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ABSTRACT

Recent success in fine-tuning large models, that are pretrained on broad data at
scale, on downstream tasks has led to a significant paradigm shift in deep learn-
ing, from task-centric model design to task-agnostic representation learning and
task-specific fine-tuning. As the representations of pretrained models are used as a
foundation for different downstream tasks, this paper proposes a new task-agnostic
framework, SynBench, to measure the quality of pretrained representations using
synthetic data. To address the challenge of task-agnostic data-free evaluation, we
design synthetic binary classification proxy tasks with class conditional Gaussian
mixtures to probe and compare model’s robustness-accuracy performance on input
synthetic data and their representations. Since the synthetic tasks spare access to
real-life data, SynBench offers a holistic evaluation and informs the model design-
ers of the intrinsic robustness level of the model given a user-specified threshold
accuracy. Moreover, the use of class conditional Gaussian mixture allows us to
derive a theoretically optimal robustness-accuracy tradeoff, which serves as a ref-
erence when evaluating the tradeoff on representations. By comparing the ratio
of area-under-curve between the raw data and their representations, SynBench of-
fers a quantifiable score for robustness-accuracy performance benchmarking. Our
framework applies to a wide range of pretrained models taking continuous data
inputs and is independent of the downstream tasks and datasets. Evaluated with
several pretrained vision transformer models, the experimental results show that
our SynBench score well matches the actual linear probing performance of the
pre-trained model when fine-tuned on downstream tasks. Moreover, our frame-
work can be used to inform the design of robust linear probing on pretrained rep-
resentations to mitigate the robustness-accuracy tradeoff in downstream tasks.

1 INTRODUCTION

In recent years, the use of large pretrained neural networks for efficient fine-tuning on downstream
tasks has prevailed in many application domains such as vision, language, and speech. Instead
of designing task-dependent neural network architectures for different downstream tasks, the cur-
rent methodology focuses on the principle of task-agnostic pretraining and task-specific finetuning,
which uses a neural network pretrained on a large-scale dataset (often in a self-supervised or un-
supervised manner) to extract generic representations of the input data, which we call pretrained
representations for simplicity. The pretrained representations are then used as a foundation (Bom-
masani et al., 2021) to solve downstream tasks by training a linear head (i.e., linear probing) on
the data representations with the labels provided by a downstream dataset, or by simply employing
zero-shot inference. Moreover, to handle multi-modal data, one can use a similar neural network
architecture (e.g., transformer) for multi-modal data representation learning and alignment. Suc-
cessful examples following this new machine learning paradigm include the GPT-3 language model
(Brown et al., 2020), the vision transformer (Arnab et al., 2021), and the CLIP image-text model
(Radford et al., 2021), to name a few.

As large pretrained models are shown to achieve state-of-the-art performance on a variety of down-
stream tasks with minimal fine-tuning, there is an intensified demand for using pretrained represen-
tations from a large model for efficient finetuning. When gauging the usefulness of a pretrained
model, it is a convention to compare the accuracy on selected real-life tasks. However, this ap-
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proach has two possible drawbacks: (1) if the underlying pretrained model has hidden risks, such as
lacking robustness to adversarial examples, the standard accuracy cannot inform the risk as it does
not correlate well (even worse, sometimes has negative correlation) with adversarial robustness (Su
et al., 2018). Therefore, the trending practice of pretraining and fine-tuning also signifies immediate
damage to all downstream tasks. (2) the implications suggested by any “better” results on specific
datasets are subjective to the datasets used for evaluation and could be inconclusive when the eval-
uation datasets change (e.g. ViT-L/16 is reportedly performing worse than ViT-B/16 on 4 out of 27
linear probing tasks according to Radford et al. (2021), and is incompetent to ViT-B/16 on finetuned
medical tasks (Okolo et al., 2022; Tummala et al., 2022)). Consequently, an ideal pretrained model
should entail both good accuracy and adversarial robustness, and the level of goodness can be mea-
sured in a task-agnostic manner. To address this emerging challenge, we propose a novel framework
named SynBench to evaluate the quality of pretrained representations, in terms of quantifying the
tradeoff between standard accuracy and adversarial robustness to input perturbations. Specifically,
SynBench uses synthetic data generated from a conditional Gaussian distribution to establish a ref-
erence characterizing the robustness-accuracy tradeoff based on the Bayes optimal linear classifiers.
Then, SynBench obtains the representations of the same synthetic data from the pretrained model
and compares them to the reference for performance benchmarking. Finally, we define the ratio of
area-under-curves in robustness-accuracy characterization as a quantifiable metric of the quality of
pretrained representations. The entire procedure of SynBench is illustrated in Figure 1.

Our SynBench framework features the following key advantages.

1. Soundness: We formalize the fundamental tradeoff in robustness and accuracy of the considered
conditional Gaussian model and use this characterization as a reference to benchmark the quality
of pretrained representations.

2. Task-independence: Since the pretraining of large models is independent of the downstream
datasets and tasks (e.g., through self-supervised or unsupervised training on broad data at scale),
the use of synthetic data in SynBench provides a task-agnostic approach to evaluating pretrained
representations without the knowledge of downstream tasks and datasets.

3. Completeness and privacy: The flexibility of generating synthetic data (e.g., by adopting a dif-
ferent data sampling procedure) offers a good proxy towards a more comprehensive evaluation
of pretrained representations when fine-tuned on different downstream datasets, especially in the
scenario when the available datasets are not representative of the entire downstream datasets.
Moreover, the use of synthetic data enables full control and simulation over data size and distri-
bution, protects data privacy, and can facilitate model auditing and governance.

We highlight our main contributions as follows.

• We propose SynBench, a novel task-agnostic framework that uses synthetic data to evaluate the
quality of pretrained representations. The evaluation process of SynBench is independent of the
downstream datasets and tasks and it applies to any model taking continuous data inputs.

• Evaluated with several pretrained vision transformers, our experimental results show that the met-
ric provided by SynBench well matches the model performance in terms of adversarial robustness
and standard accuracy when finetuned on several downstream datasets. For example, SynBench-
Score suggests that the Imagenet21k pretrained network (ViT-B/16-in21k) improves with finetun-
ing on Imagenet1k (ViT-B/16), echoing with the higher CIFAR10 and CIFAR10-c linear probing
accuracy of ViT-B/16.

• We show that SynBench can be used to inform the design and selection of the hyperparameters in
robust linear probing to mitigate the robustness-accuracy tradeoff when fine-tuned on downstream
datasets. For example, conducting ϵ-robust linear probing with ϵ selected by SynBench-Score
gives ViT-B/16 0.6% increase in CIFAR10 accuracy and 1.3% increase in CIFAR10-c accuracy.

2 RELATED WORK

Pretrained models in vision. In the past few years, much focus in the machine learning community
has been shift to train representation networks capable of extracting features for a variety of down-
stream tasks with minimal fine-tuning. Nowadays, many common vision tasks are achieved with
the assistant of good backbones, e.g. classifications (Yu et al., 2022; Wortsman et al., 2022; Foret
et al., 2020; Xie et al., 2020; Dosovitskiy et al., 2020; Chen et al., 2020a), object detection (Redmon
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Figure 1: Overview of our SynBench framework. Step 1: generate class conditional Gaussian and
form the inputs to the pretrained model; Step 2: gather rendered representations; Step 3: measure
the expected robustness bound under a range of threshold accuracy for both input raw data and their
representations according to equation 2 and obtain the expected bound-threshold accuracy plot; Step
4: calculate SynBench score by the relative area under curve of the representations (area B) to the
input data (area A + area B) in the expected bound-threshold accuracy plot.

& Farhadi, 2017; Liu et al., 2016), segmentation (Chen et al., 2017; Xie et al., 2021), etc. Among
the popular backbones, vision transformers (ViT) (Dosovitskiy et al., 2020) have attracted enormous
interest. ViTs stem from Transformers (Vaswani et al., 2017) and split an image into patches, which
are then treated as tokens as for the original Transformers. We will exemplify the use of SynBench
using several pretrained ViTs.

Benchmarking pretrained models. Since pretrained models are used as a foundation for different
downstream tasks, it is central to transfer learning (Neyshabur et al., 2020; Pruksachatkun et al.,
2020), and also tightly related to model generalization (Qiao et al., 2020; Carlucci et al., 2019). To
benchmark the performance of a pretrained model, it is a convention to apply the pretrained model
for a number of popular tasks and conduct linear probing on the representations (Chen et al., 2020b;
Dosovitskiy et al., 2020; Chen et al., 2020a; 2021). Besides linear probing, evaluation frameworks
have been proposed based on mutual information (Bachman et al., 2019) and minimum description
length (MDL) (Blier & Ollivier, 2018; Voita & Titov, 2020), which are reliant on the label informa-
tion of the downstream tasks and are hence task-specific. Moreover, recent work (Whitney et al.,
2020) also discussed the sensitivity of validation accuracy (nonlinear probes) and MDL to evaluation
dataset size, and proposed a variant of MDL and a sample complexity based quantifier that depends
on the data distribution.

It was not until recently that more fundamental questions are brought up related to the pretrained
models (Bommasani et al., 2021; Tran et al., 2022; Zhang & Ré, 2022). Lately, Bommasani et al.
(2021) raised practical concerns about the homogenization incentivized by the scale of the pre-
training. Although the homogenization might help in achieving competitive performance for some
downstream tasks, the defects are also inherited by all these downstreams. On that account, a more
careful study of the fundamentals of pretrained models is of paramount importance. Tran et al.
(2022) was dedicated to explore the reliability of pretrained models by devising 10 types of tasks on
40 datasets in evaluating the desired aspect of reliability. Furthermore, it is pointed out by Zhang
& Ré (2022) that pretrained models may not be robust to subpopulation or group shift as shown in
9 benchmarks. The adversarial robustness is benchmarked by authors of (Shao et al., 2021; Paul &
Chen, 2022), where Paul & Chen (2022) demonstrated the superior robustness of ViTs through Im-
agenet and Shao et al. (2021) conducted white-box and transfer attacks on Imagenet and CIFAR10.

Optimal representations. In the seminal work of deep representation theory, Achille & Soatto
(2018) depicted the desired optimal representations in supervised learning to be sufficient for down-
stream task, invariant to the effect of nuisances, maximally disentangled, and has minimal mutual
information between representations and inputs. Focusing more on generalization than compres-
sion, Dubois et al. (2020) gave the optimal representation based on V-information (Xu et al., 2019)
and probed generalization in deep learning. More recently, Ruan et al. (2021) defined the optimal
representations for domain generalization. In (Dubois et al., 2022), authors characterize the ide-
alized representation properties for invariant self-supervised representation learning. Specifically,
idealized representation should be well-distinguished by the desired family of probes for potential
invariant tasks, have sufficiently large dimension, and be invariant to input augmentations.

SynBench differs from the above quantifiers as it does not need knowledge of any downstream data
and has controls over the evaluation set size since we could draw arbitrary number of synthetic data.
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With the assumed synthetic data distribution, we could theoretically characterize the robustness-
accuracy tradeoff that is independent to the downstream tasks. Therefore, SynBench provides a
predefined standard of the tradeoff, which serves as the reference for representations induced by
pretrained models. It should be also mentioned that, recently sim-to-real transfer paradigm has been
leveraged to test the quality of real data, by projecting those onto the space of a model trained on
large-scale synthetic data generated from a set of pre-defined grammar rules (Marzoev et al., 2020).
SynBench, though conceptually similar at a very high level, is different from that line of work – as
the focus of this work is to quantify the accuracy-robustness tradeoff of pretrained representations
using synthetic data from conditional distributions.

3 SYNBENCH: METHODOLOGY AND EVALUATION

Without the knowledge of the downstream tasks and data, we aim to develop a task-agnostic frame-
work to evaluate some fundamental behaviors of the representation network. As robustness is a key
desired property, we probe the network to check how representation networks are preserving robust-
ness in the original data. It is crucial to note that the probing method developed herein specifies the
robustness-accuracy tradeoff in the pretrained representations, can be used for understanding (and
possible ranking) different pretrained networks.

On the whole, we want to measure the idealized robustness-accuracy tradeoff using synthetic data.
By propagating the Gaussian realizations through different representation networks, we can also
measure the robustness-accuracy tradeoff for representations. We start this section by giving the
synthetic data and the corresponding optimal linear classifier of interest.

3.1 SYNTHETIC DATA AND OPTIMAL LINEAR CLASSIFIER

We consider imbalanced) binary classification problems with data pair (x, y) generated from the
mixture of two Gaussian distributions Pµ1,µ2,Σ, such that

x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ),

or equivalently, x− µ1 + µ2

2
|y = 1 ∼ N (µ̃,Σ), x− µ1 + µ2

2
|y = −1 ∼ N (−µ̃,Σ), (1)

where y ∈ C = {+1,−1}, P (y = +1) = τ , P (y = −1) = 1 − τ , and µ̃ = µ1−µ2

2 . We
focus on the class-balanced case (τ = 1

2 ) and defer the imbalanced case to the Appendix D. When
sampling from this idealized distribution, we eliminate the factor of data bias and can benchmark
the robustness degradation in an ideal setting.

Let ∥ · ∥p denote the ℓp norm of a vector for any p ≥ 1. For a given classifier f and input x with
f(x) = y, where y is the predicted label, it is not rational for the classifier to respond differently
to x + δ than to x for a small perturbation level measured by ∥δ∥p, i.e. inconsistent top-1 predic-
tion (Szegedy et al., 2013; Goodfellow et al., 2014). Therefore, the level of (adversarial) robustness
for a classifier can be measured by the minimum magnitude of perturbation that causes misclassi-
fication, i.e. ∥∆∥p := minδ:f(x+δ) ̸=f(x) ∥δ∥p. For a generic function f , solving the optimization
problem exactly is hard (Katz et al., 2017; Sinha et al., 2018). Luckily, one can readily solve for the
optimization if f is affine (Moosavi-Dezfooli et al., 2016).

In the following, we will exploit this point and consider the linear classifier that minimizes the robust
classification error. An ideal candidate classifier for the class conditional Gaussian (equation 1)
is specified by the robust Bayes optimal classifier (Bhagoji et al., 2019; Dobriban et al., 2020).
Specifically, it is stated that the optimal robust classifier (with a robust margin ϵ) for data generated
from equation 1 is a linear classifier. We derive the following result as a direct application of the
fact. To simplify the exposition, we focus on the ℓ2 norm in the remainder of this paper. We refer
the readers to Appendix C for general ℓp-norm results. We use “bound” to denote the minimal
perturbation of a sample.
Theorem 1. For any sample x, the optimal robust classifier fϵ for Pµ1,µ2,Σ gives

(i) the bound (decision margin) ∥∆∥2 =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
∥Σ−1(µ̃−zΣ(µ̃))∥2

,

(ii) the scaled bound ∥∆̄∥2 =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
|µ̃TΣ−1(µ̃−zΣ(µ̃))| .

For a sample x ∼ Pµ1,µ2,Σ, it further gives
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(a) 2D Gaussian case (b) Theoretical robustness-accuracy tradeoff

Figure 2: Illustration of robustness-accuracy tradeoff suggested by ϵ-robust Bayes optimal classi-
fiers. Figure (a) depicts a class conditional 2D Gaussian case with decision boundaries drawn by
ϵ-robust Bayes optimal classifiers of varying ϵ values. Figure (b) draws the theoretically character-
ized robustness-accuracy tradeoff given in Theorem 1(iv).

(iii) the standard accuracy a = Φ( µ̃TΣ−1(µ̃−zΣ(µ̃))
∥Σ−1(µ̃−zΣ(µ̃))∥Σ

),

(iv) the expected scaled bound E
[
∥∆̄∥2 | fϵ(x) = y

]
= 1√

2π
1

aΦ−1(a)e
− 1

2 (Φ
−1(a))

2

+ 1,

where zΣ is the solution of the convex problem argmin∥z∥2≤ϵ(µ̃ − z)TΣ−1(µ̃ − z) and Φ denotes
the CDF of the standard normal distribution.

We note that for samples drawn from Pµ1,µ2,Σ and Σ = σ2Id, all ϵ-robust Bayes optimal classifier
overlap with each other. For a general covariance matrix Σ, the ϵ of a ϵ-robust Bayes classifier
specifies the desired size of margin and demonstrates the robustness accuracy tradeoff. We give
an illustrative 2D class conditional Gaussian example in Figure 2(a), where different ϵ-robust Bayes
classifiers give different overall margins at the cost of accuracy. Concretely, as ϵ increases, the robust
Bayes optimal classifier rotates counterclockwise, leading to increased misclassifications, but also
overall enlarged margins.

3.2 OBJECTIVE

For a given representation network parametrized by θ, we are interested in evaluating the ex-
pected bounds on synthetic data and their representations, under a thresholding accuracy at, i.e.
Eµ∼Pµ,Σ∼PΣ,x−µ̄|y∼N (yµ,Σ)

[
∥∆̄∥2 | fϵ(x) = y, a > at

]
for ∆̄ = ∆̄x and ∆̄z respectively, where

Pµ and PΣ characterize the probability density function of the synthetic data manifold of interest,
and µ̄ is a translation vector allowing non-symmetric class conditional Gaussian. Here, without the
prior of applications, we assume µ = s · 1d/

√
d, where s denotes a random variable that follows

uniform distribution and 1d/
√
d is the normalized all-ones vector. For simplicity, we let Σ = Id.

Formally, we define Eθ,ϵ(at) as

Eθ,ϵ(at) =Es,x

[
∥∆̄∥2 | fϵ(x) = y, a(s, ϵ) > at

]
=

1

n

∑
i

Ex

[
∥∆̄∥2 | fϵ(x) = y

]
1a(si,ϵ)>at , (2)

where 1a(si,ϵ)>at is the indicator function specifying the si, ϵ-dependent a that surpasses the threshold accu-
racy at. We put the detailed derivation in Appendix A. In the following sections, we will illustrate how
to calculate the inner expectation term Ex

[
∥∆̄∥2 | fϵ(x) = y

]
for both the raw data and representa-

tions.

3.2.1 RAW DATA

For raw data synthesized from Pµ1,µ2,Σ according to equation 1, the inner expectation term is given

by Theorem 1(iv) E
[
∥∆̄x∥2 | fϵ(x) = y

]
= 1√

2π
1

aΦ−1(a)e
− 1

2 (Φ
−1(a))

2

+ 1, where a denotes the
standard accuracy.
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The subscript x in the expected scaled bound E
[
∥∆̄x∥2 | fϵ(x) = y

]
indicates the raw data space, to

distinguish from the scaled bound to be derived for representations. We highlight that Theorem 1(iv)
directly gives a robustness-accuracy tradeoff. We plot the expected scaled bound as a function of
accuracy in Figure 2(b). This tradeoff holds true when the data follow the conditional Gaussian ex-
actly. In the proposed SynBench framework, we treat this theoretically-derived robustness-accuracy
tradeoff as the reference, enabling a fair comparison among representations induced by different
pretrained models.

3.2.2 REPRESENTATIONS

Given a pretrained network , we gather the representations of the Gaussian realizations and quantify
the desired bound induced by robust Bayes optimal classifier in the representation space. When
deriving the robust Bayes optimal classifier, we model the representations by a general conditional
Gaussian z|y = 1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ). By Theorem 1(ii), we consider the optimal
robust classifier for the modeled conditional Gaussian in the representation space to calculate the

scaled bound ∥∆̄z∥2 =
|(z−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
|µ̃TΣ−1(µ̃−zΣ(µ̃))| for correctly-classified samples and the inner

expectation is estimated empirically. It is worthwhile to note that now the Bayes optimal classifier
does not necessarily coincide with robust Bayes optimal classifier even when we synthesized the
dataset with an identity matrix covariance in the input space.

3.3 ROBUSTNESS-ACCURACY QUANTIFICATION OF REPRESENTATIONS

Recall that we aim to calculate

Eθ,ϵ(at) =
1

n

∑
i

Ex|y∼N (ysi·1d/
√
d,Id)

[
∥∆̄∥2 | fϵ(x) = y

]
1a(si,ϵ)>at

for both raw data and the representations (i.e. ∥∆̄x∥ and ∥∆̄z∥). We treat the expected bounds of the
raw data under a threshold accuracy as the reference. Given a representation network, we compare
the expected bounds of the representations rendered by representation networks with the reference.

We take s ∼ U{0.1, 5} under the guidance of Theorem 1(iii). Specifically, as Theorem 1(iii) gives
an analytical expected accuracy for class conditional Gaussian, we can obtain the desired range of
s by giving the accuracy. Now since we are interested in having the reference as a class conditional
Gaussian that yields accuracy from 55% to almost 100%, we set the starting and ending s by the
fact that Φ(0.1) ∼ 0.55 and Φ(5) ∼ 1.0. We reiterate that with more accurate modelling of the
data manifold of interest, SynBench can give more precise capture of the pretrained representation
performance.

When the data is perfect Gaussian (e.g. input synthetic data), we calculate Eθ,ϵ(at) with the help
of Section 3.2.1. We note that ∆̄x is independent of pretrained network parameters θ, and all the
ϵ-robust classifiers fϵ in the input space overlap with each other when Σ = Id. We hereby denote
the desired metric on the input synthetic data by E(at), to distinguish from that on the represen-
tations Eθ,ϵ(at). For representations, we calculate Eθ,ϵ(at) with the help of Section 3.2.2 and the
expectation is estimated empirically. We show an example of the probing results in Figure 3.

To integrate over all the desired threshold accuracy, we use the area under the curve (AUC) and give
the ratio to the reference by

SynBench-Score(θ, ϵ, at) =

∫ 1

at
Eθ,ϵ(a)da∫ 1

at
E(a)da

, (3)

which correspond to area B
area A + area B in Figure 3. Larger value of SynBench-Score implies better probing

performance on pretrained representations.

4 EXPERIMENTAL RESULTS

In this experiment, we exemplify the use of SynBench given a pretrained representation network. In
order to compare among network attributes, it is desirable to control the variates. In Table 1, we list
severeal pretrained vision transformers (ViTs)1(Dosovitskiy et al., 2020; Chen et al., 2021; Caron

1https://github.com/rwightman/pytorch-image-models
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Figure 3: An example of the robustness-accuracy quantification of representations for ViT-B/16.
(Left) The expected bound-threshold accuracy plot for the input raw data (E(at)) and representa-
tions (Eθ,ϵ(at)) with ϵ = 0 ∼ 0.8. (Right) The desired quantification SynBench-Score(θ, ϵ, at) =

area B
area A+area B (refer to equation 3) for ϵ = 0 (top) and ϵ = 0.6 (bottom).

Model Arch. pretraining fine-tuning patch # parameters (M)
ViT-Ti/16 ViT-Tiny Imgn21k Imgn1k 16 5.7
ViT-B/16 ViT-Base Imgn21k Imgn1k 16 86.6

ViT-B/16-in21k ViT-Base Imgn21k No 16 86.6
ViT-B/32 ViT-Base Imgn21k Imgn1k 32 88.2
ViT-L/16 ViT-Large Imgn21k Imgn1k 16 304.3

ViT-S/16-DINO ViT-Small self-Imgn1k No 16 21.7
ViT-S/8-DINO ViT-Small self-Imgn1k No 8 21.7

ViT-B/16-DINO ViT-Base self-Imgn1k No 16 85.8
ViT-B/8-DINO ViT-Base self-Imgn1k No 8 85.8

Resnet50-SimCLRv2 Resnet50 self-Imgn1k No - 144.4
Resnet101-SimCLRv2 Resnet101 self-Imgn1k No - 261.2

Variation:
Model size ViT-{Ti,B,L}/16, ViT-{S,B}/16-DINO, ViT-{S,B}/8-DINO,

Resnet{50,101}-SimCLRv2
Finetuning ViT-B/16{,-in21k}

ViT patch size ViT-B/{16,32}, ViT-S/{16,32}-DINO, ViT-B/{16,32}-DINO

Table 1: Model descriptions.

et al., 2021) and ResNets2(Chen et al., 2020c), and make comparisons to our best knowledge. We
note that the performance of these models might be nuanced by scheduler, curriculum, and training
episodes, which are not captured in the above table. To provide a comprehensive evaluation, we give
SynBench-Score(θ, ϵ, at) with at ranging from 0.7 to 0.9, and ϵ from 0 to 0.8. Due to space limit,
some at results are deferred to the appendix. The runtime of SynBench depends on the number of
outcomes of the discrete uniform distribution U{0.1, 5}. For one s ∼ U{0.1, 5}, it costs 59 seconds
to generate 2048 Gaussian samples, 37 and 81 seconds to obtain the SynBench-Score for ViT-B/16
and ViT-L/16 on one GeForce RTX 2080 super. SynBench-Score offers a quantifiable score for
robustness-accuracy performance benchmarking and is intrinsically a task-agnostic evaluation that
characterizes general behaviors of the pretrained representations without the knowledge and use of
any downstream data.

Apart from the task-agnostic metrics SynBench-Score developed in this paper, we also report
linear probing accuracy on CIFAR10/ImageNet and CIFAR10-c/ImageNet-c (Hendrycks & Di-
etterich, 2019) to validate the standard and transfer accuracy (use the probing layer trained on
CIFAR10/ImageNet to probe CIFAR10-c/ImageNet-c). We note that evaluating pretrained repre-
sentations on real-life tasks is sensitive to the choice of tasks and the results may be inconclu-
sive. For example, CIFAR10/ImageNet suggest that ViT-L performs better than ViT-B, wheras
KITTI/SST (Geiger et al., 2012; Socher et al., 2013) (Radford et al., 2021, Table 10), Food-
Seg103 (Wu et al., 2021, Table 8), X-ray images (Okolo et al., 2022, Table 4-8), magnetic resonance

2https://github.com/google-research/simclr
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at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0.20 0.23 0.18 0.07 0.01 89.6 71.4 82.6 63.6

Table 2: Comparisons on the finetuning procedure in pretraining. The SynBench-Score of ViTs
with or without finetuning pretrained representations, and the linear probing accuracy on CI-
FAR10/ImageNet and transfer accuracy on CIFAR10-c/ImageNet-c.

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c

0.7
ViT-Ti/16 0.01 0 0 0 0 81.9 59.1 74.8 43.3
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2 83.8 66.4
ViT-L/16 0.26 0.33 0.30 0.22 0.11 98.0 90.3 85.3 72.2

0.75
ViT-Ti/16 0 0 0 0 0 81.9 59.1 74.8 43.3
ViT-B/16 0.26 0.30 0.25 0.11 0.01 95.0 81.2 83.8 66.4
ViT-L/16 0.19 0.27 0.24 0.16 0.04 98.0 90.3 85.3 72.2

0.8
ViT-Ti/16 0 0 0 0 0 81.9 59.1 74.8 43.3
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2 83.8 66.4
ViT-L/16 0.12 0.21 0.18 0.09 0 98.0 90.3 85.3 72.2

0.85
ViT-Ti/16 0 0 0 0 0 81.9 59.1 74.8 43.3
ViT-B/16 0.10 0.15 0.09 0 0 95.0 81.2 83.8 66.4
ViT-L/16 0.05 0.13 0.10 0.03 0 98.0 90.3 85.3 72.2

0.9
ViT-Ti/16 0 0 0 0 0 81.9 59.1 74.8 43.3
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2 83.8 66.4
ViT-L/16 0 0.04 0.03 0 0 98.0 90.3 85.3 72.2

Table 3: Comparisons on the model sizes. The SynBench-Score of ViTs of different sizes, and the
linear probing accuracy on CIFAR10/ImageNet and transfer accuracy on CIFAR10-c/ImageNet-c.

at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c
ViT-S/16-DINO 0.48 0.47 0.42 0.32 0.17 95.3 75.9 75.3 47.5
ViT-B/16-DINO 0.55 0.58 0.53 0.46 0.35 96.5 78.9 76.4 52.1
ViT-S/8-DINO 0.40 0.42 0.39 0.34 0.26 96.2 78.0 79.0 53.9
ViT-B/8-DINO 0.50 0.56 0.50 0.40 0.30 97.0 80.6 79.5 53.7

Res50-SimCLRv2 0.66 0.50 0.50 0.48 0.48 95.0 80.1 77.5 47.4
Res101-SimCLRv2 0.60 0.64 0.55 0.51 0.48 95.6 80.9 78.7 50.1

Table 4: The SynBench-Score of self-supervised pretrained representations and the linear probing
accuracy on CIFAR10/ImageNet and transfer accuracy on CIFAR10-c/ImageNet-c.

imaging (Tummala et al., 2022, Table 2-3) suggest the opposite. In contrast, because SynBench-
Score is intrinsically a task-agnostic evaluation of the pretrained model, its result is independent of
the choice of tasks.

Fine-tuned pretraining representation. When applying a pretrained representation network to the
desired task, one can either only train a linear head on top of a fixed pretrained model, or perform
fine-tuning of both the representation network and the linear head. Thus, in Table 2, we investigate
how the fine-tuning process is affecting the representation networks. Specifically, both networks in
Table 2 is pretrained on Imagenet 21k with supervision. After the pretraining, ViT-B/16 is further
finetuned on Imagenet 1k. Interestingly, SynBench-Score shows that this finetuning is beneficial
as improvements are witnessed across all ϵ with SynBench-Score, which well match the empirical
observation give by CIFAR10 and CIFAR10-c and prior results (Kumar et al., 2021).

Model size. In Table 3, we compare ViTs of different sizes. Specifically, we perform SynBench
on ViT-Ti, ViT-B, and ViT-L with patch size being 16. The model parameter θ is provided by the
pretrained model. It is noticeable that ViT-B/16 is generally on par with ViT-L/16. When we set the
threshold accuracy to be higher values, ViT-L/16 starts to give slightly better evaluations especially
with larger ϵ. One interesting observation is that for each model, SynBench-score is not necessarily
monotonic in ϵ, which indicates standard linear probing (i.e., ϵ = 0) may not be the most effective
way to probing pretrained representations in terms of robustness-accuracy performance, which is
consistent with recent findings (Fan et al., 2021). See the “Robust linear probing” paragraph below
for detailed analysis. We also observe that larger models exhibit better resilience (slower reduction
in SynBench-score) as ϵ increases. On Self-supervised pretrained representations (Table 4), we
observe that bigger models have higher SynBench-scores – ViT-B/16-DINO, ViT-B/16-DINO, and
Res101-SimCLRv2 have bigger SynBench-scores compared to ViT-S/16-DINO, ViT-S/16-DINO,
and Res50-SimCLRv2.
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at = 0.6 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c
ViT-B/16 0.45 0.47 0.44 0.36 0.25 95.0 81.2 83.8 66.4
ViT-B/32 0.02 0.03 0.03 0.01 0 92.2 76.6 80.5 61.4

Table 5: Comparisons on the ViT patch size. The SynBench-Score of ViTs of different patch sizes,
and the linear probing accuracy on CIFAR10 and transfer accuracy on CIFAR10-c.

argmaxϵ ∆ robust linear probing
SynBench-Score mean (CIFAR10,CIFAR10-c)

ViT-Ti/16 0.1 70.5-0.7
ViT-B/16 0.2 88.1+1.0
ViT-L/16 0.2 94.2+0.4

ViT-B/16-in21k 0.2 80.5+0.4
ViT-B/32 0.2 84.4+0.8

Table 6: CIFAR10 and CIFAR10-c accuracy changes using ϵ-robust linear probing with ϵ =
argmaxϵSynBench-Score.

ViT patch size. We also compare vision transformer patch sizes in Table 5. Specifically, we give
ViT-B with patch size being 16 and 32, individually. SynBench-Scores show an consistent trend
as the model performance on CIFAR10 and CIFAR10-c. From Table 4, we see that the SynBench-
score of ViT-S/16-DINO is on par with that of ViT-S/8-DINO, and ViT-B/16-DINO has higher
SynBench-score than ViT-B/8-DINO. Although linear probing on CIFAR10 and ImageNet do not
share the trend, bigger patch size model (ViT-S/16-DINO) does perform better than smaller ones
(ViT-S/8-DINO) on the PASCAL VOC (Everingham et al., 2010) segmentation task (Caron et al.,
2021, Figure 4 bottom table).

Robust linear probing. According to Table 3, 0.2-robust Bayes classifiers consistently give better
scores compared to 0-robust (standard) Bayes classifiers with ViT-B/16 and ViT-L/16. This offers us
a quick way of gauging the suitable downstream robust probing parameter for the given pretrained
model. We stipulate that observing a 0.2-robust Bayes classifier to yield better SynBench-Score than
a 0-robust Bayes classifier may suggest the pretrained network to produce representations that have
better overall performance with linear classifiers trained by 0.2-robust linear probing. We validate
this by performing robust linear probing on representations rendered by ViTs for CIFAR10 classifi-
cations. Results are shown in Table 6. For a given pretrained model, let f and g be the pretrained net-
work and linear probing layer, we solve the optimization problem ming max∥δ∥≤ϵ L(g(f(x+δ)), y)

using the PyTorch library Torchattacks3 and 10-step PGDL2 attacks (Madry et al., 2018) for adver-
sarial training. From Table 6, we see that robust linear probing with ϵ = argmaxϵSynBench-Score
generally gives a decent robustness-accuracy tradeoff. For example, with robust linear probing, we
obtain a 0.6% and 1.3% increase in CIFAR10 standard and CIFAR10-c transfer accuracy with ViT-
B/16 (as in Table 9). A more complete table on ϵ-robust linear probing results with different ϵ is
given in the appendix.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a new task-agnostic framework SynBench for benchmarking the
robustness-accuracy performance of pretrained representations. SynBench is fundamentally task-
independent and provides a quantifiable score that does not reply on any real-life data. SynBench ex-
ploits an idealized data distribution, class conditional Gaussian mixture, to establish a theoretically-
derived robustness-accuracy tradeoff, which serves as the reference for pretrained representations.
Finally, a quantifiable score SynBench-Score is provided that compares the ratio of area-under-curve
between the reference and the pretrained representations. We validate the usefulness of SynBench on
several pretrained vision transformers in giving insightful comparisons on different model attributes
(e.g. model size, fine-tuned pretraining representations, ViT patch size, linear probing).

While we delved into the robustness-accuracy performance of pretrained representations of vision
transformers, we envision the SynBench framework to be further extended to other trustworthiness
dimensions such as privacy, fairness, etc. Moreover, as the popularization of pretrained representa-
tions in various domains (e.g. vision, language, speech), we foresee SynBench to be generalized to
more domains, and shed light on task-agnostic benchmarking designs.

3https://github.com/Harry24k/adversarial-attacks-pytorch
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A OBJECTIVE

Eθ,ϵ(at) =Es∼U,x−µ̄|y∼N (µ,Σ)

[
∥∆̄∥2 | fϵ(x) = y, a > at, µ = s · 1d/

√
d,Σ = Id

]
=Es,x

[
∥∆̄∥2 | fϵ(x) = y, a(s, ϵ) > at

]
=
∑
i

Ex

[
∥∆̄∥2 | fϵ(x) = y, a(si, ϵ) > at

]
P(s = si)

=
1

n

∑
i

Ex

[
∥∆̄∥2 | fϵ(x) = y, a(si, ϵ) > at

]
=
1

n

∑
i

Ex

[
∥∆̄∥2 | fϵ(x) = y

]
1a(si,ϵ)>at .

B PROOFS

Theorem 1. For any sample x, the optimal robust classifier fϵ for Pµ1,µ2,Σ gives

(i) the bound (decision margin) ∥∆∥2 =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
∥Σ−1(µ̃−zΣ(µ̃))∥2

,

(ii) the scaled bound ∥∆̄∥2 =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
|µ̃TΣ−1(µ̃−zΣ(µ̃))| .

For a sample x ∼ Pµ1,µ2,Σ, it further gives

(iii) the standard accuracy a = Φ( µ̃TΣ−1(µ̃−zΣ(µ̃))
∥Σ−1(µ̃−zΣ(µ̃))∥Σ

),

(iv) the expected scaled bound E
[
∥∆̄∥2 | fϵ(x) = y

]
= 1√

2π
1

aΦ−1(a)e
− 1

2 (Φ
−1(a))

2

+ 1,

where zΣ is the solution of the convex problem argmin∥z∥2≤ϵ(µ̃ − z)TΣ−1(µ̃ − z) and Φ denotes
the CDF of the standard normal distribution.

Proof. (i) Following Bhagoji et al. (2019); Dan et al. (2020), the Bayes optimal robust classifier for
the general non-symmetric conditional Gaussians Pµ1,µ2,Σ specified in equation 1 is

fϵ(x) = sign

{(
x− µ1 + µ2

2

)T

Σ−1 (µ̃− zΣ(µ̃))

}
, (4)

where sign(·) is the typical sign function and zΣ is the solution of the convex prob-
lem argmin∥z∥2≤ϵ(µ̃ − z)TΣ−1(µ̃ − z). The corresponding decision boundary is at(
(x+ δ)− µ1+µ2

2

)T
Σ−1 (µ̃− zΣ(µ̃)) = 0,

=⇒ ∆ = argmin ∥δ∥2 s.t. δTΣ−1 (µ̃− zΣ(µ̃)) = −
(
x− µ1 + µ2

2

)T

Σ−1 (µ̃− zΣ(µ̃))

=⇒ ∥∆∥2 =
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
∥Σ−1(µ̃− zΣ(µ̃))∥2

.

(ii) Since the bound ∥∆∥2 is subject to the positions of two Gaussians, we scale the bound by the
distance from Gaussian centers to the classifier, |µ̃TΣ−1(µ̃−zΣ(µ̃))|

∥Σ−1(µ̃−zΣ(µ̃))∥2
and obtain

∥∆̄∥2 =
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
∥Σ−1(µ̃− zΣ(µ̃))∥2

∥Σ−1(µ̃− zΣ(µ̃))∥2
|µ̃TΣ−1(µ̃− zΣ(µ̃))|

=
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
|µ̃TΣ−1(µ̃− zΣ(µ̃))|

.

14



Under review as a conference paper at ICLR 2023

(iii) For sample x ∼ Pµ1,µ2,Σ, consider the Bayes optimal robust classifier in equation 4, we can
calculate the analytical standard accuracy by

P(y = 1)P [fϵ(x) = 1 | y = 1] + P(y = −1)P [fϵ(x) = −1 | y = −1]

=P [fϵ(x) = 1 | y = 1]

=P
[
(x− µ1 + µ2

2
)TΣ−1(µ̃− zΣ(µ̃)) > 0 | y = 1

]
=P

[
(µ̃+ w)TΣ−1(µ̃− zΣ(µ̃)) > 0

]
, w ∼ N (0,Σ)

=P
[
wTΣ−1(µ̃− zΣ(µ̃)) > −µ̃TΣ−1(µ̃− zΣ(µ̃))

]
, w ∼ N (0,Σ)

=P
[
wTΣ−1(µ̃− zΣ(µ̃))

∥Σ−1(µ̃− zΣ(µ̃))∥Σ
> − µ̃TΣ−1(µ̃− zΣ(µ̃))

∥Σ−1(µ̃− zΣ(µ̃))∥Σ

]
,

wTΣ−1(µ̃− zΣ(µ̃))

∥Σ−1(µ̃− zΣ(µ̃))∥Σ
∼ N (0, 1)

=Φ(
µ̃TΣ−1(µ̃− zΣ(µ̃))

∥Σ−1(µ̃− zΣ(µ̃))∥Σ
).

(iv) For sample x ∼ Pµ1,µ2,Σ, let a denote the accuracy, t denote x− µ1+µ2

2 , and w denote Σ−1(µ̃−
zΣ(µ̃)). From (iii), we have that the standard accuracy of conditional Gaussian samples with the
Bayes optimal (robust) classifier is Φ( µ̃Tw

∥w∥Σ
), so µ̃Tw

∥w∥Σ
= Φ−1(a). Since for binary classification,

we only care about accuracy from 0.5 to 1, so we should have µ̃Tw > 0.

Now consider the classifier in equation 4 and the corresponding scaled bound from (ii),

∥∆̄∥2 =
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
|µ̃TΣ−1(µ̃− zΣ(µ̃))|

=
|tTw|
|µ̃Tw|

=
|tTw|
µ̃Tw

.

Since t|y ∼ N (yµ̃,Σ), we have tTw|y ∼ N (yµ̃Tw,wTΣTw). When we only want to get the
expected scaled bound of the correctly-classified samples, we have that

E
[
∥∆̄∥2 | fϵ(x) = y

]
=

1

µ̃Tw
E
[
|tTw| | fϵ(x) = y

]
=

1

2µ̃Tw
E
[
|tTw| | fϵ(x) = y = 1

]
+

1

2µ̃Tw
E
[
|tTw| | fϵ(x) = y = −1

]
=

1

2µ̃Tw
E
[
tTw | y = 1, tTw ≥ 0

]
+

1

2µ̃Tw
E
[
−tTw | y = −1, tTw < 0

]
.

Recall that tTw|y ∼ N (yµ̃Tw,wTΣTw), then by the mean of truncated normal distribution, it is
true that

E
[
tTw | y = 1, tTw ≥ 0

]
= µ̃Tw +

√
wTΣTw

ϕ( 0−µ̃Tw√
wTΣTw

)

1− Φ( 0−µ̃Tw√
wTΣTw

)

= µ̃Tw +
√
wTΣTw

ϕ(− µ̃Tw√
wTΣTw

)

1− Φ(− µ̃Tw√
wTΣTw

)

= µ̃Tw +
√
wTΣTw

1
√
2πΦ( µ̃Tw√

wTΣTw
)
e
− 1

2

(
µ̃T w√
wT ΣT w

)2

E
[
−tTw | y = −1, tTw < 0

]
= −E

[
tTw | y = −1, tTw < 0

]
= −

−µ̃Tw −
√
wTΣTw

ϕ( 0+µ̃Tw√
wTΣTw

)

Φ( 0+µ̃Tw√
wTΣTw

)


= µ̃Tw +

√
wTΣTw

1
√
2πΦ( µ̃Tw√

wTΣTw
)
e
− 1

2

(
µ̃T w√
wT ΣT w

)2

.
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Therefore

E
[
∥∆̄∥2 | fϵ(x) = y

]
=

1

µ̃Tw

µ̃Tw +
√
wTΣTw

1
√
2πΦ( µ̃Tw√

wTΣTw
)
e
− 1

2

(
µ̃T w√
wT ΣT w

)2


= 1 +

√
wTΣTw

µ̃Tw

1
√
2πΦ( µ̃Tw√

wTΣTw
)
e
− 1

2

(
µ̃T w√
wT ΣT w

)2

.

By replacing µ̃Tw√
wTΣTw

by Φ−1(a), we got

E
[
∥∆̄∥2 | fϵ(x) = y

]
=

1√
2π

1

aΦ−1(a)
e−

1
2 (Φ

−1(a))
2

+ 1.

C GENERAL ℓp RESULTS

We note that our results in Appendix B can be straightforwardly generalized to ℓp. Given an ℓp
adversarial budget ϵ:
Theorem 2. For any sample x, the optimal robust classifier fϵ for Pµ1,µ2,Σ gives

(i) the bound (decision margin) ∥∆∥p =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
∥Σ−1(µ̃−zΣ(µ̃))∥q

,

(ii) the scaled bound ∥∆̄∥p =
|(x−µ1+µ2

2 )TΣ−1(µ̃−zΣ(µ̃))|
|µ̃TΣ−1(µ̃−zΣ(µ̃))| .

For sample x ∼ Pµ1,µ2,Σ, it further gives

(iii) the standard accuracy a = Φ( µ̃TΣ−1(µ̃−zΣ(µ̃))
∥Σ−1(µ̃−zΣ(µ̃))∥Σ

),

(iv) the expected scaled bound E
[
∥∆̄∥p | fϵ(x) = y

]
= 1√

2π
1

aΦ−1(a)e
− 1

2 (Φ
−1(a))

2

+ 1,

where zΣ is the solution of the convex problem argmin∥z∥p≤ϵ(µ̃ − z)TΣ−1(µ̃ − z) and Φ denotes
the CDF of the standard normal distribution.

Proof. We follow the proof of Theorem 1 and consider the classifier in equation 4. By Hölder’s
inequality, we now have the corresponding lower bound and scaled lower bound as

∥∆∥p =
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
∥Σ−1(µ̃− zΣ(µ̃))∥q

∥∆̄∥p =
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
∥Σ−1(µ̃− zΣ(µ̃))∥q

∥Σ−1(µ̃− zΣ(µ̃))∥q
|µ̃TΣ−1(µ̃− zΣ(µ̃))|

=
|(x− µ1+µ2

2 )TΣ−1(µ̃− zΣ(µ̃))|
|µ̃TΣ−1(µ̃− zΣ(µ̃))|

,

where 1
p + 1

q = 1. The remainder of the proof will then follows as in Theorem 1.

Remark. In general, in the case that Σ is singular, we can apply the economy-size (thin) decom-
position with nonzero eigenvalues Σ = FΛFT . Then, with a general non-symmetric conditional
Gaussians

x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ),

we apply proper translation to symmetric conditional Gaussians

FTx|y = 1 ∼ N (FTµ1,Σ), FTx|y = −1 ∼ N (FTµ2,Σ),

FTx− FT µ1 + µ2

2
|y = 1 ∼ N (µ̃,Σ), FTx− FT µ1 + µ2

2
|y = −1 ∼ N (−µ̃,Σ),

where µ̃ = FT µ1−µ2

2 .

16



Under review as a conference paper at ICLR 2023

D CLASS IMBALANCE

Given an ℓ2 adversarial budget ϵ ≤ ∥µ∥2, consider the conditional Gaussian in equation 1 with
Σ = Id (d by d identity matrix) and general class prior τ , then the following theorem holds.

Theorem 3. For any sample x, the optimal robust classifier fϵ for Pµ1,µ2,Id gives

(i) the bound (decision margin) ∥∆∥2 =
|(x−µ1+µ2

2 )T µ̃(1−ϵ/∥µ̃∥2)−q/2|
∥µ̃(1−ϵ/∥µ̃∥2)∥2

,

(ii) the scaled bound ∥∆̄∥2 =
|(x−µ1+µ2

2 )T µ̃(1−ϵ/∥µ̃∥2)−q/2|
|µ̃T µ̃(1−ϵ/∥µ̃∥2)−q/2| .

For a sample x ∼ Pµ1,µ2,Id , it further gives

(iii) the standard accuracy a = τΦ( µ̃
Tw−q/2
∥w∥2

) + (1− τ)Φ( µ̃
Tw+q/2
∥w∥2

),

(iv) the expected scaled bound E
[
∥∆̄∥2 | fϵ(x) = y

]
=

τ

µ̃Tw − q/2

µ̃
T
w − q/2 + ∥w∥2

ϕ(
−µ̃T w+q/2

∥w∥2
)

Φ(
µ̃T w−q/2

∥w∥2
)

 +
1 − τ

µ̃Tw − q/2

µ̃
T
w + q/2 + ∥w∥2

ϕ(
µ̃T w+q/2

∥w∥2
)

Φ(
µ̃T w+q/2

∥w∥2
)

 .

where q = ln{(1− τ)/τ}, w = µ̃(1− ϵ/∥µ̃∥2), ϕ and Φ denotes the PDF and CDF of the standard
normal distribution.

Proof. (i) Consider the Bayes optimal ℓ2 ϵ-robust classifier (Dobriban et al., 2020, Theorem 4.1)

fϵ(x) = sign

{(
x− µ1 + µ2

2

)T

µ̃(1− ϵ/∥µ̃∥2)− q/2

}
, (5)

where q = ln{(1− τ)/τ}. For any x,

∥∆∥2 =
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
∥µ̃(1− ϵ/∥µ̃∥2)∥2

.

(ii) Since the bound ∥∆∥2 is subject to the positions of two Gaussians, we scale the bound by the
distance from Gaussian centers to the classifier, |µ̃T µ̃(1−ϵ/∥µ̃∥2)−q/2|

∥µ̃(1−ϵ/∥µ̃∥2)∥2
and obtain

∥∆̄∥2 =
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
∥µ̃(1− ϵ/∥µ̃∥2)∥2

∥µ̃(1− ϵ/∥µ̃∥2)∥2
|µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2|

=
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
|µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2|

.
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(iii) For sample x ∼ Pµ1,µ2,Id , consider the Bayes optimal robust classifier in equation 4, we can
calculate the analytical standard accuracy by

P(y = 1)P [fϵ(x) = 1 | y = 1] + P(y = −1)P [fϵ(x) = −1 | y = −1]

=τP [fϵ(x) = 1 | y = 1] + (1− τ) [fϵ(x) = −1 | y = −1]

=τP
[
(x− µ1 + µ2

2
)T µ̃(1− ϵ/∥µ̃∥2)− q/2 > 0 | y = 1

]
+(1− τ)P

[
(x− µ1 + µ2

2
)T µ̃(1− ϵ/∥µ̃∥2)− q/2 < 0 | y = −1

]
=τP

[
(µ̃+ w)T µ̃(1− ϵ/∥µ̃∥2)− q/2 > 0

]
,

+(1− τ)P
[
(−µ̃+ w)T µ̃(1− ϵ/∥µ̃∥2)− q/2 < 0

]
, w ∼ N (0, Id)

=τP
[
wT µ̃(1− ϵ/∥µ̃∥2) > q/2− µ̃T µ̃(1− ϵ/∥µ̃∥2)

]
,

+(1− τ)P
[
wT µ̃(1− ϵ/∥µ̃∥2) < q/2 + µ̃T µ̃(1− ϵ/∥µ̃∥2)

]
, w ∼ N (0, Id)

=τP
[
wT µ̃(1− ϵ/∥µ̃∥2)
∥µ̃(1− ϵ/∥µ̃∥2)∥2

>
q/2− µ̃T µ̃(1− ϵ/∥µ̃∥2)

∥µ̃(1− ϵ/∥µ̃∥2)∥2

]
,

+(1− τ)P
[
wT µ̃(1− ϵ/∥µ̃∥2)
∥µ̃(1− ϵ/∥µ̃∥2)∥2

<
q/2 + µ̃T µ̃(1− ϵ/∥µ̃∥2)

∥µ̃(1− ϵ/∥µ̃∥2)∥2

]
,

wT µ̃(1− ϵ/∥µ̃∥2)
∥µ̃(1− ϵ/∥µ̃∥2)∥2

∼ N (0, 1)

=τΦ(
µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2

∥µ̃(1− ϵ/∥µ̃∥2)∥2
) + (1− τ)Φ(

µ̃T µ̃(1− ϵ/∥µ̃∥2) + q/2

∥µ̃(1− ϵ/∥µ̃∥2)∥2
).

Let w denote µ̃(1− ϵ/∥µ̃∥2), the we got the accuracy

a = τΦ(
µ̃Tw − q/2

∥w∥2
) + (1− τ)Φ(

µ̃Tw + q/2

∥w∥2
).

(iv) For sample x ∼ Pµ1,µ2,Id , let t denote x− µ1+µ2

2 , and w denote µ̃(1− ϵ/∥µ̃∥2). According to
Theorem 3(iii), when µ̃T µ̃(1−ϵ/∥µ̃∥2)−q/2 > 0, the accuracy would be higher than 0.5. Therefore
we consider µ̃Tw − q/2 > 0.

Now consider the classifier in equation 5 and the corresponding scaled bound from (ii),

∥∆̄∥2 =
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
|µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2|

=
|tTw − q/2|
|µ̃Tw − q/2|

=
|tTw − q/2|
µ̃Tw − q/2

.

Since t|y ∼ N (yµ̃, Id), we have tTw − q/2|y ∼ N (yµ̃Tw − q/2, wTw). When we only want to
get the expected scaled bound of the correctly-classified samples, we have that

E
[
∥∆̄∥2 | fϵ(x) = y

]
=

1

µ̃Tw − q/2
E
[
|tTw − q/2| | fϵ(x) = y

]
=

τ

µ̃Tw − q/2
E
[
|tTw − q/2| | fϵ(x) = y = 1

]
+

1− τ

µ̃Tw − q/2
E
[
|tTw − q/2| | fϵ(x) = y = −1

]
=

τ

µ̃Tw − q/2
E
[
tTw − q/2 | y = 1, tTw − q/2 ≥ 0

]
+

1− τ

µ̃Tw − q/2
E
[
−tTw + q/2 | y = −1, tTw − q/2 < 0

]
.
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Recall that tTw − q/2|y ∼ N (yµ̃Tw − q/2, wTw), then by the mean of truncated normal distribu-
tion, it is true that

E
[
tTw − q/2 | y = 1, tTw − q/2 ≥ 0

]
= µ̃Tw − q/2 + ∥w∥2

ϕ( 0−µ̃Tw+q/2
∥w∥2

)

1− Φ( 0−µ̃Tw+q/2
∥w∥2

)

= µ̃Tw − q/2 + ∥w∥2
ϕ(−µ̃Tw+q/2

∥w∥2
)

Φ( µ̃
Tw−q/2
∥w∥2

)

E
[
−tTw + q/2 | y = −1, tTw − q/2 < 0

]
= −E

[
tTw − q/2 | y = −1, tTw − q/2 < 0

]
= −

−µ̃Tw − q/2− ∥w∥2
ϕ( 0+µ̃Tw+q/2

∥w∥2
)

Φ( 0+µ̃Tw+q/2
∥w∥2

)


= µ̃Tw + q/2 + ∥w∥2

ϕ( µ̃
Tw+q/2
∥w∥2

)

Φ( µ̃
Tw+q/2
∥w∥2

)

Therefore

E
[
∥∆̄∥2 | fϵ(x) = y

]
=

τ

µ̃Tw − q/2

µ̃Tw − q/2 + ∥w∥2
ϕ(−µ̃Tw+q/2

∥w∥2
)

Φ( µ̃
Tw−q/2
∥w∥2

)


+

1− τ

µ̃Tw − q/2

µ̃Tw + q/2 + ∥w∥2
ϕ( µ̃

Tw+q/2
∥w∥2

)

Φ( µ̃
Tw+q/2
∥w∥2

)
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E ADDITIONAL TABLES

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c

0.7
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0.20 0.23 0.18 0.07 0.01 89.6 71.4 82.6 63.6

0.75
ViT-B/16 0.26 0.30 0.25 0.11 0.01 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0.12 0.16 0.10 0.02 0 89.6 71.4 82.6 63.6

0.8
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0.06 0.09 0.04 0 0 89.6 71.4 82.6 63.6

0.85
ViT-B/16 0.10 0.15 0.09 0 0 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0.01 0.02 0 0 0 89.6 71.4 82.6 63.6

0.9
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2 83.8 66.4

ViT-B/16-in21k 0 0 0 0 0 89.6 71.4 82.6 63.6

Table 7: Full table of Table 2.

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c ImageNet ImageNet-c

0.7
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2 83.8 66.4
ViT-B/32 0 0 0 0 0 92.2 76.6 80.5 61.4

0.75
ViT-B/16 0.26 0.30 0.25 0.11 0.01 95.0 81.2 83.8 66.4
ViT-B/32 0 0 0 0 0 92.2 76.6 80.5 61.4

0.8
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2 83.8 66.4
ViT-B/32 0 0 0 0 0 92.2 76.6 80.5 61.4

0.85
ViT-B/16 0.10 0.15 0.09 0 0 95.0 81.2 83.8 66.4
ViT-B/32 0 0 0 0 0 92.2 76.6 80.5 61.4

0.9
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2 83.8 66.4
ViT-B/32 0 0 0 0 0 92.2 76.6 80.5 61.4

Table 8: Full table of Table 5.
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F SYNTHETIC DATASET COMPLEXITY

SynBench can adjust the synthetic task complexity by statistically modeling the structure of the co-
variance matrix PΣ. In our previous experiments, we have considered an identity covariance matrix,
here we assume a channel-wise band matrix covariance Σ (R,G,B channel entries are externally in-
dependent, and internally Gaussians with a band matrix covariance). Essentially, the assembled Σ is
a block-diagonal matrix with each block being a band matrix in the size of the image. For ViT with
ImageNet size inputs, the 3 blocks are 2242 × 2242. We let the 3 band matrices be Pentadiagonal
matrices (only main, first two upper, and two lower diagonals are nonzero).

From Table 10 to Table 13, we see that the trend suggested by SynBench is generally consistent with
our findings in Section 4. Moreover, SynBench can well-capture the complexity of the task and give
lower SynBench-scores when the task is more complex.

at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8
ViT-B/16 0.18 0.24 0.20 0.10 0.01

ViT-B/16-in21k 0.07 0.11 0.07 0.01 0

Table 10: SynBench-Score comparisons on the finetuning procedure in pretraining on synthetic data
with Pentadiagonal covariance.

at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8
ViT-Ti/16 0 0 0 0 0
ViT-B/16 0.18 0.24 0.20 0.10 0.01
ViT-L/16 0.18 0.28 0.28 0.23 0.12

Table 11: SynBench-Score comparisons on the model sizes on synthetic data with Pentadiagonal
covariance.

at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8
ViT-S/16-DINO 0.47 0.46 0.39 0.23 0.03
ViT-B/16-DINO 0.42 0.52 0.51 0.45 0.35
ViT-S/8-DINO 0.36 0.38 0.36 0.30 0.20
ViT-B/8-DINO 0.42 0.55 0.50 0.40 0.28

Res50-SimCLRv2 0.24 0.47 0.36 0.33 0.31
Res101-SimCLRv2 0.30 0.37 0.32 0.30 0.29

Table 12: SynBench-Scores of self-supervised pretrained representations on synthetic data with
Pentadiagonal covariance.

at = 0.6 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8
ViT-B/16 0.18 0.24 0.20 0.10 0.01
ViT-B/32 0 0 0 0 0

Table 13: SynBench-Score comparisons on the ViT patch size of ViTs on synthetic data with Penta-
diagonal covariance.

G OTHER BASELINES

For completeness, we report several baseline metrics for the synthetic conditional Gaussian classifi-
cation task. We follow the implementation of Whitney et al. (2020)4 and set ns (the training set size)
to be the length of the synthetic dataset to compute canonical results. In Table 15, We report valida-
tion loss (val loss), minimum description length (MDL) (Voita & Titov, 2020), surplus description
length (SDL) and ϵ-sample complexity (ϵ-SC) (Whitney et al., 2020). As a reference, obtaining the
metrics for ViT-B/16 costs 6807 seconds and ViT-L/16 costs 7373 seconds on one Tesla V100.

4https://github.com/willwhitney/reprieve
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n Name ViT-B/16 ViT-B/16-in21k
2048 Val loss 3.10 3.37

MDL 6820.76 7114.12
SDL, ε=1 > 4977.76 > 5271.12
εSC, ε=1 > 1843.0 > 1843.0
SynBench 0.33 0.20

4096 Val loss 1.77 1.41
MDL 10813.95 9412.53
SDL, ε=1 > 7127.95 > 5726.53
εSC, ε=1 > 3686.0 > 3686.0
SynBench 0.45 0.30

8192 Val loss 0.73 0.77
MDL 9939.13 9773.16
SDL, ε=1 3479.59 3153.33
εSC, ε=1 7372 7372
SynBench 0.52 0.38

16384 Val loss 0.85 0.86
MDL 20936.18 20899.58
SDL, ε=1 7266.8 7136.29
εSC, ε=1 14745 14745
SynBench 0.56 0.41

32768 Val loss 0.68 0.70
MDL 30848.99 32944.76
SDL, ε=1 7043.32 8611.49
εSC, ε=1 14265 14265
SynBench 0.59 0.44

Table 14: Baseline metrics evaluating the representation quality on the conditional Gaussian syn-
thetic data with n = {2048, 4096, 8192, 16384, 32768}. For Val loss, MDL, SDL, and ϵSC, the
smaller the better; for SynBench, the bigger the better. Note that the model ranking of SynBench is
consistent across different values of n, while other methods will change their rankings.
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