artists' albums
- 2. Various classical music albums
- 3. Professional or well-known albums

Pli selon pli stands out the most as it's an electronic piece, distinctly different from what you've traditionally bought. While **Exposed Valerie Simpson** follows the same pattern as *The Very Best of Ben E. King*, the electronic nature of **Pli selon pli** makes it the least consistent with your preferences.

Conclusion: Since **Pli selon pli** is completely different (electronic music) from everything else in your purchase history, it appears to be the *least likely* selection, despite being a music album.

<answer> Pli selon pli </answer>

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 Table 22: IRanker's case study in rec-game scenario. 1416 Question: ['0. HDE ® Dual Charging Station Dock for 2 Sony Playstation PS3 Controllers', '1. Far Cry 4 -1417 PS3 [Digital Code]', '2. Turtle Beach Call of Duty Advanced Warfare Ear Force Sentinel Task Force Gaming Headset for PlayStation 4', '3. Nyko Modular Charge Station (New Version) Dual Port Controller Charging 1418 Station with Patented Charging Dongles for All PS4, PS4 Slim and PS4 Pro', '4. Wipeout 2 - Xbox 360', '5. 1419 Kinect Star Wars - Xbox 360', '6. Far Cry Primal - PlayStation 4 Standard Edition', "7. Uncharted 4: A 1420 Thief's End - PlayStation 4", '8. Battlezone - PlayStation VR', '9. Eve: Valkyrie - PlayStation VR', '10. 1421 Robinson: The Journey - PlayStation VR', '11. Dead Rising 4 - Xbox One', '12. LEGO Jurassic World -Xbox One Standard Edition', '13. Halo 5: Guardians 9 Gold REQ Packs – Xbox One [Digital Code]', '14. Sniper Elite 4 - PlayStation 4', '15. Resident Evil 7: Biohazard - PlayStation 4', '16. Corsair VOID Wireless 1422 RGB Gaming Headset, White', '17. DOOM VFR - PlayStation 4', '18. Star Wars Battlefront II - Xbox One', 1424 '19. Far Cry 5 Gold Edition - Xbox One [Digital Code]'] 1425 Ground Truth: Dark Tales Edgar Allan Poe THE MASQUE OF RED DEATH Hidden Object PC Game + 1426 <think> First, I'll compare the purchased items to the candidate list. The purchased items are all console 1427 games, wireless headsets, and a flying motorcycle simulator. None of the candidate items include a flying motorcycle simulator, so that's out. 1428 Next, I'll check the types of console games: 1429 1. PS3 - I own dozens of PS3 games 1430 2. PS4/PS4 Slim/PS4 Pro - I bought several PS4 games 1431 3. Xbox 360/DX - I own Xbox 360 games 1432 4. PS VR - I own PSVR games 5. Other - I don't have games for these platforms, and want to keep watching/playing the Xbox 360 games 1433 until they're no longer on sale / Xbox 360 is apt to vanish The PSVR and Xbox 360 game categories are more diverse, with more than one of these categories in my 1435 initial purchase history. Except for the PSVR, it seems that I was more interested in PS4 and Xbox consoles. Now, among the candidate list: 1437 1. PC Hidden Object game - This is a genre I haven't tried before. It's far more different from console games I've purchased. 2. Nintendo Switch Game - A different hardware platform. I prefer game diversity over another system. 1439 Both candidate games are different enough types that I haven't had the chance to play them yet. Considering diversity and my interest, PC Hidden Object appears to be the less likely purchase since it's 1441 kind of a different category from the other games. I would rather pick a new game to add to my PlayStation 1442 or Xbox, rather than start on a new gaming experience. Nintendo Switch would likely be fun, but I've seen that people who owned it tend to go back to their preferred gaming platform. Therefore, I would avoid the 1443 Nintendo Switch game. 1444 Thus, Dark Tales: Edgar Allan Poe – The Masque of Red Death Hidden Object PC Game + Bonus appears 1445 unlikely to be my next purchase. </think: 1446 <answer> Dark Tales Edgar Allan Poe THE MASQUE OF RED DEATH Hidden Object PC Game + 1447 </answer> 1448 1449

	Table 23: IRanker's case study in router-balance scenario.
	stion: Explain why the following fraction is equivalent to 1/4 and 4/16
	und Truth: NousResearch (34b)
	ink> 1. The task is to analyze a set of sales data to uncover trends and insights. This likely involves plex mathematical operations and in-depth logical reasoning. The description of LLaMA-3 (8b) and
	MA-2 (7b) mentions they are good at brief, impartial summaries, and reasoning but not highly advanced
	hods. The descriptions of Qwen-1.5 and Mixtral-8x7B suggest they are specialized for nuanced reasoning
	multi-step tasks. NousResearch (34B) specializes in deep reading comprehension.
	he query provided is "Explain why the following fraction is equivalent to 1/44/16". This implies that the
	I needs to demonstrate the equivalence using mathematical methods. It is a straightforward arithmetic
	lem that shouldn't be overly complex.
	We need to consider token price in our decision. The LLMs with the highest token price are Qwen-1.5 and LLaMA-3-Turbo (70b), and the LLMs with the lowest token price are LLaMA-2 (7b) and Mixtral-
8x7I	
	booking at LLaMA-2 (7b) and Mixtral-8x7B:
	hey are described as being more suited to step-by-step reasoning and detailed reading comprehension,
	th might be useful.
	The price for Mixtral-8x7B is high, but LLaMA-2 (7b) is quite affordable, so this offers a balance.
	ooking at Qwen-1.5 (72b):
	Despite its name, it's described as versatile for challenging Hybrid QA, which seems too specialized for a ghtforward fraction equivalence problem.
	ts token price is also very high, making it less cost-effective.
	onsidering NousResearch (34b):
	While it's described as ideal for complex research queries and deep reading comprehension, this problem
	ot complex research, it's a simple fraction simplification.
	ts token price is expensive, and it doesn't seem ideal for solving this straightforward problem.
	ed on this reasoning, the least likely LLM for answering this straightforward mathematical query
	lving fraction equivalence, considering both performance and cost, seems to be NousResearch (34b). hink>
	swer> NousResearch (34b)
Vali	Swell Housicescaren (540) \/ answell

1512 1513 1514 1515 1516 Table 24: IRanker's case study in router-cost scenario. 1517 **Ouerv**: # The LLM names and their descriptions are: # LLaMA-3 (8b): Each token price is 0.2. Handles simple Hybrid QA, basic reasoning, short reading 1518 comprehension, and concise summaries. 1519 # Mixtral-8x7B: Each token price is 0.6. Excels at instruction-based tasks, step-by-step reasoning, solid 1520 reading comprehension, and structured summaries. 1521 # NousResearch (34b): Each token price is 0.9. Ideal for complex research queries, multi-step reasoning, 1522 deep reading comprehension, and thorough summaries. 1523 # LLaMA-2 (7b): Each token price is 0.2. Lightweight chat model for straightforward Hybrid QA, moderate reasoning, short reading comprehension, and concise summaries. # Mistral-7b: Each token price is 0.2. Fast for moderate Hybrid QA, quick reasoning, short reading 1525 comprehension, and brief summaries. 1526 # LLaMA-3 (70b): Each token price is 0.9. High-capacity model for advanced Hybrid QA, deep reasoning, detailed reading comprehension, and extensive summaries. # LLaMA-3-Turbo (8b): Each token price is 0.2. Balanced performance for moderate Hybrid QA, reasonable reasoning, clear reading comprehension, and concise summaries. 1529 # LLaMA-3-Turbo (70b): Each token price is 0.9. Powerful model for advanced Hybrid QA, strong reasoning, in-depth reading comprehension, and high-quality summaries. 1531 # Llama-3.1-Turbo (70b): Each token price is 0.9. Instruction-focused, providing thorough reasoning, 1532 structured reading comprehension, and well-organized summaries. # Qwen-1.5 (72b): Each token price is 0.9. Versatile for challenging Hybrid QA, nuanced reasoning, 1533 extended reading comprehension, and comprehensive summaries. 1534 ## This scenario is analyzing a set of sales data to uncover trends and insights. Please give a quick, high-level 1535 summary of the trends with minimal computation, even if the insights are less detailed. 1536 Here is a query: What city did Super Bowl 50 take place in? 1537 LLM candidates: ['LLaMA-3-Turbo (70b)', 'LLaMA-3-Turbo (8b)', 'Mistral-7b', 'LLaMA-3 (8b)', 'Llama-3.1-Turbo (70b)', 'Qwen-1.5 (72b)', 'NousResearch (34b)', 'Mixtral-8x7B', 'LLaMA-3 (70b)']. 1538 Please think step by step according to the description of each query and LLM, and evaluate from the 1539 perspectives of performance in answering the query and token price, and select the least likely LLM from 1540 the LLM candidates 1541 **Ground Truth**: LLaMA-3 (8b) 1542 <think> First, I'll evaluate each LLM based on the description of the query: "What city did Super Bowl 1543 50 take place in?" Super Bowl 50 was held in 2016. LLaMA-3.1-Turbo (70b), LLaMA-3-Turbo (70b), and Mixtral-8x7B have instructions focused on reasoning and detailed/structured reading comprehension. These models are likely to have strong knowledge of 1546 historical events and locations. 1547 LLaMA-3 (8b) and LLaMA-3-Turbo (8b) have pricing as low as \$0.2, making them more affordable and 1548 potentially suitable for cost-sensitive tasks. NousResearch (34b) is ideal for complex research queries, suggesting it might handle detailed factual 1549 information well. 1550 Mistral-7b, LLaMA-3 (8b), and LLaMA-3 (70b) offer lower token prices but are described as having simple 1551 or basic reasoning capabilities, which might limit performance on historical recall questions. 1552 Qwen-1.5 (72b) is noted for producing nuanced and comprehensive summaries, but its high token price 1553 (\$0.9) makes it less cost-effective for straightforward factual queries. LLaMA-3.1-Turbo (70b) also has a higher token price (\$0.9) but is instruction-focused, which may enhance 1554 its understanding of direct factual prompts. 1555 Considering these factors: 1556 - The LLM with the highest likelihood of answering the query well given its token price is LLaMA-3-Turbo 1557 - The LLM with the lowest token price while still being likely to answer correctly is LLaMA-3-Turbo (70B). - LLaMA-3 is slightly cheaper, but its basic reasoning may reduce its confidence or accuracy. Finally, the model least likely to provide a confident and correct answer is Qwen-1.5 (72B), due to its high 1560 token price and its strengths being more aligned with nuanced reasoning tasks than simple location recall. 1561 </think> <answer> Qwen-1.5 (72b) </answer> 1563

Table 25: **IRanker's case study in passage-5 scenario. Question**: potawatomi meaning of word

Ground Truth: passage 3

1566 1567

1570

1571

1572

1573

1574

1575

1576

1579

1580

1581

1585

1586

1587

1590 1591 1592

1594

1596

1597

1598

1604

1608

1609

1610

1611

1612

1613

1614

1615

1616

<think> First, I will carefully examine each passage to understand what information it provides about the word "potawatomi" and its meaning.

Passage 2 talks generally about the Potawatomi people and their languages, but does not specifically address the meaning of the word "potawatomi".

Passage 0 seems more of a general statement about Potawatomi-related information, mentioning synonyms and offering resources but not providing a clear meaning for the word.

Passage 1 provides phonetic information and Word Lists for Potawatomi, but doesn't give a clear definition or explanation for the word "potawatomi" itself.

Passage 3 directly provides information about the word "potawatomi", including its meaning, but it also mentions the spelling "Potawatmie", which seems to be a typographical error.

Passage 4 mostly defines "potawatomi" as a noun, but it is considered rare and mentions it only has two senses.

Based on this analysis, Passage 3 appears to have the clearest, most direct information about the word "potawatomi" and its meaning, except for the typographical error in the spelling.

Passage 3 seems to be the most reliable and thorough in providing information about the word, making it less likely to be the unrelated passage.

Distinguishing between the typographical error and a related passage requires some judgement, but based on the relevance and detail of information provided in the passage, it seems Passage 3 is the most logical choice. Therefore, Passage 3 does not seem to be the intended question answer based on the information provided, so it should be the less likely candidate passage.

<answer> passage 3 </answer>

Table 26: IRanker's case study in router-performance scenario.

Question: Where was Super Bowl 50 held?

Ground Truth: Mistral-7b

<think> First, I'll analyze each LLM based on its ability to answer the query "Where was Super Bowl 50 held?" according to their descriptions:

- 1. Mistral-7b: It mentions quick reasoning, short reading comprehension, and brief summaries. It's not very suitable for handling detailed information or long texts.
- 2. LLaMA-2 (7b): It mentions moderate reasoning and short reading comprehension. Given the brief nature of the Modesto High School incident in 2016 (which was the requested Super Bowl hosting event), it might struggle.
- 3. NousResearch (34b): This one specifically mentions complex research queries, multi-step reasoning, deep reading comprehension, and thorough summaries. For the Super Bowl event, these capabilities are not essential and the token price is relatively high compared to other LLMs.

Now, I'll compare the performance:

- NousResearch (34b) has high quality outputs but is expensive, not likely within budget.
- LLaMA-2 (7b) can handle the question, though with moderate reasoning.
- Mistral-7b is quick, short, and the least detailed, which might be suitable though it does not handle longer, more nuanced events like the Super Bowl.

From an expense perspective, LLaMA-2 (7b) is the most expensive considering it can handle the question. Neither NousResearch (34b) nor Mistral-7b is likely to produce comprehensive and thorough results, so between LLaMA-2 (7b) and Mistral-7b, the least likely candidate is Mistral-7b since it's less capable for longer texts and varies quite a bit from the query.

In conclusion, based on both performance and token price, I'd ultimately choose LLaMA-2 (7b) as the least likely from the given set. </think>

<answer> Mistral-7b </answer>

end, and some information on factors affecting battery life.

<answer> passage 3 </answer>

1656

1657

1658

1659

1662 1663 1664

1665

1668

1669

1671

1672 1673 Passage 4 is far less relevant, as it only addresses the difficulty in checking batteries.

Passages 0 and 7 provide a slightly longer or less specific range on average battery life.

1620 1621 1622 Table 27: IRanker's case study in passage-7 scenario. 1623 **Question:** What type of profession does Chris Jericho and Gary Barlow have in common? 1624 **Ground Truth**: passage 6 1625 <think> First, let's analyze each passage in terms of how well it relates to the query "when does winter end in australia". 1626 - Passage 1: It states the dates for each season but does not clearly mention when winter ends. 1627 - Passage 2: It provides a relationship between US and Australian seasons but does not specify when winter 1628 ends in Australia. 1629 - Passage 3: It describes when it becomes winter in Southern Hemisphere (Midwinter) but does not mention when it ends. - Passage 4: It lists the dates for seasons in Australia, including winter, but does not specify when winter - Passage 5: It talks about different times in the year for various activities but does not mention when winter 1633 1634 Passage 6, although it mentions daylight saving time ending, is not directly about when winter ends, so it can 1635 be a candidate. </think> <answer> passage 6 </answer> 1637 1639 1640 1641 Table 28: IRanker's case study in passage-9 scenario. 1642 **Question**: how long do car battery usually last **Ground Truth**: passage 4 1643 <think> First, I'll compare the most relevant information in each passage that relates to the question "how 1644 long do car batteries usually last." Then, I'll assess the consistency and comprehensiveness of the information 1645 provided in each passage. 1646 Passage 1: Discussed general factors affecting battery life but didn't provide an average lifespan. 1647 Passage 2: Suggested four years on average but was somewhat vague about factors affecting life. 1648 Passage 3: Explicitly stated an average of three to five years with driving habits affecting brevity. Passage 4: Difficult to check, didn't mention battery lifespan directly. 1649 Passage 0: Between three to four years with average care – aligns with Passage 3. 1650 Passage 7: Generalized to about 60 to 70 months (five to seven years) – closer to Passage 3. 1651 Passage 8: Averaged three to five years – similar to Passage 3. Passage 6: Averaged three to five years as well – same as Passage 8. It seems that Passages 3, 8, 6, and 7 provide the most concise answer to the query. Comparing Passage 3 with the others, it provides the range of three to five years, a clear driving-habit explanation on the shorter

Table 29: Thought template for IRanker on recommendation task

Passage 2's answer is similar to Passage 3's in terms of range (four years) but lacks driving-habit detail.

Therefore, Passage 4 is the least relevant and supports the question the least effectively.

For recommendation tasks, the reasoning process should center on aligning candidate items with the user's demonstrated preferences across categories such as genre, style, or theme. Effective evaluation involves identifying dominant patterns in the user's historical choices and comparing them to the attributes of each candidate item. Items are ranked higher if they closely match frequently occurring features in the user's history, while items that diverge significantly in tone, genre, or thematic elements are deprioritized. This approach encourages models to reason over latent user preferences and make decisions based on cumulative alignment rather than isolated matches.

Table 30: Thought template for IRanker on routing task.

When evaluating and ranking language models for a factual query, the reasoning process should consider (1) the complexity and specificity of the query, (2) the model's described strengths such as factual recall, structured comprehension, or reasoning ability, and (3) the cost-effectiveness relative to the expected performance. Models should be prioritized if they demonstrate strong alignment with the task type (e.g., historical fact retrieval) and offer a good balance between accuracy and efficiency. In contrast, models optimized for complex reasoning or verbose summaries may be less suitable for straightforward factual prompts, especially if they incur high token costs.

Table 31: Thought template for IRanker on passage task.

When solving a query/passage selection task, the general thought process should prioritize: Direct Relevance: Immediately eliminate passages that only touch upon general concepts or related but not directly responsive information. Specificity: Focus on passages that offer concrete details directly addressing the query's core requirement. Comparative Precision: Among relevant passages, identify the one providing the most precise and granular information, especially when dealing with specific aspects like geographical positions, timings, or characteristics. Less specific but still relevant passages can be noted but are usually not the "most relevant."

Table 32: Recommendation performance on Movie, Music, and Game scenarios.

		Movie			Music		Game			
34. 1.1			MDD			MDD	DCC @ 10		MDD	
Model	nDCG@10	nDCG@20	MKK	nDCG@10	nDCG@20	MKK	nDCG@10	nDCG@20	MKK	
Retrieval-based Models										
BM25	23.44	35.09	17.56	22.06	35.21	18.09	17.39	32.49	14.96	
Contriever	22.26	25.29	18.29	21.03	34.26	17.04	39.87	53.66	23.98	
Recommendation Models										
BPR	31.28	41.65	25.54	28.51	38.60	21.96	35.79	44.32	28.92	
SASRec	39.79	48.06	33.60	29.72	39.85	23.69	35.57	43.52	28.75	
R1-Rec	25.01	34.87	18.49	21.38	34.54	17.22	17.22	32.32	14.75	
Direct-Rank LLMs without RL										
Qwen2.5-3B-Instruct-direct	21.23	34.26	16.92	17.90	33.46	16.68	16.62	30.98	13.17	
Qwen2.5-7B-Instruct-direct	22.21	34.23	16.59	17.90	34.29	17.29	21.57	36.15	18.63	
Llama3.1-70B-Instruct-direct	28.27	40.75	22.19	24.40	32.61	19.13	27.83	41.18	24.51	
Deepseek-R1-1024-direct	26.50	38.80	20.30	22.50	30.70	17.20	25.90	39.20	22.60	
Deepseek-R1-2048-direct	31.10	44.85	24.40	26.85	35.90	21.05	30.60	45.30	27.00	
Iterative LLMs without RL										
Qwen2.5-3B-Instruct-iter	26.44	38.55	22.01	27.06	38.45	21.97	32.80	44.23	29.49	
Qwen2.5-7B-Instruct-iter	28.14	38.59	22.11	30.59	39.86	23.36	37.31	47.30	33.14	
Llama3.1-70B-Instruct-iter	54.76	58.92	46.96	57.03	59.98	48.24	64.79	67.50	57.89	
Deepseek-R1-1024-iter	52.57	56.56	45.08	54.75	57.58	46.31	62.20	64.80	55.57	
Deepseek-R1-2048-iter	58.05	62.46	49.78	60.45	63.58	51.13	68.68	71.55	61.36	
Direct-Rank LLMs with RL										
DRanker	23.98	37.02	18.71	20.50	33.18	15.70	17.57	32.89	15.77	
Iterative LLMs with RL										
IRanker-3B	42.32	49.06	34.69	33.47	40.25	29.18	47.84	49.33	42.49	

Table 33: Router performance on Performance, Balance, and Cost scenarios.

	Performance				Cost		Balance		
Model	nDCG@5	nDCG@10	MRR	nDCG@5	nDCG@10	MRR	nDCG@5	nDCG@10	MRR
Retrieval-based Models									
BM25	9.06	35.99	18.41	4.79	32.35	13.52	4.79	32.22	13.39
Contriever	11.28	36.28	20.75	14.62	35.81	16.29	13.88	33.57	16.74
Routers									
RouterKNN	24.38	40.72	26.73	15.12	35.29	16.87	20.68	39.10	21.74
RouterBert	27.25	44.37	28.25	20.44	39.50	22.11	20.44	39.37	21.98
GraphRouter	22.22	39.53	21.57	34.85	44.11	26.56	27.18	45.16	29.56
Direct-Rank LLMs without RL									
Qwen2.5-3B-Instruct-direct	0.00	28.91	10.00	0.00	28.91	10.00	0.00	28.91	10.00
Qwen2.5-7B-Instruct-direct	4.78	32.21	13.38	4.78	32.34	13.51	9.06	35.99	18.41
Llama3.1-70B-Instruct-direct	7.56	32.57	13.84	9.71	32.96	14.26	25.34	45.54	30.26
Deepseek-R1-1024-direct	7.15	31.80	13.35	9.25	32.20	13.70	24.60	44.70	29.50
Deepseek-R1-2048-direct	8.70	37.45	15.90	11.15	37.90	16.40	29.15	52.35	34.80
Iterative LLM Models without RL									
Qwen2.5-3B-Instruct-iter	17.41	38.55	20.87	13.35	37.82	20.22	0.0	31.41	12.42
Qwen2.5-7B-Instruct-iter	12.49	36.92	19.13	18.28	38.57	21.06	22.17	42.39	26.09
Llama3.1-70B-Instruct-iter	17.65	38.18	20.67	44.78	56.74	43.93	35.68	50.27	35.30
Deepseek-R1-1024-iter	4.31	32.39	13.42	3.87	31.73	12.81	20.36	39.32	21.57
Deepseek-R1-2048-iter	19.31	37.33	19.15	47.48	56.54	43.69	23.61	38.31	20.22
Direct-Rank LLMs with RL									
DRanker	17.90	38.10	20.63	4.78	32.34	9.06	4.78	32.21	13.38
Iterative LLM Models with RL									
IRanker	28.64	41.06	23.62	22.32	45.88	30.39	20.27	41.45	24.44

Table 34: Passage ranking performance on scenarios of 5, 7, and 9 candidates.

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

	5 I	Passages		7 1	Passages		9 Passages		
Model	nDCG@3	nDCG@5	MRR	nDCG@3	nDCG@5	MRR	nDCG@3	nDCG@5	MRR
Retrieval-based Models									
BM25	53.19	65.05	53.63	41.80	52.09	44.95	34.51	43.81	39.69
Contriever	37.09	56.11	41.91	28.91	40.13	36.41	25.79	34.39	33.10
Passage Ranking Models									
RankBERT	65.26	72.54	63.37	60.19	67.18	60.06	56.33	64.35	56.51
MonoT5	62.97	70.82	60.96	60.27	66.25	58.84	49.76	54.96	47.61
RankLLama	76.24	79.57	72.67	66.86	72.34	65.35	61.42	66.92	59.78
Direct-Rank LLMs without RL									
Qwen2.5-3B-Instruct-direct	33.82	52.76	38.08	10.63	12.69	22.47	5.77	7.76	15.94
Qwen2.5-7B-Instruct-direct	36.54	57.82	44.57	12.55	16.24	23.69	8.56	9.83	17.79
llama-3.1-70b-instruct-direct	48.83	62.91	50.90	35.22	40.57	40.75	30.03	34.66	36.37
Deepseek-R1-1024-direct	50.30	64.80	52.40	36.50	42.00	42.20	31.20	35.90	37.70
Deepseek-R1-2048-direct	58.60	75.50	61.10	42.25	48.70	48.90	36.05	41.60	43.65
Iterative LLM Models without RL	,								
Qwen2.5-3B-Instruct-iter	56.54	68.14	57.74	38.13	48.11	43.47	32.78	40.23	39.40
Qwen2.5-7B-Instruct-iter	62.67	71.45	62.01	49.99	58.48	50.94	44.63	52.24	48.74
llama-3.1-70b-instruct-iter	65.55	72.89	63.90	56.73	64.04	56.74	54.80	60.76	55.22
Deepseek-R1-1024-iter	69.64	76.53	68.83	40.08	55.43	45.73	39.64	50.54	45.32
Deepseek-R1-2048-iter	69.39	73.52	64.56	52.70	62.31	53.03	53.41	62.88	56.84
Direct-Rank LLMs with RL									
DRanker	35.88	57.37	43.85	11.73	13.28	22.86	5.96	8.14	16.11
Iterative LLM Models with RL									
IRanker	64.47	70.62	60.98	53.52	59.89	53.22	49.83	54.54	49.96

Table 35: Zero-shot results on the recommendation in Movie, Music, and Game scenarios.

		Movie			Music			Game		
Model	nDCG@10	nDCG@20	MRR	nDCG@10	nDCG@20	MRR	nDCG@10	nDCG@20	MRR	
Qwen2.5-3B-Instruct-iter	26.44	38.55	22.01	27.06	38.45	21.97	32.80	44.23	29.49	
DeepSeek-R1-Distill-Qwen-7B-direct	13.28	30.03	11.20	12.70	29.86	11.86	15.30	31.58	14.74	
Qwen2.5-7B-Instruct-direct	22.21	34.23	16.59	17.90	34.29	17.29	21.57	36.15	18.63	
IRanker	42.32	49.06	34.69	33.47	40.25	29.18	47.84	49.33	42.49	
IRanker (zero-shot)	32.45	41.85	25.95	28.97	39.51	23.21	34.48	46.43	31.16	

Table 36: Zero-shot results on the router in the Performance, Balance, and Cost scenarios.

	Per	rformance			Cost		I	Balance		
Model	nDCG@5	nDCG@10	MRR	nDCG@5	nDCG@10	MRR	nDCG@5	nDCG@10	MRR	
Qwen2.5-3B-Instruct-iter	17.41	38.55	20.87	13.35	37.82	20.22	0.0	31.41	12.42	
DeepSeek-R1-Distill-Qwen-7B-direct	11.11	36.81	20.00	20.17	42.65	27.22	26.55	44.22	28.52	
Qwen2.5-7B-Instruct-direct	4.78	32.21	13.38	4.78	32.34	13.51	9.06	35.99	18.41	
DRanker	17.90	38.10	20.63	4.78	32.34	9.06	4.78	32.21	13.38	
IRanker	28.64	41.06	23.62	22.32	45.88	30.39	20.27	41.45	24.44	
IRanker (zero-shot)	19.58	39.72	20.41	16.62	40.61	23.10	18.28	39.34	21.89	

Table 37: Zero-shot results on the passage ranking in scenarios of 5, 7, and 9 passage candidates.

	5 I	Passages		7 E	assages		9 Passages		
Model	nDCG@3	nDCG@5	MRR	nDCG@3	nDCG@5	MRR	nDCG@3	nDCG@5	MRR
Qwen2.5-3B-Instruct-iter	56.54	68.14	57.74	38.13	48.11	43.47	32.78	40.23	39.40
DeepSeek-R1-Distill-Qwen-7B-direct	33.72	56.44	42.69	18.97	22.27	28.23	10.73	12.38	19.39
Qwen2.5-7B-Instruct-direct	36.54	57.82	44.57	12.55	16.24	23.69	8.56	9.83	17.79
DRanker	35.88	57.37	43.85	11.73	13.28	22.86	5.96	8.14	16.11
IRanker	64.47	70.62	60.98	53.52	59.89	53.22	49.83	54.54	49.96
IRanker (zero-shot)	63.18	67.19	56.42	45.27	52.92	51.19	38.12	46.15	42.45