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ABSTRACT

Low-rank adaptation (LoRA) has emerged as a prominent parameter-efficient fine-
tuning (PEFT) method for large pre-trained models, enabling strong downstream
performance with minimal parameter updates. While LoRA is known to outper-
form head-only fine-tuning in terms of clean accuracy, its impact on adversarial
robustness remains largely unexplored. In this work, and to the best of our knowl-
edge, we present the first theoretical analysis of LoRA’s adversarial robustness,
comparing it to that of head-only fine-tuning. We formalize the notion of ex-
pected adversarial robustness and derive upper bounds demonstrating that, despite
its superior clean performance, LoRA can be inherently less robust than head-only
tuning due to the additional degrees of freedom introduced by its low-rank com-
ponents. We further study the influence of LoRA’s initialization scheme and show
that simple changes in the initialization distribution of the low-rank matrix can
significantly affect robustness. Finally, we support our theoretical findings with
extensive experiments on both vision and language benchmarks under standard
adversarial attacks. Our results provide a principled understanding of the trade-
offs between parameter efficiency, clean performance, and adversarial robustness
in commonly used fine-tuning strategies.

1 INTRODUCTION
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Figure 1: Clean/attacked accuracy on
ImageNet subject to FGSM for a ViT.

Deep learning has led to significant breakthroughs across
multiple domains, notably in computer vision (Dosovit-
skiy et al., 2021; Liu et al., 2021) and natural language
processing (Devlin et al., 2019; Radford et al., 2019; Jiang
et al., 2023), where foundation models have become cen-
tral. These models, typically based on Transformer archi-
tectures (Vaswani et al., 2017), are pre-trained on large-
scale datasets using auxiliary self-supervised tasks, en-
abling them to learn transferable representations. When
fine-tuned, they achieve state-of-the-art performance on a
wide range of downstream tasks. However, these foun-
dation models are often extremely large, encompassing a
lot of parameters that could range from millions to bil-
lions, which makes full fine-tuning both computationally
expensive and impractical for many users. As a result,
parameter-efficient fine-tuning (PEFT) (Han et al., 2024)
strategies have gained attention. A common approach is to freeze the pretrained model and only
train a lightweight classification or regression head (Kornblith et al., 2019; Chen et al., 2020). While
efficient, this method often yields suboptimal downstream performance. To address this, Low-Rank
Adaptation (LoRA) (Hu et al., 2022) has emerged as a leading PEFT technique. LoRA introduces
learnable low-rank matrices into the model’s weight structure, allowing it to adapt to downstream
tasks while updating only a small subset of parameters. Empirically, LoRA often closely approaches
the performance of full fine-tuning, making it a practical alternative for resource-constrained envi-
ronments.

In parallel to advancements in finetuning methods, adversarial robustness remains a pressing chal-
lenge in deep learning. Neural networks are known to be vulnerable to small, carefully crafted
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perturbations that can cause severe misclassifications, even when these perturbations are imper-
ceptible to humans (Goodfellow et al., 2015). This vulnerability raises concerns in safety-critical
applications such as autonomous vehicles, healthcare, and finance. While extensive research has
been conducted on adversarial attack strategies (Tramer et al., 2020; Costa et al., 2024; Biggio et al.,
2013) and defense mechanisms (Madry et al., 2017; Akhtar et al., 2021), the relationship between
finetuning strategies and adversarial robustness remains underexplored. In particular, the majority
of theoretical work has studied how LoRA’s performance is influenced by hyperparameters such
as rank (Kalajdzievski, 2023), learning rate (Hayou et al., 2024b), and initialization (Hayou et al.,
2024a), while no theoretical work to date and to our knowledge has rigorously analyzed the impact
of LoRA on adversarial robustness. Preliminary empirical evidence (such as observed in Figure 1)
suggests LoRA may influence robustness, but a formal understanding of this phenomenon is lacking.

In this work, we aim to bridge the gap by investigating how LoRA-based fine-tuning affects ad-
versarial robustness, specifically in comparison to fine-tuning using only a classification or regres-
sion head. While it is well established that LoRA outperforms head-only tuning in terms of clean
accuracy, it remains unclear whether this gain comes at the cost of reduced robustness under ad-
versarial attacks. To address this, we begin by formalizing the notion of expected adversarial ro-
bustness, which we then use to theoretically analyze and compare the robustness of head-only and
LoRA-based fine-tuning. Our analysis leads to an upper bound suggesting that head-only fine-tuning
exhibits stronger adversarial robustness than LoRA, primarily due to the additional parameters in-
troduced by the low-rank adaptation layers. To further understand the influence of LoRA’s design
choices, we examine how its initialization scheme impacts robustness. In standard LoRA training,
one of the low-rank matrices is initialized randomly while the other is set to zero; prior work (Hayou
et al., 2024a) has shown that initializing B to zero and A randomly typically yields better clean ac-
curacy. We extend this line of investigation by studying how varying the initialization of A affects
adversarial robustness and demonstrates that such a simple change can narrow the robustness gap
between LoRA and head-only tuning. Finally, we empirically validate our theoretical findings on
both vision and language benchmarks using standard adversarial attacks across multiple datasets.
Our overall contributions can be summarized as follows:

• Using a formal notion of expected adversarial robustness, we theoretically show that head-
only fine-tuning offers higher expected adversarial robustness than LoRA, due to the addi-
tional degrees of freedom introduced by LoRA’s low-rank matrices.

• We analyze how LoRA’s initialization scheme, particularly the initialization of its low-rank
matrix A, and we consequently provide new additional insights on the choice of initial
distribution, which could reduce the robustness gap between LoRA and head-only fine-
tuning.

• We validate our theoretical findings through extensive experiments on vision and language
tasks, using standard adversarial attacks and multiple benchmark datasets.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. Most pre-trained models today are based on the Transformer
architecture (Vaswani et al., 2017). Fully fine-tuning these large models for downstream tasks is of-
ten computationally expensive due to the sheer number of parameters, resulting in high memory and
compute requirements. Parameter-Efficient Fine-Tuning (PEFT) aims to address this challenge by
introducing a small number of trainable parameters, enabling efficient adaptation without updating
the entire model. A simple approach is to fine-tune only the task-specific head, which reduces re-
source usage but often degrades performance. As an alternative, Low-Rank Adaptation (LoRA) (Hu
et al., 2022), and its variants (Dettmers et al., 2023; Kopiczko et al., 2024; Hayou et al., 2024b; Li
et al., 2024), inject a small set of trainable parameters into each layer of the frozen Transformer
backbone, offering a better trade-off between parameter efficiency and downstream performance.

Initialization of LoRA. The initialization of the low-rank matrices in LoRA has recently received
increased attention. Since the product of the two matrices is typically initialized to zero to preserve
the behavior of the pre-trained model at the start of fine-tuning, various strategies have been pro-
posed for initializing the non-zero matrix. Recent analysis (Hayou et al., 2024a) shows that this
choice significantly influences optimization, with initializing B to zero and A randomly yielding
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better average performance. AMT (Yang et al., 2024a) proposes an SVD-based initialization, align-
ing LoRA adapters with principal subspaces of the original weights to improve robustness under
adversarial tuning. DoRA (Liu et al., 2024) further decomposes pre-trained weights into magnitude
and direction, restricting LoRA updates to the directional component, leading to improved perfor-
mance and stability compared to standard LoRA.

Adversarial Robustness and LoRA. Most prior work on LoRA has focused on its effectiveness for
downstream task performance. However, recent studies have begun to explore the relationship be-
tween fine-tuning and adversarial robustness. In particular, works such as (Turbal et al., 2024; Yang
et al., 2024b) empirically investigate the robustness of large language models in transfer settings.
In the same direction, AutoLoRA (Xu et al., 2024) and ADV-LoRA (Wu et al., 2025) incorporate
adversarial training, one of the most established techniques in robustness research, into the LoRA
framework to enhance resilience. Despite these empirical advances, a theoretical understanding of
how LoRA and its associated hyperparameters affect adversarial robustness remains lacking. This
work aims to bridge that gap by developing a general theoretical framework linking LoRA to adver-
sarial robustness, offering both theoretical and empirical insights that improve model resilience and
open new research perspective.

3 PRELIMINARIES

In this section, we start by introducing some fundamental concepts that will be used afterwards in
our work. Afterward, we formulate our problem setup, which will be considered in our analysis.

Transformer-based Models. Let X ∈ X ⊆ Rn×d denote a sequence of n tokens, where each
token xi ∈ Rd. The backbone of a Transformer h : X ⊆ Rn×d → Z ⊆ Rn×d, as introduced
in (Vaswani et al., 2017), is the self-attention mechanism, which computes a weighted combination
of all token representations. Specifically, given learnable query, key, and value parameter matrices
WQ, WK , WV ∈ Rd×(d/H), the output of a single attention head AH for input X is defined as:

AH(X) = softmax

(
(XWQ)(XWK)⊤√

d/H

)
(XWV ), (1)

where H denotes the number of parallel attention heads and d/H is the dimension per head. In
practice, multiple attention heads AHi are computed in parallel, then concatenated and projected
using a learnable weight matrix WO ∈ Rd×d, yielding the multi-head attention (MHA) operation:

MH(X) = concat
(
AH1(X),AH2(X), . . . ,AHH(X)

)
WO. (2)

In addition, each Transformer block incorporates a residual connection (He et al., 2016), layer nor-
malization (Ba et al., 2016) and a position-wise feed-forward network (FFN).

Parameter-Efficient Fine-Tuning. We focus on the fine-tuning stage, assuming a Transformer-
based model pre-trained using any auxiliary task. For a downstream task, we are given labeled data
X = (X1, . . . , Xn) and corresponding labels Y = (y1, . . . , yn) to adapt the model. A simple ap-
proach is to train only a final classification or regression head while freezing the backbone, which is
efficient but often suboptimal. Full fine-tuning of both encoder and head improves performance but
requires substantial compute and memory. A recent alternative, Low-Rank Adaptation (LoRA) (Hu
et al., 2022), introduces low-rank trainable matrices A and B while keeping the original weight
matrix frozen. Specifically, for a dense layer weight W ∈ Rd×k, LoRA replaces it with:

W ′ = W +
α

r
BA,

where r is the rank, α a scaling factor, and B ∈ Rd×r, A ∈ Rr×k are learned during fine-tuning.

Problem Setup. Without loss of generality, we consider a 1-layer Transformer-based model (TBM)
where all activation functions are assumed to be 1-Lipschitz, which is the case for most commonly
used activations. The input space is X ∈ [0, 1]n×d, representing normalized data such as images.
Fine-tuning is performed using an L-smooth loss function L, optimized via gradient descent. Let
W∗ denote the local optimum to which the model converges. For a learning rate η ≤ 1

L , the update
rule for layer i at step t is:

W
(i)
t+1 = W

(i)
t − η∇L(W (i)

t ).

3
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While we focus on gradient descent for clarity, the theoretical insights extend to other optimizers
using similar analysis. Thus, our setup reflects a modeling choice rather than a limiting assumption.

4 ON THE ROBUSTNESS OF LORA

In this section, we aim to theoretically understand the connection between LoRA finetuning and the
resulting adversarial robustness, taking the head-only finetuning as a basis for comparison. We start
by formalizing the concept of expected adversarial robustness and, consequently, derive theoretical
insights for both the head-only finetuning and the LoRA counterpart, showcasing the difference in
terms of adversarial robustness.

4.1 ADVERSARIAL ROBUSTNESS

In this work, we focus on evasion attacks (Biggio et al., 2013; Pitropakis et al., 2019), which consist
of attacking the model at test or inference time. We consider that this setting is more adapted to real-
world scenarios, where in the majority of cases, the final user/attacker only has access to the model
at inference time. In this direction, let’s consider a trained classifier f : X → Y and let x ∈ X
be an input with its associated label vectors y ∈ Y , such that f(x) = y. The goal of an attacker is
to craft a small additional perturbation to the input, such as to generate a point x̃ whose prediction
f(x̃) is different from the original one. We note that the generated adversarial perturbation should be
similar to the original input, and therefore, we need to consider a similarity budget ϵ, together with
the corresponding distance. For our current study, we consider the ℓ2 distance and consequently
define our attack neighborhood of our input x with respect to an attack budget ϵ as:

B(x, ϵ) = {x̃ ∈ X : ∥x− x̃∥ ≤ ϵ}

Given the previous neighborhood, the attacker aims to find within that neighborhood the points
that not only satisfy the adversarial aim of flipping the classification but also result in the worst
prediction. In this direction, given a finetuning strategy ζ which is applied to our considered pre-
trained model f , the adversarial risk can be formulated as follows:

Rϵ[f, ζ] = E
x∈DX

[
sup

x̃∈B(x,ϵ)

dY (ζf (x̃) , ζf (x))

]
. (3)

with dY being any defined distances in the measurable output Y . In the current work, and similar
to the input space, we consider ℓ2-norm as our distance metric for the output space. Note that there
exists an equivalence in terms of norm, and therefore, this latter choice can easily be extended to
other norms and doesn’t limit our provided insights in any direction.

From an adversarial defense perspective, the objective is to ensure that the previously introduced
risk remains small, implying that it’s harder to find a perturbation within the considered budget ϵ,
and consequently that the model predictions are stable within that neighborhood, reflecting the ad-
versarial robustness of the model. We can formalize this notion for a finetuning strategy as follows:
Definition 1 (Adversarial Robustness). The finetuning strategy ζ is said to be (ϵ, γ)-robust if its
adversarial risk with respect to the classifier f satisfies: Rϵ[f, ζ] ≤ γ.

We note that we approach the theoretical analysis from an upper-bound perspective (denoted as γ),
since it is hard to compute the exact adversarial risk value. Obviously, the smaller the upper-bound,
the more robust the model is expected to be, and therefore by comparing the two quantities, we can
have an idea about the performance of the two considered finetuning strategies.

4.2 ON THE ROBUSTNESS OF LOW-RANK ADAPTATION

Building on the formal framework introduced previously, we now analyze the adversarial robust-
ness of Low-Rank Adaptation (LoRA) in comparison to the standard head-only finetuning strategy.
While LoRA is widely recognized for its effectiveness in improving downstream performance, often
measured by clean accuracy, this gain comes from its ability to modify a larger subset of the model’s
parameters, including those within internal Transformer components. In contrast, head-only fine-
tuning restricts adaptation to the final classification layer, preserving the backbone of the pre-trained
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model. This difference in parameter access raises, consequently, a natural question: Does the in-
creased expressivity provided by LoRA come at the cost of adversarial robustness? Typically, while
LoRA allows for better task-specific adaptation, it may also expose the model to increased vulner-
ability under test-time perturbations. To study this trade-off systematically, we adopt the notion of
expected adversarial risk defined earlier, and derive upper bounds for both finetuning strategies un-
der the same theoretical problem setup. Specifically, we consider a pre-trained Transformer-based
model (TBM) denoted by f , and analyze its behavior under both head-only and LoRA-based fine-
tuning. We consider f as a one-layer Transformer block with H dot-product self-attention heads,
following the structure and the notations outlined in Section 3.
Proposition 1. Let f : X → Y be a pre-trained TBM-based model following the problem setup.

The head-only finetuning strategy ζHead-only
f is (ϵ, γ)-robust, with: γHead-Only =

(
d

d−1

)2
C1C2ϵ,

C1 = 1 + ∥WO∥
√
Hmaxh

[
∥WV,h∥

[
4√
d/H

∥WQ,h∥∥WK,h∥+1
]]
, C2 =

(
1 + ∥WFFN∥

)
∥Wout∥.

Proposition 1 provides a concrete expression for the adversarial risk bound under head-only finetun-
ing, which depends explicitly on the norms of the model’s attention and feedforward weights. In the
following, we extend this analysis to the case of LoRA-based finetuning, applying the same theoret-
ical approach in order to establish a basis for comparison between the two strategies. Specifically,
we consider that the LoRA is only applied to the query (Q) and value (V) projection matrices of the
attention mechanism, as in the original proposed work.
Theorem 1. Let f : X → Y be the pre-trained TBM-based model following the considered problem
setup. For the LoRA-based finetuning strategy ζLoRA

f , where the LoRA is only applied to the main

Transformer part, is (ϵ, γ)-robust, with: γLoRA =
(

d
d−1

)2
C ′

1C2ϵ, where:

C ′
1 = 1 + ∥WO∥

√
Hmaxh

([
∥WV,h∥+ α

r ∥A
V,h∥∥BV,h∥

] [
4√
d/H

(
∥WQ,h∥+ α

r ∥A
Q,h∥∥BQ,h∥

)
∥WK,h∥+ 1

])
.

The derived upper bounds in Proposition 1 and Theorem 1 provide a comparative theoretical frame-
work for evaluating the adversarial robustness of head-only finetuning versus LoRA. While both
bounds scale linearly with the perturbation radius ϵ and share a similar structural dependence on
network norms, the LoRA bound introduces additional terms involving the norms of the low-rank
adaptation matrices A and B, scaled by the factor α/r. These terms effectively inflate the expected
adversarial risk of the model when subject to input perturbations, yielding a looser (i. e., higher)
upper bound on the adversarial risk Rϵ[f, ζ] under LoRA.

This difference is intuitive and arises from the core design of LoRA, which introduces learnable
low-rank updates into the internal weight matrices, specifically within the query, key, and value pro-
jections of the self-attention mechanism. By modifying these internal components, LoRA increases
the space of adaptable parameters, enhancing task-specific expressivity and improving clean accu-
racy. However, this also creates additional pathways through which input perturbations can affect the
output, making the model more vulnerable to adversarial attacks. In contrast, head-only finetuning
restricts adaptation to the final classification layer, leaving the backbone unchanged and preserving
the stability of the pre-trained representations. We consider that these results can also be categorized
on the general robustness-performance trade-off, where, by aiming to have better performance, the
model’s boundaries are adapted to the task, resulting in richer task-specific adaptation, but at the
cost of amplifying the model’s response to small input perturbations. From a theoretical standpoint,
this trade-off is captured directly by the looser robustness bound. Practically, it suggests that while
LoRA may be preferable when downstream accuracy is the sole objective, it may lead to weaker
performance in adversarial settings where robustness is critical. Specifically, for a final user, before
choosing the right finetuning approach, an analysis of the objectives and the trade-off between clean
and attacked accuracy should be done.

Extension to Multi-Layer Transformers. Although our theoretical analysis focuses on a single-
layer Transformer-based model f , the results naturally extend to the multi-layer case. Specifically,
a Transformer model with L layers, denoted as f (L), can be expressed as a composition of L single-
layer functions: f (L)(x) = f (L−1) ◦ f (L−2) ◦ · · · ◦ f (1)(x). Under this formulation, and following
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standard results from Lipschitz continuity, the overall adversarial risk bound γ for either finetuning
strategy becomes a multiplicative composition of the bounds for each individual layer. That is, the
robustness bound compounds across layers, maintaining the same structural form as in the single-
layer case. We additionally note that the underlying assumptions of our problem setup (Section 3)
still hold in the multi-layer setting. Since each layer operates on bounded activations (as we assume
X ⊆ [0, 1]n×d), the composition of bounded functions preserves theoretical soundness. As a result,
our robustness framework remains applicable in deeper architectures.

5 CONNECTING INITIALIZATION TO LORA’S ROBUSTNESS

In the previous section, we theoretically established a notable gap in adversarial robustness between
head-only and LoRA-based finetuning strategies. Specifically, our analysis showed that LoRA ex-
hibits a higher expected adversarial risk, suggesting reduced robustness to test-time perturbations.
Motivated by this observation, we now turn to investigating whether this robustness gap can be in-
fluenced, or potentially mitigated and reduced, by specific choices in LoRA’s hyperparameters. In
particular, we focus on how the initialization of the low-rank matrices A and B, which define the
LoRA updates, impacts adversarial robustness.

The effect of initialization (Hayou et al., 2024a) in LoRA has recently received increased attention.
By design, the product of the two matrices is intended to start at zero to ensure that the training starts
from the original weights of the pre-trained model. However, recent empirical studies (Hayou et al.,
2024a) suggest that initializing A with random values and setting B to zero tends to yield better gen-
eralization and downstream performance than the reverse configuration. While these findings pertain
to clean accuracy, their implications for adversarial robustness remain underexplored. In this sec-
tion, we extend this line of inquiry by studying how the randomness in the initialization distribution
of matrix A, which governs the initial adaptation direction, affects the final adversarial robustness
of the finetuned model. Our goal is to understand whether certain initialization choices introduce
more sensitivity to adversarial perturbations, and whether controlling the variance or structure of
this randomness can lead to more robust LoRA configurations.

In this perspective, we consider the same setting as the one studied in the previous section, where
f is a 1-Layer Transformer-based model and the aim is to link the initial weights with the resulting
upper-bound on the expected adversarial robustness.
Theorem 2. Let f : X → Y be our pre-trained TBM-based model. Let’s consider the LoRA finetun-
ing strategy, where all the low-rank matrices A in layer h are initialized as AQ,h

0 (for Query) and
AV,h

0 (for Values), then the resulting C ′
1 constant in γLoRA ( Theorem 1) can be written as:

C ′
1 ≤ K1 (1 + ηL)t max

h
∥A(V,h)

0 ∥+K2(1 + ηL)2t max
h

∥A(V,h)
0 ∥∥A(Q,h)

0 ∥+C,

with K1,K2 and C being constants depending on the final weight norms (derived in Equation 12).

We observe that the upper bound derived in Theorem 2 directly links the norm of the chosen initial-
ization matrix to the constant C ′

1, which in turn influences γLoRA and thereby the model’s adver-
sarial robustness. This result highlights that initialization, often treated as a secondary detail, plays
a critical role in shaping LoRA’s robustness characteristics and should be carefully designed. Since
the initialization also affects the model’s downstream performance, finding an appropriate trade-off
between robustness and clean accuracy becomes crucial. In particular, the initialization of A should
be designed to balance these objectives, enabling the construction of LoRA-based models that are
both performant and robust. To better showcase the practical aspect of our theoretical result, we
consider a practical application where we consider that the matrices are initialized from a Uniform
distribution U(−a, a), where a is a parameter.
Lemma 1. Consider LoRA matrices, with rank r, and for each head h = 1, . . . ,H initialized with
entries drawn i.i.d. from U(−a, a) independently across heads and stacks. Then the expected value
of the robustness constant C ′

1, derived in Theorem 1, satisfies:

E[C ′
1] = O

(
(1 + ηL)2t a2

(
(
√
r +

√
k) +

√
logH

)2)
.

The result of Lemma 1 establishes a direct relationship between the initialization parameter a of the
Uniform distribution and the resulting upper bound on the expected adversarial robustness. Although

6
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Figure 2: Success Rate of FGSM Attack on a ViT for different datasets and attack budgets.
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Figure 3: Attack Success Rate of the TextFooler Attack on TinyLLaMA, GPT-2, and Mistral-7B
when applied to SST-2 dataset with different attack budget (number of words changed).

the analysis focuses on the Uniform case, a similar adaptation of Theorem 2, and similar reasoning
can be extended to other initialization distributions.

6 EMPIRICAL EVALUATION

We empirically validate our theoretical insights using standard adversarial attacks across two widely
used modalities: images and text. We start by outlining the experimental setup for both domains.

Computer-Vision. We have chosen to operate under two mainly widely used models, namely the
Vision Transformer (ViT) (Dosovitskiy et al., 2021), which was the basis of our theoretical study,
and the SwiN Transformer (Liu et al., 2021). For both models, we have considered the two mainly
used adversarial attacks in this domain, which are the Fast Gradient Sign Method (FGSM) and the
Proximal Gradient Descent (PGD), focusing on image classification using the CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet-100 (Russakovsky et al., 2015).

Natural Language Processing (NLP). We have chosen to operate through a number of different
models, namely Bert-Base (Devlin et al., 2019), DistilBert-Base (Sanh et al., 2019), GPT2 (Radford
et al., 2019), Gemma-2B (Team et al., 2024), llama3 2 1B (Dubey et al., 2024), Tiny-Llama (Zhang
et al., 2024), and Mistral-7B (Jiang et al., 2023). For all models, we perform TextFooler (Jin et al.,
2020) attack, and for some models, we also perform A2T (Yoo & Qi, 2021) attack. We focus the
evaluation on the text classification task using IMDb (Maas et al., 2011), SST-2 (Socher et al., 2013),
and Yelp Polarity (Zhang et al., 2015) datasets.

Considered Metrics. For both modalities, we report the clean/attacked accuracy and the success
rate, which is the number of samples that were successfully attacked, meaning that the attack was
successful in finding a perturbation within the budget that was able to flip the original classification.

We note that for all the models, the LoRA adaptation is applied to the whole self-attention compo-
nent. The code to reproduce our results and experiments is provided in the Supplementary Materials,
and additional details about the hyperparameters and the problem setup are provided in Appendix E.
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6.1 EXPERIMENTAL RESULTS

Image-Based Evaluation. Figure 2 (respectively Figure 8 in Appendix D.1) presents the aver-
age success rate, and the corresponding standard deviations, of the FGSM attack for both head-
only and LoRA finetuning strategies on a ViT (and SwiN, respectively), evaluated across multiple
datasets and perturbation budgets. The empirical results align with our theoretical findings: across
all datasets, LoRA consistently yields a higher attack success rate, indicating lower adversarial ro-
bustness compared to head-only finetuning. Notably, the robustness gap between the two strategies
can be substantial. For example, on ImageNet, the difference in attack success rate can reach up to
20%, despite a clean accuracy gap of only around 1%. This performance contrast highlights that
even small gains in clean performance under LoRA may come at a significant cost in adversarial
settings. Similar insights are observed for the CIFAR dataset family, where by aiming for a small
increase in clean robustness (around 3− 4%), the resulting success rate can reach around 12− 15%.

Table 1: Average Clean Accuracy and Success Rate (± standard deviation) of the ViT and SwiN for
both head-only and LoRA finetuning subject to FGSM and PGD attack on different datasets.

Model Dataset Strategy Clean Accuracy ↑ Success Rate (FGSM) ↓ Success Rate (PGD) ↓

V
iT

ImageNet Head-Only 88.7 ± 0.2 28.9 ± 0.7 84.2 ± 0.4
LoRA 88.9 ± 0.1 41.9 ± 0.8 96.4 ± 0.3

CIFAR-10 Head-Only 97.4 ± 0.1 22.5 ± 0.3 88.4 ± 0.6
LoRA 98.6 ± 0.1 27.1 ± 0.6 93.1 ± 0.3

CIFAR-100 Head-Only 87.9 ± 0.9 42.9 ± 0.8 92.4 ± 0.7
LoRA 90.8 ± 0.2 53.2 ± 0.4 96.2 ± 0.8

Sw
iN

ImageNet Head-Only 89.8 ± 0.2 29.9 ± 0.8 90.2 ± 0.4
LoRA 90.3 ± 0.1 36.6 ± 0.6 94.8 ± 0.7

CIFAR-10 Head-Only 97.8 ± 0.1 26.1 ± 0.8 93.4 ± 0.2
LoRA 98.5 ± 0.1 28.9 ± 0.7 95.1 ± 0.4

CIFAR-100 Head-Only 87.6 ± 0.1 45.3 ± 0.6 94.2 ± 0.3
LoRA 92.1 ± 0.3 50.2 ± 0.4 97.4 ± 0.2

Text-Based Evaluation. Figure 3 (and Figure 13 - Appendix D.3) presents the average success
rates, along with standard deviations, for the TextFooler and A2T adversarial attacks applied to
models fine-tuned using either head-only or LoRA strategies across varying perturbation budgets.
The results in the NLP setting closely mirror the trends observed in computer vision, further rein-
forcing the generality of our theoretical findings across modalities. In addition, Table 2 summarizes
both clean accuracy and attack success rates under a fixed perturbation budget of 3 word substitu-
tions. Across all evaluated models, LoRA fine-tuning generally shows lower robustness compared
to head-only tuning. Additional experiments on other architectures and models are provided in
Appendix D.3.

Table 2: Average Clean Accuracy and Success Rate (± standard deviation) of BERT, DistilBERT
and GPT-2 for head-only and LoRA finetuning subject to TextFooler and A2T on different datasets.

Model Dataset Strategy Clean Accuracy ↑ Success Rate (TextFooler) ↓ Success Rate (A2T) ↓

B
E

R
T

IMDb Head-Only 83.2 ± 0.9 11.3 ± 0.1 8.6 ± 0.6
LoRA 90.5 ± 0.9 16.7 ± 1.0 14.9 ± 0.1

SST-2 Head-Only 83.4 ± 0.5 54.0 ± 0.0 28.1 ± 0.7
LoRA 92.1 ± 0.2 53.4 ± 1.6 22.9 ± 0.6

Yelp Polarity Head-Only 86.1 ± 1.5 14.7 ± 2.2 11.0 ± 1.1
LoRA 92.6 ± 0.5 15.9 ± 0.8 11.5 ± 0.7

G
PT

-2

IMDb Head-Only 85.7 ± 1.0 6.7 ± 0.8 11.0 ± 2.0
LoRA 91.9 ± 0.9 7.9 ± 0.4 13.4 ± 2.3

SST-2 Head-Only 82.1 ± 0.5 47.2 ± 0.9 30.1 ± 0.4
LoRA 91.0 ± 1.3 54.6 ± 2.1 22.0 ± 0.8

Yelp Polarity Head-Only 85.2 ± 1.6 10.1 ± 0.8 12.3 ± 2.3
LoRA 92.4 ± 0.5 7.9 ± 0.8 8.9 ± 1.4

These findings underscore the practical significance of our theoretical analysis. While LoRA im-
proves downstream performance in terms of clean accuracy, it also introduces increased vulnerabil-
ity to adversarial perturbations. A key insight is that the gains in clean accuracy offered by LoRA
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come at an adversarial cost, with performance degrading more severely under attack. This observa-
tion highlights an important trade-off between clean accuracy and robustness, particularly in safety-
critical applications where reliability under distribution shift or adversarial threat is paramount. In
such contexts, clean accuracy alone is an insufficient metric and must be complemented by robust-
ness evaluations.

6.2 EFFECT OF HYPER-PARAMETERS

6.2.1 EFFECT OF INITIALIZATION
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Figure 4: Effect of the chosen initialization
distribution on the resulting Attacked Accu-
racy of ImageNet.

We further investigate the impact of initialization
strategies to demonstrate the practical relevance of
the theoretical insights from Section 5, particularly
Theorem 2. To this end, we evaluate several initial-
ization schemes for the LoRA matrix A. Specifi-
cally, we consider the default Kaiming initialization
used in the PEFT package, the well-known Xavier
initialization, and three additional classical distribu-
tions: Gaussian, Orthogonal, and Uniform.

Figure 4 reports the average clean and attacked ac-
curacies across various adversarial budgets and ini-
tialization distributions. As anticipated, the choice
of initialization significantly influences the final ad-
versarial robustness. Although all distributions yield
similar clean accuracies (within a 2% range), the
attacked accuracies show a gap of up to 10% be-
tween the most and least robust initializations (Uni-
form versus Kaiming). These results indicate that se-
lecting an appropriate initialization can substantially
enhance robustness without sacrificing clean performance, thereby reducing the robustness gap be-
tween the LoRA and head-only finetuning strategies. Note that the additional results for the other
datasets are provided in Figure 11 (Appendix D.1). We further examine how the choice of initial
weight norm influences model vulnerability and adversarial robustness. Figure 5 reports results ob-
tained by varying the scaling factors of both Kaiming and Orthogonal initialization schemes. For
Kaiming initialization, note that the scaling factor is inversely related to the resulting weight norm
(via

√
2/(1 + a2)). Consistent with our theory, increasing the scaling parameter leads to larger

initial weight norms, which in turn produce higher γ values and reduced adversarial robustness.
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Figure 5: Effect of varying the initial weight norm, controlled through the scaling parameter, on the
FGSM success rates for CIFAR-10 and CIFAR-100.

6.2.2 EFFECT OF LORA SCALING

LoRA fine-tuning depends on two key hyperparameters: the rank r of the learnable matrices A and
B, and the scaling factor α. As shown in Theorem 1, the robustness bound γLoRA is directly affected
by these parameters. To validate this relationship empirically, we fix the rank to r = 4 and vary α
to assess its impact on adversarial vulnerability.
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Figure 6: Effect of the LoRA parameter
α on the resulting attack success rate.

Figure 6 presents the average attack success rates (with
standard deviation) on CIFAR-10 and CIFAR-100 for dif-
ferent values of α. Consistent with the theoretical insights
that larger values of α increase the upper bound, the em-
pirical results confirm that increasing α leads to higher
attack success rates and thus reduced robustness. Inter-
estingly, the widely adopted practice of setting α = r
appears suboptimal. Instead, using a smaller value such
as α = 1 yields a reduction of approximately 10% in
success rate, enhancing robustness and narrowing the gap
with head-only fine-tuning.

6.3 GENERALIZING
TO OTHER LORA ADAPTATIONS
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Figure 7: Effect of the LoRA parameter α on the resulting attack
success rate.

Beyond the original LoRA
formulation introduced by Hu
et al. (2022), several extensions
have been proposed to advance
parameter-efficient fine-tuning.
Our theoretical analysis focuses
on this canonical variant to
isolate how its parameteri-
zation influences adversarial
robustness, but the resulting
upper bound also suggests that
certain adaptations may confer
additional robustness benefits.
For instance, DeLoRA Bini
et al. (2025) and NB-LoRA
Wang et al. (2025) explicitly constrain the norm of the learned updates, which, when combined with
our bound, implies a secondary robustness effect arising from tighter control of update magnitudes.
Likewise, QLoRA Dettmers et al. (2023) employs 4-bit quantization to reduce memory usage while
preserving downstream performance, and such quantization may incidentally lead to improved
robustness. To evaluate these hypotheses, we empirically compare the adversarial robustness of
standard LoRA with several of these adaptations. Finally, to illustrate how other PEFT strategies
behave under adversarial perturbations, we also examine Prompt Tuning, in which a small set of
learned continuous embeddings added to the input rather than modifying model weights, serves
as the only trainable component. Figure 7 provides the empirical findings. As expected from our
theoretical study, norm-bounded variants achieve higher robustness than standard LoRA, yet they
still fall short of the robustness achieved by head-only fine-tuning. Additional results for NLP are
provided in Figure 14.

7 CONCLUSION

In this work, we present the first theoretical analysis that explores the connection between LoRA as
a fine-tuning strategy and the adversarial robustness of the resulting model. Our theoretical findings,
supported by empirical results, indicate that the gains in clean accuracy achieved through LoRA
come at the cost of increased vulnerability to adversarial attacks, particularly when compared to
head-only fine-tuning. However, our analysis also highlights the important role of hyperparameters,
specifically the scaling factor α and the initialization scheme, in shaping this trade-off. We show that
appropriate choices of these parameters can significantly reduce the robustness gap, yielding a more
favorable balance between clean and attacked accuracy without introducing additional constraints
or computational overhead, effectively offering a “free-lunch” improvement.

Limitations. While our work focuses on offering theoretical guidance for tuning LoRA’s hyperpa-
rameters, we believe it opens a new direction for designing LoRA variants that are not only effective
on downstream tasks but also inherently more robust to adversarial perturbations.
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ETHICS STATEMENT

In this paper we study the adversarial robustness of LoRA-based models using only openly avail-
able datasets and pretrained models. Our work does not involve human subjects and therefore does
not require IRB approval. All datasets used are publicly available and appropriately licensed. Al-
though adversarial attacks are employed, they are standard, publicly available methods used solely
to evaluate and improve model robustness. We believe that examining how these models respond to
adversarial inputs is an important part of responsible AI research. By highlighting potential weak-
nesses, this line of work can help the community build systems that are more reliable, secure, and
less vulnerable to misuse. In this context, to the best of our knowledge, this research does not raise
ethical concerns related to discrimination, bias, privacy, or security. No conflicts of interest or legal
compliance issues are associated with this work. We additionally note that LLMs were used only to
assist with text refinement.

REPRODUCIBILITY STATEMENT

We have made an effort to ensure that our results can be reproduced by others. All datasets and
pretrained models we use are publicly available and are clearly referenced in the paper. The ex-
perimental setup, including how LoRA models are fine-tuned and how adversarial evaluations are
carried out, is described in detail in the main text and the appendix (mainly Appendix E). The con-
sidered theoretical problem setup is clearly explained in Section 3 and all the theorem’s proofs and
extended results are included in the appendix. Finally, to support independent verification, the code
to reproduce our results is included in the Supplementary Materials and shall be made public upon
publication.
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gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Ma-
chine learning and knowledge discovery in databases: European conference, ECML pKDD 2013,
prague, czech Republic, September 23-27, 2013, proceedings, part III 13, pp. 387–402. Springer,
2013.

Massimo Bini, Leander Girrbach, and Zeynep Akata. Decoupling angles and strength in low-rank
adaptation. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=X1U74IwuxG.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020.

Joana C Costa, Tiago Roxo, Hugo Proença, and Pedro RM Inácio. How deep learning sees the
world: A survey on adversarial attacks & defenses. IEEE Access, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

11

https://openreview.net/forum?id=X1U74IwuxG


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=lIsCS8b6zj.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
Advances in Neural Information Processing Systems, 37:117015–117040, 2024a.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large
models. In Forty-first International Conference on Machine Learning, 2024b. URL https:
//openreview.net/forum?id=NEv8YqBROO.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong baseline
for natural language attack on text classification and entailment. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 8018–8025, 2020.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–
2671, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: LoRA-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=LzPWWPAdY4.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=lIsCS8b6zj
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=LzPWWPAdY4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios Anastasiadis, and
George Loukas. A taxonomy and survey of attacks against machine learning. Computer Science
Review, 34:100199, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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Supplementary Material

A PROOF OF PROPOSITION 1

Proposition. Let f : X → Y be the pre-trained TBM-based model following the considered problem
setup. The head-only finetuning strategy ζHead-only

f is (ϵ, γHead-Only)-robust, with:

γHead-Only =

(
d

d− 1

)2

C1C2ϵ,

with: C1 =
(
1 + ∥WO∥

√
Hmax

h

[
∥WV,h∥

[ 4√
d/H

∥WQ,h∥∥WK,h∥+1
]])

,

C2 =
(
1 + ∥WFFN∥

)
∥Wout∥,

and W being the different weights of the models (as explained in Section 3).

Proof. Let’s consider our input X ∈ X composed of n tokens xi ∈ Rd. We consider that our model
f is built using the dot-product self-attention as referred to in Equation 1 and reformulated as:

AH(x) = Softmax(
(XWQ)(XWK)T√

D
H

)XWV

= PXWV = h(X)WV ,

where WQ,WK ,WV are learnable weights of the model. Let’s consider the function h(X), we can
write:

f(X) = PX = Softmax(XATXT )X

f(X) = PX = Softmax
(
XA⊤X⊤)X =

h1(X)⊤

...
hn(X)⊤

 ∈ Rn×d, with:

A =
WKWQ⊤√

d/H
∈ Rd×d and hi(X) =

n∑
j=1

Pijxj with P⊤
i = Softmax(XAxi).

By analyzing the partial derivatives, we can directly write the following regarding eh Jacobian matrix
of h:

Jij = X⊤ P (i) Eji X A⊤ + δij
(
X⊤ P (i) X A

)
+ Pij Id,

with:

• P (i) = diag
(
Pi:

)
− P⊤

i: Pi:, [Softmax derivate]

• Eji is the (n× n) matrix with a single 1 in position (j, i).

Based on this, two elements arises:

If i ̸= j, Jij = X⊤ P (i) Eji X A⊤ + Pij I, (4)

If i = j, Jii = X⊤ P (i) Eii X A⊤ +X⊤ P (i), X,A+ PiiI. (5)

1
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We recall that the input images are considered to be normalized, and therefore we can write:

∥X∥≤ 1

Additionally, since Pi: is the output of the softmax, then can be considered a probability distribution.
Therefore, σmax(diag(p)) ≤ 1 and ppT has rank 1:

∥P (i)∥ = ∥diag
(
Pi:

)
− P⊤

i: Pi:∥≤ 2

Case 1. We start by considering the first case i ̸= j, in which we have:

Jij = X⊤ P (i)EjiXA⊤ + PijI.

Consequently we have the following:

∥Jij∥ ≤ ∥X⊤ P (i)EjiXA⊤∥+∥PijI∥
≤ 2× ∥A∥+1

≤ ∥A∥+1

Case 2. For the second case i = j, we have the following:

Jii = X⊤P (i)EiiXA⊤ +X⊤ P (i) X A+ PiiI.

We apply the same analogy as the previous case:

∥Jii∥ ≤ ∥X⊤P (i)EiiXA⊤∥+∥X⊤ P (i) X A∥+∥PiiI∥
≤ 2∥A∥+2∥A∥+1

≤ 4∥A∥+1

So overall, we have the following:

∥Jij∥op≤

{
2∥A∥+1, if i ̸= j,

4∥A∥+1, if i = j.

So with our theoretical assumptions, the Jacobian is bounded and we have: Lh ≤ 4∥A∥+1.

Specifically, for an attention head h, we have the following computation taking into account the
different learnable weights:

Lhead ≤ ∥WV,h∥
[ 4√

d/H
∥WQ,h∥∥WK,h∥+1

]
Since f is represented by H separate attention head, then their concatenated output as explained in
Equation 2 is subject to the following:

LMH ≤ ∥WO∥
√
Hmax

h

[
Lhead

]
≤ ∥WO∥

√
Hmax

h

[
∥WV,h∥

[ 4√
d/H

∥WQ,h∥∥WK,h∥+1
]]

Finally, we need to take into account the application of the FFN and LN (with its parameters γ = 1
and β = 1). In addition, giving that we consider the head-only fine-tuning strategy, we consider that
a final linear layer Wout is trained. Since ReLU is 1-Lipschitz, we have the following result:

Lf ≤ L2
LN (1 + LMH)(1 + LFFN )

≤
( d

d− 1

)2(
1 + LMH

)(
1 + ∥WFFN∥

)
≤
( d

d− 1

)2(
1 + ∥WO∥

√
Hmax

h

[
∥WV,h∥

[ 4√
d/H

∥WQ,h∥∥WK,h∥+1
]])(

1 + ∥WFFN∥
)

≤
( d

d− 1

)2
A1A2,

2
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with A1 =
(
1 + ∥WO∥

√
Hmax

h

[
∥WV,h∥

[ 4√
d/H

∥WQ,h∥∥WK,h∥+1
]])

A2 =
(
1 + ∥WFFN∥

)
∥Wout∥

Let’s now consider a perturbed input x̃ ∈ B(x, ϵ) as defined in Section 4.1. The previous upper-
bound applies to any given point within that budget, and therefore we have:

sup
x̃∈B(x,ϵ)

dY (ζf (x̃) , ζf (x)) ≤ Lf ϵ

We can therefore conclude that, in respect of Definition 1, the head-only finetuning strategy is is
(ϵ, γHead-Only)-robust, with:

γHead-Only =

(
d

d− 1

)2

C1C2ϵ,

with: C1 =
(
1 + ∥WO∥

√
Hmax

h

[
∥WV,h∥

[ 4√
d/H

∥WQ,h∥∥WK,h∥+1
]])

,

C2 =
(
1 + ∥WFFN∥

)
∥Wout∥,

B PROOF OF THEOREM 1

Theorem. Let f : X → Y be the pre-trained TBM-based model following the considered problem
setup. For the LoRA-based finetuning strategy ζLoRA

f , where the LoRA is only applied to the main
transformer part, is (ϵ, γLoRA)-robust, with:

γLoRA =

(
d

d− 1

)2

C ′
1C2ϵ,

with: C ′
1 = 1+∥WO∥

√
Hmax

h

[
∥WV,h∥+α

r
∥AV,h∥∥BV,h∥

]
[

4√
d/H

[
∥WQ,h∥+α

r
∥AQ,h∥∥BQ,h∥

]
∥WK,h∥+1

]

Proof. In this part, we considert the LoRA-based finetuning. In this perspective, we follow the same
analogy as the previous proof. Specifically, Let X ∈ X be our input composed of n tokens xi ∈ Rd.
We consider the same model f which is built using the dot-product self-attention as referred to in
Equation 1 and reformulated as:

AH(x) = Softmax(
(XWQ)(XWK)T√

D
H

)XWV

= PXWV = h(X)WV ,

We recall that in the case of LoRA, two additional matrices A and B are learnable during the fine-
tuning. Specifically, given a weight matrix W ∈ Rd×k in a model, it is substituted by the following:

W ′ = W +
α

r
BA,

where r is the rank of the low-rank adaptation, α is the scaling factor, and B ∈ Rd×r and A ∈ Rr×k

are learnable weight matrices learned during the finetuning process.

3
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From the previous section, we have the following Lipschitz bound for the head-only finetuning
strategy:

L′
f ≤ L2

LN (1 + LMH)(1 + LFFN )

≤
( d

d− 1

)2(
1 + LMH

)(
1 + ∥WFFN∥

)
≤
( d

d− 1

)2(
1 + ∥WO∥

√
Hmax

h

[
∥W ′V,h∥

[ 4√
d/H

∥W ′Q,h∥∥W ′K,h∥+1
]])(

1 + ∥WFFN∥
)

We consider that the LoRA finetuning is only applied to the main core of Transformer, specifically
to the query Q and value V matrices of the attention mechanism as in the original work. We can
therefore continue the previous computation by including the corresponding values:

L′
f ≤

( d

d− 1

)2(
1 + ∥WO∥

√
Hmax

h

[
∥W ′V,h∥

[ 4√
d/H

∥W ′Q,h∥∥W ′K,h∥+1
]])(

1 + ∥WFFN∥
)

≤
( d

d− 1

)2(
1 + ∥WO∥

√
Hmax

h

[ [
∥WV,h∥+α

r
∥AV,h∥∥BV,h∥

]
[ 4√

d/H

[
∥WQ,h∥+α

r
∥AQ,h∥∥BQ,h∥

]
∥WK,h∥+1

]])(
1 + ∥WFFN∥

)
≤
( d

d− 1

)2
A′

1A2,

Similar to the previous proof, let’s consider a perturbed input x̃ ∈ B(x, ϵ) as defined in Section 4.1.
The previous upper-bound applies to any given point within that budget, and therefore we have:

sup
x̃∈B(x,ϵ)

dY (ζf (x̃) , ζf (x)) ≤ L′
f ϵ

We can therefore conclude that, in respect of Definition 1, the LoRA finetuning strategy is (ϵ, γLoRA)-
robust, with:

γLoRA =

(
d

d− 1

)2

C ′
1C2ϵ,

with: C ′
1 = 1+∥WO∥

√
Hmax

h

[
∥WV,h∥+α

r
∥AV,h∥∥BV,h∥

]
[

4√
d/H

[
∥WQ,h∥+α

r
∥AQ,h∥∥BQ,h∥

]
∥WK,h∥+1

]

C PROOF OF THEOREM 2

Theorem. Let f : X → Y be our pre-trained TBM-based model. Let’s consider the LoRA finetuning
strategy, where all the low-rank matrices A in layer h are initialized as AQ,h

0 (for Query) and AV,h
0

(for Values), then the resulting C ′
1 constant in γLoRA ( Theorem 1) can be written as:

C ′
1 ≤ K1 (1 + ηL)t max

h
∥A(V,h)

0 ∥+K2(1 + ηL)2t max
h

∥A(V,h)
0 ∥∥A(Q,h)

0 ∥+C,

with K1,K2 and C being the constants depending on the final weight norms (derived in Equation
12).

4
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Proof. Let’s now consider the effect of Initialization distribution on the final adversarial robustness
of the LoRA finetuning. Specifically, we consider the same settings as in prior work, where the B
matrix is set to 0 and only the A matrix is initialized.

The gradient descent update at finetuning epoch t for our matrix A (at any layer) is written as:

A
(Q,h)
t+1 = A

(Q,h)
t − η∇L(A(Q,h)

t ).

As specified in our problem setup in Section 3, we consider that our loss function L to be L-smooth,
we can hence write the following result:∥∥∥∇L(A(Q,h)

t )
∥∥∥ ≤ L

∥∥∥A(Q,h)
t −A

(Q,h)
∗

∥∥∥ .
Consequently, after t training epochs, we can write:∥∥∥A(Q,h)

t

∥∥∥ =
∥∥∥A(Q,h)

t−1 − η∇L(A(Q,h)
t−1 )

∥∥∥
≤
∥∥∥A(Q,h)

t−1

∥∥∥+ ηL
∥∥∥A(Q,h)

t−1 −A
(Q,h)
∗

∥∥∥
≤ (1 + ηL)

∥∥∥A(Q,h)
t−1

∥∥∥+ ηL
∥∥∥A(Q,h)

∗

∥∥∥ .
In addition, we suppose that the considered learning rate is chosen as η ≤ 1

L . Consequently, we can
write based on the previous formulation and by using recursion:∥∥∥A(Q,h)

t

∥∥∥ ≤ (1 + ηL)
t
∥∥∥A(Q,h)

0

∥∥∥+ t∑
h=0

2h
∥∥∥A(Q,h)

∗

∥∥∥ (6)

≤ (1 + ηL)
t
∥∥∥A(Q,h)

0

∥∥∥+ 2t+1
∥∥∥A(Q,h)

∗

∥∥∥ (7)

≤ (1 + ηL)
t
∥∥∥A(Q,h)

0

∥∥∥+ 2t+1
∥∥∥A(Q,h)

∥∥∥ (8)

Remark. We denote A∗ (which are the converged final weights) as A directly to be inline with the
previous theorems and results.

We additionally note that a similar analogy applies to the matrix B. Since we consider that specific
matrix to be initialized to zero, the resulting terms of the initialization is therefore set to zero and
only the final weight norm is seen in the upper-bound.

Consequently, and from the previous part, we had that the LoRA finetuning is is (ϵ, γLoRA)-robust,
with:

γLoRA =

(
d

d− 1

)2

C ′
1C2ϵ,

with: C ′
1 = 1+∥WO∥

√
Hmax

h

[
∥WV,h∥+α

r
∥AV,h∥∥BV,h∥

]
[

4√
d/H

[
∥WQ,h∥+α

r
∥AQ,h∥∥BQ,h∥

]
∥WK,h∥+1

]

Using the result from Equation 8, we can connect the previous resulting bound to the initialization,
resulting in the following:

with: C ′
1 =1 + ∥WO∥

√
Hmax

h

[
∥WV,h∥+α

r
∥BV,h∥

[
(1 + ηL)

t
∥∥∥A(V,h)

0

∥∥∥+ 2t+1
∥∥∥A(V,h)

∥∥∥]][
4√
d/H

[
∥WQ,h∥+α

r
∥BQ,h∥

[
(1 + ηL)

t
∥∥∥A(Q,h)

0

∥∥∥+ 2t+1
∥∥∥A(Q,h)

∥∥∥]] ∥WK,h∥+1

]

5
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From the previous result, we can separate the two main terms, as follows:

C ′
1 = 1 + ∥WO∥

√
H max

h

{[
∥WV,h∥+α

r ∥B
V,h∥

(
(1 + ηL)t∥A(V,h)

0 ∥+2t+1∥A(V,h)∥
)]

︸ ︷︷ ︸
=ah

(9)

×
[

4√
d/H

(
∥WQ,h∥+α

r ∥B
Q,h∥

(
(1 + ηL)t∥A(Q,h)

0 ∥+2t+1∥A(Q,h)∥
))
∥WK,h∥+1

]
︸ ︷︷ ︸

=bh

}
.

(10)

The previous two elements can be written as:

ah ≤ C
(V )
h + α

r ∥BV,h∥ (1 + ηL)t ∥A(V,h)
0 ∥

bh ≤ C
(QK)
h + 4√

d/H

α
r ∥BQ,h∥ (1 + ηL)t ∥A(Q,h)

0 ∥ ∥WK,h∥

Note that since everything is positive (given that the norms by definition are positive), then we have:

max
h

(ahbh) ≤
(
max
h

ah

)(
max
h

bh

)
. (11)

Consequently, we can write:

max
h

(ahbh) ≤ K ′
1(1 + ηL)t∥A(V )

0 ∥max+K ′
2(1 + ηL)2t∥A(V )

0 ∥max∥A(Q)
0 ∥max+C0,

with: K ′
1 = α

r ∥B
V ∥max,

K ′
2 = 4√

d/H

(
α
r

)2
∥BV ∥max∥BQ∥max∥WK∥max,

and C0 is a time-independent constant.

Let’s define the following: AQ
0 = maxh∥A(Q,h)

0 ∥, and AV
0 = maxh∥A(V,h)

0 ∥.

Then we can finally write:

C ′
1 ≤ K1 (1 + ηL)t max

h
∥A(V,h)

0 ∥+K2(1 + ηL)2t max
h

∥A(V,h)
0 ∥∥A(Q,h)

0 ∥+C,

with:

K1 = ∥WO∥
√
H α

r ∥B
V ∥max, (12)

K2 = 4∥WO∥ H√
d

(
α
r

)2
∥BV ∥max∥BQ∥max∥WK∥max. (13)

Proof of Lemma 1:
Lemma. Consider LoRA matrices for each head h = 1, . . . ,H initialized with entries drawn i.i.d.
from U(−a, a) independently across heads and stacks. Then the expected value of the robustness
constant C ′

1 satisfies

E[C ′
1] = O

(
(1 + ηL)2t a2

(
(
√
r +

√
k) +

√
logH

)2)
.

6
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Proof. From the Theorem2, for sufficiently large t we have

C ′
1 = O

(
(1 + ηL)2t max

h
∥A(V,h)

0 ∥ max
h

∥A(Q,h)
0 ∥

)
. (14)

For a random matrix A ∈ Rr×k with i.i.d. entries from U(−a, a), matrix concentration bounds yield

E[∥A∥] ≤ C1a(
√
r +

√
k), (15)

for a universal constant C1 > 0. Taking the maximum over H independent heads gives

E
[

max
h=1,...,H

∥A(h)∥
]
≤ C2a

(
(
√
r +

√
k) +

√
logH

)
. (16)

By independence of Q and V stacks,

E
[
max
h

∥A(V,h)
0 ∥ max

h
∥A(Q,h)

0 ∥
]
= E

[
max
h

∥A(V,h)
0 ∥

]
· E
[
max
h

∥A(Q,h)
0 ∥

]
, (17)

which yields the stated bound after plugging in Equation 14, multiplication and absorbing constants.

D ADDITIONAL RESULTS

D.1 ADDITIONAL RESULTS CV

Results SwiN-based Transformer. While in Section 6, Figure 2 provides the results of the success
rate of the ViT, we additionally provide the results on the SwiN, which show similar tendencies and
insights on the link between loRA and adversarial robustness compared to head-only finetuning.
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Figure 8: Success Rate of the FGSM Attack when applied to a SwiN-based Model and different
datasets and attack budgets.

Clean/Attacked Accuracy. Additionally, as explained in Section 6, we study the adversarial robust-
ness from an attack success rate perspective as a representative metric, but we additionally report
the attacked accuracy, which also has the same insights. Note that the success rate is simply a rep-
resentative function of the attack accuracy (without taking into account the erroneous predictions
of the models). In this perspective, Figure 9 provides the results of the average clean and attacked
accuracy of a ViT when subject to the FGSM attack for different attack budgets, while Figure 10
provides the results for the SwiN-based transformer.

Other Results on Initialization. In line with what was presented in Section 6.2, we extend the
study to take into account the other considered datasets. In this perspective, Figure 11 provides the
corresponding results on the ImageNet, the CIFAR-10 and CIFAR-100.

D.2 ON THE EFFECT OF RANK
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Figure 9: Clean/Attacked Accuracy of a ViT when subject to the FGSM attack for different budgets
and datasets.
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Figure 10: Clean/Attacked Accuracy of a SwiN-based model when subject to the FGSM attack for
different budgets and datasets.
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Figure 12: Effect of the rank value param-
eter r of LoRA on the resulting attack suc-
cess rate.

In addition to studying the effect of the α value in the
empirical evaluation in Section 6 (Figure 6), we evalu-
ate the effect of the chosen rank value r which is also
present in the computed upper-bound. Figure 12 shows
the resulting study, where we see that increasing the
value of the rank r results in decreasing the attack suc-
cess rate, in which is in accordance with our theoretical
results, where γ is inversely proportional to the chosen
value r.

D.3 ADDITIONAL RESULTS NLP

Results for A2T Attack. While in Section 6, Figure 3
presents the results of TextFooler attack on head-only
and LoRA finetuning, Figure 13 presents the attack re-
sults from A2T attack. Overall, we have similar overall
observations for the adversarial robustness comparison between head-only and LoRA finetuning.

Adversarial Robustness Comparison of Norm-Bounded LoRA. While our theory show that
LoRA is less robust than Head-Only finetuning, recent research work has also demonstrate that
fine-tuning under bounded parameter norms improves the advesarial robustness of LoRA. Specifi-
cally, DeLoRA (Bini et al., 2025) normalizes and scales low-rank updates to decouple the direction
of weight changes from their magnitude. More recently, NB-LoRA (Wang et al., 2025) reparam-
eterizes low-rank adaptation matrices so that its singular vluaes are explicitly bounded, yielding
improved training stability and hyper-parameter robustness compared to LoRA. Figure 14 shows
the empirical comparision between LoRA, DeLoRA, NB-LoRA and Head-Only fine-tuning. In

8



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0
4/2

55
6/2

55
8/2

55
12

/25
5

16
/25

5
20

/25
5

24
/25

5
28

/25
5

32
/25

5

Attack Budget

22

42

62

82
Ac

cu
ra

cy
 (%

)

Effect Initialization  FGSM  ImageNet

0
4/2

55
6/2

55
8/2

55
12

/25
5

16
/25

5
20

/25
5

24
/25

5
28

/25
5

32
/25

5

Attack Budget

50

60

70

80

90

100
Effect Initialization  FGSM  CIFAR-10

0
4/2

55
6/2

55
8/2

55
12

/25
5

16
/25

5
20

/25
5

24
/25

5
28

/25
5

32
/25

5

Attack Budget

30

40

50

60

70

80

90

Effect Initialization  FGSM  CIFAR-100

Gaussian Orthogonal Xavier Kaiming Uniform

Figure 11: Clean/Attacked Accuracy of a ViT when subject to FGSM under different initialization
distribution.
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Figure 13: Attack Success Rate of the A2T Attack on BERT, DistilBERT, and GPT-2 when applied
to IMDb dataset with different attack budget (number of words changed).

general, we find that both DeLoRA and NB-LoRA improves the adversarial robustness of the model
as compared to LoRA.

Clean/Attacked Accuracy. In addition to attack success rate, Table 3 and 4 and provides detailed
results of clean accuracy and adversarial accuracy of TextFooler and A2T attack.

Table 3: Original accuracy (Orig Acc), attack success rate (ASR, %) and adversarial accuracy (Adv
Acc, %) across datasets with TextFooler attack. Attack budget: max number of words changed is 3.

Dataset IMDb SST-2 Yelp Polarity
Metric Orig Acc ASR Adv Acc Orig Acc ASR Adv Acc Orig Acc ASR Adv Acc

BERT Head-Only 83.20 ± 0.87 11.27 ± 0.12 71.93 ± 0.83 83.40 ± 0.53 54.00 ± 0.00 29.40 ± 0.53 86.13 ± 1.53 14.73 ± 2.16 71.40 ± 0.72
LoRA 90.53 ± 0.92 16.67 ± 1.01 73.87 ± 1.89 92.13 ± 0.23 53.40 ± 1.64 38.73 ± 1.86 92.60 ± 0.53 15.93 ± 0.81 76.67 ± 1.22

DistilBERT Head-Only 83.60 ± 0.40 11.40 ± 0.35 72.20 ± 0.72 82.13 ± 0.31 52.00 ± 0.72 30.13 ± 0.50 86.07 ± 1.86 14.60 ± 1.51 71.47 ± 0.70
LoRA 90.07 ± 0.31 17.53 ± 1.22 72.53 ± 1.10 89.47 ± 0.83 58.00 ± 0.69 31.47 ± 0.92 92.07 ± 0.42 17.93 ± 3.60 74.13 ± 3.92

GPT-2 Head-Only 85.67 ± 1.01 6.73 ± 0.81 78.93 ± 1.72 82.07 ± 0.50 47.20 ± 0.92 34.87 ± 0.76 85.20 ± 1.60 10.07 ± 0.81 75.13 ± 2.34
LoRA 91.87 ± 0.90 7.87 ± 0.42 84.00 ± 0.69 90.93 ± 1.33 54.60 ± 2.11 36.33 ± 2.02 92.40 ± 0.53 7.87 ± 0.81 84.53 ± 0.99

Gemma-2B Head-Only 92.13 ± 0.58 7.73 ± 0.64 84.40 ± 1.22 88.73 ± 0.46 46.80 ± 0.20 41.93 ± 0.50 94.87 ± 0.23 7.80 ± 1.06 87.07 ± 1.15
LoRA 94.40 ± 0.53 10.80 ± 0.53 83.60 ± 0.69 96.07 ± 0.31 40.60 ± 1.73 55.47 ± 1.70 97.13 ± 0.50 9.40 ± 1.51 87.73 ± 1.81

LLaMA-3.2-1B Head-Only 93.33 ± 0.81 7.13 ± 0.81 86.20 ± 1.59 86.73 ± 0.12 47.60 ± 0.53 39.13 ± 0.64 94.53 ± 0.31 10.27 ± 0.81 84.27 ± 0.99
LoRA 93.33 ± 0.23 8.87 ± 0.42 84.47 ± 0.42 95.93 ± 0.61 43.93 ± 1.79 52.00 ± 1.22 97.40 ± 0.92 8.73 ± 1.10 88.67 ± 0.64

Mistral-7B Head-Only 93.40 ± 0.53 6.47 ± 0.50 86.93 ± 0.95 91.00 ± 0.53 43.93 ± 0.58 47.07 ± 1.01 96.53 ± 1.55 7.60 ± 0.72 88.93 ± 0.99
LoRA 89.40 ± 6.05 12.40 ± 7.50 77.00 ± 13.53 81.80 ± 2.12 58.33 ± 3.75 23.47 ± 1.75 97.33 ± 0.61 7.07 ± 1.68 90.27 ± 1.14

TinyLLaMA Head-Only 93.60 ± 0.92 5.53 ± 0.31 88.07 ± 0.81 73.33 ± 0.12 45.60 ± 0.20 27.73 ± 0.31 89.73 ± 1.86 13.33 ± 3.01 76.40 ± 3.82
LoRA 93.13 ± 1.03 10.87 ± 0.42 82.27 ± 1.40 93.80 ± 0.20 49.00 ± 1.59 44.80 ± 1.64 95.33 ± 1.22 13.13 ± 1.63 82.20 ± 2.78

E EXPERIMENTAL DETAILS

Computer-Vision. For all the experiments, we used a learning rate of 1e−03 to train the LoRA and
the head-only finetuning, and the training was done using AdaM optimizer (Kingma & Ba, 2014).
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Figure 14: Attack Success Rate of the A2T Attack on DistilBERT model when applied to AG News,
Banking77, IMDb dataset with different attack budget (number of words changed).

Table 4: Original accuracy (Orig Acc), attack success rate (ASR, %) and adversarial accuracy (Adv
Acc, %) across datasets with A2T attack. Attack budget: max number of words changed is 3.

Dataset IMDb SST-2 Yelp Polarity
Metric Orig Acc ASR Adv Acc Orig Acc ASR Adv Acc Orig Acc ASR Adv Acc

BERT Head-Only 86.67 ± 0.92 8.61 ± 0.62 79.20 ± 0.40 83.40 ± 0.53 28.13 ± 0.74 59.93 ± 0.23 87.00 ± 1.06 11.04 ± 1.13 77.40 ± 1.93
LoRA 92.93 ± 1.01 14.85 ± 0.06 79.13 ± 0.81 92.13 ± 0.23 22.86 ± 0.62 71.07 ± 0.46 93.20 ± 0.72 11.52 ± 0.70 82.47 ± 1.14

DistilBERT Head-Only 87.67 ± 0.31 6.77 ± 0.78 81.73 ± 0.58 82.13 ± 0.31 28.33 ± 0.40 58.73 ± 0.23 86.40 ± 1.74 11.26 ± 0.74 76.60 ± 1.04
LoRA 92.87 ± 0.31 14.86 ± 1.55 79.07 ± 1.70 89.47 ± 0.83 27.80 ± 1.71 64.60 ± 1.91 93.33 ± 1.03 17.50 ± 2.00 76.93 ± 2.05

GPT-2 Head-Only 89.27 ± 0.95 10.99 ± 2.04 79.47 ± 2.39 82.07 ± 0.50 30.06 ± 0.42 57.40 ± 0.40 85.80 ± 1.91 12.29 ± 2.30 75.27 ± 3.06
LoRA 93.93 ± 0.64 13.35 ± 2.32 81.27 ± 2.52 90.93 ± 1.33 22.00 ± 0.77 70.93 ± 1.62 92.73 ± 0.50 8.85 ± 1.37 84.53 ± 1.62

All the tasks were trained for 5 epochs; all of which yielded stable convergence. All the experiments
were run 3 times with different seeds to reduce the effect of randomness, and we report the average
and the corresponding standard deviations. For the LoRA model, we use the adaptation for all the
weights within the self-attention mechanism.

After the convergence of each finetuning strategy, and as explained in Section 6, we used the FGSM
and PGD attack with different budget attacks. For the PGD, we set the number of iterations to
10, which is in line with the literature. For the attack budget, we used different attack budgets to
illustrate the effect of the attack. Specifically we use a range varying from 4/255 to 32/255. We
note that the classical budget for CIFAR-10 and CIFAR-100 is considered to be 8/255, while for the
ImageNet it’s set to be 4/255.

Finally, for the DeLoRA, we set the λ parameter to 15, following the original work which suggested
a value between 10 and 20.

Natural-Language-Processing.

For both head-only and LoRA fine-tuning, we take the pretrained checkpoint of the model and
further finetune it for 5 epochs using the AdamW (Loshchilov & Hutter, 2019) optimizer with a
learning rate of 2e−4 and batch size of 16. We use the HuggingFace Datasets1 to get the dataset for
the experiment. For the Yelp Polarity dataset, we subsample to 3000 train instances, 1000 validation
instances, and 1000 test instances to speed up the training process. For IMDb and SST-2 datasets,
we use the full dataset and the original train, validation, and test splits provided by Huggingface.

After the fine-tuning phase, we subsample 500 instances from the test split and run both the
TextFooler and A2T attack. The subsampling process is seeded to have a more statistically sound
evaluation of the adversarial robustness of head-only and LoRA finetuning. For the TextFooler at-
tack, we allow at most 10 word substitutions per example. Candidate substitutions are drawn from
counter-fitted word embeddings (with pre-computed cosine similarity matrix), with up to 50 can-
didates per word, and are filtered using a sentence-level similarity threshold of 0.7. During model
inference for the attack, we use a batch size of 16. For the A2T attack, we allow for the number

1https://huggingface.co/docs/datasets/en/index
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of word changes across the set {1, 3, 5, 7} and a query budget of at most 50 forward passes per
example. Up to 20 candidate substitution words are allowed for each word in a sentence, and the
substitution words are further narrowed with a word-level similarity of 0.8. Finally, a sentence level
similarity of 0.9 is used to filter the final sentence. The model inference during the attack is run with
a batch size of 32.

All experiments are repeated 3 times with different seeds, reporting the average performance to-
gether with standard deviations.
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