
Nanowire Neural Networks for time-series processing

Veronica Pistolesi
Dept. of Computer Science

University of Pisa, Italy
v.pistolesi6@studenti.unipi.it

Andrea Ceni
Dept. of Computer Science

University of Pisa, Italy
andrea.ceni@di.unipi.it

Gianluca Milano
AM&D-Group

INRiM, Torino, Italy
g.milano@inrim.it

Carlo Ricciardi
Dept. of Applied Science and Technology

Politecnico di Torino, Italy
carlo.ricciardi@polito.it

Claudio Gallicchio
Dept. of Computer Science

University of Pisa, Italy
claudio.gallicchio@unipi.it

Abstract

We introduce a novel computational framework inspired by the physics of nanowire
memristive networks, which we embed into the context of Recurrent Neural Net-
works (RNNs) for time-series processing. Our proposed Nanowire Neural Network
architecture leverages both the principles of Reservoir Computing (RC) and fully
trainable RNNs, providing a versatile platform for sequence learning.
We demonstrate the effectiveness of the proposed approach across diverse regres-
sion and classification tasks, showcasing performance that is competitive with
traditional RC and fully trainable RNNs. Our results highlight the scalability and
adaptability of nanowire-based architectures, offering a promising path toward
efficient neuromorphic computing for complex sequence-based applications.

1 Introduction

Neuromorphic computing, inspired by the structure and function of the human brain, aims to
replicate biological information processing systems for the development of efficient and brain-like
computational frameworks [Marković et al., 2020]. A key approach within this field is leveraging
physical substrates, which bypass traditional digital simulations, to perform computation based on
their inherent physical properties [Nakajima, 2020]. Such systems offer an opportunity to implement
more scalable and efficient computational models compared to conventional methods.

Reservoir Computing (RC), and particularly the Echo State Network (ESN) approach, provides a
theoretical framework that aligns well with these principles, particularly for recurrent neural networks
(RNNs) implemented in physical systems [Nakajima and Fischer, 2021, Yan et al., 2024]. In RC,
the recurrent layer, known as the reservoir, remains fixed during training, while only the readout
layer is trained. This reduces training complexity and allows efficient mapping of input signals into
high-dimensional spaces for tasks such as time-series processing. The fixed nature of the reservoir
offers a natural avenue for integrating physical systems, enabling their use as computational reservoirs
[Tanaka et al., 2019].

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024).



Recent work by Milano et al. [Milano et al., 2022] takes this concept further by demonstrating how
self-organizing memristive nanowire networks can serve as physical reservoirs for computation. These
nanowire networks map spatio-temporal inputs into a feature space through their inherent nonlinear
dynamics, offering fault tolerance and adaptability, akin to biological neuronal circuits. This approach,
termed in-materia computing, underscores the potential for neuromorphic architectures to implement
brain-inspired paradigms with reduced training costs while maintaining robust performance in tasks
like time-series prediction.

Building on this foundation, we propose to explore the scalability and potential of nanowire networks
by introducing physics-inspired computational models, named Nanowire Echo State Network (NW-
ESN), and Nanowire Recurrent Neural Network (NW-RNN). We analyze the architectural parameters
of these models and assess their performance across several time-series tasks. To validate our
approach, we perform experiments on both classification and regression tasks. Through these
experiments, we demonstrate that nanowire-based models can achieve competitive results compared
to traditional methods, providing insights into their scalability and applicability in neuromorphic
computing. Our findings highlight the potential of these models in advancing next-generation
intelligent systems and robust, adaptive computational frameworks.

2 Nanowire networks

Nanowire networks consist of tiny, highly conductive wires, made from metallic materials, arranged
in a mesh-like pattern, see Fig.1 for a realistic picture. These networks mimic the physical structure
of the human brain, with the nanowires acting like neurons and their intersections resembling
synapses. This unique structure allows nanowire networks to exhibit properties similar to neural
networks, including the ability to learn and remember. Interestingly, the single memristive dynamics

Figure 1: Image of a nanoscale self-assembled Ag nanowire network obtained through scanning
electron microscopy (scale bar, 2 µm). This represents a memristive network, since each junction
between nanowires is a memristive element and the current flow relies on the history of applied
voltage and current.

at the intersection of two intersecting nanowires can be modeled as the transfer of ions through the
membrane of a neuronal cell, as is the case for the three ionic channels of the Hodgkin–Huxley
model [Nelson and Rinzel, 1995]. Specifically, the state equation for the synaptic properties of the
NW under electrical stimulation is expressed as the following potentiation–depression rate balance
equation Miranda et al. [2020]:

dgij
dt

= κP,ij(Vij) · (1− gij)− κD,ij(Vij) · gij (1)

In Eq. 1, gij is the normalized conductance (memory state) that assume values in between 0 and 1
while κP,ij(Vij) and κD,ij(Vij) are the potentiation and depression rate coefficients that are assumed
to be function of the applied voltage through exponential relations, as expected for diffusion of ions:

κP,ij(Vij) = κP0exp(+ηPVij) (2)
κD,ij(Vij) = κD0exp(−ηDVij), (3)

where κP0, κD0 > 0 are constants while ηP , ηD > 0 are transition rates.

2



3 Computational neural model

In this work, we develop Nanowire Neural Networks for time-series processing where the physical
memory state g becomes the nanowire network state. To achieve this, we rewrite Eq. 1, 2 and 3 as:

dh

dt
= Kp(x) · (1− h)−Kd(x) · h, (4)

Kp = Kp0 · eηpx, Kd = Kd0 · e−ηdx, (5)
where 0 ≤ h ≤ 1 is the reservoir state and Kp and Kd are the two non-linearities which process the
input x, keeping the other physical variables (Kp0, Kd0, ηp, ηd > 0) as network hyperparameters.
The state transition function (Eq.6) of a single Nanowire Neuron is obtained by discretizing Eq. 4
using the forward Euler’s method, leading to the following formulation:

h(t+ 1) = h(t) + ∆t[Kp(x(t+ 1))− (Kp(x(t+ 1)) +Kd(x(t+ 1)))h(t)]. (6)

Equation 6 is then used to construct the fully connected Nanowire Neural Network (Fig.2).

Figure 2: Nanowire Network computational graph where: h(t) and h(t+1), in green, are the current
and the next hidden state vectors, respectively, x(t+ 1), in red, is the external input vector, Wh is
the recurrent weight matrix (or recurrent kernel), Wx, in magenta, is the input weight matrix (or
kernel) and ∆t is the discretization time (non-linearity operations and their trajectories are marked by
a dashed line).

The dynamics of the Nanowire Neural Network are described by the following set of equations:

z(t+ 1) = RESCALE
(
Whh(t) +Wxx(t+ 1) + b

)
, (7)

q(t+ 1) = diag(Kp(z(t+ 1) +Kd(z(t+ 1))h(t), (8)
r(t+ 1) = Kp(z(t+ 1))− q(t+ 1), (9)
h(t+ 1) = r(t+ 1)∆t + γh(t), (10)

where h(t) indicates the state of the recurrent layer, x(t) is the external input signal, Wh is the
recurrent kernel, Wx is the (input-to-recurrent) kernel, and b is a bias vector.

Our proposed model admits the following fundamental set of (nanowire-related) hyperparameters:
Kp0, Kd0, ηp, ηd, ∆t, and γ. Notice that we introduce the γ factor to allow the model to show
asymptotically stable dynamics (the Echo State Property [Yildiz et al., 2012]) when γ < 1. Moreover,
for a certain configuration of hyperparameters, we observe that manipulating the input x impacts
the reservoir state. Notably, a specific input range allows system’s fixed point of Eq. 4 to move in a
suitable region for information representation and learning. For this reason, the result of the affine

3



transformation in Eq. 7 is subject to a proper rescaling operation before entering in the non-linearities.
This heuristic enhances the stability and performance of the computational model Eq.s 7-10, and is
computed component-wise as follows:

RESCALE(y) =
(b− a)

1 + exp (−y · s)
+ a, (11)

where a = 0.35, b = 1.15, and s is a slope parameter.

The computational graph of the proposed Nanowire Neural Network is illustrated in Figure 2.

In the following, we give two specific instances of the approach introduced so far, by framing it in the
context of RC and fully trainable RNNs.

3.1 NW-ESN: Reservoir Model

NW-ESN is the reservoir-based Nanowire Neural Network Model in which both the kernel (Wx) and
the recurrent kernel (Wh) matrices are initialized under stability constraints and left untrained. As
usual in RC applications, we rescale the kernel Wx, the bias b, and recurrent kernel Wh, with the
input scaling (ω), the bias scaling (β), and the spectral radius (ρ), respectively, and we use them as
hyperparameters of the model.

3.2 NW-RNN: Fully trainable model

NW-RNN is the fully trainable version of the Nanowire Neural Network Model where both the kernel
(Wx) and the recurrent kernel (Wh) matrices are trained end-to-end with backpropagation through
time (BPTT).

4 Experiments

We have validated our models for both time series classification and regression problems. To
this end, we have considered the following datasets: FordA, ECG5000, SyntheticControl
and EarthQuakes from Dau et al. [2019] for the classification task; FloodModeling1 and
FloodModeling2 from Tan et al. [2021] for the regression task. A synthetic description of the
datasets properties can be found in Table 1.

Dataset Train Size Test Size TS Length

FordA Dau et al. [2019] 3601 1320 500
ECG5000 Dau et al. [2019] 500 4500 140
SyntheticControl Dau et al. [2019] 300 300 60
Earthquakes Dau et al. [2019] 322 139 512
FloodModeling1 Tan et al. [2021] 471 202 266
FloodModeling2 Tan et al. [2021] 389 167 266

Table 1: Datasets overview.

All datasets were provided with a predefined split into training and test sets. We further divided the
training set to obtain a development set, using 80% of data for training and 20% for validation. This
setup was used consistently across all experiments for an initial model selection phase through grid
search, followed by a model assessment phase.
In all experiments, the performance achieved by our models NW-RNN and NW-ESN was compared
with that of conventional RNNs and ESNs. Specifically, for the ESN model, we have considered the
leaky-integrator neuron formulation [Jaeger et al., 2007], which includes a leaking-rate hyperparame-
ter α. For all experiments, we used networks with a number of N = 100 recurrent neurons.

In this respect, also note that the output layer is applied to the final state computed by the recurrent
component for each input sequence in all models. During the model selection, the nanowire-related
hyparameters of the NW-ESN and NW-RNN models were set to the values reported in Table 2,
which provided a set of physically meaningful values.

4



Hyperparameter Value

Kp0 0.0001
Kd0 0.5
ηp 10
ηd 1

Table 2: Fundamental nanowire-related hyperparameters values used in the experiments.

Hyperparameter Values

input scaling ω {1, 10}
bias scaling β {0, 0.001, 0.1, 1}

spectral radius ρ {0.8, 0.9, 0.95, 0.99}
γ {0.1, 0.5, 0.8, 0.95, 1}

sloe parameter s {1, 5}
discretization time ∆t {0.1, 0.01, 0.001}

N {100}

(a) NW-ESN.

Hyperparameter Values

epochs {5000}
patience {10}

learning rate {0.001, 0.01}
batch size {64, 128}

N {100}
γ {0.5, 0.8, 0.95, 1}

slope parameter s {1, 5}
discretization time ∆t {0.01, 0.1}

(b) NW-RNN.

Hyperparameter Values

input scaling ω {1, 10}
bias scaling β {0.001, 0.1, 1}

spectral radius ρ {0.8, 0.9, 0.95, 0.99}
leaking-rate α {0.1, 0.3, 0.5}

N {100}

(c) ESN.

Hyperparameter Values

epochs {5000}
patience {10}

learning rate {0.001, 0.01}
batch size {64, 128}

N {100}

(d) RNN.

Table 3: Values of the hyperparameters explored during model selection for the different models used
in the experiments.

Tables 3c, 3a, 3d and 3b show the ranges of values explored for the remaining hyperparameters
for NW-ESN, NW-RNN, ESN and RNN, respectively. After the model selection phase, the model
evaluation of all models was based on the average performance over five trials.

4.1 Results

The results of our experiments, presented in Table 4, cover both classification and regression tasks.
The scores for the classification tasks (FordA, ECG5000, SyntheticControl, Earthquakes) are
expressed as accuracy (↑), while the regression tasks (FloodModeling1 and FloodModeling2) are
reported as root mean squared errors (↓).

The results achieved demonstrate the competitive performance of nanowire-based models (NW-ESN
and NW-RNN) in time-series tasks compared to standard methods such as ESN and RNN.

Task ESN NW-ESN (ours) RNN NW-RNN (ours)

FordA(↑) 0.544± 0.017 0.580± 0.009 0.513± 0.024 0.515± 0.000
ECG5000(↑) 0.917± 0.003 0.921± 0.002 0.915± 0.026 0.931± 0.003
SyntheticControl(↑) 0.875± 0.009 0.922± 0.013 0.891± 0.071 0.891± 0.016
Earthquakes(↑) 0.763± 0.008 0.755± 0.006 0.740± 0.015 0.748± 0.000
FloodModeling1(↓) 0.019± 0.000 0.008± 0.000 0.023± 0.002 0.009± 0.000
FloodModeling2(↓) 0.018± 0.000 0.015± 0.000 0.023± 0.003 0.017± 0.000

Table 4: Experimental results. Best results are highlighted in bold.

5



We can first observe that NW-RNN leads to a consistent improvement compared to the conventional
RNN approach. This suggests that introducing nanowire-inspired dynamics into the fully trainable
RNN model can yield benefits in complex time-series classification tasks, while still maintaining the
flexibility of full backpropagation. However, what stands out most is the remarkable performance
of the NW-ESN model. Notably, NW-ESN generally outperforms (with a single exception) the
conventional ESN, sometimes by a significant margin. For instance, on the SyntheticControl dataset,
NW-ESN shows a clear improvement in accuracy, highlighting the ability of the nanowire-based
reservoir to suitably capture more complex temporal patterns. This improvement is especially
noteworthy considering that NW-ESN retains the same computational complexity as ESN, as the
reservoir dynamics are fixed and only the readout is trained.

Finally, observe that NW-ESN achieves the best overall performance on the majority of the tasks,
despite having fewer trainable parameters compared to fully trainable models like NW-RNN. This
efficiency, combined with its strong performance, emphasizes the potential of nanowire-based
reservoirs as a powerful yet lightweight alternative for time-series processing, offering both scalability
and accuracy without the added complexity of training recurrent dynamics.

5 Conclusions

In this paper, we introduced and explored the application of nanowire-based neural networks (NW-
ESN and NW-RNN) for time-series processing, comparing their performance with traditional models
such as ESNs and RNNs. Our experimental results demonstrate that nanowire-based models can
offer competitive, and in many cases superior, performance.

NW-ESN, in particular, achieved the best performance in the majority of the tasks, highlighting the
effectiveness of integrating the inherent nonlinear dynamics of nanowire networks into the Reservoir
Computing paradigm. Despite having the same computational complexity as ESNs, NW-ESN
exhibited significant improvements in performance across tasks, showcasing the potential of nanowire
reservoirs to capture complex temporal patterns effectively. Moreover, NW-RNN demonstrated its
capacity to enhance fully trainable models like RNNs by incorporating nanowire dynamics, leading
to slight gains in classification and regression tasks. These results suggest that nanowire-based
models offer a promising path toward the development of more efficient, adaptive, and scalable neural
architectures for time-series analysis.

This work represents a step forward in the field of neuromorphic computing, underscoring the
potential of nanowire-based architectures to bridge the gap between biological information processing
and machine learning. Future research can build upon this foundation by further investigating the
scalability of these models and extending their applications to more complex tasks and domains,
ultimately advancing the capabilities of next-generation intelligent systems.

Acknowledgments and Disclosure of Funding

This work has been supported by NEURONE, a project funded by the European Union - Next
Generation EU, M4C1 CUP I53D23003600006, under program PRIN 2022 (prj. code 20229JRTZA,
Italian Ministry of University and Research), and by and EU-EIC EMERGE (Grant No. 101070918).

References
H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, and

E. Keogh. The ucr time series archive, 2019.

H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications of echo state
networks with leaky-integrator neurons. Neural networks, 20(3):335–352, 2007.

D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier. Physics for neuromorphic computing. Nature
Reviews Physics, 2(9):499–510, 2020.

G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani, L. Boarino, D. Ielmini, and C. Riccia-
rdi. In materia reservoir computing with a fully memristive architecture based on self-organizing
nanowire networks. Nature materials, 21(2):195–202, 2022.

6



E. Miranda, G. Milano, and C. Ricciardi. Modeling of short-term synaptic plasticity effects in
zno nanowire-based memristors using a potentiation-depression rate balance equation. IEEE
Transactions on Nanotechnology, 19:609–612, 2020.

K. Nakajima. Physical reservoir computing—an introductory perspective. Japanese Journal of
Applied Physics, 59(6):060501, 2020.

K. Nakajima and I. Fischer. Reservoir computing. Springer, 2021.

M. Nelson and J. Rinzel. The hodgkin-huxley model. The book of genesis, 2, 1995.

C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb. Time series extrinsic regression. Data Mining
and Knowledge Discovery, pages 1–29, 2021. doi: https://doi.org/10.1007/s10618-021-00745-9.

G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano,
and A. Hirose. Recent advances in physical reservoir computing: A review. Neural Networks, 115:
100–123, 2019.

M. Yan, C. Huang, P. Bienstman, P. Tino, W. Lin, and J. Sun. Emerging opportunities and challenges
for the future of reservoir computing. Nature Communications, 15(1):2056, 2024.

I. B. Yildiz, H. Jaeger, and S. J. Kiebel. Re-visiting the echo state property. Neural networks, 35:1–9,
2012.

7


	Introduction
	Nanowire networks
	Computational neural model
	NW-ESN: Reservoir Model
	NW-RNN: Fully trainable model

	Experiments
	Results

	Conclusions

