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Abstract001

The rapid development of social media002
has led to an increase in online harass-003
ment and offensive speech, posing signifi-004
cant challenges for effective content mod-005
eration. Existing automated detection006
models often exhibit a bias towards pre-007
dicting offensive speech based on specific008
vocabulary, which not only compromises009
model fairness but also potentially ex-010
acerbates biases against vulnerable and011
minority groups. Addressing these is-012
sues, we propose a bias self-awareness013
and data self-iteration framework for miti-014
gating model biases.This framework aims015
to ”giving control back to models: en-016
abling offensive language detection mod-017
els to autonomously identify and mitigate018
biases” through bias self-awareness algo-019
rithms and self-iterative data augmenta-020
tion method. Experimental results demon-021
strate that the proposed framework effec-022
tively reduces the false positive rate of023
models in both in-distribution and out-of-024
distribution tests, enhances model accu-025
racy and fairness, and shows promising per-026
formance improvements in detecting offen-027
sive speech on larger-scale datasets.028

1 Introduction029

The rapid development of social media has sig-030

nificantly enhanced the ease with which peo-031

ple can connect, share, and obtain data online,032

as well as convey emotional messages. How-033

ever, the convenience of internet technology034

has concurrently increased the risk of individ-035

uals encountering cyberbullying and online at-036

tacks. Automatic detection of offensive lan-037

guage is an effective measure to maintain the038

safety, health, and friendliness of online so-039

cial platforms (Schmidt and Wiegand, 2017).040

This technology has broad applications across041

various internet interaction environments, in-042

cluding social networks, online forums, instant043

messaging tools, news media platforms, and 044

gaming communities. 045

By integrating multiple natural language 046

processing (NLP) techniques, numerous mod- 047

els (Zhou et al., 2021a; Fan et al., 2024; Lu 048

et al., 2023a) have been designed and applied 049

to the task of detecting offensive language. 050

However, even the most advanced models tend 051

to overly rely on specific words to predict offen- 052

sive content(Kennedy et al., 2020), often mis- 053

takenly classifying sentences containing these 054

words as offensive(Zhou et al., 2021b). This 055

phenomenon raises concerns about bias in of- 056

fensive language detection systems, thereby 057

limiting their fairness(Ramponi and Tonelli, 058

2022). Additionally, it can lead to prejudiced 059

treatment of vulnerable and minority groups, 060

potentially exacerbating racism(Harris et al., 061

2022). 062

In offensive language detection, not only 063

identity-related vocabulary such as ”gay” or 064

”black”(Waseem and Hovy, 2016) but also non- 065

identity-related vocabulary like ”sport” and 066

”football” are often inappropriately associated 067

with offensive content. One of the root causes 068

of this issue lies in the biases present in 069

the data collection process(Wiegand et al., 070

2019). Because the collected data frequently 071

place these specific vocabulary in offensive con- 072

texts, it fosters erroneous statistical associa- 073

tions between these vocabulary and offensive 074

labels, known as spurious statistical correla- 075

tions. Models learn and make predictions 076

based on these spurious statistical correlations, 077

leading to biases in the models themselves. 078

These incorrectly associated vocabulary are 079

commonly referred to as ”spurious artifacts,” 080

and their associations with labels are termed 081

”spurious correlations”(Ramponi and Tonelli, 082

2022). 083

Regarding the identification of spurious arti- 084
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facts, Ramponi and Tonelli (2022) approached085

this issue by examining datasets and employ-086

ing statistical methods such as Pointwise Mu-087

tual Information (PMI) to measure the po-088

tential association strength between a word089

and offensive labels. Subsequently, they used090

manual annotation to identify spurious arti-091

facts. However, this method has two signif-092

icant drawbacks: 1) Given the vastness of093

datasets, manual annotation is impractical.094

2) The spurious artifacts identified from the095

dataset may not be universally applicable to096

all models; for instance, Model A might be097

misled by a spurious artifact x, while Model B098

remains unaffected.099

To mitigate model biases, Zhang et al.100

(2023) proposed a data augmentation method101

that utilizes large language models like GPT-102

3 to generate sentences and expand nega-103

tive sample instances, thereby balancing the104

dataset and reducing model bias. Experi-105

mental results indicate that data augmenta-106

tion is an effective approach for mitigating107

model bias. However, determining the amount108

of data augmentation often relies on the re-109

searchers’ prior experience and lacks objective110

criteria, making the process largely subjective.111

To address the aforementioned issues, we112

propose a model bias correction framework113

based on Bias Self-Awareness and Data Self-114

Iteration (BSADSI), which is founded on the115

core principle of ”giving control back to mod-116

els.” The BSADSI framework incorporates an117

innovative Model Bias Self-Awareness algo-118

rithm (MBSA), enabling the model to au-119

tonomously identify and acquire spurious ar-120

tifacts. Furthermore, BSADSI integrates re-121

inforcement learning strategies, allowing the122

model to independently determine the content123

and extent of data augmentation. Our main124

contributions are as follows:125

1. We propose the Model Bias Self-126

Awareness algorithm framework (MBSA),127

which automatically identifies spurious128

artifacts in the dataset, thereby achiev-129

ing autonomous understanding and130

identification of biases.131

2. We introduce a self-iterative data aug-132

mentation method that utilizes large lan-133

guage model to enhance datasets. We in-134

tegrate reinforcement learning strategies135

to enable the model to autonomously de- 136

termine the amount of data augmentation 137

based on MBSA feedback, automatically 138

expanding negative sample instances, 139

thereby enhancing its self-learning and 140

adaptation capabilities through iterative 141

improvements. 142

3. Experimental results demonstrate that 143

the BSADSI framework we proposed ef- 144

fectively reduces the false positive rate 145

of models in offensive language detection 146

tasks, improves model robustness, and en- 147

hances fairness in the recognition process. 148

2 Related Work 149

In this chapter, we systematically review re- 150

search findings in two aspects: identifying spu- 151

rious correlations in detecting offensive lan- 152

guage and methods for mitigating model bi- 153

ases. 154

2.1 Identifying Spurious Correlation 155

in Offensive Language Detection 156

Previous research has extensively explored 157

strategies to identify spurious correlations in 158

detecting offensive language. Manerba and 159

Tonelli (2021) manually crafted test templates 160

and replaced identity attributes within them 161

to observe how model predictions vary with 162

these changes, thereby identifying biases in 163

specific identity features. Röttger et al. (2021), 164

based on relevant literature and informal inter- 165

views, designed 29 functional tests, construct- 166

ing test cases and validating them effectively 167

to reveal biases in models like BERT. Ram- 168

poni and Tonelli (2022) employed Pointwise 169

Mutual Information (PMI) to assess the poten- 170

tial strength of correlations between vocabu- 171

lary and offensive labels. They then used man- 172

ual annotations to remove authentic artifacts 173

and identify spurious artifacts. Building on 174

this literature, Zhang et al. (2023) introduced 175

the Relative Spuriousness (RS) method to ver- 176

ify the spurious correlation between words and 177

labels. Despite these methods achieving some 178

success in identifying spurious correlations in 179

offensive language detection, they generally 180

fail to fully consider the variability between 181

models and often overlook the importance of 182

the model’s own role in the identification pro- 183

cess and its potential impact. 184
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2.2 Methods for Mitigating Model185

Bias186

In the realm of offensive language detection,187

various methods have been widely employed188

to mitigate model biases. Sen et al. (2021,189

2022) explored the impact of Counterfactu-190

ally Augmented Data on offensive language191

detection models, utilizing techniques such192

as inserting irrelevant information and syn-193

onym substitution to construct counterfactual194

data. Bose et al. (2022) employed regulariza-195

tion techniques on Spurious Artifacts to al-196

leviate model biases. Many researchers have197

mitigated model biases by expanding negative198

sample instances. Wullach et al. (2021) lever-199

aged the pre-trained GPT-2 model to gener-200

ate large-scale text sequences, expanding man-201

ually annotated hate speech datasets to bal-202

ance the dataset and reduce model biases.203

Hartvigsen et al. (2022) used GPT-3 to gener-204

ate the TOXIGEN dataset, aiming to balance205

the distribution of offensive language and mit-206

igate biases against minority groups. Previous207

studies demonstrate that data augmentation is208

an effective approach to mitigate model biases.209

However, determining the required amount of210

data often heavily relies on researchers’ intu-211

ition and experience, lacking objective meth-212

ods to quantify the necessary data scale for213

reducing model biases.214

3 Methodology215

The Model Bias Correction Framework216

BSADSI we proposed is illustrated in Figure217

1. This framework primarily consists of218

two processes: Bias Self-Awareness (MBSA)219

and self-iterative data augmentation method.220

In the MBSA process, we initially use an221

offensive speech detection model to classify222

the data from the validation set, identifying223

instances with high confidence but incorrect224

judgments to construct a bias dataset. Subse-225

quently, we extract vocabulary from this bias226

dataset, conduct filtering and validation to227

obtain a set of spurious artifacts. Finally, we228

compute a bias coefficient for each spurious229

artifacts to determine the scale of generated230

data. During the self-iterative data augmen-231

tation process, we introduce reinforcement232

learning strategies where the offensive speech233

detection model acts as an agent. Through234

interactions between MBSA and a Reward 235

Function feedback loop, the large language 236

model iteratively generates sample data 237

containing spurious artifacts, thus expanding 238

the training set contrapuntally. This iterative 239

process dynamically adjusts the quantity of 240

newly added data, optimizing the model’s 241

ability to dentify and correct biases. 242

Algorithm (Appendix A) outlines the iter- 243

ative process of the BSABSI framework. Ini- 244

tially, the model undergoes initial fine-tuning 245

on the unaugmented base dataset. Subse- 246

quently, the model’s performance is evaluated 247

using a reward function, recording this initial 248

score. The MBSA module analyzes the spuri- 249

ous artifacts set generated by the model in this 250

round and determines the demand for negative 251

example samples. This information guides the 252

large language model to generate negative ex- 253

ample samples, which are then integrated into 254

the training dataset, completing the initial 255

augmentation.As the process proceeds to the 256

N-th iteration, the model undergoes further 257

fine-tuning on the dataset expanded from the 258

previous N-1 rounds. After adjustments, the 259

model is re-evaluated using the scorer, compar- 260

ing its score with that of the N-1 rounds. If no 261

score improvement is observed for T consecu- 262

tive rounds, the model is deemed optimal, and 263

the iteration process terminates. Conversely, 264

if performance continues to improve, MBSA 265

intervenes again to analyze the spurious arti- 266

facts set identified by the model in this round 267

and determine the scale of additional negative 268

example samples to be added.It is noteworthy 269

that if MBSA in a particular round fails to dis- 270

cover new spurious artifacts, the iteration will 271

also terminate. If the termination condition is 272

not met, the iterative process described above 273

is repeated. 274

3.1 MBSA algorithm framework 275

The MBSA framework consists of three main 276

components: bias data acquisition, spurious 277

artifacts acquisition, and bias coefficient cal- 278

culation. 279

(1) Bias data acquisition 280

To tackle the problem of model bias result- 281

ing from data imbalance, we start by eval- 282

uating the validation set to quantify the 283

extent of the bias in the model. Initially, 284
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Figure 1: BSADSI.

a threshold, represented by θ, is estab-285

lished as the standard for bias identifica-286

tion.When the difference between the pos-287

itive and negative class probabilities for a288

sample in the validation set exceeds a pre-289

defined threshold θ , and the model’s pre-290

diction contradicts the actual label of the291

sample, we deem it highly likely that the292

sample contains spurious artifacts that in-293

duce model misclassification. Using a fine-294

tuned model, we systematically examine295

the entire validation set, employing the296

aforementioned bias identification criteria297

to automatically screen and gather sam-298

ples exhibiting bias characteristics. These299

aggregated samples constitute our bias300

data set, which is a critical input for fur-301

ther bias understanding and model opti-302

mization.303

(2) Spurious artifacts acquisition304

After acquiring the bias data set, the pri-305

mary task shifts to identifying spurious306

artifacts contributing to model bias. Ini-307

tially, we perform word segmentation on308

the Chinese data, removing stop words309

and words with strong negative sentiment310

to reduce noise. Subsequently, we employ311

the Pointwise Mutual Information (PMI)312

method to select words that are highly313

correlated with the offensive speech label,314

creating a candidate set of spurious arti- 315

facts. We then utilize a masking valida- 316

tion strategy, where each candidate spuri- 317

ous artifact is individually masked within 318

the sentence. If the model’s prediction 319

changes from incorrect to correct upon 320

masking the word, it indicates that the 321

word significantly impacts the model’s 322

ability to identify offensive speech, and it 323

is added to the spurious artifacts set. 324

(3) Bias coefficient calculation 325

Spurious artifacts can interfere with the 326

model’s ability to accurately identify of- 327

fensive speech. To quantify the mislead- 328

ing effect of each spurious artifact on the 329

model, we introduce Equation 1. 330

R =
Nw,FP

Nw,neg
(1) 331

Here, R denotes the bias coefficient, 332

Nw,FP is the number of sentences in the 333

validation set containing the spurious ar- 334

tifact w that the model has incorrectly 335

classified as offensive speech, and Nw,neg 336

is the number of non-offensive sentences 337

in the validation set that also contain the 338

spurious artifact w. 339

The greater the bias coefficient R, the 340

more misleading the spurious artifact is, 341

which suggests the need to augment the 342
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training set with more non-offensive (neg-343

ative) samples containing this spurious ar-344

tifact to balance the data and mitigate345

model bias. We have formulated a strat-346

egy for determining the number of ad-347

ditional negative samples required based348

on each spurious artifact’s bias coefficient.349

The specific quantification method is illus-350

trated in Equation 2:351

a = R× (Nw,Off −Nw,NonOff ) (2)352

Here, a represents the number of addi-353

tional negative samples required. Nw,Off354

is the number of offensive sentences in the355

training set that contain the spurious ar-356

tifact, and Nw,NonOff is the number of357

non-offensive sentences in the training set358

that contain the spurious artifact.359

3.2 Self-iterative data augmentation360

method361

The self-iterative data augmentation method362

introduces reinforcement learning strategies,363

enhancing data systematically through a con-364

tinuous iterative process. Its core components365

include a reward function and a data generator366

based on a large-scale language model.367

(1) Reward function368

False positive rate （FPR）emphasizes369

the proportion of negative samples that370

are incorrectly classified as positive in-371

stances. This is particularly critical in372

scenarios involving the detection of of-373

fensive speech, where a high false posi-374

tive rate can lead to innocent users or375

information being wrongly labeled or re-376

stricted, thus compromising system fair-377

ness and user experience. (Ramponi and378

Tonelli, 2022) highlights false positive rate379

as a key metric for assessing bias in offen-380

sive speech detection models. Hence, we381

utilize false positive rate as the criterion382

for the reward function (RF), quantified383

specifically as shown in Equation 3.384

RF = 1− DFP

Dneg
(3)385

Here, DFP is the number of sentences in386

the validation set that the model incor-387

rectly classifies as offensive speech, and388

Dneg is the number of non-offensive sen-389

tences in the validation set.390

(2) Data generator 391

The ChatGLM (Zeng et al., 2023) model 392

has been extensively customized and 393

trained for the Chinese language context, 394

enabling it to achieve higher accuracy and 395

fluency in handling Chinese natural lan- 396

guage tasks. Compared to other large lan- 397

guage models, ChatGLM demonstrates 398

better understanding and generation of 399

text that aligns with Chinese cultural 400

backgrounds and linguistic norms. The 401

model implements stringent generation 402

constraints, effectively suppressing the 403

generation of potentially offensive or inap- 404

propriate content. Additionally, aided by 405

prompt templates designed in Appendix 406

B, ChatGLM can generate targeted high- 407

quality Chinese examples more effectively. 408

Therefore, we utilize ChatGLM as a gen- 409

erator to enhance the data by generating 410

negative examples containing spurious ar- 411

tifacts. 412

4 Experiment and Analysis 413

In this section, we first introduce the dataset, 414

model and evaluation metrics. Next, we com- 415

pare the model after correction with the uncor- 416

rected model using BSADSI. Finally, detailed 417

analysis is provided. 418

4.1 Dataset,Model and Evaluation 419

metrics 420

During the experiment, three publicly avail- 421

able Chinese offensive speech datasets were 422

used in this article: COLD (Deng et al., 2022); 423

TOXICN(Lu et al., 2023b); SWSR(Jiang 424

et al., 2022). 425

To compare and analyze the performance of 426

different models in identifying spurious arti- 427

facts and correcting biases, we utilize BERT1 428

and RoBERTa2. 429

During the evaluation phase, we use F1 430

score and false positive rate (FPR) as the core 431

evaluation metrics to comprehensively assess 432

the performance of the models. 433

1https://huggingface.co/bert-base-chinese
2https://huggingface.co/hfl/

chinese-roberta-wwm-ext
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Table 1: The differences in how different models
identify spurious artifacts.

Model Bert Roberta
日本 暴力
外地人 男人

Spurious
Artifacts 中国 素质

白人 反感
四川人

4.2 The comparison of different434

models in identifying spurious435

artifacts.436

To compare the differences in how different437

models autonomously identify spurious arti-438

facts, we conduct a statistical analysis of439

spurious artifacts perceived by BERT and440

RoBERTa. Table 1 presents the unique spuri-441

ous artifacts perceived by each model. BERT442

autonomously identified 5 unique spurious ar-443

tifacts, accounting for approximately 28% of444

the total, while RoBERTa identified 4 unique445

spurious artifacts, accounting for about 24%.446

BERT appears to be more sensitive to vo-447

cabulary indicating geographical or ethnic ref-448

erences, which it may interpret as potential449

markers of offensive speech. On the other450

hand, RoBERTa’s biases tend towards gender451

and certain non-identity-related vocabulary.452

4.3 Comparison of model bias453

correction experiments454

To validate the performance of BSADSI, we455

followed the testing methodology proposed by456

(Ramponi and Tonelli, 2022). We conducted457

in-distribution testing on the COLD dataset458

and out-of-distribution testing on the TOX-459

ICN and SWSR datasets. The experimen-460

tal results are shown in Table 2. For in-461

distribution testing, we trained the baseline462

model on the COLD training set and evalu-463

ated it on the test set. For out-of-distribution464

testing, COLD was used as the training set,465

and the model was evaluated on the test sets466

of TOXICN and SWSR datasets.467

From Table 2, it can be observed that468

both BERT and RoBERTa models, when us-469

ing the BSADSI framework for bias identifica-470

tion and correction, show improvements in all471

evaluation metrics during in-distribution test-472

ing on the COLD dataset. Particularly no- 473

table is the significant decrease in false pos- 474

itive rate (FPR). For out-of-distribution test- 475

ing, the BSADSI framework also demonstrates 476

effective results, maintaining or slightly im- 477

proving F1 score and accuracy (ACC) while 478

effectively reducing the false positive rate. 479

It is noteworthy that Bert-BSADSI shows a 480

slight decrease in precision on TOXICN and 481

SWSR. This is because models not employ- 482

ing the BSADSI framework sometimes misclas- 483

sify negative examples containing spurious ar- 484

tifacts by erroneously associating them with 485

offensive content without understanding their 486

semantic meaning. BSADSI effectively elimi- 487

nates such false associations, necessitating a re- 488

assessment of previously misclassified samples, 489

resulting in minor declines in ACC and F1 on 490

small-scale datasets. However, the BSADSI 491

framework significantly reduces false positive 492

rates, suggesting potential improvements in 493

model performance on a broader range of data 494

scenarios while enhancing fairness. 495

To further investigate potential biases in the 496

model or its excessive sensitivity to specific vo- 497

cabulary, we quantified the improvement in 498

reducing spurious artifacts by comparing the 499

false positive rates of spurious artifacts before 500

and after applying the BSADSI framework. 501

The experimental results are presented in Ap- 502

pendix C. 503

The experimental results shown in Ap- 504

pendix C indicate that after applying the 505

BSADSI framework, the false positive rates 506

of spurious artifacts significantly decreased for 507

both Bert and RoBERTa models across the 508

COLD, TOXICN, and SWSR datasets. Specif- 509

ically, for the Bert model, there was a notable 510

reduction in false positive rates when handling 511

offensive statements involving vocabulary like 512

” 黑人” and ” 恐怖”, demonstrating that the 513

BSADSI framework effectively mitigates inap- 514

propriate responses to specific sensitive vocab- 515

ulary. Additionally, the false positive rates 516

for frequently mentioned keywords such as ” 517

警察”，” 女性” and ” 暴力” also declined, re- 518

flecting an improvement in the models’ fair- 519

ness and accuracy when addressing gender and 520

violence-related topics. However, some spuri- 521

ous artifacts like ” 井盖”, ” 河南人” and ” 东 522

北人” showed only a minor decrease in false 523

positive rates, suggesting that erroneous asso- 524
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Table 2: In-distribution and out-of-distribution results(↑: greater the better; ↓: lower the better.)

Model COLD TOXICN SWSR
ACC↑ F1↑ FPR↓ ACC↑ F1↑ FPR↓ ACC↑ F1↑ FPR↓

Bert 82.1 79.2 20.8 66.2 61.5 16.7 67.5 60.9 35.5
Bert-BSADSI 82.9 79.2 16.8 66.2 59.7 12.8 69.2 58.9 28.1

Roberta 82.5 79.5 20.9 66.9 61.9 15.4 67.2 58.3 32.5
Roberta-BSADSI 83.2 80.2 18.6 67.7 63.2 13.9 68.9 59.5 29.6

ciations triggered by such data are more chal-525

lenging to rectify.526

Figure 2 illustrates the changes in attention527

weights of the offensive language detection528

model before and after bias correction. The529

depth of color in the rectangles visually repre-530

sents the magnitude of the attention weights.531

As shown in Figure 2, before bias correction,532

the attention weight assigned to the term ”533

黑人” was significantly higher than that for534

other words in the sentence. This dispropor-535

tionate attention might cause the model to be536

overly sensitive to the term ” 黑人” leading to537

biased interpretations of the overall meaning538

of the sentence. After applying the BSADSI539

framework for bias correction, the attention540

weight for the term ” 黑人” significantly de-541

creased. This change reflects the effectiveness542

of the BSADSI framework in reducing model543

bias.544

4.4 Comparison of data augmentation545

methods546

To conduct an in-depth analysis and compar-547

ison of the effects of different data augmen-548

tation strategies on the performance of offen-549

sive language detection, we evaluate the ef-550

fectiveness of the proposed BSADSI frame-551

work in enhancing model accuracy and reduc-552

ing false positives. Comparative experiments553

were conducted, maintaining consistency with554

previous methodologies, and employing both555

in-distribution and out-of-distribution testing556

methods. The experimental results are pre-557

sented in Table 3. In this table, ”Raw Data”558

indicates the use of unaugmented data, while559

”1:0.5” and ”1:1” represent the positive-to-560

negative sample ratios with spurious artifacts561

included after data augmentation. ”BSADSI”562

denotes the application of the proposed frame-563

work.564

The experimental results indicate that for565

in-distribution testing, compared to fixed- 566

ratio data augmentation methods, BSADSI 567

significantly reduces the false positive rate 568

while maintaining comparable performance in 569

other evaluation metrics. When extended to 570

out-of-distribution testing, fixed-ratio augmen- 571

tation methods may encounter an increase in 572

false positive rates, whereas BSADSI contin- 573

ues to effectively reduce false alarms. It is 574

noteworthy that the BSADSI framework does 575

not exhibit significant advantages in terms of 576

ACC and F1 scores on out-of-distribution test- 577

ing across the two datasets. This is primar- 578

ily due to the presence of spurious artifacts 579

in the COLD dataset, which challenges the 580

model’s ability to identify offensive language 581

when the test set encompasses a broader range 582

of data sources with inconsistent distributions, 583

thereby impacting overall performance. 584

The BSADSI framework enhances data dy- 585

namically and purposefully through multi- 586

iteration processes. Experimental data in- 587

dicates that achieving a 1:0.5 augmentation 588

ratio requires adding 1,314 new instances, 589

whereas a 1:1 ratio necessitates 6,917 new 590

instances. In contrast, the BSADSI frame- 591

work only requires an additional 3,629 in- 592

stances. Furthermore, experimental results 593

demonstrate that the BSADSI framework not 594

only reduces dependency on a large volume of 595

extra data but also mitigates the risk of over- 596

fitting that can arise from excessive augmenta- 597

tion. 598

5 Conclusion 599

The BSADSI framework we proposed demon- 600

strates significant effectiveness in mitigating 601

biases in offensive speech detection models. At 602

its core, this framework aims to give control 603

back to the model itself to correct biases by 604

employing bias self-awareness algorithms and 605

self-iterative data augmentation method. The 606
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Figure 2: Comparison of Attention Weights Before and After BSADSI.

Table 3: Comparison of experimental results using different data augmentation methods

Model：Bert COLD TOXICN SWSR
ACC↑ F1↑ FPR↓ ACC↑ F1↑ FPR↓ ACC↑ F1↑ FPR↓

Raw Data 82.1 79.2 20.8 66.2 61.5 16.7 67.5 60.9 35.5
1:0.5 82.3 79.2 19.5 66.2 60.8 15.39 68.0 59.7 32.3
1:1 82.4 79.5 20.1 67.5 63.7 17.5 65.1 58.3 37.8

BSADSI 82.9 79.2 16.8 66.2 59.7 12.8 69.2 58.9 28.1

bias self-awareness algorithm automates bias607

data acquisition, identifies spurious artifacts,608

and calculates bias coefficients, thereby en-609

hancing efficiency in recognizing spurious asso-610

ciations and ensuring that the model can iden-611

tify and understand the sources of bias based612

on its own characteristics. The self-iterative613

data augmentation method introduces rein-614

forcement learning strategies, allowing the615

model to autonomously determine the content616

and scale of data expansion based on feedback617

from MBSA, thereby achieving dynamic opti-618

mization of data augmentation. Experimen-619

tal results indicate that the BSADSI frame-620

work not only effectively reduces the false621

positive rate in both in-distribution and out-622

of-distribution tests but also enhances model623

accuracy and fairness. Moreover, it shows624

promising potential to significantly improve625

the performance of offensive speech detection626

on larger-scale datasets.627

6 Limitations628

Our research aims to mitigate biases in of-629

fensive speech detection models. However,630

we are aware of several limitations. Firstly,631

our work primarily focuses on analyzing Chi-632

nese language corpora, and our experiments633

have not yet encompassed non-Chinese lan-634

guage resources. In future work, we plan635

to expand our framework to evaluate its636

performance on multilingual offensive speech637

datasets.Additionally, the bias correction ca-638

pability of our framework needs enhance-639

ment when dealing with implicit offensive 640

speech that employs rhetorical devices such as 641

metaphors, irony, and puns. Future research 642

will concentrate on addressing model biases in 643

detecting implicit offensive speech within com- 644

plex linguistic contexts. 645

7 Ethics Statement 646

Due to the nature of this work, some exam- 647

ples include offensive text and language. How- 648

ever, these examples do not reflect the values 649

of the authors; rather, our research aims to 650

mitigate biases in offensive language detection 651

models and to detect and prevent the spread 652

of harmful content. Furthermore, the Chinese 653

datasets used in our study are publicly avail- 654

able, and we did not anticipate any specific 655

ethical concerns related to this work. 656
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A Iterative Model Refinement with 826

BSABSI 827

Result: Model refined with iterative data
augmentation until optimal.

Input : Original dataset D, scoring function
R, MBSA module, language
generation module for negative
samples.

for t← 1 to N do
// Refine model on current dataset
Mt ← TrainModel(Dt−1);
// Calculate score with reward

function
Scoret ← R(Mt, Dt−1);
if t == 1 then

OriginalScore← Scoret;
// Get spurious artifacts set and

number of negative examples to
be generated via MBSA

FASett, NegSampleCountst ←
MBSA(Mt);

else
// Compare scores to detect

improvement
if Scoret > OriginalScore then

OriginalScore← Scoret;
FASett, NegSampleCountst ←
MBSA(Mt);

T ← 0;
end
else

// Stop if the 5-wheel does
not lift

if T > 5 then
break;

end
else

// continue if the T <= 5
continue;

end
end

end
// Check for termination conditions

in MBSA feedback
if |NegSampleCountst| == 0 indicates

balance then
break;

end
// Generate and augment negative

samples
NegSamplest ←
GenerateNegSamples(FASett, NegSampleCountst);

T ← T + 1;
Dt ← Dt−1 ∪NegSamplest;

end
Algorithm 1: Iterative Model Refine-
ment with BSABSI

828

B Prompt template 829

prompt = 生成一个包含“xx”这个词，但不 830

具有攻击性的句子, 要求不超过 40 个字。 831
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C The Variation in False Positive832

Rates of Spurious Artifacts833

Bert
COLD TOXICN SWSR

Spurious Artifacts FPR
Decline(%) Spurious Artifacts FPR

Decline(%) Spurious Artifacts FPR
Decline(%)

恐怖 35.3 警察 100.0 黑人 100.0
刻板 33.3 艾滋 57.1 恐怖 33.4
日本 20.8 女人 31.3 男性 14.3
外地人 20.7 白人 28.6 女性 13.3
井盖 20.0 黑人 22.5 警察 12.5

Roberta
COLD TOXICN SWSR

Spurious Artifacts FPR
Decline(%) Spurious Artifacts FPR

Decline(%) Spurious Artifacts FPR
Decline(%)

恐怖 52.9 素质 20.0 反感 100.0
暴力 5.0 女人 18.8 恐怖 33.3
井盖 4.0 男人 15.0 警察 12.5
女人 4.0 女性 10.0 暴力 12.5
河南人 3.7 东北 8.0 女性 5.0
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