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ABSTRACT

Reconstructing natural images from fMRI recordings is a challenging task of
great importance in neuroscience. However, current architectures fail to efficiently
capture the hierarchical processing of visual information processing, which may
bottleneck their representation capacity. Motivated by that fact, we introduce a
novel neural network architecture for the problem of neural decoding. Our archi-
tecture uses Hierarchical Variational Autoencoders (HVAEs) to learn meaningful
representations of natural images and leverages their latent space hierarchy to learn
voxel-to-image mappings. By mapping the early stages of the visual pathway to the
first set of latent variables and the higher visual cortex areas to the deeper layers
in the latent hierarchy, we are able to construct a latent variable neural decoding
model that replicates the hierarchical visual information processing. Our model
achieves better reconstructions compared to the state of the art and our ablation
study indicates that the hierarchical structure of the latent space is responsible for
that performance.

1 INTRODUCTION

Decoding visual imagery from brain recordings is a key problem in neuroscience. This problem aims
to reconstruct the visual stimuli from fMRI recordings taken while the subject is viewing the stimuli.
Even though some of the excitement is fulled by science fiction and the difficulty of the problem (1),
the scientific consensus is that neural decoding has real-world, important implications. It is important
for understanding how neural activity relates to external stimuli (2), for engineering application such
as brain-computer interfaces (3) and for decoding imagery during sleep (4). Given its importance,
neuroscience and machine learning researchers have jointly led the development of sophisticated
deep learning architectures that allows us to design pipelines that map voxel-based recordings to the
corresponding visual stimuli. Based on the target learning task, visual decoding can be categorized
into stimuli classification, stimuli identification, and stimuli reconstruction. The former two tasks aim
to predict the object category of the presented stimulus or identify the stimulus from an ensemble of
possible stimuli. The reconstruction task, which is the most challenging one and the main focus of
this paper, aims to construct a replica of the presented stimulus image from the fMRI recordings.

Related Work. The proposed methods for the problem of neural decoding can be broadly classified in
three categories: non-deep learning methods, non-generative deep learning methods and generative
deep learning methods. The non-deep learning class consists of methods that are based on primitive
linear models and aim in reconstructing low-level image features (5). Such approaches first extract
handcrafted features from real-world images, such as multi-scale image bases (6) or Gabor filters
(7), and then learn a linear mapping from the fMRI voxel space to the extracted features. Due to
their simplicity, linear models are not able to reconstruct complex real-world images and thus their
applicability is restricted to simple images containing only low-level features.

Methods that use convolutional neural networks as well as encoder-decoder architectures belong to
the non-generative deep learning class. Horikawa et al. (8) demonstrated a homology between human
and machine vision by designing an architecture with which the features extracted from convolutional
neural networks can be predicted from fMRI signals. Based upon those findings, Shen et al. (1)
used a pretrained VGG-19 model to extract hierarchical features from stimuli images and learned a
mapping from the fMRI voxels in the low/high area to the corresponding low/high VGG-19 features.
Beliy et al. (9) designed a CNN-based Encoder-Decoder architecture, where the encoder learns a
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mapping from the stimulus images to the fMRI voxels and the decoder learns the reverse mapping.
By stacking the components back-to-back, the authors train their network using self-supervision,
thereby addressing the inherent scarcity of fMRI-image pairs. Following up on that work, Gaziv et al.
(10) improved the reconstruction quality by training on a perceptual similarity loss function, which is
calculated by first extracting multi-layer features from both the original and reconstructed images and
comparing the extracted features layer-wise. Such a perceptual loss is known to be highly effective in
assessing the image similarity and accounts for many nuances in the human vision (11).

In the generative deep learning class, we have model architectures, such as generative adversarial
networks (GANs) and variational autoencoders (VAEs). Shen et al. (1) extended their original method
to make the reconstructions look more natural by conditioning the reconstructed images to be in
the subspace of the images generated by a GAN. A similar GAN-prior was used by Yves et al. in
(12), where the authors also introduced unsupervised training on real-world images. Fang et al. (13)
leverage the hierarchical structure of the information processing in the visual cortex to propose two
decoders, which extract information from the low and high visual cortex areas, respectively. The
output of those decoders is used as a conditioning variable in a GAN-based architecture. Shen et al.
(14) trained a GAN using a modified loss function that includes an image-space and perceptual loss
in addition to the standard adversarial loss. A line of work by Seeliger et al. (15), Mozafari et al.
(16) and Qiao et al. (17) assumes that there exists a linear relationship between the brain activity and
the GAN latent space. These methods use the GAN as a real-world image prior to ensure that the
reconstructed image has some "naturalness" properties. The work by VanRullen et al. (18) and Ren
et al. (19) utilize VAE-GANs (20), a hybrid model in which the VAE decoder and GAN generator
are combined. In the former work, the authors use the VAE to extract meaningful representations
of the data and learn a linear mapping between the latent vector and the fMRI patterns. In the later
work, the authors propose a dual-VAE architecture where both the real-world images and fMRI
voxels are converted into latent representations, which are then fed as conditioning variable in a GAN.
Finally, the work by Lin et al. (21) leverages multi-modality and encodes the fMRI signals into a
visual-language latent space and a contrastive loss function to incorporate low-level visual features
to the schematic pipeline. Then, the authors use a conditional generative model to reconstruct the
images and obtain photo-realistic and accurate reconstructions.

Contributions. In this paper, we purpose a novel architecture for the problem of decoding visual
imagery from fMRI recordings. Motivated by the fact that the visual pathway in the human brain
processes stimuli in a hierarchical manner, we postulate that such a hierarchy can be captured by
the latent space of a deep generative model. More specifically, we use Hierarchical Variational
Autoencoders (HVAE) (22) to learn meaningful representations of stimuli images and we train an
ensemble of deep neural networks to learn mappings from the voxel space to the HVAE latent spaces.
Voxels originating from the early stages of the visual pathway (V1, V2, V3) are mapped to the earlier
layers of latent variables, whereas the higher visual cortex areas (LOC, PPA, FFA) are mapped to
the later stages of the latent hierarchy. Our architecture replicates the natural hierarchy of visual
information processing in the latent space of a variational model. Our experimental analysis suggests
that hierarchical latent models provide better priors for decoding fMRI signals and, to the best of our
knowledge, this is the first approach that uses HVAEs in the context of neural decoding.

2 VISUAL INFORMATION PROCESSING

In this section, we give a brief overview of the visual information processing in the human brain
and describe the two streams hypothesis, which we use in our experimental architecture. Visual
information received from the retina of the eye is interpreted and processed in the visual cortex. The
visual cortex is located in the posterior part of the brain, at the occipital lobe, and it is divided into five
distinct areas (V1 to V5) depending on the function and structure of the area. Visual stimuli received
from the retina travel to the lateral geniculate nucleus (LGN), located near the thalamus. LGN is a
multi-layered structure that receives input directly from both retinas and sends axons to the primary
visual cortex (V1). V1 is the first and main area of the visual cortex where visual information is
received, segmented, and integrated into other regions of the visual cortex. Based on the two streams
hypothesis (23), following V1, visual stimuli can take the dorsal pathway or ventral pathway. The
dorsal pathway consists of the secondary visual cortex (V2), the third visual cortex (V3), and the
fifth visual cortex (V5). The dorsal stream, informally known as the "where" stream, is responsible
for visually-guided behaviors and localizing objects in space. The ventral stream, also known as the
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"what" stream, consists of V2 and fourth visual cortex (V4) areas and is responsible for processing
information for visual recognition and perception. Visual processing occurs hierarchically at three
distinct levels (24). The low-level includes the retina, lateral geniculate nuclei (LGN), and the primary
visual cortex (V1). Low-level processing is the initial step when interpreting an image and it is
the place where orientation, edges, and lines are perceived. Sequentially, the mid-level processing
consists of the secondary (V2), third (V3) and fourth (V4) which extract shapes, objects and colors.
Finally, the high-level processing consists of category-selective areas such as the fusiform face area
(FFA), lateral occipital (LOC), parahippocampal area (PPA) and medial temporal area (MT/V5).
These areas show selective response to faces, objects/animals, places and motion, respectively.

Figure 1: Two stream hypothesis of visual information
processing in the human brain.

Despite the evident hierarchical structure of vi-
sual information processing, most current meth-
ods for neural decoding fail to fully exploit that
fact. Current methods take into account the hier-
archy of visual information processing either by
mapping the fMRI voxel to hierarchical CNN-
extracted image features via regression models
(1; 25) or by training an end-to-end DNN model
on a feature loss function (12; 14). The major
issue with such approaches is that the hierar-
chy is taken into account in the feature space
of a CNN model, which is, in general, complex,
high-dimensional space. In this work, we pro-
pose to take into account the aforementioned
hierarchy in the latent space of a deep model.
Latent spaces are known to produce compact,
low-dimensional embeddings of the data and
have recently shown impressive performance on image reconstruction and generation tasks (22).
Given these facts, we postulate that a hierarchical latent space provides better priors for decoding
fMRI signals. The intuition is that each brain area, being "responsible" for a certain set of features,
better be mapped on a compact, low-dimensional representation of those features. For example, given
that V1 is broadly responsible for encoding low-level features (e.g., edges, orientations), it is sensible
to map the fMRI voxels from the V1 region onto a representation of the underlying images features;
and this mapping is much easier to be learned on the latent space, rather than the feature space.

3 METHOD

Leveraging the aforementioned intuition, we introduce a neural decoding method that mimics the
hierarchical visual information processing in the latent space. Our architecture has two main
components: a Hierarchical Variational Autoencoder (HVAE) and a Neural Decoder. The HVAE
is used for learning compact, hierarchical latent representations of real-world images and is trained
using self-supervision. The Neural Decoder is used for mapping the brain signals to the HVAE
hierarchical latent space and is trained via supervision on {fMRI,Image} pairs. In this section, we
describe each of the components in more detail. Our architecture is visualized in Fig 2 for the special
case of 2 latent hierarchical layers.

3.1 HIERARCHICAL VARIATIONAL AUTOENCODERS

To capture the inherent hierarchical structure of visual information processing, we propose to model
images via a family of probabilistic models known as Hierarchical Variational Autoencoders (HVAEs).
HVAEs extend the basic Variational Autoencoder (VAEs) by introducing a hierarchy of latent variables.
Formally, let x be an image and z = {z1, z2, . . . , zL} be a set of L latent variables. The generative
distribution or decoder is defined as pθ(x|z) = pθ(x|z1)

∏L
i=1 pθ(zi+1|zi) and is parametrized

by θ. The prior distribution is defined as p(z) = p(z1)
∏L

i=1 p(zi+1|zi). The posterior p(z|x) is
approximated by the variational distribution or encoder qϕ(z|x) = qϕ(z1|x)

∏L
i=1 qϕ(zi+1|zi),

which is parametrized by ϕ. Both the prior and the approximate posterior are represented by factorial
Normal distributions. The variational principle provides a tractable lower bound, known as Evidence
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Figure 2: Outline of our method: a) We pretrain a Hierarchical Variational Autoencoder on a large set of
images. Two layers of latent variables z1, z2 are inserted after each encoder (EB) and decoder (DB) block. b)
We train the Neural Decoder by discarding the encoder from the previous step and learning a map from the fMRI
voxels to the hierarchical latent space. The lower visual cortex (V1, V2, V3) is mapped to z1 and the higher
visual cortex (FFA, PPA, LOC) to z2.

Lower Bound (ELBO), on the log-likelihood, as follows

log pθ(x) ≥ Eqϕ(z|x)
[
log

pθ(x, z)

qϕ(z|x)
]
= L(θ, ϕ;x)

= −KL(qϕ(z|x||pθ(z))) + Eqϕ(z|x)[log pθ(x|z)], (1)

where KL is the Kullback-Leibler divergence. The encoder and decoder are implemented by deep
neural networks and their parameters are jointly optimized using gradient descent on the ELBO
criterion. Similarly to standard VAEs, the reparametrization trick (26; 27) is used to allow us to
back-propagate the gradient thought the stochastic sampling involved in the computation of Eq. 1.

3.2 NEURAL DECODER

We now leverage the latent space of the HVAE to learn a set of maps from the fMRI voxel space
to the hierarchical latent variables. In more detail, each region of interest (ROI) is mapped via a
dense neural network to a specific subset of the latent space. Brain regions in the earlier states of
the visual pathway are mapped to the earlier layers of the latent hierarchy, whereas voxels from the
higher visual cortex areas are mapped to the deep layers in the latent hierarchy. We assume that the
HVAE has L groups of latent variables z1, z2, . . . zL and that the fMRI voxels are partitioned into n
non-overlapping brain regions of choice, i.e., y1,y2, . . . zL. Formally, the Neural Decoder is a set of
maps from the i-th brain region to the i-th group of latent variables. Each of these maps is represented
by a deep neural network with parameters wi, i.e., zi = ψwi

(yi), i = 1, 2, . . . L. The reconstruction
x̂ is then obtained by passing the latent variables z = {ψw1

(y1), ψw2
(y2), . . . ψwL

(yL)} through
the decoder model p(x|z) defined in Sec. 3.1.

The loss function used for training the Neural Decoder is an important design choice. Classic
per-pixel measures, such as Euclidean distance, commonly used for regression problems, or the
related Peak Signal-to-Noise Ratio (PSNR), are insufficient for images, as they assume pixel-wise
independence. Therefore, to encourage the Neural Decoder to learn reconstructions guided by human
visual perception, we use a perceptual loss. Perceptual loss is a class of loss functions that relies
on the fact that CNNs extract hierarchical features. More specifically, deep features trained on
supervised, self-supervised and unsupervised objectives are an effective model of human visual
perceptual similarity (11). For a given image x and its reconstruction x̂, their perceptual loss is:

l(x, x̂) =
∑
l

1

HlWl

∑
h,w

||bl ⊙ (f lx − f lx̂)||22, (2)
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where f lx, f
l
x̂ are the layer-wise activations of a given, pretrained CNN model, bl ∈ RCl is a channel-

wise scaling vector. Intuitively, the perceptual loss in Eq. 2 extracts features for both the target and
reconstructed image and then compares the features layer-wise using the Euclidean norm. To ensure
that no bias is introduced during learning, it is important that the CNN used for evaluating Eq. 2 is
different than the one used for the encoder. In our implementation we use a pretrained AlexNet as
well as the code provided by Zhang et al. (11) to compute the perceptual loss.

3.3 MODEL TRAINING

For the encoder part of our HVAE, we use a pretrained VGG-19 model (28). This is a deep
convolutional neural network of 19 convolutional layers and 3 fully connected layers. We use the
weights from the model pretrained on ImageNet and discard the fully connected layers. We introduce
latent variables by taking the output of a given convolutional layer, flattening it, passing it through
a fully connected layer and, finally, through a variational layer which outputs the latent variable.
This latent variable is re-sampled to avoid any dimension mismatch, and rerouted back to the main
block, where it is aggregated with the output of the convolutional layer. Depending on how many
latent layers we would like to insert, their exact position may vary. As an empirical design choice
we choose to insert the latent layers equally spaced and after a convolutional block. A latent layer is
always inserted at the output of the penultimate convolutional block.

The decoder part of our HVAE transforms the hierarchical latent variables to output images and
consists of 4 transposed convolutional layers. The number of decoder filters are [128, 64, 32, 16, 3]
and all kernel sizes are set to 5. Each transposed convolutional layer is followed by a 2d batch
normalization and a ReLU non-linearity. The output of each transposed convolutional layer is
interleaved with the latent variables. More specifically, each latent variable is initially passed thought
a fully connected layer, re-sampled to avoid dimension mismatch and then aggregated with the output
of the corresponding transposed convolution. Similarly to the encoder, we insert the latent variable
such that we ensure symmetry and we always insert the penultimate latent variable before the first
transposed convolution.

We start the training process by first deciding the number and position of the latent layers. The choice
is guided by the type of fMRI data that we have as well as the level of latent space coarse-graining
that we can achieve. For instance, if our fMRI data contains only the primary (V1) and the secondary
(V2) visual cortex then we have two choices: a) we can either consolidate all voxels into a single
vector and have a single latent layer in our HVAE or b) we can have two vectors containing the voxels
from each brain area and train the HVAE such that it has two latent layers z1, z2 (example shown in
Fig. 2). Naturally, if our fMRI data are more fine grain, we can add additional latent layers.

Following this design choice, the training proceeds in two phases: In the first phase, we pretrain
the HVAE via self-supervision using the ELBO loss function Eq. 1 on a large ensemble of 50,000
real-world images from the ImageNet database. These images come from the same categories as the
images shown to the subjects but no test images are included. This phase gives us meaningful latent
representations and allows the HVAE decoder to adapt to the statistics of a large set of real-world
images. In the second phase, the HVAE encoder is discarded, the HVAE decoder is kept fixed and the
Neural Decoder is trained on supervised {fMRI, Image} pairs using the perceptual loss function Eq. 2.
In this phase, we essentially learn a map from the voxels of each brain area to the corresponding
latent layer and then use that latent vector to reconstruct the image.

4 EXPERIMENTAL RESULTS

To evaluate the utility of our method in practice, we carry out a series of experimental simulations. To
measure the performance of our method, we use both qualitative comparisons of the reconstructions
as well as quantitative metrics. In what follows, we give the details of the dataset used, the metrics
implemented and baseline comparisons.

Dataset: We applied our pipeline on a commonly used, publicly available dataset known as Generic
Object Decoding (GOD). The dataset consists of high-resolution (500× 500) stimuli images and
their corresponding fMRI recordings. There exist 1250 (1200 train, 50 test) stimuli images selected
from 200 object categories from the ImageNet database and the fMRI recording were obtained while
5 healthy subjects were viewing the stimuli (presentation experiment). The train- and test-fMRI data
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consist of 1 and 35 (repeated recordings) per presented stimulus image, respectively. We use the
post-processed fMRI data provided by Horikawa et al. (8), which contain voxels from 7 brain areas
(V1,V2,V3,V4,FFA,PPA,LOC). The temporal component of the fMRI signal is averaged-out and the
input to the model is a high-dimensional voxel vector. Even though there may be more comprehensive
datasets, such as the BOLD 5000 (29) and the NSD (30) datasets (which in fact contain a higher
number of more diverse images), we choose to focus on GOD for two primary reasons: 1) the dataset
provides post-processed fMRI data, and 2) it has been used in numerous past studies (9; 1; 13; 14).
Both of these facts facilitate the easy and fair comparison between different methods.

Ablation Study: We perform an ablation study, with the number of hierarchical layers and, con-
secutively, the number of brain regions, being the ablated parameter. Motivated by the two stream
hypothesis (Sec 2) for the neural processing of visual information , we consider the following variants:

1. Naive Baseline (NB): We consider only one latent layer zNB and all fMRI voxels are
mapped to zNB . There are approximately 5000 voxels in this variant.

2. Primary-Secondary (PS): We consider 2 latent layers zV 1, zV 2 and the voxels from V 1, V 2
are mapped to the corresponding latent layer. There are approximately 1500 voxels.

3. Dorsal Pathway (DP): We consider the 3 latent layers zV 1, zV 2, zV 3 and voxels from
V 1, V 2, V 3 are mapped to the corresponding latent. There are approximately 2500 voxels.

4. Ventral Pathway (VP): We consider 4 latent layers zV 1, zV 2, zV 4, zPF and the voxels
from V 1, V 2, V 4, {FFA,PPA} are mapped to the corresponding latent layer. The voxels
from FFA and PPA are merged to a single area. There are approximately 3300 voxels.

We note that by using different ROIs and/or by combining them to form different latent architectures,
it is possible to obtain different ablated variants. We empirically noticed that by including the LOC,
either concatenated as part of the latest latent layer of the VP or by creating a new LOC-only latent
layer, there was no further performance improvements, only losses in terms of computational cost.
Therefore, we restrict our exposition to the aforementioned 4 variants.

Metrics: The reconstruction quality is assessed both subjectively, i.e., by visual inspection of the
output test images and comparison with the ground truth, as well as objectively. Our quantitative
evaluation relies on metrics that encode the spatial dependence such as the Pearson Correlation
Coefficient (PCC) and the Structural Similarity Index Measure (SSIM).

Pearson Correlation Coefficient (PCC): This metric is extensively used in statistics to measure the
linear dependence between variables. In the context of image similarity, PCC is computed on the
flattened representations of the two images. The limitation of PCC is its sensitivity to edge intensity
or misalignment, which makes the metric assign larger value to blurry images (9).

Structural Similarity Index Measure (SSIM): Wang et al. proposed SSIM in (31) as a metric that
quantifies the characteristics of human vision. Given a pair of images p, q, SSIM is computed as a
weighted combination of luminance, contrast and structure. Assuming equal contribution of each
measure, SSIM is first computed locally in a common window of size N ×N , and then the global
SSIM is computed by averaging the SSIM over all non-overlapping windows.

These image similarity metrics defined are used for computing the correct identification rate in an
n-way classification task. Let M ∈ {PCC, SSIM} be a metric of choice, p̂i be a reconstructed
image and Pi be a set containing the ground truth pi and a set of n − 1 randomly selected target
images. The Correct Identification Rate (CIR) is defined as follows:

CIRn
M =

1

N

N∑
i=1

1
(
i = argmax

pj∈Pi

M(p̂i, pj)
)
, (3)

whereN is the total number of images and the indicator function 1(·) has the value of 1 if the argument
is true and 0 otherwise. The CIRn

M metric is essentially the frequency at which a reconstructed
image can correctly identify the ground truth among n− 1 randomly selected additional images. The
chance level is 1/n.

Main Results: We compare the performance of our method against several state of the art methods
(SOTA) for the problem of neural decoding. The competitor methods are: the encoder-decoder based
self-supervised method by Belyi et al. (9), the end-to-end, GAN-based pipeline by Shen et al. (14),
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the GAN-conditioned method by Shen et al. (1) and the shape-schematic GAN by Fang et al. Figure 3
shows qualitative results and compares our method against the aforementioned competitors. All dis-
played images were reconstructed from the test-fMRI dataset. To improve the signal-to-noise ratio, the
test fMRI test samples are averaged across trials. The results shown were obtained using the Ventral
Pathway variant, which gave the best performance. We directly use the reconstructions reported in the
respective papers by the authors. Our method tends to consistently produce more faithful reconstruc-
tions. Note that, even though the GAN-based decoders tend to produce more natural images, the recon-
structions may deviate significantly from the stimulus image. This is because the GAN is introduced
as an imaged prior, as noted by Belyi et al. (9). On the contrary, our method reconstructs the stimuli
more faithfully, albeit the reconstructions appearing as a noisier version of the ground truth. (13).

Figure 3: Qualitative comparison of reconstruction quality.

It is evident that the qualitative
comparison highlights a trade-
off between the naturalness of
the reconstructed stimuli and the
pixel-wise noise introduced in
the reconstructions. To resolve
the ambiguity, we perform an
additional quantitative compari-
son using the CIRn metric. For
this part we compare against the
method by Belyi et al. (9) as well
as the two variants of the method
by Shen et al. (1). We directly
compare against the results as re-
ported by the authors of (9). The
results are shown in Fig. 4. For
our method, we report the correct
identification rate obtained using
the Ventral Pathway variant and

we average across the metrics (CIRn
PCC and CIRn

SSIM ). We observe that our method consistently
outperforms the competitors and, particularly in the 5-way and 10-way case, by a substantial margin.
Additionally, we observe our method shows a small performance drop as we increase n, i.e, from 90%
in the 2-way case to 79% in the 10-way case, whereas the performance loss for the competitor method
is substantially higher. This performance is due to the following fact: Even though our method gives
noisier reconstructions than the competitors, the high-level features such as color, texture and shapes
are retained and, therefore, the task of identifying the correct ground truth from the reconstruction is
easier. In contrast, please observe in Fig. 3 that the competitor methods may substantially alter the
color or texture of the image, therefore leading to more frequent ground truth misidentification.

Figure 4: Correct identification ratio.

In the next experiment, we evaluate
the decoding performance of differ-
ent visual pathways. The results are
shown on Fig. 5. Qualitatively, the
ventral stream seems to be produc-
ing the best reconstructions, which
is expected from a neuroscience per-
spective, given that this pathway’s
purpose is for visual perception and
contains high level areas (FFA-PPA)
for object recognition. Interestingly
enough, even though the Naive Base-
line contains all the available brain
areas, the reconstruction quality is in-
ferior, especially in the 2nd and 3rd
images, which are far more complex.
The V1-V2, Dorsal and Ventral variants essentially partition the brain areas into (progressively finer)
segments and map the voxels from each area onto the hierarchical latent space of the HVAE decoder.
Even though the increased performance among these variants may be partially explained by the
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fact that the number of voxels increases, the main point of comparison should be against the Naive
Baseline. The three models, PS, DP, and VP, are hierarchical, whereas the naive baseline includes all
data but has no hierarchy. Simply the fMRI responses from two regions, V1 and V2 and discarding
all other voxels we are able to achieve better performance than simply mapping all voxels in a big
latent vector. This suggests that the hierarchy is far more important than the amount of data that we
fed to the model. This is in line with previous studies which concluded that models trained on the
whole visual cortex perform slightly worse than those trained on separate areas (13).

Figure 5: Qualitative comparison for different pathways.

Additionally, since the Naive Baseline
essentially learns a map from all vox-
els to a single latent layer, it is natural
to assume that is fails due to massively
overfitting. However, if overfitting is
indeed the only reason for that failure,
we would expect the reconstruction
performance to decrease as we add
more voxels to the model input. How-
ever, the figure shows the exact oppo-
site: the performance increases as we
add more voxels. This suggests that
overfitting is not the only reason for
the Naive model’s failure and that the
the hierarchical structure of the visual
information processing needs to be ex-
plicitly taken into account. However,
one may hypothesize that the perfor-
mance increase in the Ventral Pathway
model may come from the partitioning
of the ROIs and that the hierarchical

structure has little impact. To test this, it is prudent to include a variant in which the VP ROIs are
randomly shuffled to assess whether the hierarchical structure or the partitioning of the voxels drives
the performance. We call this variant VP Permutations and it supplements the previous 4 variants.

CIR2
PCC CIR2

SSIM CIR5
PCC CIR5

SSIM CIR10
PCC CIR10

SSIM

Naive Baseline 0.77 0.78 0.64 0.66 0.57 0.58
Primary-Secondary 0.80 0.82 0.72 0.73 0.65 0.67
Dorsal Pathway 0.88 0.90 0.81 0.80 0.75 0.75
Ventral Pathway 0.91 0.92 0.84 0.85 0.79 0.79
VP Permutations 0.79 0.80 0.65 0.66 0.60 0.58

Table 1: The n-way correct identification rate (n = 2, 5, 10) for all ablated variants using the Pearson
Correlation Coefficient (PCC) and the Structural Similarity Index Measure (SSIM) as a selection criterion. We
report the mean across subjects. The results for VP Permutations are averaged across 4 permutations. The
inter-subject deviation was in the range of 0.02− 0.05. The chance levels are 0.5, 0.25, 0.10, respectively.

Following that, we present quantitative results on Table 1. On this table we give the the n-way
correct identification rate CIRn for n = 2, 5, 10, for all ablated variants and the VP Permutations
for both metrics (PCC and SSIM). The results on this table validate the aforementioned qualitative
observations. The identification accuracy is progressively increasing as we partition the brain into
more fine areas and as we add hierarchical layers in the HVAE onto which the brain areas are mapped.
Additionally, we observe that the newly introduced VP Permutations variant leads to performance
degradation, which suggests that the hierarchy and not the partitioning drives the performance result.
However, we do note that we have a slight performance increase compared to the Naive Baseline,
which indicates that merely partitioning the brain regions is beneficial, albeit not as beneficial as
accounting for the hierarchy.

To verify that our method can be successfully applied to all subjects and study potential inter-subject
variation of the results, we show in Fig. 6 the learning curves for all 5 subjects and for all metrics
CIRn

M , n = 2, 5, 10 and M ∈ {PCC, SSIM}. The metrics were calculated using the test samples
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Figure 6: Learning curves for CIRn
M , n = 2, 5, 10 and M ∈ {PCC, SSIM} across all subjects. The

horizontal axis is the number of epochs. Subject 3 is marginally outperforming the other subjects and Subject 1
gives the worst performance (figure best viewed in color).

and the ventral pathway variant. Even though the metrics appear similar across subject, after careful
examination of the curves some subtle discrepancies and trends can be observed. Subject 1 is
consistently performing approximately 5% worse across all metrics whereas Subject 3 is marginally
outperforming the other subjects by 2%. The fact that the Subject 3 gives the best reconstructions has
been verified in previous studies (10) and is attributed to differences in the signal-to-noise ratio across
subjects. Finally, Fig. 6 allows us to study how training progresses and validate that no overfitting
occurs. We observe that, in all cases, the metrics saturate at about 800 epochs, which gives us an
empirical estimate of how many iterations our model needs to achieve good performance.

Figure 7: Qualitative comparison with Lin et
al. (21) on schematically-similar test images.

Finally, we present on Fig. 7 a qualitative comparison
against the recent method by Lin at al. (21). Even
though the images are different, we can extract some
interesting conclusions. Our method seems to be more
faithful albeit having lower reconstruction quality. The
method by Lin et al. has excellent reconstruction quality
and only losing some elements of the faithfulness, which
are not hurting the schematic understanding. This may
be because the later method is more sophisticated and
handles schematic information in addition to the visual
as part of the modeling procedure. Since our method is
not incorporating any schematic information, an inter-
esting future direction is to extend the model in order to
see if our pipeline can achieve similar quality.

5 CONCLUSION

We addressed the problem of neural decoding from fMRI recordings and proposed a novel architecture
inspired by neuroscience. More specifically, motivated by the fact that the human brain processes
visual stimuli in a hierarchical fashion, we postulated that this structure can be captured by latent
space of a hierarchical variational autoencoder (HVAE). Our HVAE serves as a proxy to learning
meaningful latent representations of stimuli images and can be pretrained on a large dataset of
high-resolution images. Following that, we train our Neural Decoder to learn a map from the fMRI
voxel space to the HVAE latent space. Our architecture replicates the visual information processing
in the human brain in the sense that earlier visual cortex areas (e.g., primary-secondary visual cortex)
are mapped to the earlier latent layers, whereas voxels from the higher visual cortex (e.g., PPA, FFA
areas) are mapped to the later latent layers. We validated our approach using fMRI recordings from a
visual presentation experiment involving 5 subjects and compared against other methods. Our work
paves the way to constructing better models to replicate human perception and understanding the
nuances of human visual reconstruction, both of which could utilized to better understand the brain,
assist people with visual disabilities and perhaps in decoding imagery during sleep.
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