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Abstract

In this work, we draw attention to a common setting for training data attribution
(TDA) where one has access only to the final trained model, and not the training
algorithm or intermediate information from the training process. To serve as a gold
standard for TDA in this “final-model-only” setting, we propose further training,
with appropriate adjustment and averaging, to measure the sensitivity of the given
model to training instances. We then unify existing gradient-based methods for
TDA by showing that they provide different approximations to the further training
gold standard. We investigate empirically the quality of these gradient-based
approximations to further training. In general, we find that the approximation
quality of first-order methods can be high but decays with the amount of further
training. In contrast, the approximations given by influence function methods are
more stable but surprisingly lower in quality.

1 Introduction

Training data attribution (TDA, or sometimes simply “data attribution”) refers to the attribution or
explanation of ML model behavior in terms of its training data. Existing methods for TDA fall into
several broad categories: re-training-based approaches [14, 13, 11, 24, 19, 25, 32], gradient-based
approaches applied throughout training [18, 29, 8, 2], and gradient approaches applied only at the
end [21, 34, 22, 4, 6, 16, 31, 28, 23] (please see the survey [17] for a deeper look at these categories).

In this paper, we draw attention to the fact that there exist multiple problem settings for TDA,
alongside the multiple categories of methods. These problem settings differ in the level of access
assumed. In particular, we focus on what we call the “final-model-only” (FiMO) setting in which
we have access only to the final trained model, and not the algorithm used to train the model or
intermediate information from training (e.g., checkpoints). The FiMO setting is motivated by the
common scenario in which TDA is performed by a different party than the one who developed the
model. This is the case for example for models downloaded from platforms such as HuggingFace.

We find that since the TDA literature has not clearly differentiated these problem settings, it is
also not clear on what should be the ideal “gold standard” for TDA in the FiMO setting. Having
a gold standard (as opposed to proxy tasks such as mislabelled example detection) facilitates the
development of more practical methods. We thus propose further training, starting from the given
final model, as a gold standard measure of the sensitivity of the model to training instances. Our
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proposal (Section 3) adjusts for the effect of further training alone (as separate from the effects of
particular training instances) and accounts for the randomness of neural network training algorithms.

Like re-training2, further training a model multiple times can be computationally prohibitive. We thus
consider approximations based on first- and second-order Taylor expansions of the further training
objective. In doing so, we unify several existing gradient-based methods for TDA. These methods
include gradient similarity [7] (a final-checkpoint-only case of TracIn [29]) and various methods
based on influence functions [21, 31, 28, 15, 23]. The direct connection that these gradient-based
methods have to our further training objective suggests that they are more suited to the FiMO setting,
rather than as approximations to re-training where their effectiveness has been questioned [5, 27].

We investigate empirically the quality of the approximations to further training provided by different
gradient-based methods. In this workshop submission on ongoing work, we present results on tabular
data. We find that first-order methods can give good initial approximations to further training, but the
quality of approximation decays with the amount of further training. In contrast, the approximation
quality of influence function methods is more persistent, but somewhat surprisingly, never as high as
first-order methods at their peak.

2 Problem Settings for Training Data Attribution

Preliminaries In all problem settings that we consider, we are given access to the training dataset
D = {zi}ni=1 for the model, consisting of n pairs zi = (xi, yi) of inputs xi ∈ X and target outputs
yi ∈ Y . A model f(x;θ) is a function f : X → F , parameterized by θ ∈ Rp, mapping to an
output space F (e.g., predicted logits). The quality of each model output f(xi;θ) with respect
to target yi is measured by a loss function ℓ(f(xi;θ), yi); we adopt the more compact notation
L(zi;θ) ≜ ℓ(f(xi;θ), yi). We use A to denote the training algorithm used to train f(x;θ) on
dataset D. We view A as a function that takes D and initial model parameters θ(0) as input and
outputs final parameters θf = A(D,θ(0)).

Given a test instance z = (x, y) and an output function g(z,θ) that depends in general on both
f(x;θ) and y, the task of TDA is to assign scores vi quantifying the importance of each training
instance zi to the output g(z,θ). We refer to vi interchangeably as an attribution or influence score.
Commonly, the output function is the loss on z, g(z,θ) = L(z;θ), as it is in our experiments.

Three problem settings We distinguish three problem settings for TDA, based on the level of
access to the above-defined quantities:

1. Training Algorithm Available (TAA): In this first case, we have access to the training algorithm
A. TDA can therefore be done by re-training the model on (i.e., applying A to) different subsets
of D and evaluating the resulting effects. This scenario typically occurs when the parties training
the model and performing data attribution are the same.

2. Checkpoints Available (CPA): We do not have access to A but do have intermediate information
from the training process, for example intermediate model parameters θ(t) (i.e., “checkpoints”) or
gradients ∇θf(xi;θ

(t)), and algorithm details such as learning rates. Here, TDA can be done by
“tracing” the effect of training instances throughout the process. This scenario is also more typical
when model training and data attribution are performed by the same party.

3. Final Model Only (FiMO): We have access only to the final model f(x;θf ) and not the training
algorithm A or intermediate information. The algorithm A may be actually unavailable, or it may
be available but too computationally expensive or otherwise undesirable to re-run. This scenario
typically occurs when model training and data attribution are performed by different parties.

The three settings also differ in the object being attributed. In the TAA setting, the object is the
algorithm A and its sensitivity to different instances zi. In the CPA setting, it is the training trajectory.
The FiMO setting is the most focused on the final model f(x;θf ) that will actually be used.

In the remainder of the paper, we focus on the FiMO setting as it requires the least amount of access
and is thus the most widely applicable. It applies for example to open-weights models that are freely
downloadable from platforms such as HuggingFace. By extension, the FiMO setting applies in cases
where methods for the TAA and CPA settings (i.e., re-training and tracing methods) cannot be used.

2Throughout the paper, we reserve the term “re-training” to mean re-training from scratch.

2



Figure 1: Given only a final model with parameters θf , the proposed further training gold standard
measures the model’s sensitivity to training sample i by further training on the full training set D as
well as leaving out sample i (D−i), resulting in changed parameters θf +∆θ(D) and θf +∆θ(D−i).
The difference in outputs g(z,θf +∆θ(D−i))− g(z,θf +∆θ(D)) between the two further trained
models indicates the sensitivity to i. If training is stochastic, then this process should be repeated to
obtain the expected sensitivity.

3 A Further Training Gold Standard for the Final-Model-Only Setting

We first consider the question of how TDA should ideally be done in the FiMO setting, i.e., what
could serve as a “gold standard” method. While a gold standard method may be very expensive to
carry out in many cases, it is nevertheless useful in evaluating and developing approximate TDA
methods that are more practical. However, since the TDA literature has not explicitly addressed the
FiMO setting to our knowledge, it is also not clear what the gold standard should be.

Returning for a moment to the TAA setting, the natural question to ask there is one of contribution:
how much does a training instance zi contribute to the model through the training process? Accord-
ingly, variants of re-training, designed to estimate these contributions, are widely accepted as gold
standards in the TAA setting. The simplest of these is leave-one-out (LOO) re-training where each
instance zi is left out of the training set in turn to assess its contribution. In the FiMO setting however,
it is not clear how one can “go back in time” to determine contributions to the final model. Instead,
we change the question to one of sensitivity: how sensitive is the given model to a training instance
zi? To measure these sensitivities, we propose variants of further training as a gold standard, in a
manner analogous to how re-training is used in the TAA setting.

Further training can be described generically as follows. We start from the given parameters θf

and train on a dataset D′ using an algorithm A′, i.e., θf + ∆θ = A′(D′,θf ), where D′ and A′

are generally different from D and A. In this work, we restrict attention to LOO further training,
corresponding to LOO datasets D′ = D−i ≜ D \ {zi} as well as D′ = D. As for A′, our desire is
for it to be representative of typical neural network (NN) training. We thus assume that A′ seeks to
solve the following empirical risk minimization problem:

∆θ(D′) ≈ argmin
∆θ

R(D′;θf +∆θ), R(D′;θ) ≜
∑

zi∈D′

L(zi;θ), (1)

where the notation θf +∆θ is meant to indicate that the optimization is initialized at θf (∆θ = 0),
and ∆θ(D′) is the change in parameters resulting from applying A′ to (D′,θf ).

With further training as a building block, we now address two issues inherent to typical NN training.

Non-convergence: The “final” parameters θf are often not a stationary point of the empirical risk.
Hence, as shown in Figure 1, further training on the original training set D′ = D generally yields
a non-zero change ∆θ(D). This parameter shift is reflected in the output function as g(z,θf +
∆θ(D)) and can be interpreted as the effect due to further training alone. Similarly, ∆θ(D−i) and
g(z,θf +∆θ(D−i)) in Figure 1 are the effects of further training without instance zi. The difference
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in outputs,

g
(
z,θf +∆θ(D−i)

)
− g
(
z,θf +∆θ(D)

)
, (2)

can therefore be interpreted as the sensitivity to the presence of zi, where we have adjusted for the
effect of further training.

Stochasticity of training: The training algorithm A′ also depends on random elements, notably
the order of instances in each training epoch. Denoting these random elements as ξ, the change in
parameters becomes a function of ξ, θf +∆θ(D′, ξ) = A′(D′,θf , ξ), as does the output function
g(z,θf + ∆θ(D′, ξ)). We view ξ as a nuisance parameter, an artifact of the stochastic nature of
modern training algorithms. Thus, we would ideally like to take the expectation of (2) over ξ to yield

v∗i = E
[
g
(
z,θf +∆θ(D−i, ξ)

)
− g
(
z,θf +∆θ(D, ξ)

)]
. (3)

This is the adjusted and expected sensitivity to leaving out instance zi and is our proposed gold
standard attribution score based on further training.

4 Gradient-Based Methods as Approximate Further Training

The further training gold standard described in the previous section is computationally expensive. In
the case of LOO further training, the number of further trainings scales with the training set size n,
or at least the number of instances for which we wish to estimate attribution scores. If we wish to
approximate the expectation in (3) by averaging over multiple realizations of ξ, that further scales the
cost. It is natural therefore to consider approximate further training. Accordingly, we now assume
that the amount of further training is limited, so that the resulting changes in parameters ∆θ are small.
In this section, we show that first-order gradient-based methods for TDA can be re-derived from this
perspective, and we do the same for influence function methods in Appendix A.2. These derivations
suggest that gradient-based methods are better viewed as approximations to further training and better
suited to sensitivity analysis in the FiMO setting than for other purposes. It is important to note that
we do not assume the given parameters θf are a stationary point for training set D.

Quadratic approximation of further training: The assumption that ∆θ is small leads us to consider
first- and second-order Taylor expansions of (1):

∆̂θ(D′) = argmin
∆θ

R(D′;θf )+
(
∇θR(D′;θf )

)T
∆θ+

1

2
∆θT∇2

θR(D′;θf )∆θ+
λ

2
∥∆θ∥22, (4)

where ∇θR(D′;θf ) and ∇2
θR(D′;θf ) denote the gradient and Hessian of the empirical risk with

respect to θ evaluated at θ = θf , and the first-order expansion omits the Hessian term. In both
cases, an ℓ2 regularizer (λ/2)∥∆θ∥22 has been added in (4), corresponding to the “damping” term in
influence function estimation. As discussed in Appendix A.1, the regularizer can be motivated in two
ways: 1) enforcing the smallness of ∆θ and the accuracy of the Taylor expansion; 2) ensuring that
solutions to (4) do not diverge.

Linear approximation of output function: We may similarly expand the output function g(z,θf +
∆θ) to first order in ∆θ. Doing so reduces the difference in (2) to the inner product

v̂i =
(
∇θg(z,θ

f )
)T (

∆̂θ(D−i)− ∆̂θ(D)
)
. (5)

First-order expansion recovers Grad-Dot: In the case of first-order Taylor expansion, the absence
of the Hessian term in (4) makes its solution straightforward. For D′ = D, we have ∆̂θ(D) =

−λ−1∇θR(D,θf ), and similarly ∆̂θ(D−i) = −λ−1(∇θR(D,θf ) − ∇θL(zi,θ
f )). Hence (5)

becomes
v̂i = λ−1

(
∇θg(z,θ

f )
)T∇θL(zi,θ

f ), (6)

which is proportional to the inner product between training loss and test output gradients. This
corresponds to the “Grad-Dot” method [7], and also to a special case of TracIn [29] that uses only the
final checkpoint. A variation is to use the cosine similarity between gradients (“Grad-Cos”) instead
of the unnormalized inner product.
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5 Related Work

This work builds upon existing works that also take a retrospective look at TDA methods, and
influence functions in particular [5, 35, 3, 30, 27]. We have a deeper discussion of individual papers
in Appendix B. Here, we note the key differences between our work and these prior works:

1. More gradient-based methods: Our unified view (Section 4 and the Appendix A) and numerical
comparisons (Section 6) encompass gradient-based methods beyond influence functions, including
more recent methods such as TRAK [28] and DataInf [23] as well as first-order methods. We
obtain insights into similarities and differences among gradient-based methods, in addition to their
performance on a task (approximation of further training in our case). In contrast, [5, 35, 3, 30]
mainly focus on influence functions, while [27] evaluates fewer methods than we do.

2. Further training: The further training gold standard in Section 3 is a formal presentation of
similar procedures used in previous works (in the appendix in [3, App D.2], in the experiment in
[30, Sec. 5.2]). The proposal of averaging over realizations of random further training appears
to be new, and our results in Appendix C.2 show that it brings further training closer to what
gradient-based methods estimate. The authors of [3] propose an alternative gold standard called
the proximal Bregman response function (PBRF). The PBRF however involves a non-standard
Bregman distance objective, tailored specifically to be closer to influence functions, whereas our
further training is more generic.

3. FiMO setting: We explicitly define the FiMO setting, which these previous works have not.

6 Numerical Comparison of Gradient-Based Methods to Further Training

We performed experiments to assess the quality of the approximations to further training provided
by different gradient-based TDA methods. For this workshop submission, we confine ourselves to
reporting on experiments with tabular data. Experiments on image and text data are ongoing.

6.1 Experimental setup

A full description of our experimental setup can be found in Appendix C.1.

Datasets and “final” models: We used four tabular datasets: two for regression, Concrete Strength
and Energy Efficiency from the UCI repository [20], and two larger ones for classification, FICO
Challenge [12] and Folktables [10]. For all datasets, we used a 2-hidden-layer multi-layer perceptron
(MLP) with 128 units in each hidden layer. The MLPs were trained using stochastic gradient descent
(SGD) to yield the final model f(x,θf ).

Selection of test and training instances: Our aim was to estimate influence scores of a subset
L ⊂ D of training instances on the losses for a subset of m test instances (i.e., g(z,θ) = L(z;θ)).
We selected l = |L| = 100 training instances and m = 100 test instances at random, except for the
Concrete and Energy datasets where all test instances were used.

Implementation of further training: For the results in this section, the further training algorithm A′

is also SGD. Appendix C.2 has results using Adam as A′ instead. We evaluated the approximation
quality of gradient-based methods as a function of the number of further training epochs. To
approximate the expectation in (3), we took averages over r = 100 random seeds (denoted as
realizations ξ(s) of random variable ξ) that control the order of instances in each training epoch.

We considered two methods for adjusting for the effect of further training alone. The first is as
specified in (2), (3), i.e., subtracting the output due to further training on the full dataset D. We found
however that for the Folktables dataset, this adjustment left a non-negligible bias that varies from
epoch to epoch, resulting in noisy cosine similarities (please see Appendix C.2 for these results). The
second method used in this section subtracts the mean of the effects due to each LOO dataset D−i.
Incorporating also the averaging over random seeds, the “gold” attribution score from further training
is thus

vi =
1

r

r∑
s=1

[
g
(
z,θf +∆θ(D−i, ξ

(s))
)
− 1

l

∑
i′∈L

g
(
z,θf +∆θ(D−i′ , ξ

(s))
)]

. (7)
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Figure 2: Cosine similarity between attribution scores of gradient-based TDA methods and further
training, as a function of the amount of further training.

Evaluation metric: For each test instance evaluated, we have a vector v ∈ Rl of gold attribution
scores from further training (7), and corresponding vectors v̂ from approximate methods. We use the
cosine similarity between v and v̂ as the evaluation metric, as justified in Appendix C.1.

6.2 Results

Figure 2 shows the cosine similarity between the attribution scores of gradient-based TDA methods
and further training, as a function of the number of epochs of further training. The curves represent
the mean cosine similarity over the m test instances, while the shaded area corresponds to one
standard error above and below the mean. We make the following observations:

• First-order methods: The two first-order methods, Grad-Dot and Grad-Cos, have cosine similarity
curves that decay with the amount of further training. In particular, the initial cosine similarity
of Grad-Dot is among the highest achieved by any approximate method. This aligns with the
derivation of Grad-Dot in Section 4 as the direct result of first-order approximation of further
training, while the normalized Grad-Cos is not supported by the theory. The rate of decay after
the initial peak varies with the dataset. One reason may be that final model parameters θf that are
farther from stationary lead to worse first-order approximations.

• DataInf [23]: We find it interesting that DataInf behaves like a first-order method, despite its
attempt to incorporate second-order information. It is especially similar to Grad-Dot (cosine
similarity between the two is typically above 0.95) and generally slightly higher in similarity to
further training.

• Conjugate Gradient (CG), LiSSA, LiSSA-H: These are influence function methods that itera-
tively approximate the inverse Hessian-gradient product. CG and LiSSA use the Gauss-Newton
approximation to the Hessian, while LiSSA-H uses the true Hessian. Unlike the first-order methods,
their cosine similarity curves do not decay and even increase with further training. However, they
do not attain cosine similarities as high as the first-order methods (at least within the amount of
further training that we conducted). A possible interpretation is that influence function methods
provide better longer-range approximations to further training by using second-order information.
However, the approximation may not be especially good at any point.

• EK-FAC [15] and TRAK [28]: These methods are also derived from influence functions with
additional approximations. EK-FAC has higher cosine similarity than CG and LiSSA on Concrete
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and Energy in early epochs, but is worse otherwise. TRAK did not give good approximations to
further training in these experiments.

In Appendix C.2, we show the effect of varying the number r of seeds averaged. We find that the
cosine similarities improve in all cases with the amount of averaging of further training.

7 Discussion

We have proposed a further training gold standard for TDA in the final-model-only setting that we
highlight, and have shown how several gradient-based TDA methods approximate further training in
different ways. We welcome discussion of the topics listed in Appendix D and beyond.
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A More on Gradient-Based Methods

A.1 ℓ2 regularization/damping term

The following reasons provide optimization-based justification for the ℓ2 regularizer (λ/2)∥∆θ∥22
added in (4). This corresponds to the “damping” term λI added to the Hessian in estimating influence
functions, where it is usually motivated simply as a means to ensure invertibility/positive definiteness.

1. Enforce assumption/trust region: Penalizing the ℓ2 norm of ∆θ enforces the assumption
that ∆θ is small. It can also be viewed as enforcing a trust region [9], a region around θf

where the second-order expansion gives a better approximation.
2. Ensure optimization is well-posed: The loss function L(z;θ) for neural networks is

typically non-convex, which implies that the empirical risk Hessian ∇2
θR(D′;θf ) may

not be positive semidefinite. In the absence of the regularizer, if ∇2
θR(D′;θf ) has a

negative eigenvalue, then the objective value in (4) would tend to −∞ in the direction of
the corresponding eigenvector. If we add regularization with λ larger in magnitude than
the most negative eigenvalue of ∇2

θR(D′;θf ), then such divergence is prevented and an
optimal solution to (4) exists.

A.2 Influence function methods

To show that the approximate further training formulation in (4), (5) recovers influence function-based
TDA methods, we first present two ingredients: influence functions for (4), and the Gauss-Newton
approximation to the Hessian that is commonly made. Throughout this section, we assume that the
damping parameter λ is large enough as discussed in Appendix A.1 so that the damped risk Hessian
H(θf ) + λI is invertible.

A.2.1 Influence functions for (4)

Influence functions approximate the effect of down-weighting the training loss of instance i by a small
amount ϵ, i.e., of changing the empirical risk from the full-dataset risk R(D;θ) to R(D;θ)−ϵL(zi;θ).
We use D−i,ϵ to denote this down-weighted dataset. We apply the implicit function theorem to the
stationary point condition for (4) to derive the following.
Proposition 1. The change in parameters due to down-weighting training instance zi by an amount
ϵ is approximated by influence functions as

∆̂θ(D−i,ϵ)− ∆̂θ(D) ≈ ϵ
(
H(θf ) + λI

)−1
(
∇θL(zi;θ

f ) +∇2
θL(zi;θ

f )∆̂θ(D)
)
, (8)

where H(θf ) = ∇2
θR(D;θf ) is the Hessian of the empirical risk evaluated at θf .
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Proof. We substitute the down-weighted risk R(D;θ) − ϵL(zi;θ) for R(D;θ) everywhere in (4).
Then the stationary point (i.e., zero-gradient) condition for (4) becomes

F (ϵ,∆θ) ≜ ∇θR(D;θf )− ϵ∇θL(zi;θ
f ) +

(
H(θf )− ϵ∇2

θL(zi;θ
f ) + λI

)
∆θ = 0. (9)

For ϵ = 0, i.e., no down-weighting, (9) is satisfied by the full-dataset parameter change

∆̂θ(D) = −
(
H(θf ) + λI

)−1 ∇θR(D;θf ). (10)

For small ϵ, we apply the implicit function theorem to obtain an expression for ∆̂θ(D−i,ϵ). The
relevant Jacobians of function F defined in (9) are

JF,∆θ = H(θf )− ϵ∇2
θL(zi;θ

f ) + λI,

JF,ϵ = −∇θL(zi;θ
f )−∇2

θL(zi;θ
f )∆θ,

from which we obtain

∆̂θ(D−i,ϵ)− ∆̂θ(D) = −ϵ
(
JF,∆θ

∣∣
ϵ=0,∆θ=∆̂θ(D)

)−1

JF,ϵ

∣∣
ϵ=0,∆θ=∆̂θ(D)

+O(ϵ2)

≈ ϵ
(
H(θf ) + λI

)−1
(
∇θL(zi;θ

f ) +∇2
θL(zi;θ

f )∆̂θ(D)
)
.

If θf is a stationary point of the full-dataset risk R(D;θ), then ∆̂θ(D) = 0 and (8) reduces to the
familiar form of a (damped) inverse Hessian-gradient product:

∆̂θ(D−i,ϵ) ≈ ϵ
(
H(θf ) + λI

)−1 ∇θL(zi;θ
f ).

If θf is not stationary however, then ∆̂θ(D) ̸= 0 as discussed before. Previous works like [21] still
neglect the last ∆̂θ(D) term in (8), arguing that if θf is near-stationary, then ∆̂θ(D) is small and the
product ϵ∆̂θ(D) is second-order. It is also convenient to neglect this ∆̂θ(D) term because one would
otherwise have to compute ∆̂θ(D). We will neglect it as well in the present work to be consistent
with previous methods and assuming it is not feasible to compute ∆̂θ(D). Future work however
could revisit this issue.

A.2.2 Gauss-Newton approximation to Hessian

It is often the case that the loss function L(zi;θ) is a composition ℓ̄(f̄(zi;θ)) of a scalar-valued
model output function f̄(zi;θ) with a convex univariate loss function ℓ̄(f̄). Here we allow f̄(zi;θ)
to also depend on the target value yi. For example, if f(xi;θ) is a regression model, f̄(zi;θ) =
f(xi;θ)− yi can be the prediction error. For multi-class classification, [28] defines f̄(zi;θ) to be
the logit of the predicted probability of the target class yi, which allows multi-class classification to
be handled in the same way (see [28, Sec. 3.3] for details).

Given the compositional form L(zi;θ) = ℓ̄(f̄(zi;θ)), the gradient and Hessian of L(zi;θ) are given
by

∇θL(zi;θ) = ℓ̄′(f̄(zi;θ))∇θ f̄(zi;θ), (11)

∇2
θL(zi;θ) = ℓ̄′′(f̄(zi;θ))∇θ f̄(zi;θ)∇θ f̄(zi;θ)

T + ℓ̄′(f̄(zi;θ))∇2
θ f̄(zi;θ). (12)

The Gauss-Newton approximation to the Hessian drops the second term in (12), which requires
the Hessian ∇2

θ f̄(zi;θ) that is more difficult to compute. To obtain more compact expres-
sions, let us define the gradient vectors gi = ∇θ f̄(zi;θ

f ), i = 1, . . . , n and matrix G =

[g1 . . . gn]
T , vector r = −

[
ℓ̄′(f̄(z1;θ

f )) . . . ℓ̄′(f̄(zn;θ
f ))
]T

, and n × n diagonal ma-
trix V with ℓ̄′′(f̄(z1;θ

f )), . . . , ℓ̄′′(f̄(zn;θ
f )) as its diagonal entries. Using these definitions, (11),

and the Gauss-Newton simplification of (12), the quadratic optimization in (4) can be rewritten for
D′ = D as

min
∆θ

−rTG∆θ +
1

2
∆θT (GTV G+ λI)∆θ. (13)

where we have also disregarded the constant term.

The same derivation of influence functions in the proof of Proposition 1 applies to the Gauss-
Newton approximation. Effectively, (11) and (12) (with the Gauss-Newton simplification) are used to
substitute for the gradient and Hessian in (8).
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Corollary 1. Under the Gauss-Newton approximation, the influence function in Proposition 1
becomes

∆̂θ(D−i,ϵ)− ∆̂θ(D) = ϵ
(
viig

T
i ∆̂θ(D)− ri

)
(GTV G+ λI)−1gi. (14)

Proof. The result follows from (8) by substituting the Gauss-Newton Hessian H(θf ) = GTV G,
∇2

θL(zi;θ) = viigig
T
i , ∇θL(zi;θ) = −rigi, and simplifying.

As before, this is a generalization of the standard influence function to non-stationary θf and non-zero
∆̂θ(D), and reduces to the standard form used in previous works when ∆̂θ(D) = 0.

A.2.3 Relationships with existing influence function methods

We now discuss how existing influence function and influence function-like methods correspond to
specific cases of Proposition 1 and Corollary 1.

Conjugate gradient (CG) and LiSSA Both (8) and (14) require computing an inverse Hessian-
vector product, with either the damped true Hessian H(θf ) + λI or the Gauss-Newton Hessian
GTV G + λI . For models with a large number of parameters p, the O(p3) computational cost
of directly solving the system of equations is prohibitive. CG and LiSSA are two methods that
approximate the solution iteratively, the former by applying the CG algorithm to an equivalent
quadratic minimization problem, the latter using a truncated Neumann series. Both use repeated
Hessian-vector products (HVPs) and can be applied to either (8) or (14) (with ∆̂θ(D) = 0). We refer
to the works [26, 1] proposing these methods for more details.

Arnoldi influence functions [31] proposes to use Arnoldi iteration (a.k.a. Lanczos itera-
tion for symmetric matrices) to approximately compute the largest-magnitude eigenvalues
and corresponding eigenvectors of H(θf ). This involves constructing the Krylov subspace
Span{v,H(θf )v, . . . ,H(θf )Tv} starting with an arbitrary vector v, which again requires re-
peated HVPs with H(θf ). The method then projects gradient vectors into the subspace of top
eigenvectors of H(θf ). Once in this subspace, the matrix inversion in (8) (again with ∆̂θ(D) = 0)
reduces to scalar division by eigenvalues.

The following methods are based on and therefore specific to the Gauss-Newton approximation.

TRAK TRAK [28] can be seen as a hybrid data attribution method that combines a gradient-based
approximation with re-training (training an ensemble of models). Under the FiMO setting where
re-training is not possible, we focus on the gradient-based part of TRAK by setting its parameter
M (number of trained models) to 1. This variant, which we refer to as TRAKM=1, falls under
the Gauss-Newton framework of this section. First, TRAK applies a random projection matrix
P ∼ N (0, 1)p×k to reduce the dimensionality of the gradients: ϕi = P Tgi and Φ = GP . With
ϕi and Φ in place of gi and G, TRAKM=1 corresponds to a special case of (14) with ∆̂θ(D) = 0
(stationary θf ), λ = 0 (no regularization), and V = I (non-identity V found empirically to have
little effect):3

∆θTRAK(D−i) = −ri(Φ
TΦ)−1ϕi. (15)

DataInf The DataInf method [23] starts with a variant of the Gauss-Newton approximation (which
they justify for loss functions that are negative log-likelihoods) in which ℓ̄(f̄) = f̄ is the identity
function and gi = ∇θL(zi;θ

f ) is a gradient of the loss. DataInf also computes influence functions
separately for each layer in a neural network (equivalent to making a block-diagonal approximation
to the Hessian). Setting aside this layer-wise simplification, DataInf corresponds to (14) with
∆̂θ(D) = 0 (stationary θf ), ri = −1 (identity ℓ̄), and V = (1/n)I (identity ℓ̄, average over D
instead of sum). Their key idea is to interchange the order of averaging and matrix inversion, i.e.,(

1

n
GTG+ λI

)−1

=

(
1

n

n∑
i=1

gig
T
i + λI

)−1

≈ 1

n

n∑
i=1

(
gig

T
i + λI

)−1
. (16)

3[28] actually begins with an exact leave-one-out formula but finds that the denominator also has little effect.
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They then use the Sherman-Morrison formula to express (gigT
i + λI)−1 in closed form, resulting in

an approximation to (5) that involves only gradient inner products. Please see [23] for more details.

B More on Related Work

In this appendix, we discuss some more closely related works individually.

In [3], the authors examine the discrepancy between influence functions and leave-one-out re-training
and decompose the discrepancy into five contributions. They show that influence functions are a
much better approximation to a quantity they call the proximal Bregman response function (PBRF),
which they propose as an alternative gold standard to LOO re-training. The key differences between
our work and [3] are as follows: 1) We propose further training based on standard training objectives
(e.g., cross-entropy or mean squared error, no proximity regularization) as a different, more general
gold standard. In contrast, the PBRF involves a non-standard Bregman distance objective, chosen
specifically to be closer to influence functions. (In their Appendix D.2, [3] also discuss further
training with and without leaving out one sample, which they refer to as “two-stage LOO re-training.”
However, they do not consider taking an expectation over random trainings as we do.) 2) Our unified
view encompasses TDA methods beyond influence functions, including more recent methods such as
TRAK [28] and DataInf [28] as well as first-order methods. We evaluate the extent to which all these
methods approximate further training.

In [30], the authors discuss problematic assumptions made by influence functions and TracIn [29]
and how these can be addressed. They then show that the predictive power of influence functions
and TracIn is fundamentally limited by divergence in parameters as (further) training proceeds. The
latter contribution is the main point of connection with our work, where we also observe the fading
of predictive power over training time. The differences in our work are: 1) We make explicit the
further training gold standard that they compare to in their experiment [30, Sec. 5.2] and we further
propose its expected version with respect to stochasticity in the training algorithm. 2) We conduct
a larger-scale experiment than theirs in certain dimensions, notably the TDA methods evaluated,
as well as averaging over the aforementioned stochasticity and using more test points and left-out
training points.

In [5], the authors show that influence functions become worse approximators of a training example’s
importance on a test prediction with increasing model depth, width and if the models are trained
with no weight decay. All experiments in the paper are conducted with further training (from the
already trained model, not from scratch) determining the ground truth influence. However, [5] does
not average over further training realizations as we do. Moreover, their study is focused on influence
functions, whereas we consider other gradient-based methods as well.

In [27], the authors argue that a Bayesian approach is the correct way of evaluating influences of
training examples on test predictions as there is a lot of variance in most TDA estimates when we
account for random initialization of the model as well as variation in batching when training. In
such situations the recommendation is to consider the distribution of attribution values for a training
example, or at least consider the distribution’s variance, rather than simply (individual run) point
estimates. Different from our work, the experiments in the paper are conducted by re-training models
from scratch, and only three gradient-based TDA methods are studied, namely influence functions
(IF), Grad-Dot (GD) and Grad-Cos (GC).

The seminal paper [21] on influence functions in ML sketched a derivation similar to ours in Section 4
and Appendix A, but in less detail. In particular, our more careful derivation of the influence function
in Proposition 1 keeps the ∆̂θ(D) term that [21] neglects. Appendix A.1 also discusses the damping
term λI at greater length.

C Additional Experimental Details and Results

C.1 Experimental setup details

Datasets We followed [3] in using two regression datasets from the UCI repository [20], Concrete
Strength and Energy Efficiency. We then departed from [3] in choosing two classification datasets,
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FICO Challenge [12] and Folktables [10], because they are at least one order of magnitude larger
than the tabular datasets in [3] in terms of the number of instances and/or features.

Data pre-processing For Concrete, Energy, and FICO, we split the dataset 90%-10% into training
and test sets and standardized the features to have zero mean and unit variance. Handling of special
feature values in FICO was done as in [33]. For Folktables, we used the person-level data from year
2018 for the US state of Massachusetts. The classification task was predicting whether a person’s
income is above or below USD 50,000 (task ACSIncome). The dataset was split 75%-25% into
training and test, categorical features were dummy-coded, and numerical features were standardized.

“Final” Models For all datasets, we used a 2-hidden-layer multi-layer perceptron (MLP) with 128
units in each hidden layer. For the regression problems, the MLP has one output and the loss function
is mean squared error (MSE), while for (binary) classification, the MLP has two outputs (logits) and
the loss function is cross-entropy. The MLPs were trained using SGD for T = 1000 epochs and a
batch size of 128 (following [3]) to yield the final model f(x,θf ), except for the larger Folktables
dataset where T = 100. Learning rates were as follows: 0.3 for Concrete and Energy, 0.001 for
FICO, and 0.01 for Folktables.

Implementation of further training For the case in which the further training algorithm A′ is
also SGD (A′ = A), the learning rate for A′ was chosen to be one order of magnitude smaller than
that for A (i.e., 0.03 for Concrete and Energy, 10−4 for FICO and Folktables) since θf is closer to
convergence than the initial parameters θ(0). The maximum number of epochs T ′ for A′ was also
chosen to be a fraction of T : T ′ = 500 for Concrete and Energy following [3], T ′ = 200 for FICO,
T ′ = 25 for Folktables. Other parameters such as batch size were the same as for A. For the case
in which A′ was Adam, smaller learning rates were used since Adam is a more powerful optimizer:
10−4 for Concrete and Energy, 10−6 for FICO and Folktables.

Regarding the random seeds (denoted as ξ(s) in (7)) that determine the order of instances in each
epoch, this control was achieved in PyTorch as follows: First, the random seed of a random number
Generator object was set to a specified value. Then, a RandomSampler object was instantiated with
this Generator, and a DataLoader was instantiated with the RandomSampler.

Regarding the adjustment for the effect of further training alone, the results in Figure 2 use the mean
subtraction adjustment in (7). For the other adjustment method in which the output due to full-dataset
training is subtracted, the attribution score is given by

vi =
1

r

r∑
s=1

[
g
(
z,θf +∆θ(D−i, ξ

(s))
)
− g
(
z,θf +∆θ(D, ξ(s))

)]
. (17)

Approximate TDA methods All methods take the final model f(x;θf ) as input, either by first
computing training loss gradients ∇θL(zi;θ

f ) as well as test loss gradients, or as a model object that
is used to compute derivatives. Given the gradients, the first-order methods Grad-Dot and Grad-Cos
were straightforward to implement as (normalized) inner products. For the influence function methods
CG, LiSSA, and LiSSA-H, we used the implementations in the torch-influence repository. For
TRAK [28], EK-FAC [15], and DataInf [23], we used their respective repositories.

Evaluation metric The vectors v of gold attribution scores and v̂ of approximate attribution scores
may have different scales. Here we do not concern ourselves with the differing scales, so we take both
to be normalized to unit ℓ2 norm. In this case, the squared Euclidean distance ∥v̂ − v∥2 and cosine
similarity v̂Tv are equivalent up to an affine transformation, and we use the latter as the evaluation
metric. Note that cosine similarity is a more demanding measure than Pearson correlation (used
for example in [30, 3]), since the latter corresponds to approximating vi by αv̂i + β where β is a
non-zero bias, whereas the former constrains β to be zero.

C.2 Additional results

Figure 3 shows cosine similarity between the attribution scores of gradient-based methods and further
training using Adam instead of SGD as in Figure 2. The patterns are broadly similar to those in
Figure 2. However, for Folktables in Figure 3d, the curves for the first-order methods and DataInf
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Figure 3: Cosine similarity between attribution scores of gradient-based TDA methods and further
training using Adam, as a function of the amount of further training.
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Figure 4: Cosine similarity between attribution scores of gradient-based TDA methods and further
training using SGD as in Figure 2, but with adjustment according to (17).

do not peak at the beginning but rather after a few epochs. In Figures 3a and 3b, the curves for the
influence function methods CG and LiSSA are also seen to peak and then decay.

In Figure 4, the further training optimizer is SGD as in Figure 2, but the adjustment for the effect
of further training alone is done using (17), i.e., by subtracting the output from full-dataset training.
The plots for Concrete, Energy, and FICO are similar to their counterparts in Figure 2. However for
Folktables in Figure 4d, the curves are very noisy. The reason is that the adjustment in (17) still leaves
a non-negligible constant bias, i.e., the attribution scores vi are shifted up or down by a constant
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Figure 5: Cosine similarity between attribution scores of gradient-based TDA methods and further
training using SGD, as a function of the number of random seeds averaged.

that varies from epoch to epoch. This varying bias is reflected in the cosine similarities shown in
Figure 4d.

In Figures 5, 6, and 7, we fix the number of further training epochs to 1 and plot cosine similarities
as a function of the number of random seeds averaged. In all cases, the cosine similarity increases,
implying that the averaging of further training runs brings it closer to what gradient-based methods
estimate. The increases are more notable for the first-order methods and DataInf, and especially so in
Figure 7 when adjustment is done using full-dataset further training (17). As seen in Figure 4, this
adjustment method is noisier and appears to benefit more from averaging.

D Topics for Discussion

• An open question is how much further training is the right amount to determine the final model’s
sensitivity to training instances. If too little, the sensitivity may not be measurable, whereas if too
much, then the measurement may no longer be local, i.e., specific to the given model f(x;θf ).
The extent to which further training is well-approximated by Taylor expansions (as evaluated for
example in Figure 2) may provide a partial answer.

• Is it possible to combine the strengths of first- and second-order methods as seen in Figure 2? Or
make use of the generalized influence function expressions (8), (14) derived in Appendix A.2?
Regarding the former, we (as well as a reviewer of this paper) note that the damping parameter λ
could be used to interpolate between first- and second-order methods.

• While we have presented further training as applied to the original training set D and assumed that
D is available, there is no obstacle to considering further training on new, unseen instances.
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Figure 6: Cosine similarity between attribution scores of gradient-based TDA methods and further
training using Adam, as a function of the number of random seeds averaged.
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Figure 7: Cosine similarity between attribution scores of gradient-based TDA methods and further
training using SGD and full-dataset adjustment (17), as a function of the number of random seeds
averaged.
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