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Abstract

The rapid development of social media
has led to an increase in online harass-
ment and offensive speech, posing signifi-
cant challenges for effective content mod-
eration.  Existing automated detection
models often exhibit a bias towards pre-
dicting offensive speech based on specific
vocabulary, which not only compromises
model fairness but also potentially ex-
acerbates biases against vulnerable and
minority groups.  Addressing these is-
sues, we propose a bias self-awareness
and data self-iteration framework for miti-
gating model biases.This framework aims
to ”giving control back to models: en-
abling offensive language detection mod-
els to autonomously identify and mitigate
biases” through bias self-awareness algo-
rithms and self-iterative data augmenta-
tion method. Experimental results demon-
strate that the proposed framework effec-
tively reduces the false positive rate of
models in both in-distribution and out-of-
distribution tests, enhances model accu-
racy and fairness, and shows promising per-
formance improvements in detecting offen-
sive speech on larger-scale datasets.

1 Introduction

The rapid development of social media has sig-
nificantly enhanced the ease with which peo-
ple can connect, share, and obtain data online,
as well as convey emotional messages. How-
ever, the convenience of internet technology
has concurrently increased the risk of individ-
uals encountering cyberbullying and online at-
tacks. Automatic detection of offensive lan-
guage is an effective measure to maintain the
safety, health, and friendliness of online so-
cial platforms (Schmidt and Wiegand, 2017).
This technology has broad applications across
various internet interaction environments, in-
cluding social networks, online forums, instant

messaging tools, news media platforms, and
gaming communities.

By integrating multiple natural language
processing (NLP) techniques, numerous mod-
els (Zhou et al., 2021a; Fan et al., 2024; Lu
et al., 2023a) have been designed and applied
to the task of detecting offensive language.
However, even the most advanced models tend
to overly rely on specific words to predict offen-
sive content(Kennedy et al., 2020), often mis-
takenly classifying sentences containing these
words as offensive(Zhou et al., 2021b). This
phenomenon raises concerns about bias in of-
fensive language detection systems, thereby
limiting their fairness(Ramponi and Tonelli,
2022). Additionally, it can lead to prejudiced
treatment of vulnerable and minority groups,
potentially exacerbating racism(Harris et al.,
2022).

In offensive language detection, not only
identity-related vocabulary such as ”gay” or
"black”(Waseem and Hovy, 2016) but also non-
identity-related vocabulary like ”sport” and
"football” are often inappropriately associated
with offensive content. One of the root causes
of this issue lies in the biases present in
the data collection process(Wiegand et al.,
2019). Because the collected data frequently
place these specific vocabulary in offensive con-
texts, it fosters erroneous statistical associa-
tions between these vocabulary and offensive
labels, known as spurious statistical correla-
tions. Models learn and make predictions
based on these spurious statistical correlations,
leading to biases in the models themselves.
These incorrectly associated vocabulary are
commonly referred to as "spurious artifacts,”
and their associations with labels are termed
"spurious correlations”(Ramponi and Tonelli,
2022).

Regarding the identification of spurious arti-



facts, Ramponi and Tonelli (2022) approached
this issue by examining datasets and employ-
ing statistical methods such as Pointwise Mu-
tual Information (PMI) to measure the po-
tential association strength between a word
and offensive labels. Subsequently, they used
manual annotation to identify spurious arti-
facts. However, this method has two signif-
icant drawbacks: 1) Given the vastness of
datasets, manual annotation is impractical.
2) The spurious artifacts identified from the
dataset may not be universally applicable to
all models; for instance, Model A might be
misled by a spurious artifact x, while Model B
remains unaffected.

To mitigate model biases, Zhang et al.
(2023) proposed a data augmentation method
that utilizes large language models like GPT-
3 to generate sentences and expand nega-
tive sample instances, thereby balancing the
dataset and reducing model bias. Experi-
mental results indicate that data augmenta-
tion is an effective approach for mitigating
model bias. However, determining the amount
of data augmentation often relies on the re-
searchers’ prior experience and lacks objective
criteria, making the process largely subjective.

To address the aforementioned issues, we
propose a model bias correction framework
based on Bias Self-Awareness and Data Self-
Iteration (BSADSI), which is founded on the
core principle of ”giving control back to mod-
els” The BSADSI framework incorporates an
innovative Model Bias Self-Awareness algo-
rithm (MBSA), enabling the model to au-
tonomously identify and acquire spurious ar-
tifacts. Furthermore, BSADSI integrates re-
inforcement learning strategies, allowing the
model to independently determine the content
and extent of data augmentation. Our main
contributions are as follows:

1. We propose the Model Bias Self-
Awareness algorithm framework (MBSA),
which automatically identifies spurious
artifacts in the dataset, thereby achiev-
ing autonomous understanding and
identification of biases.

2. We introduce a self-iterative data aug-
mentation method that utilizes large lan-
guage model to enhance datasets. We in-
tegrate reinforcement learning strategies

to enable the model to autonomously de-
termine the amount of data augmentation
based on MBSA feedback, automatically
expanding negative sample instances,
thereby enhancing its self-learning and
adaptation capabilities through iterative
improvements.

3. Experimental results demonstrate that
the BSADSI framework we proposed ef-
fectively reduces the false positive rate
of models in offensive language detection
tasks, improves model robustness, and en-
hances fairness in the recognition process.

2 Related Work

In this chapter, we systematically review re-
search findings in two aspects: identifying spu-
rious correlations in detecting offensive lan-
guage and methods for mitigating model bi-
ases.

2.1 Identifying Spurious Correlation
in Offensive Language Detection

Previous research has extensively explored
strategies to identify spurious correlations in
detecting offensive language. Manerba and
Tonelli (2021) manually crafted test templates
and replaced identity attributes within them
to observe how model predictions vary with
these changes, thereby identifying biases in
specific identity features. Rottger et al. (2021),
based on relevant literature and informal inter-
views, designed 29 functional tests, construct-
ing test cases and validating them effectively
to reveal biases in models like BERT. Ram-
poni and Tonelli (2022) employed Pointwise
Mutual Information (PMI) to assess the poten-
tial strength of correlations between vocabu-
lary and offensive labels. They then used man-
ual annotations to remove authentic artifacts
and identify spurious artifacts. Building on
this literature, Zhang et al. (2023) introduced
the Relative Spuriousness (RS) method to ver-
ify the spurious correlation between words and
labels. Despite these methods achieving some
success in identifying spurious correlations in
offensive language detection, they generally
fail to fully consider the variability between
models and often overlook the importance of
the model’s own role in the identification pro-
cess and its potential impact.



2.2 Methods for Mitigating Model
Bias

In the realm of offensive language detection,
various methods have been widely employed
to mitigate model biases. Sen et al. (2021,
2022) explored the impact of Counterfactu-
ally Augmented Data on offensive language
detection models, utilizing techniques such
as inserting irrelevant information and syn-
onym substitution to construct counterfactual
data. Bose et al. (2022) employed regulariza-
tion techniques on Spurious Artifacts to al-
leviate model biases. Many researchers have
mitigated model biases by expanding negative
sample instances. Wullach et al. (2021) lever-
aged the pre-trained GPT-2 model to gener-
ate large-scale text sequences, expanding man-
ually annotated hate speech datasets to bal-
ance the dataset and reduce model biases.
Hartvigsen et al. (2022) used GPT-3 to gener-
ate the TOXIGEN dataset, aiming to balance
the distribution of offensive language and mit-
igate biases against minority groups. Previous
studies demonstrate that data augmentation is
an effective approach to mitigate model biases.
However, determining the required amount of
data often heavily relies on researchers’ intu-
ition and experience, lacking objective meth-
ods to quantify the necessary data scale for
reducing model biases.

3 Methodology

The Model Bias Correction Framework
BSADSI we proposed is illustrated in Figure
1.  This framework primarily consists of
two processes: Bias Self-Awareness (MBSA)
and self-iterative data augmentation method.
In the MBSA process, we initially use an
offensive speech detection model to classify
the data from the validation set, identifying
instances with high confidence but incorrect
judgments to construct a bias dataset. Subse-
quently, we extract vocabulary from this bias
dataset, conduct filtering and validation to
obtain a set of spurious artifacts. Finally, we
compute a bias coefficient for each spurious
artifacts to determine the scale of generated
data. During the self-iterative data augmen-
tation process, we introduce reinforcement
learning strategies where the offensive speech
detection model acts as an agent. Through

interactions between MBSA and a Reward
Function feedback loop, the large language
model iteratively generates sample data
containing spurious artifacts, thus expanding
the training set contrapuntally. This iterative
process dynamically adjusts the quantity of
newly added data, optimizing the model’s
ability to dentify and correct biases.

Algorithm (Appendix A) outlines the iter-
ative process of the BSABSI framework. Ini-
tially, the model undergoes initial fine-tuning
on the unaugmented base dataset. Subse-
quently, the model’s performance is evaluated
using a reward function, recording this initial
score. The MBSA module analyzes the spuri-
ous artifacts set generated by the model in this
round and determines the demand for negative
example samples. This information guides the
large language model to generate negative ex-
ample samples, which are then integrated into
the training dataset, completing the initial
augmentation.As the process proceeds to the
N-th iteration, the model undergoes further
fine-tuning on the dataset expanded from the
previous N-1 rounds. After adjustments, the
model is re-evaluated using the scorer, compar-
ing its score with that of the N-1 rounds. If no
score improvement is observed for T consecu-
tive rounds, the model is deemed optimal, and
the iteration process terminates. Conversely,
if performance continues to improve, MBSA
intervenes again to analyze the spurious arti-
facts set identified by the model in this round
and determine the scale of additional negative
example samples to be added.It is noteworthy
that if MBSA in a particular round fails to dis-
cover new spurious artifacts, the iteration will
also terminate. If the termination condition is
not met, the iterative process described above
is repeated.

3.1 MBSA algorithm framework

The MBSA framework consists of three main
components: bias data acquisition, spurious
artifacts acquisition, and bias coefficient cal-
culation.

(1) Bias data acquisition

To tackle the problem of model bias result-
ing from data imbalance, we start by eval-
uating the validation set to quantify the
extent of the bias in the model. Initially,



/;>

Model >
Fine-tuning

Dataset

Counterfactual
Dataset

Reward Function

A P

ChatGLM

™\ =
v j
MBSA T
o
AV Spurious
Artifacts
[Word1,N1]
[Word2,N2]
[Wordn,Nn]
Prompt
| Generate
non-offensive Yy,
sentences =
containing ¥
‘Wordn’

if » N, ==0:break

Figure 1: BSADSI.

a threshold, represented by 0, is estab-
lished as the standard for bias identifica-
tion.When the difference between the pos-
itive and negative class probabilities for a
sample in the validation set exceeds a pre-
defined threshold 8 , and the model’s pre-
diction contradicts the actual label of the
sample, we deem it highly likely that the
sample contains spurious artifacts that in-
duce model misclassification. Using a fine-
tuned model, we systematically examine
the entire validation set, employing the
aforementioned bias identification criteria
to automatically screen and gather sam-
ples exhibiting bias characteristics. These
aggregated samples constitute our bias
data set, which is a critical input for fur-
ther bias understanding and model opti-
mization.

Spurious artifacts acquisition

After acquiring the bias data set, the pri-
mary task shifts to identifying spurious
artifacts contributing to model bias. Ini-
tially, we perform word segmentation on
the Chinese data, removing stop words
and words with strong negative sentiment
to reduce noise. Subsequently, we employ
the Pointwise Mutual Information (PMI)
method to select words that are highly
correlated with the offensive speech label,

creating a candidate set of spurious arti-
facts. We then utilize a masking valida-
tion strategy, where each candidate spuri-
ous artifact is individually masked within
the sentence. If the model’ s prediction
changes from incorrect to correct upon
masking the word, it indicates that the
word significantly impacts the model’ s
ability to identify offensive speech, and it
is added to the spurious artifacts set.

Bias coeflicient calculation

Spurious artifacts can interfere with the
model’ s ability to accurately identify of-
fensive speech. To quantify the mislead-
ing effect of each spurious artifact on the
model, we introduce Equation 1.

Nuw,Fp

R= (1)

Nw,neg

Here, R denotes the bias coefficient,
Ny, rp is the number of sentences in the
validation set containing the spurious ar-
tifact w that the model has incorrectly
classified as offensive speech, and Ny, eq
is the number of non-offensive sentences
in the validation set that also contain the
spurious artifact w.

The greater the bias coefficient R, the
more misleading the spurious artifact is,
which suggests the need to augment the



training set with more non-offensive (neg-
ative) samples containing this spurious ar-
tifact to balance the data and mitigate
model bias. We have formulated a strat-
egy for determining the number of ad-
ditional negative samples required based
on each spurious artifact’s bias coefficient.
The specific quantification method is illus-
trated in Equation 2:

a=Rx (Nwosf — Nunonors) (2)

Here, a represents the number of addi-
tional negative samples required. Ny, oy
is the number of offensive sentences in the
training set that contain the spurious ar-
tifact, and Ny nonoss is the number of
non-offensive sentences in the training set
that contain the spurious artifact.

3.2 Self-iterative data augmentation
method

The self-iterative data augmentation method
introduces reinforcement learning strategies,
enhancing data systematically through a con-
tinuous iterative process. Its core components
include a reward function and a data generator
based on a large-scale language model.

(1) Reward function

False positive rate (FPR) emphasizes
the proportion of negative samples that
are incorrectly classified as positive in-
stances. This is particularly critical in
scenarios involving the detection of of-
fensive speech, where a high false posi-
tive rate can lead to innocent users or
information being wrongly labeled or re-
stricted, thus compromising system fair-
ness and user experience. (Ramponi and
Tonelli, 2022) highlights false positive rate
as a key metric for assessing bias in offen-
sive speech detection models. Hence, we
utilize false positive rate as the criterion
for the reward function (RF), quantified
specifically as shown in Equation 3.

Drp

RF =1-
l)neg

(3)

Here, Dpp is the number of sentences in
the validation set that the model incor-
rectly classifies as offensive speech, and
Dyeq is the number of non-offensive sen-
tences in the validation set.

(2) Data generator

The ChatGLM (Zeng et al., 2023) model
has been extensively customized and
trained for the Chinese language context,
enabling it to achieve higher accuracy and
fluency in handling Chinese natural lan-
guage tasks. Compared to other large lan-
guage models, ChatGLM demonstrates
better understanding and generation of
text that aligns with Chinese cultural
backgrounds and linguistic norms. The
model implements stringent generation
constraints, effectively suppressing the
generation of potentially offensive or inap-
propriate content. Additionally, aided by
prompt templates designed in Appendix
B, ChatGLM can generate targeted high-
quality Chinese examples more effectively.
Therefore, we utilize ChatGLM as a gen-
erator to enhance the data by generating
negative examples containing spurious ar-
tifacts.

4 Experiment and Analysis

In this section, we first introduce the dataset,
model and evaluation metrics. Next, we com-
pare the model after correction with the uncor-
rected model using BSADSI. Finally, detailed
analysis is provided.

4.1 Dataset,Model and Evaluation
metrics

During the experiment, three publicly avail-
able Chinese offensive speech datasets were
used in this article: COLD (Deng et al., 2022);
TOXICN(Lu et al., 2023b); SWSR(Jiang
et al., 2022).

To compare and analyze the performance of
different models in identifying spurious arti-
facts and correcting biases, we utilize BERT'
and RoBERTa?.

During the evaluation phase, we use F1
score and false positive rate (FPR) as the core
evaluation metrics to comprehensively assess
the performance of the models.

"https://huggingface.co/bert-base-chinese
’https://huggingface.co/hfl/
chinese-roberta-wwm-ext
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Table 1: The differences in how different models
identify spurious artifacts.
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4.2 The comparison of different
models in identifying spurious
artifacts.

To compare the differences in how different
models autonomously identify spurious arti-
facts, we conduct a statistical analysis of
spurious artifacts perceived by BERT and
RoBERTa. Table 1 presents the unique spuri-
ous artifacts perceived by each model. BERT
autonomously identified 5 unique spurious ar-
tifacts, accounting for approximately 28% of
the total, while RoOBERTa identified 4 unique
spurious artifacts, accounting for about 24%.
BERT appears to be more sensitive to vo-
cabulary indicating geographical or ethnic ref-
erences, which it may interpret as potential
markers of offensive speech. On the other
hand, RoBERTa’s biases tend towards gender
and certain non-identity-related vocabulary.

4.3 Comparison of model bias
correction experiments

To validate the performance of BSADSI, we
followed the testing methodology proposed by
(Ramponi and Tonelli, 2022). We conducted
in-distribution testing on the COLD dataset
and out-of-distribution testing on the TOX-
ICN and SWSR datasets. The experimen-
tal results are shown in Table 2. For in-
distribution testing, we trained the baseline
model on the COLD training set and evalu-
ated it on the test set. For out-of-distribution
testing, COLD was used as the training set,
and the model was evaluated on the test sets
of TOXICN and SWSR datasets.

From Table 2, it can be observed that
both BERT and RoBERTa models, when us-
ing the BSADSI framework for bias identifica-
tion and correction, show improvements in all
evaluation metrics during in-distribution test-

ing on the COLD dataset. Particularly no-
table is the significant decrease in false pos-
itive rate (FPR). For out-of-distribution test-
ing, the BSADSI framework also demonstrates
effective results, maintaining or slightly im-
proving F1 score and accuracy (ACC) while
effectively reducing the false positive rate.

It is noteworthy that Bert-BSADSI shows a
slight decrease in precision on TOXICN and
SWSR. This is because models not employ-
ing the BSADSI framework sometimes misclas-
sify negative examples containing spurious ar-
tifacts by erroneously associating them with
offensive content without understanding their
semantic meaning. BSADSI effectively elimi-
nates such false associations, necessitating a re-
assessment of previously misclassified samples,
resulting in minor declines in ACC and F1 on
small-scale datasets. However, the BSADSI
framework significantly reduces false positive
rates, suggesting potential improvements in
model performance on a broader range of data
scenarios while enhancing fairness.

To further investigate potential biases in the
model or its excessive sensitivity to specific vo-
cabulary, we quantified the improvement in
reducing spurious artifacts by comparing the
false positive rates of spurious artifacts before
and after applying the BSADSI framework.
The experimental results are presented in Ap-
pendix C.

The experimental results shown in Ap-
pendix C indicate that after applying the
BSADSI framework, the false positive rates
of spurious artifacts significantly decreased for
both Bert and RoBERTa models across the
COLD, TOXICN, and SWSR datasets. Specif-
ically, for the Bert model, there was a notable
reduction in false positive rates when handling
offensive statements involving vocabulary like
7 BN and 7 M7, demonstrating that the
BSADSI framework effectively mitigates inap-
propriate responses to specific sensitive vocab-
ulary. Additionally, the false positive rates
for frequently mentioned keywords such as ”
HEER? 7 k" and 7 %% 177 also declined, re-

= AN
flecting an improvement in the models’ fair-
ness and accuracy when addressing gender and
violence-related topics. However, some spuri-
ous artifacts like ” H3”, ” W AN” and 7 %R
Jt. \” showed only a minor decrease in false

positive rates, suggesting that erroneous asso-



Table 2: In-distribution and out-of-distribution results(1: greater the better; |: lower the better.)

Model COLD TOXICN SWSR
ACCT Fi1f FPR| ACCT Fif FPR|l ACCf Fif FPRJ
Bert 82.1 792 208 662 61.5 167 675 60.9 355
Bert-BSADSI  82.9 79.2 16.8 66.2 59.7 12.8 69.2 589 28.1
Roberta 825 795 209 669 619 154 672 583 325
Roberta-BSADSI  83.2 80.2 18.6 67.7 63.2 13.9 68.9 59.5 29.6

ciations triggered by such data are more chal-
lenging to rectify.

Figure 2 illustrates the changes in attention
weights of the offensive language detection
model before and after bias correction. The
depth of color in the rectangles visually repre-
sents the magnitude of the attention weights.
As shown in Figure 2, before bias correction,
the attention weight assigned to the term ”
N” was significantly higher than that for
other words in the sentence. This dispropor-
tionate attention might cause the model to be
overly sensitive to the term ” 2 A" leading to
biased interpretations of the overall meaning
of the sentence. After applying the BSADSI
framework for bias correction, the attention
weight for the term 7 M N” significantly de-
creased. This change reflects the effectiveness
of the BSADSI framework in reducing model
bias.

4.4 Comparison of data augmentation
methods

To conduct an in-depth analysis and compar-
ison of the effects of different data augmen-
tation strategies on the performance of offen-
sive language detection, we evaluate the ef-
fectiveness of the proposed BSADSI frame-
work in enhancing model accuracy and reduc-
ing false positives. Comparative experiments
were conducted, maintaining consistency with
previous methodologies, and employing both
in-distribution and out-of-distribution testing
methods. The experimental results are pre-
sented in Table 3. In this table, "Raw Data”
indicates the use of unaugmented data, while
”1:0.5” and ”1:1” represent the positive-to-
negative sample ratios with spurious artifacts
included after data augmentation. "BSADSI”
denotes the application of the proposed frame-
work.

The experimental results indicate that for

in-distribution testing, compared to fixed-
ratio data augmentation methods, BSADSI
significantly reduces the false positive rate
while maintaining comparable performance in
other evaluation metrics. When extended to
out-of-distribution testing, fixed-ratio augmen-
tation methods may encounter an increase in
false positive rates, whereas BSADSI contin-
ues to effectively reduce false alarms. It is
noteworthy that the BSADSI framework does
not exhibit significant advantages in terms of
ACC and F1 scores on out-of-distribution test-
ing across the two datasets. This is primar-
ily due to the presence of spurious artifacts
in the COLD dataset, which challenges the
model’s ability to identify offensive language
when the test set encompasses a broader range
of data sources with inconsistent distributions,
thereby impacting overall performance.

The BSADSI framework enhances data dy-
namically and purposefully through multi-
iteration processes. Experimental data in-
dicates that achieving a 1:0.5 augmentation
ratio requires adding 1,314 new instances,
whereas a 1:1 ratio necessitates 6,917 new
instances. In contrast, the BSADSI frame-
work only requires an additional 3,629 in-
stances. Furthermore, experimental results
demonstrate that the BSADSI framework not
only reduces dependency on a large volume of
extra data but also mitigates the risk of over-
fitting that can arise from excessive augmenta-
tion.

5 Conclusion

The BSADSI framework we proposed demon-
strates significant effectiveness in mitigating
biases in offensive speech detection models. At
its core, this framework aims to give control
back to the model itself to correct biases by
employing bias self-awareness algorithms and
self-iterative data augmentation method. The
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Figure 2: Comparison of Attention Weights Before and After BSADSI.

Table 3: Comparison of experimental results using different data augmentation methods

Model: Bert COLD TOXICN SWSR
ACCt F1f FPR|l ACCfT Fif FPR] ACCT F1t FPRJ
Raw Data  82.1 792 208 662 615 167 675 60.9 355
1:0.5 823  79.2 195 662 60.8 1539 68.0 59.7  32.3
1:1 824 79.5 20.1 67.5 63.7 175 651 583 37.8
BSADSI  82.9 792 16.8 662 59.7 12.8 69.2 589 28.1

bias self-awareness algorithm automates bias
data acquisition, identifies spurious artifacts,
and calculates bias coefficients, thereby en-
hancing efficiency in recognizing spurious asso-
ciations and ensuring that the model can iden-
tify and understand the sources of bias based
on its own characteristics. The self-iterative
data augmentation method introduces rein-
forcement learning strategies, allowing the
model to autonomously determine the content
and scale of data expansion based on feedback
from MBSA, thereby achieving dynamic opti-
mization of data augmentation. Experimen-
tal results indicate that the BSADSI frame-
work not only effectively reduces the false
positive rate in both in-distribution and out-
of-distribution tests but also enhances model
accuracy and fairness. Moreover, it shows
promising potential to significantly improve
the performance of offensive speech detection
on larger-scale datasets.

6 Limitations

Our research aims to mitigate biases in of-
fensive speech detection models. However,
we are aware of several limitations. Firstly,
our work primarily focuses on analyzing Chi-
nese language corpora, and our experiments
have not yet encompassed non-Chinese lan-
guage resources. In future work, we plan
to expand our framework to evaluate its
performance on multilingual offensive speech
datasets.Additionally, the bias correction ca-
pability of our framework needs enhance-

ment when dealing with implicit offensive
speech that employs rhetorical devices such as
metaphors, irony, and puns. Future research
will concentrate on addressing model biases in
detecting implicit offensive speech within com-
plex linguistic contexts.

7 Ethics Statement

Due to the nature of this work, some exam-
ples include offensive text and language. How-
ever, these examples do not reflect the values
of the authors; rather, our research aims to
mitigate biases in offensive language detection
models and to detect and prevent the spread
of harmful content. Furthermore, the Chinese
datasets used in our study are publicly avail-
able, and we did not anticipate any specific
ethical concerns related to this work.
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speech. In Findings of the Association for Com- A Iterative Model Refinement with
putational Linguistics: EMNLP 2021, pages BSABSI

4699-4705, Punta Cana, Dominican Republic.

Association for Computational Linguistics.

Result: Model refined with iterative data
augmentation until optimal.

Input : Original dataset D, scoring function
R, MBSA module, language
generation module for negative
samples.

for t + 1 to N do
// Refine model on current dataset

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,

Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, M, + TrainModel(D;_1);

Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan // Calculate score with reward

Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, function

Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Scores < R(My, D:—1);

Tang. 2023. GLM-130B: an open bilingual pre- if t ==1 then

trained model. In The Eleventh International OriginalScore < Scorey;

Conference on Learning Representations, ICLR // Get spurious artifacts set and
2023, Kigali, Rwanda, May 1-5, 2023. OpenRe- number of negative examples to
view.net. be generated via MBSA

FASety, NegSampleCounts; <
MBSA(M);
else
// Compare scores to detect
improvement
if Score: > OriginalScore then

OriginalScore < Scorey;
Zhehao Zhang, Jiaao Chen, and Diyi Yang. 2023. Fﬁ%;l](\]]\ffff ampleCounts,
Mitigating biases in hate speech detection from T + 0;
a causal perspective. In Findings of the Asso- end
ciation for Computational Linguistics: EMNLP else
2023, pages 6610-6625, Singapore. Association // Stop if the 5-wheel does
for Computational Linguistics. not 1ift
if T > 5 then
| break;
end
else
// continue if the T <= 5
continue;
end
Xianbing Zhou, Yang Yong, Xiaochao Fan, Ge Ren, end
Yunfeng Song, Yufeng Diao, Liang Yang, and end o o
Hongfei Lin. 2021a. Hate speech detection based // Check for termination conditions
. . in MBSA feedback
on sentiment knowledge sharing. In Proceed- . P
. . if |[NegSampleCounts:| == 0 indicates
ings of the 59th Annual Meeting of the Asso- balance then
ciation for Computational Linguistics and the | break;
11th International Joint Conference on Natural end
Language Processing (Volume 1: Long Papers), // Generate and augment negative
pages 7158-7166, Online. Association for Com- samples
putational Linguistics. NegSamples;

GenerateNegSamples(F ASet:, NegSampleClounts:);

T+ T+1;
Dy < Di—1 U NegSamplesy;

end

Algorithm 1: Iterative Model Refine-

Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, ment with BSABSI
Yejin Choi, and Noah Smith. 2021b. Challenges
in automated debiasing for toxic language de-
tection. In Proceedings of the 16th Conference B Prompt template
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages § A
3143-3155, Online. Association for Computa- Prompt = A —E xx” XA, EAR

tional Linguistics. HA YRR AT, ZERONEE 40 A~
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C The Variation in False Positive
Rates of Spurious Artifacts

Bert
COLD TOXICN SWSR
Spurious Artifacts Defl‘iii{(% ) Spurious Artifacts Degiz(i{(% ) Spurious Artifacts Deiii% )
T 35.3 HwgT 100.0 BA 100.0
Z 33.3 g 57.1 RUHii 33.4
H 7 20.8 EUN 31.3 Tk 14.3
/SN 20.7 HA 28.6 Lotk 13.3
HiE= 20.0 YN 22,5 B 12.5
Roberta
COLD TOXICN SWSR
Spurious Artifacts Deiiii% ) Spurious Artifacts DecFl‘iI;I:(% ) Spurious Artifacts De(iiljlle{( %)
il 52.9 EYi} 20.0 S IR 100.0
7] 5.0 /PN 18.8 RUHi 33.3
HiE= 4.0 BA 15.0 2 3 12.5
SN 4.0 Lk 10.0 20 12.5
A 3.7 4 8.0 otk 5.0
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