THEORETICALLY UNDERSTANDING THE HIDDEN AD-VERSARIAL PRICE OF LOW-RANK ADAPTATION

Anonymous authors

000

001

002 003 004

006

008

010 011

012

013

014

015

016

017

018

019

021

023

025

026027028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) has emerged as a prominent parameter-efficient finetuning (PEFT) method for large pre-trained models, enabling strong downstream performance with minimal parameter updates. While LoRA is known to outperform head-only fine-tuning in terms of clean accuracy, its impact on adversarial robustness remains largely unexplored. In this work, and to the best of our knowledge, we present the first theoretical analysis of LoRA's adversarial robustness, comparing it to that of head-only fine-tuning. We formalize the notion of expected adversarial robustness and derive upper bounds demonstrating that, despite its superior clean performance, LoRA can be inherently less robust than head-only tuning due to the additional degrees of freedom introduced by its low-rank components. We further study the influence of LoRA's initialization scheme and show that simple changes in the initialization distribution of the low-rank matrix can significantly affect robustness. Finally, we support our theoretical findings with extensive experiments on both vision and language benchmarks under standard adversarial attacks. Our results provide a principled understanding of the tradeoffs between parameter efficiency, clean performance, and adversarial robustness in commonly used fine-tuning strategies.

1 Introduction

Deep learning has led to significant breakthroughs across multiple domains, notably in computer vision (Dosovitskiy et al., 2021; Liu et al., 2021) and natural language processing (Devlin et al., 2019; Radford et al., 2019; Jiang et al., 2023), where foundation models have become central. These models, typically based on Transformer architectures (Vaswani et al., 2017), are pre-trained on largescale datasets using auxiliary self-supervised tasks, enabling them to learn transferable representations. When fine-tuned, they achieve state-of-the-art performance on a wide range of downstream tasks. However, these foundation models are often extremely large, encompassing a lot of parameters that could range from millions to billions, which makes full fine-tuning both computationally expensive and impractical for many users. As a result, parameter-efficient fine-tuning (PEFT) (Han et al., 2024)

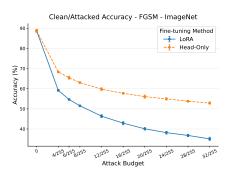


Figure 1: Clean/attacked accuracy on ImageNet subject to FGSM for a ViT.

strategies have gained attention. A common approach is to freeze the pretrained model and only train a lightweight classification or regression head. While efficient, this method often yields sub-optimal downstream performance. To address this, Low-Rank Adaptation (LoRA) (Hu et al., 2022) has emerged as a leading PEFT technique. LoRA introduces learnable low-rank matrices into the model's weight structure, allowing it to adapt to downstream tasks while updating only a small sub-set of parameters. Empirically, LoRA often closely approaches the performance of full fine-tuning, making it a practical alternative for resource-constrained environments.

In parallel to advancements in finetuning methods, adversarial robustness remains a pressing challenge in deep learning. Neural networks are known to be vulnerable to small, carefully crafted perturbations that can cause severe misclassifications, even when these perturbations are imper-

056

057

058

060

061

062

063 064

065

066

067

068

069

071

073

074

075

076

077

079

081

082

084

087

090

091 092

094

095

096

097

098

099

100

101 102

103

104

105

106

107

ceptible to humans (Goodfellow et al., 2015). This vulnerability raises concerns in safety-critical applications such as autonomous vehicles, healthcare, and finance. While extensive research has been conducted on adversarial attack strategies (Tramer et al., 2020; Costa et al., 2024; Biggio et al., 2013) and defense mechanisms (Madry et al., 2017; Akhtar et al., 2021), the relationship between finetuning strategies and adversarial robustness remains underexplored. In particular, the majority of theoretical work has studied how LoRA's performance is influenced by hyperparameters such as rank (Kalajdzievski, 2023), learning rate (Hayou et al., 2024b), and initialization (Hayou et al., 2024a), while no theoretical work to date and to our knowledge has rigorously analyzed the impact of LoRA on adversarial robustness. Preliminary empirical evidence (such as observed in Figure 1) suggests LoRA may influence robustness, but a formal understanding of this phenomenon is lacking.

In this work, we aim to bridge the gap by investigating how LoRA-based fine-tuning affects adversarial robustness, specifically in comparison to fine-tuning using only a classification or regression head. While it is well established that LoRA outperforms head-only tuning in terms of clean accuracy, it remains unclear whether this gain comes at the cost of reduced robustness under adversarial attacks. To address this, we begin by formalizing the notion of expected adversarial robustness, which we then use to theoretically analyze and compare the robustness of head-only and LoRA-based fine-tuning. Our analysis leads to an upper bound suggesting that head-only fine-tuning exhibits stronger adversarial robustness than LoRA, primarily due to the additional parameters introduced by the low-rank adaptation layers. To further understand the influence of LoRA's design choices, we examine how its initialization scheme impacts robustness. In standard LoRA training, one of the low-rank matrices is initialized randomly while the other is set to zero; prior work (Hayou et al., 2024a) has shown that initializing B to zero and A randomly typically yields better clean accuracy. We extend this line of investigation by studying how varying the initialization of A affects adversarial robustness and demonstrates that such a simple change can narrow the robustness gap between LoRA and head-only tuning. Finally, we empirically validate our theoretical findings on both vision and language benchmarks using standard adversarial attacks across multiple datasets. Our overall contributions can be summarized as follows:

- Using a formal notion of expected adversarial robustness, we theoretically show that headonly fine-tuning offers higher expected adversarial robustness than LoRA, due to the additional degrees of freedom introduced by LoRA's low-rank matrices.
- We analyze how LoRA's initialization scheme, particularly the initialization of its low-rank matrix A, and we consequently provide new additional insights on the choice of initial distribution, which could reduce the robustness gap between LoRA and head-only finetuning.
- We validate our theoretical findings through extensive experiments on vision and language tasks, using standard adversarial attacks and multiple benchmark datasets.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. Most pre-trained models today are based on the Transformer architecture (Vaswani et al., 2017). Fully fine-tuning these large models for downstream tasks is often computationally expensive due to the sheer number of parameters, resulting in high memory and compute requirements. Parameter-Efficient Fine-Tuning (PEFT) aims to address this challenge by introducing a small number of trainable parameters, enabling efficient adaptation without updating the entire model. A simple approach is to fine-tune only the task-specific head, which reduces resource usage but often degrades performance. As an alternative, Low-Rank Adaptation (LoRA) (Hu et al., 2022), and its variants (Dettmers et al., 2023; Kopiczko et al., 2024; Hayou et al., 2024b; Li et al., 2024), inject a small set of trainable parameters into each layer of the frozen Transformer backbone, offering a better trade-off between parameter efficiency and downstream performance.

Initialization of LoRA. The initialization of the low-rank matrices in LoRA has recently received increased attention. Since the product of the two matrices is typically initialized to zero to preserve the behavior of the pre-trained model at the start of fine-tuning, various strategies have been proposed for initializing the non-zero matrix. Recent analysis (Hayou et al., 2024a) shows that this choice significantly influences optimization, with initializing B to zero and A randomly yielding better average performance. AMT (Yang et al., 2024a) proposes an SVD-based initialization, aligning LoRA adapters with principal subspaces of the original weights to improve robustness under

adversarial tuning. DoRA (Liu et al., 2024) further decomposes pre-trained weights into magnitude and direction, restricting LoRA updates to the directional component, leading to improved performance and stability compared to standard LoRA.

Adversarial Robustness and LoRA. Most prior work on LoRA has focused on its effectiveness for downstream task performance. However, recent studies have begun to explore the relationship between fine-tuning and adversarial robustness. In particular, works such as (Turbal et al., 2024; Yang et al., 2024b) empirically investigate the robustness of large language models in transfer settings. In the same direction, AutoLoRA (Xu et al., 2024) and ADV-LoRA (Wu et al., 2025) incorporate adversarial training, one of the most established techniques in robustness research, into the LoRA framework to enhance resilience. Despite these empirical advances, a theoretical understanding of how LoRA and its associated hyperparameters affect adversarial robustness remains lacking. This work aims to bridge that gap by developing a general theoretical framework linking LoRA to adversarial robustness, offering both theoretical and empirical insights that improve model resilience and open new research perspective.

3 Preliminaries

In this section, we start by introducing some fundamental concepts that will be used afterwards in our work. Afterward, we formulate our problem setup, which will be considered in our analysis.

Transformer-based Models. Let $X \in \mathcal{X} \subseteq \mathbb{R}^{n \times d}$ denote a sequence of n tokens, where each token $x_i \in \mathbb{R}^d$. The backbone of a Transformer $h: \mathcal{X} \subseteq \mathbb{R}^{n \times d} \to \mathcal{Z} \subseteq \mathbb{R}^{n \times d}$, as introduced in (Vaswani et al., 2017), is the *self-attention* mechanism, which computes a weighted combination of all token representations. Specifically, given learnable *query*, *key*, and *value* parameter matrices W^Q , W^K , $W^V \in \mathbb{R}^{d \times (d/H)}$, the output of a single *attention head* AH for input X is defined as:

$$AH(X) = \operatorname{softmax}\left(\frac{(XW^Q)(XW^K)^\top}{\sqrt{d/H}}\right)(XW^V),\tag{1}$$

where H denotes the number of parallel attention heads and d/H is the dimension per head. In practice, multiple attention heads AH_i are computed in parallel, then concatenated and projected using a learnable weight matrix $W^O \in \mathbb{R}^{d \times d}$, yielding the multi-head attention (MHA) operation:

$$MH(X) = \operatorname{concat}(AH_1(X), AH_2(X), \dots, AH_H(X))W^O.$$
(2)

In addition, each Transformer block incorporates a residual connection (He et al., 2016), layer normalization (Ba et al., 2016) and a position-wise feed-forward network (FFN).

Parameter-Efficient Fine-Tuning. We focus on the fine-tuning stage, assuming a Transformer-based model pre-trained using any auxiliary task. For a downstream task, we are given labeled data $\mathcal{X}=(X_1,\ldots,X_n)$ and corresponding labels $\mathcal{Y}=(y_1,\ldots,y_n)$ to adapt the model. A simple approach is to train only a final classification or regression head while freezing the backbone, which is efficient but often suboptimal. Full fine-tuning of both encoder and head improves performance but requires substantial compute and memory. A recent alternative, Low-Rank Adaptation (LoRA) (Hu et al., 2022), introduces low-rank trainable matrices A and B while keeping the original weight matrix frozen. Specifically, for a dense layer weight $W \in \mathbb{R}^{d \times k}$, LoRA replaces it with:

$$W' = W + \frac{\alpha}{r} BA,$$

where r is the rank, α a scaling factor, and $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$ are learned during fine-tuning.

Problem Setup. Without loss of generality, we consider a 1-layer Transformer-based model (TBM) where all activation functions are assumed to be 1-Lipschitz, which is the case for most commonly used activations. The input space is $\mathcal{X} \in [0,1]^{n \times d}$, representing normalized data such as images. Fine-tuning is performed using an L-smooth loss function \mathcal{L} , optimized via gradient descent. Let W_* denote the local optimum to which the model converges. For a learning rate $\eta \leq \frac{1}{L}$, the update rule for layer i at step t is:

$$W_{t+1}^{(i)} = W_{t}^{(i)} - \eta \nabla \mathcal{L}(W_{t}^{(i)}).$$

While we focus on gradient descent for clarity, the theoretical insights extend to other optimizers using similar analysis. Thus, our setup reflects a modeling choice rather than a limiting assumption.

4 ON THE ROBUSTNESS OF LORA

In this section, we aim to theoretically understand the connection between LoRA finetuning and the resulting adversarial robustness, taking the head-only finetuning as a basis for comparison. We start by formalizing the concept of expected adversarial robustness and, consequently, derive theoretical insights for both the head-only finetuning and the LoRA counterpart, showcasing the difference in terms of adversarial robustness.

4.1 ADVERSARIAL ROBUSTNESS

In this work, we focus on evasion attacks, which consist of attacking the model at test or inference time. We consider that this setting is more adapted to real-world scenarios, where in the majority of cases, the final user/attacker only has access to the model at inference time. In this direction, let's consider a trained classifier $f: \mathcal{X} \to \mathcal{Y}$ and let $x \in \mathcal{X}$ be an input with its associated label vectors $y \in \mathcal{Y}$, such that f(x) = y. The goal of an attacker is to craft a small additional perturbation to the input, such as to generate a point \tilde{x} whose prediction $f(\tilde{x})$ is different from the original one. We note that the generated adversarial perturbation should be similar to the original input, and therefore, we need to consider a similarity budget ϵ , together with the corresponding distance. For our current study, we consider the ℓ_2 distance and consequently define our attack neighborhood of our input x with respect to an attack budget ϵ as:

$$\mathcal{B}(x,\epsilon) = \{ \tilde{x} \in \mathcal{X} : ||x - \tilde{x}|| \le \epsilon \}$$

Given the previous neighborhood, the attacker aims to find within that neighborhood the points that not only satisfy the adversarial aim of flipping the classification but also result in the worst prediction. In this direction, given a finetuning strategy ζ which is applied to our considered pretrained model f, the *adversarial risk* can be formulated as follows:

$$\mathcal{R}_{\epsilon}[f,\zeta] = \underset{x \in \mathcal{D}_{\mathcal{X}}}{\mathbb{E}} \left[\sup_{\tilde{x} \in \mathcal{B}(x,\epsilon)} d_{\mathcal{Y}} \left(\zeta_{f}\left(\tilde{x}\right), \zeta_{f}\left(x\right) \right) \right]. \tag{3}$$

with $d_{\mathcal{Y}}$ being any defined distances in the measurable output \mathcal{Y} . In the current work, and similar to the input space, we consider ℓ_2 -norm as our distance metric for the output space. Note that there exists an equivalence in terms of norm, and therefore, this latter choice can easily be extended to other norms and doesn't limit our provided insights in any direction.

From an adversarial defense perspective, the objective is to ensure that the previously introduced risk remains small, implying that it's harder to find a perturbation within the considered budget ϵ , and consequently that the model predictions are stable within that neighborhood, reflecting the adversarial robustness of the model. We can formalize this notion for a finetuning strategy as follows:

Definition 1 (Adversarial Robustness). *The finetuning strategy* ζ *is said to be* (ϵ, γ) -robust *if its adversarial risk with respect to the classifier* f *satisfies:* $\mathcal{R}_{\epsilon}[f, \zeta] \leq \gamma$.

We note that we approach the theoretical analysis from an upper-bound perspective (denoted as γ), since it is hard to compute the exact adversarial risk value. Obviously, the smaller the upper-bound, the more robust the model is expected to be, and therefore by comparing the two quantities, we can have an idea about the performance of the two considered finetuning strategies.

4.2 On the Robustness of Low-Rank Adaptation

Building on the formal framework introduced previously, we now analyze the adversarial robustness of Low-Rank Adaptation (LoRA) in comparison to the standard head-only finetuning strategy. While LoRA is widely recognized for its effectiveness in improving downstream performance, often measured by clean accuracy, this gain comes from its ability to modify a larger subset of the model's parameters, including those within internal Transformer components. In contrast, head-only finetuning restricts adaptation to the final classification layer, preserving the backbone of the pre-trained model. This difference in parameter access raises, consequently, a natural question: Does the increased expressivity provided by LoRA come at the cost of adversarial robustness? Typically, while LoRA allows for better task-specific adaptation, it may also expose the model to increased vulnerability under test-time perturbations. To study this trade-off systematically, we adopt the notion of

expected adversarial risk defined earlier, and derive upper bounds for both finetuning strategies under the same theoretical problem setup. Specifically, we consider a pre-trained Transformer-based model (TBM) denoted by f, and analyze its behavior under both head-only and LoRA-based finetuning. We consider f as a one-layer Transformer block with H dot-product self-attention heads, following the structure and the notations outlined in Section 3.

Proposition 1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a pre-trained TBM-based model following the problem setup. The head-only finetuning strategy $\zeta_f^{\text{Head-only}}$ is (ϵ, γ) -robust, with: $\gamma_{\text{Head-Only}} = \left(\frac{d}{d-1}\right)^2 C_1 C_2 \epsilon$,

$$C_1 = 1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1\right]\right], C_2 = \left(1 + \|W_{FFN}\|\right) \|W_{out}\|.$$

Proposition 1 provides a concrete expression for the adversarial risk bound under head-only finetuning, which depends explicitly on the norms of the model's attention and feedforward weights. In the following, we extend this analysis to the case of LoRA-based finetuning, applying the same theoretical approach in order to establish a basis for comparison between the two strategies. Specifically, we consider that the LoRA is only applied to the query (Q) and value (V) projection matrices of the attention mechanism, as in the original proposed work.

Theorem 1. Let $f: \mathcal{X} \to \mathcal{Y}$ be the pre-trained TBM-based model following the considered problem setup. For the LoRA-based finetuning strategy ζ_f^{LoRA} , where the LoRA is only applied to the main

Transformer part, is (ϵ, γ) -robust, with: $\gamma_{LoRA} = \left(\frac{d}{d-1}\right)^2 C_1' C_2 \epsilon$, where:

$$C_1' = 1 + \|W_O\|\sqrt{H}\max_h\left(\left[\|W^{V,h}\| + \frac{\alpha}{r}\|A^{V,h}\|\|B^{V,h}\|\right]\left[\frac{4}{\sqrt{d/H}}\left(\|W^{Q,h}\| + \frac{\alpha}{r}\|A^{Q,h}\|\|B^{Q,h}\|\right)\|W^{K,h}\| + 1\right]\right).$$

The derived upper bounds in Proposition 1 and Theorem 1 provide a comparative theoretical framework for evaluating the adversarial robustness of head-only finetuning versus LoRA. While both bounds scale linearly with the perturbation radius ϵ and share a similar structural dependence on network norms, the LoRA bound introduces additional terms involving the norms of the low-rank adaptation matrices A and B, scaled by the factor α/r . These terms effectively inflate the expected adversarial risk of the model when subject to input perturbations, yielding a looser (i. e., higher) upper bound on the adversarial risk $\mathcal{R}_{\epsilon}[f,\zeta]$ under LoRA.

This difference is intuitive and arises from the core design of LoRA, which introduces learnable low-rank updates into the internal weight matrices, specifically within the query, key, and value projections of the self-attention mechanism. By modifying these internal components, LoRA increases the space of adaptable parameters, enhancing task-specific expressivity and improving clean accuracy. However, this also creates additional pathways through which input perturbations can affect the output, making the model more vulnerable to adversarial attacks. In contrast, head-only finetuning restricts adaptation to the final classification layer, leaving the backbone unchanged and preserving the stability of the pre-trained representations. We consider that these results can also be categorized on the general robustness-performance trade-off, where, by aiming to have better performance, the model's boundaries are adapted to the task, resulting in richer task-specific adaptation, but at the cost of amplifying the model's response to small input perturbations. From a theoretical standpoint, this trade-off is captured directly by the looser robustness bound. Practically, it suggests that while LoRA may be preferable when downstream accuracy is the sole objective, it may lead to weaker performance in adversarial settings where robustness is critical. Specifically, for a final user, before choosing the right finetuning approach, an analysis of the objectives and the trade-off between clean and attacked accuracy should be done.

Extension to Multi-Layer Transformers. Although our theoretical analysis focuses on a single-layer Transformer-based model f, the results naturally extend to the multi-layer case. Specifically, a Transformer model with L layers, denoted as $f^{(L)}$, can be expressed as a composition of L single-layer functions: $f^{(L)}(x) = f^{(L-1)} \circ f^{(L-2)} \circ \cdots \circ f^{(1)}(x)$. Under this formulation, and following standard results from Lipschitz continuity, the overall adversarial risk bound γ for either finetuning strategy becomes a multiplicative composition of the bounds for each individual layer. That is, the robustness bound compounds across layers, maintaining the same structural form as in the single-layer case. We additionally note that the underlying assumptions of our problem setup (Section 3)

still hold in the multi-layer setting. Since each layer operates on bounded activations (as we assume $\mathcal{X} \subseteq [0,1]^{n \times d}$), the composition of bounded functions preserves theoretical soundness. As a result, our robustness framework remains applicable in deeper architectures.

5 CONNECTING INITIALIZATION TO LORA'S ROBUSTNESS

In the previous section, we theoretically established a notable gap in adversarial robustness between head-only and LoRA-based finetuning strategies. Specifically, our analysis showed that LoRA exhibits a higher expected adversarial risk, suggesting reduced robustness to test-time perturbations. Motivated by this observation, we now turn to investigating whether this robustness gap can be influenced, or potentially mitigated and reduced, by specific choices in LoRA's hyperparameters. In particular, we focus on how the *initialization of the low-rank matrices A* and *B*, which define the LoRA updates, impacts adversarial robustness.

The effect of initialization in LoRA has recently received increased attention. By design, the product of the two matrices is intended to start at zero to ensure that the training starts from the original weights of the pre-trained model. However, recent empirical studies suggest that initializing A with random values and setting B to zero tends to yield better generalization and downstream performance than the reverse configuration. While these findings pertain to clean accuracy, their implications for adversarial robustness remain underexplored. In this section, we extend this line of inquiry by studying how the randomness in the initialization distribution of matrix A, which governs the initial adaptation direction, affects the final adversarial robustness of the finetuned model. Our goal is to understand whether certain initialization choices introduce more sensitivity to adversarial perturbations, and whether controlling the variance or structure of this randomness can lead to more robust LoRA configurations.

In this perspective, we consider the same setting as the one studied in the previous section, where f is a 1-Layer Transformer-based model and the aim is to link the initial weights with the resulting upper-bound on the expected adversarial robustness.

Theorem 2. Let $f: \mathcal{X} \to \mathcal{Y}$ be our pre-trained TBM-based model. Let's consider the LoRA finetuning strategy, where all the low-rank matrices A in layer h are initialized as $A_0^{Q,h}$ (for Query) and $A_0^{V,h}$ (for Values), then the resulting C_1' constant in γ_{LoRA} (Theorem 1) can be written as:

$$C_1' \le K_1 (1 + \eta L)^t \max_h ||A_0^{(V,h)}|| + K_2 (1 + \eta L)^{2t} \max_h ||A_0^{(V,h)}|| + ||A_0^{(Q,h)}|| + C,$$

with K_1 , K_2 and C being constants depending on the final weight norms (derived in Equation 12).

We observe that the upper bound derived in Theorem 2 directly links the norm of the chosen initialization matrix to the constant C_1' , which in turn influences γ_{LoRA} and thereby the model's adversarial robustness. This result highlights that initialization, often treated as a secondary detail, plays a critical role in shaping LoRA's robustness characteristics and should be carefully designed. Since the initialization also affects the model's downstream performance, finding an appropriate trade-off between robustness and clean accuracy becomes crucial. In particular, the initialization of A should be designed to balance these objectives, enabling the construction of LoRA-based models that are both performant and robust. To better showcase the practical aspect of our theoretical result, we consider a practical application where we consider that the matrices are initialized from a Uniform distribution $\mathcal{U}(-a,a)$, where a is a parameter.

Lemma 1. Consider LoRA matrices, with rank r, and for each head h = 1, ..., H initialized with entries drawn i.i.d. from $\mathcal{U}(-a,a)$ independently across heads and stacks. Then the expected value of the robustness constant C_1' , derived in Theorem 1, satisfies:

$$\mathbb{E}[C_1'] = \mathcal{O}\left((1 + \eta L)^{2t} a^2 \left((\sqrt{r} + \sqrt{k}) + \sqrt{\log H}\right)^2\right).$$

The result of Lemma 1 establishes a direct relationship between the initialization parameter a of the Uniform distribution and the resulting upper bound on the expected adversarial robustness. Although the analysis focuses on the Uniform case, a similar adaptation of Theorem 2, and similar reasoning can be extended to other initialization distributions.

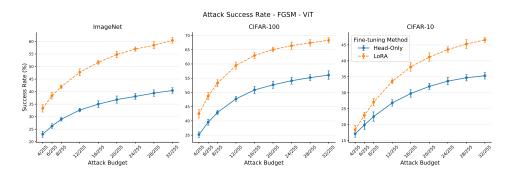


Figure 2: Success Rate of FGSM Attack on a ViT for different datasets and attack budgets.

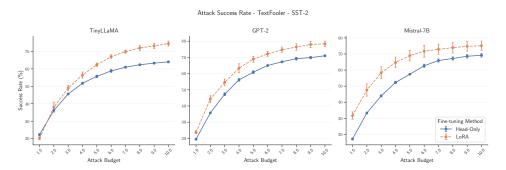


Figure 3: Attack Success Rate of the TextFooler Attack on TinyLLaMA, GPT-2, and Mistral-7B when applied to SST-2 dataset with different attack budget (number of words changed).

6 EMPIRICAL EVALUATION

We empirically validate our theoretical insights using standard adversarial attacks across two widely used modalities: images and text. We start by outlining the experimental setup for both domains.

Computer-Vision. We have chosen to operate under two mainly widely used models, namely the Vision Transformer (ViT) (Dosovitskiy et al., 2021), which was the basis of our theoretical study, and the SwiN Transformer (Liu et al., 2021). For both models, we have considered the two mainly used adversarial attacks in this domain, which are the Fast Gradient Sign Method (FGSM) and the Proximal Gradient Descent (PGD), focusing on image classification using the CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-100 (Russakovsky et al., 2015).

Natural Language Processing (NLP). We have chosen to operate through a number of different models, namely Bert-Base (Devlin et al., 2019), DistilBert-Base (Sanh et al., 2019), GPT2 (Radford et al., 2019), Gemma-2B (Team et al., 2024), Ilama3_2_1B (Dubey et al., 2024), Tiny-Llama (Zhang et al., 2024), and Mistral-7B (Jiang et al., 2023). For all models, we perform TextFooler (Jin et al., 2020) attack, and for some models, we also perform A2T (Yoo & Qi, 2021) attack. We focus the evaluation on the text classification task using IMDb (Maas et al., 2011), SST-2 (Socher et al., 2013), and Yelp Polarity (Zhang et al., 2015) datasets.

Considered Metrics. For both modalities, we report the clean/attacked accuracy and the success rate, which is the number of samples that were successfully attacked, meaning that the attack was successful in finding a perturbation within the budget that was able to flip the original classification.

The code to reproduce our results and experiments is provided in the Supplementary Materials, and additional details about the hyperparameters and the problem setup are provided in Appendix E.

6.1 EXPERIMENTAL RESULTS

Image-Based Evaluation. Figure 2 (respectively Figure 6 in Appendix D.1) presents the average success rate, and the corresponding standard deviations, of the FGSM attack for both head-

only and LoRA finetuning strategies on a ViT (and SwiN, respectively), evaluated across multiple datasets and perturbation budgets. The empirical results align with our theoretical findings: across all datasets, LoRA consistently yields a higher attack success rate, indicating lower adversarial robustness compared to head-only finetuning. Notably, the robustness gap between the two strategies can be substantial. For example, on ImageNet, the difference in attack success rate can reach up to 20%, despite a clean accuracy gap of only around 1%. This performance contrast highlights that even small gains in clean performance under LoRA may come at a significant cost in adversarial settings. Similar insights are observed for the CIFAR dataset family, where by aiming for a small increase in clean robustness (around 3-4%), the resulting success rate can reach around 12-15%.

Table 1: Average Clean Accuracy and Success Rate (\pm standard deviation) of the ViT and SwiN for both head-only and LoRA finetuning subject to FGSM and PGD attack on different datasets.

Model	Dataset	Strategy	Clean Accuracy ↑	Success Rate (FGSM) ↓	Success Rate (PGD) ↓
ViT	ImageNet	Head-Only	88.7 ± 0.2	28.9 ± 0.7	84.2 ± 0.4
	imagenet	LoRA	88.9 ± 0.1	41.9 ± 0.8	96.4 ± 0.3
	CIFAR-10	Head-Only	97.4 ± 0.1	22.5 ± 0.3	88.4 ± 0.6
		LoRA	98.6 ± 0.1	27.1 ± 0.6	93.1 ± 0.3
	CIFAR-100	Head-Only	87.9 ± 0.9	42.9 ± 0.8	92.4 ± 0.7
		LoRA	90.8 ± 0.2	53.2 ± 0.4	96.2 ± 0.8
SwiN	ImageNet	Head-Only	89.8 ± 0.2	29.9 ± 0.8	90.2 ± 0.4
		LoRA	90.3 ± 0.1	36.6 ± 0.6	94.8 ± 0.7
	CIFAR-10	Head-Only	97.8 ± 0.1	26.1 ± 0.8	93.4 ± 0.2
		LoRA	98.5 ± 0.1	28.9 ± 0.7	95.1 ± 0.4
	CIFAR-100	Head-Only	87.6 ± 0.1	45.3 ± 0.6	94.2 ± 0.3
		LoRA	92.1 ± 0.3	50.2 ± 0.4	97.4 ± 0.2

Text-Based Evaluation. Figure 3 (and Figure 10 - Appendix D.2) presents the average success rates, along with standard deviations, for the TextFooler and A2T adversarial attacks applied to models fine-tuned using either head-only or LoRA strategies across varying perturbation budgets. The results in the NLP setting closely mirror the trends observed in computer vision, further reinforcing the generality of our theoretical findings across modalities. In addition, Table 2 summarizes both clean accuracy and attack success rates under a fixed perturbation budget of 3 word substitutions. Across all evaluated models, LoRA fine-tuning consistently shows lower robustness compared to head-only tuning. Additional experiments on other architectures and models are provided in Appendix D.2.

Table 2: Average Clean Accuracy and Success Rate (\pm standard deviation) of BERT, DistilBERT and GPT-2 for head-only and LoRA finetuning subject to TextFooler and A2T on different datasets.

Model	Dataset	Strategy	Clean Accuracy ↑	Success Rate (TextFooler) ↓	Success Rate (A2T) ↓
BERT	IMDb	Head-Only	83.2 ± 0.9	11.3 ± 0.1	8.6 ± 0.6
	IMDU	LoRA	90.5 ± 0.9	16.7 ± 1.0	14.9 ± 0.1
	SST-2	Head-Only	83.4 ± 0.5	54.0 ± 0.0	28.1 ± 0.7
		LoRA	92.1 ± 0.2	53.4 ± 1.6	22.9 ± 0.6
	Yelp Polarity	Head-Only	86.1 ± 1.5	14.7 ± 2.2	11.0 ± 1.1
		LoRA	92.6 ± 0.5	15.9 ± 0.8	11.5 ± 0.7
GPT-2	IMDb	Head-Only	85.7 ± 1.0	6.7 ± 0.8	11.0 ± 2.0
		LoRA	91.9 ± 0.9	7.9 ± 0.4	13.4 ± 2.3
	SST-2	Head-Only	82.1 ± 0.5	47.2 ± 0.9	30.1 ± 0.4
		LoRA	91.0 ± 1.3	54.6 ± 2.1	22.0 ± 0.8
	Yelp Polarity	Head-Only	85.2 ± 1.6	10.1 ± 0.8	12.3 ± 2.3
		LoRA	92.4 ± 0.5	7.9 ± 0.8	8.9 ± 1.4

These findings underscore the practical significance of our theoretical analysis. While LoRA improves downstream performance in terms of clean accuracy, it also introduces increased vulnerability to adversarial perturbations. A key insight is that the gains in clean accuracy offered by LoRA come at an adversarial cost, with performance degrading more severely under attack. This observation highlights an important trade-off between clean accuracy and robustness, particularly in safety-critical applications where reliability under distribution shift or adversarial threat is paramount. In such contexts, clean accuracy alone is an insufficient metric and must be complemented by robustness evaluations.

6.2 EFFECT OF HYPER-PARAMETERS

Effect of Initialization. We further investigate the impact of initialization strategies to demonstrate the practical relevance of the theoretical insights from Section 5, particularly Theorem 2. To this end, we evaluate several initialization schemes for the LoRA matrix A. Specifically, we consider the default Kaiming initialization used in the PEFT package, the well-known Xavier initialization, and three additional classical distributions: Gaussian, Orthogonal, and Uniform.

Figure 4 reports the average clean and attacked accuracies across various adversarial budgets and initialization distributions. As anticipated, the choice of initialization significantly influences the final adversarial robustness. Although all distributions yield similar clean accuracies (within a 2% range), the attacked accuracies show a gap of up to 10% between the most and least robust initializations (Uniform

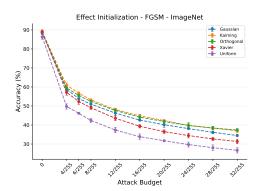


Figure 4: Effect of the chosen initialization distribution on the resulting Attacked Accuracy of ImageNet.

versus Kaiming). These results indicate that selecting an appropriate initialization can substantially enhance robustness without sacrificing clean performance, thereby reducing the robustness gap between the LoRA and head-only finetuning strategies. Note that the additional results for the other datasets are provided in Figure 9 (Appendix D.1).

Effect of LoRA Scaling. LoRA fine-tuning depends on two key hyperparameters: the rank r of the learnable matrices A and B, and the scaling factor α . As shown in Theorem 1, the robustness bound γ_{LoRA} is directly affected by these parameters. To validate this relationship empirically, we fix the rank to r=4 and vary α to assess its impact on adversarial vulnerability.

Figure 5 presents the average attack success rates (with standard deviation) on CIFAR-10 and CIFAR-100 for different values of α . Consistent with the theoretical insights that larger values of α increase the upper bound, the empirical results confirm that increasing α leads to higher attack success rates and thus reduced robustness. Interestingly, the widely adopted practice of setting $\alpha = r$ appears suboptimal. Instead, using a smaller value such as $\alpha = 1$ yields a reduction of approximately

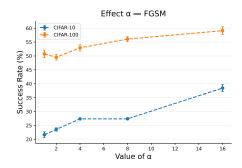


Figure 5: Effect of the LoRA parameter α on the resulting attack success rate.

10% in success rate, enhancing robustness and narrowing the gap with head-only fine-tuning.

7 Conclusion

In this work, we present the first theoretical analysis that explores the connection between LoRA as a fine-tuning strategy and the adversarial robustness of the resulting model. Our theoretical findings, supported by empirical results, indicate that the gains in clean accuracy achieved through LoRA come at the cost of increased vulnerability to adversarial attacks, particularly when compared to head-only fine-tuning. However, our analysis also highlights the important role of hyperparameters, specifically the scaling factor α and the initialization scheme, in shaping this trade-off. We show that appropriate choices of these parameters can significantly reduce the robustness gap, yielding a more favorable balance between clean and attacked accuracy without introducing additional constraints or computational overhead, effectively offering a "free-lunch" improvement.

Limitations. While our work focuses on offering theoretical guidance for tuning LoRA's hyperparameters, we believe it opens a new direction for designing LoRA variants that are not only effective on downstream tasks but also inherently more robust to adversarial perturbations.

ETHICS STATEMENT

In this paper we study the adversarial robustness of LoRA-based models using only openly available datasets and pretrained models. Our work does not involve human subjects and therefore does not require IRB approval. All datasets used are publicly available and appropriately licensed. Although adversarial attacks are employed, they are standard, publicly available methods used solely to evaluate and improve model robustness. We believe that examining how these models respond to adversarial inputs is an important part of responsible AI research. By highlighting potential weaknesses, this line of work can help the community build systems that are more reliable, secure, and less vulnerable to misuse. In this context, to the best of our knowledge, this research does not raise ethical concerns related to discrimination, bias, privacy, or security. No conflicts of interest or legal compliance issues are associated with this work. We additionally note that LLMs were used only to assist with text refinement.

REPRODUCIBILITY STATEMENT

We have made an effort to ensure that our results can be reproduced by others. All datasets and pretrained models we use are publicly available and are clearly referenced in the paper. The experimental setup, including how LoRA models are fine-tuned and how adversarial evaluations are carried out, is described in detail in the main text and the appendix (mainly Appendix E). The considered theoretical problem setup is clearly explained in Section 3 and all the theorem's proofs and extended results are included in the appendix. Finally, to support independent verification, the code to reproduce our results is included in the Supplementary Materials and shall be made public upon publication.

REFERENCES

- Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Advances in adversarial attacks and defenses in computer vision: A survey. *IEEE Access*, 9:155161–155196, 2021.
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
- Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In *Machine learning and knowledge discovery in databases: European conference, ECML pKDD 2013, prague, czech Republic, September 23-27, 2013, proceedings, part III 13*, pp. 387–402. Springer, 2013.
- Joana C Costa, Tiago Roxo, Hugo Proença, and Pedro RM Inácio. How deep learning sees the world: A survey on adversarial attacks & defenses. *IEEE Access*, 2024.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.

- Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 examples. In *International Conference on Learning Representations (ICLR)*, 2015.
 - Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=liscs8b6zj.
 - Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics. *Advances in Neural Information Processing Systems*, 37:117015–117040, 2024a.
 - Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models. In *Forty-first International Conference on Machine Learning*, 2024b. URL https://openreview.net/forum?id=NEv8YqBROO.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 - Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
 - Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 8018–8025, 2020.
 - Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. *arXiv preprint arXiv:2312.03732*, 2023.
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 - Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix adaptation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=NjNfLdxr3A.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo Zhao. Loftq: LoRA-fine-tuning-aware quantization for large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=LzPWWPAdY4.
 - Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first International Conference on Machine Learning*, 2024.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.
 - Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
 - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
 - Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *arXiv* preprint arXiv:1910.01108, 2019.
 - Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp. 1631–1642, 2013.
 - Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.
 - Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial example defenses. *Advances in neural information processing systems*, 33:1633–1645, 2020.
 - Bohdan Turbal, Anastasiia Mazur, Jiaxu Zhao, and Mykola Pechenizkiy. On adversarial robustness of language models in transfer learning. In *Workshop on Socially Responsible Language Modelling Research*, 2024. URL https://openreview.net/forum?id=DUMVB9a9sX.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Hao Wu, Xiangfeng Luo, Jianqi Gao, and Dian Huang. Improving text processing via adversarial low-rank adaptation. *Machine Learning*, 114(9):196, 2025.
 - Xilie Xu, Jingfeng Zhang, and Mohan Kankanhalli. Autolora: An automated robust fine-tuning framework. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=09xFexjhqE.
 - Xu Yang, Chen Liu, and Ying Wei. Mixture of adversarial loras: Boosting robust generalization in meta-tuning. *Advances in Neural Information Processing Systems*, 37:115176–115207, 2024a.
 - Zeyu Yang, Zhao Meng, Xiaochen Zheng, and Roger Wattenhofer. Assessing adversarial robustness of large language models: An empirical study. *arXiv preprint arXiv:2405.02764*, 2024b.
 - Jin Yong Yoo and Yanjun Qi. Towards improving adversarial training of NLP models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp. 945–956, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. findings-emnlp.81. URL https://aclanthology.org/2021.findings-emnlp.81/.
 - Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language model. *arXiv preprint arXiv:2401.02385*, 2024.
 - Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. *Advances in neural information processing systems*, 28, 2015.

Proof of Proposition 1

Proposition. Let $f: \mathcal{X} \to \mathcal{Y}$ be the pre-trained TBM-based model following the considered problem setup. The head-only finetuning strategy $\zeta_f^{Head-only}$ is $(\epsilon, \gamma_{Head-Only})$ -robust, with:

Supplementary Material

$$\gamma_{\textit{Head-Only}} = \left(\frac{d}{d-1}\right)^2 C_1 C_2 \epsilon,$$

with:
$$C_1 = (1 + \|W_O\|\sqrt{H} \max_h [\|W^{V,h}\|[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1]]),$$

 $C_2 = (1 + \|W_{FFN}\|)\|W_{out}\|,$

and W being the different weights of the models (as explained in Section 3).

Proof. Let's consider our input $X \in \mathcal{X}$ composed of n tokens $x_i \in \mathbb{R}^d$. We consider that our model f is built using the dot-product self-attention as referred to in Equation 1 and reformulated as:

$$\begin{split} \text{AH}(x) &= \text{Softmax}\big(\frac{(XW^Q)(XW^K)^T}{\sqrt{\frac{D}{H}}}\big)XW^V \\ &= PXW^V = h(X)W^V, \end{split}$$

where W^Q, W^K, W^V are learnable weights of the model. Let's consider the function h(X), we can write:

$$f(X) = PX = \text{Softmax}(XA^TX^T)X$$

$$f(X) = PX = \operatorname{Softmax}\left(XA^{\top}X^{\top}\right)X = \begin{bmatrix} h_1(X)^{\top} \\ \vdots \\ h_n(X)^{\top} \end{bmatrix} \in \mathbb{R}^{n \times d}, \text{ with:}$$

$$A = \frac{W^K W^{Q^\top}}{\sqrt{d/H}} \in \mathbb{R}^{d \times d} \quad \text{and} \quad h_i(X) = \sum_{i=1}^n P_{ij} x_j \quad \text{with} \quad P_i^\top = \text{Softmax}(XAx_i).$$

By analyzing the partial derivatives, we can directly write the following regarding eh Jacobian matrix of h:

$$J_{ij} = X^{\top} P^{(i)} E_{ji} X A^{\top} + \delta_{ij} (X^{\top} P^{(i)} X A) + P_{ij} I_d,$$

with:

- $P^{(i)} = \operatorname{diag}(P_{i:}) P_{i:}^{\top} P_{i:}$, [Softmax derivate]
- E_{ii} is the $(n \times n)$ matrix with a single 1 in position (j, i).

Based on this, two elements arises:

If
$$i \neq j$$
, $J_{ij} = X^{\top} P^{(i)} E_{ji} X A^{\top} + P_{ij} I$, (4)

If
$$i = j$$
, $J_{ii} = X^{\top} P^{(i)} E_{ii} X A^{\top} + X^{\top} P^{(i)}, X, A + P_{ii}I.$ (5)

We recall that the input images are considered to be normalized, and therefore we can write:

$$||X|| \le 1$$

Additionally, since P_i : is the output of the softmax, then can be considered a probability distribution. Therefore, $\sigma_{max}(diag(p)) \leq 1$ and pp^T has rank 1:

$$||P^{(i)}|| = ||\operatorname{diag}(P_{i:}) - P_{i:}^{\top} P_{i:}|| \le 2$$

Case 1. We start by considering the first case $i \neq j$, in which we have:

$$J_{ij} = X^{\top} P^{(i)} E_{ji} X A^{\top} + P_{ij} I.$$

Consequently we have the following:

$$||J_{ij}|| \le ||X^{\top} P^{(i)} E_{ji} X A^{\top}|| + ||P_{ij} I||$$

$$\le 2 \times ||A|| + 1$$

$$\le ||A|| + 1$$

Case 2. For the second case i = j, we have the following:

$$J_{ii} = X^{\top} P^{(i)} E_{ii} X A^{\top} + X^{\top} P^{(i)} X A + P_{ii} I.$$

We apply the same analogy as the previous case:

$$||J_{ii}|| \le ||X^{\top} P^{(i)} E_{ii} X A^{\top}|| + ||X^{\top} P^{(i)} X A|| + ||P_{ii} I||$$

$$\le 2||A|| + 2||A|| + 1$$

$$\le 4||A|| + 1$$

So overall, we have the following:

$$||J_{ij}||_{op} \le \begin{cases} 2||A||+1, & \text{if } i \neq j, \\ 4||A||+1, & \text{if } i = j. \end{cases}$$

So with our theoretical assumptions, the Jacobian is bounded and we have: $\mathcal{L}_h \leq 4||A||+1$.

Specifically, for an attention head h, we have the following computation taking into account the different learnable weights:

$$\mathcal{L}_{head} \le \|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1 \right]$$

Since f is represented by H separate attention head, then their concatenated output as explained in Equation 2 is subject to the following:

$$\mathcal{L}_{MH} \leq \|W_O\|\sqrt{H} \max_{h} \left[\mathcal{L}_{head}\right]$$

$$\leq \|W_O\|\sqrt{H} \max_{h} \left[\|W^{V,h}\|\left[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1\right]\right]$$

Finally, we need to take into account the application of the FFN and LN (with its parameters $\gamma=1$ and $\beta=1$). In addition, giving that we consider the head-only fine-tuning strategy, we consider that a final linear layer W_{out} is trained. Since ReLU is 1-Lipschitz, we have the following result:

$$\mathcal{L}_{f} \leq L_{LN}^{2} (1 + \mathcal{L}_{MH}) (1 + L_{FFN})$$

$$\leq \left(\frac{d}{d-1}\right)^{2} (1 + \mathcal{L}_{MH}) (1 + \|W_{FFN}\|)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} (1 + \|W_{O}\|\sqrt{H} \max_{h} \left[\|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1\right]\right]) (1 + \|W_{FFN}\|)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} A_{1} A_{2},$$

with
$$A_1 = (1 + \|W_O\|\sqrt{H} \max_h [\|W^{V,h}\|[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1]])$$

 $A_2 = (1 + \|W_{FFN}\|)\|W_{\text{out}}\|$

Let's now consider a perturbed input $\tilde{x} \in \mathcal{B}(x, \epsilon)$ as defined in Section 4.1. The previous upper-bound applies to any given point within that budget, and therefore we have:

$$\sup_{\tilde{x}\in\mathcal{B}\left(x,\epsilon\right)}d_{\mathcal{Y}}\left(\zeta_{f}\left(\tilde{x}\right),\zeta_{f}\left(x\right)\right)\leq\mathcal{L}_{f}\epsilon$$

We can therefore conclude that, in respect of Definition 1, the head-only finetuning strategy is is $(\epsilon, \gamma_{\text{Head-Only}})$ -robust, with:

$$\begin{split} \gamma_{\text{Head-Only}} &= \left(\frac{d}{d-1}\right)^2 C_1 C_2 \epsilon, \\ \text{with: } C_1 &= \left(1 + \|W_O\| \sqrt{H} \max_h \left[\|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1\right]\right]\right), \\ C_2 &= \left(1 + \|W_{FFN}\|\right) \|W_{\text{out}}\|, \end{split}$$

B PROOF OF THEOREM 1

Theorem. Let $f: \mathcal{X} \to \mathcal{Y}$ be the pre-trained TBM-based model following the considered problem setup. For the LoRA-based finetuning strategy ζ_f^{LoRA} , where the LoRA is only applied to the main transformer part, is $(\epsilon, \gamma_{LoRA})$ -robust, with:

$$\gamma_{LoRA} = \left(rac{d}{d-1}
ight)^2 C_1' C_2 \epsilon,$$

$$\label{eq:with: C1'} \begin{split} \textit{with: } C_1' &= 1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\| + \frac{\alpha}{r}\|A^{V,h}\| \|B^{V,h}\|\right] \\ & \left[\frac{4}{\sqrt{d/H}} \left[\|W^{Q,h}\| + \frac{\alpha}{r}\|A^{Q,h}\| \|B^{Q,h}\|\right] \|W^{K,h}\| + 1\right] \end{split}$$

Proof. In this part, we consider the LoRA-based finetuning. In this perspective, we follow the same analogy as the previous proof. Specifically, Let $X \in \mathcal{X}$ be our input composed of n tokens $x_i \in \mathbb{R}^d$. We consider the same model f which is built using the dot-product self-attention as referred to in Equation 1 and reformulated as:

$$\begin{aligned} \mathbf{AH}(x) &= \mathrm{Softmax}(\frac{(XW^Q)(XW^K)^T}{\sqrt{\frac{D}{H}}})XW^V \\ &= PXW^V = h(X)W^V, \end{aligned}$$

We recall that in the case of LoRA, two additional matrices A and B are learnable during the fine-tuning. Specifically, given a weight matrix $W \in \mathbb{R}^{d \times k}$ in a model, it is substituted by the following:

$$W' = W + \frac{\alpha}{r} BA,$$

where r is the rank of the low-rank adaptation, α is the scaling factor, and $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$ are learnable weight matrices learned during the finetuning process.

 From the previous section, we have the following Lipschitz bound for the head-only finetuning strategy:

$$\mathcal{L}'_{f} \leq L_{LN}^{2} (1 + \mathcal{L}_{MH}) (1 + L_{FFN})$$

$$\leq \left(\frac{d}{d-1}\right)^{2} \left(1 + \mathcal{L}_{MH}\right) \left(1 + \|W_{FFN}\|\right)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} \left(1 + \|W_{O}\|\sqrt{H} \max_{h} \left[\|W'^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W'^{Q,h}\| \|W'^{K,h}\| + 1\right]\right]\right) \left(1 + \|W_{FFN}\|\right)$$

We consider that the LoRA finetuning is only applied to the main core of Transformer, specifically to the query Q and value V matrices of the attention mechanism as in the original work. We can therefore continue the previous computation by including the corresponding values:

$$\mathcal{L}'_{f} \leq \left(\frac{d}{d-1}\right)^{2} \left(1 + \|W_{O}\|\sqrt{H} \max_{h} \left[\|W'^{V,h}\|\left[\frac{4}{\sqrt{d/H}}\|W'^{Q,h}\|\|W'^{K,h}\|+1\right]\right]\right) \left(1 + \|W_{FFN}\|\right)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} \left(1 + \|W_{O}\|\sqrt{H} \max_{h} \left[\left[\|W^{V,h}\| + \frac{\alpha}{r}\|A^{V,h}\|\|B^{V,h}\|\right]\right]\right)$$

$$\left[\frac{4}{\sqrt{d/H}} \left[\|W^{Q,h}\| + \frac{\alpha}{r}\|A^{Q,h}\|\|B^{Q,h}\|\right] \|W^{K,h}\|+1\right]\right) \left(1 + \|W_{FFN}\|\right)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} A'_{1} A_{2},$$

Similar to the previous proof, let's consider a perturbed input $\tilde{x} \in \mathcal{B}(x, \epsilon)$ as defined in Section 4.1. The previous upper-bound applies to any given point within that budget, and therefore we have:

$$\sup_{\tilde{x}\in\mathcal{B}\left(x,\epsilon\right)}d_{\mathcal{Y}}\left(\zeta_{f}\left(\tilde{x}\right),\zeta_{f}\left(x\right)\right)\leq\mathcal{L}'_{f}\epsilon$$

We can therefore conclude that, in respect of Definition 1, the head-only finetuning strategy is $(\epsilon, \gamma_{LoRA})$ -robust, with:

$$\gamma_{\text{LoRA}} = \left(\frac{d}{d-1}\right)^2 C_1' C_2 \epsilon,$$

with:
$$\begin{split} C_1' &= 1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\| + \frac{\alpha}{r}\|A^{V,h}\| \|B^{V,h}\|\right] \\ &\left[\frac{4}{\sqrt{d/H}} \left[\|W^{Q,h}\| + \frac{\alpha}{r}\|A^{Q,h}\| \|B^{Q,h}\|\right] \|W^{K,h}\| + 1\right] \end{split}$$

C Proof of Theorem 2

Theorem. Let $f: \mathcal{X} \to \mathcal{Y}$ be our pre-trained TBM-based model. Let's consider the LoRA finetuning strategy, where all the low-rank matrices A in layer h are initialized as $A_0^{Q,h}$ (for Query) and $A_0^{V,h}$ (for Values), then the resulting C_1' constant in γ_{LoRA} (Theorem 1) can be written as:

$$C_1' \le K_1 (1 + \eta L)^t \max_h ||A_0^{(V,h)}|| + K_2 (1 + \eta L)^{2t} \max_h ||A_0^{(V,h)}|| + ||A_0^{(Q,h)}|| + C,$$

with K_1, K_2 and C being the constants depending on the final weight norms (derived in Equation 12).

 Proof. Let's now consider the effect of Initialization distribution on the final adversarial robustness of the LoRA finetuning. Specifically, we consider the same settings as in prior work, where the B matrix is set to 0 and only the A matrix is initialized.

The gradient descent update at finetuning epoch t for our matrix A (at any layer) is written as:

$$A_{t+1}^{(Q,h)} = A_t^{(Q,h)} - \eta \nabla \mathcal{L}(A_t^{(Q,h)}).$$

As specified in our problem setup in Section 3, we consider that our loss function \mathcal{L} to be L-smooth, we can hence write the following result:

$$\left\|\nabla \mathcal{L}(A_t^{(Q,h)})\right\| \le L \left\|A_t^{(Q,h)} - A_*^{(Q,h)}\right\|.$$

Consequently, after t training epochs, we can write:

$$\begin{split} \left\| A_{t}^{(Q,h)} \right\| &= \left\| A_{t-1}^{(Q,h)} - \eta \nabla \mathcal{L}(A_{t-1}^{(Q,h)}) \right\| \\ &\leq \left\| A_{t-1}^{(Q,h)} \right\| + \eta L \left\| A_{t-1}^{(Q,h)} - A_{*}^{(Q,h)} \right\| \\ &\leq (1 + \eta L) \left\| A_{t-1}^{(Q,h)} \right\| + \eta L \left\| A_{*}^{(Q,h)} \right\|. \end{split}$$

In addition, we suppose that the considered learning rate is chosen as $\eta \leq \frac{1}{L}$. Consequently, we can write based on the previous formulation and by using recursion:

$$\left\| A_t^{(Q,h)} \right\| \le (1 + \eta L)^t \left\| A_0^{(Q,h)} \right\| + \sum_{h=0}^t 2^h \left\| A_*^{(Q,h)} \right\| \tag{6}$$

$$\leq (1 + \eta L)^{t} \left\| A_{0}^{(Q,h)} \right\| + 2^{t+1} \left\| A_{*}^{(Q,h)} \right\| \tag{7}$$

$$\leq (1 + \eta L)^t \left\| A_0^{(Q,h)} \right\| + 2^{t+1} \left\| A^{(Q,h)} \right\| \tag{8}$$

Remark. We denote A_* (which are the converged final weights) as A directly to be inline with the previous theorems and results.

We additionally note that a similar analogy applies to the matrix B. Since we consider that specific matrix to be initialized to zero, the resulting terms of the initialization is therefore set to zero and only the final weight norm is seen in the upper-bound.

Consequently, and from the previous part, we had that the LoRA finetuning is is $(\epsilon, \gamma_{LoRA})$ -robust, with:

$$\gamma_{\mathsf{LoRA}} = \left(\frac{d}{d-1}\right)^2 C_1' C_2 \epsilon,$$

with:
$$C_1' = 1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\| + \frac{\alpha}{r}\|A^{V,h}\| \|B^{V,h}\|\right]$$

$$\left[\frac{4}{\sqrt{d/H}} \left[\|W^{Q,h}\| + \frac{\alpha}{r}\|A^{Q,h}\| \|B^{Q,h}\|\right] \|W^{K,h}\| + 1\right]$$

Using the result from Equation 8, we can connect the previous resulting bound to the initialization, resulting in the following:

with:
$$C_1' = 1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\| + \frac{\alpha}{r}\|B^{V,h}\| \left[(1 + \eta L)^t \|A_0^{(V,h)}\| + 2^{t+1} \|A^{(V,h)}\| \right] \right]$$

$$\left[\frac{4}{\sqrt{d/H}} \left[\|W^{Q,h}\| + \frac{\alpha}{r}\|B^{Q,h}\| \left[(1 + \eta L)^t \|A_0^{(Q,h)}\| + 2^{t+1} \|A^{(Q,h)}\| \right] \right] \|W^{K,h}\| + 1 \right]$$

From the previous result, we can separate the two main terms, as follows:

$$C_1' = 1 + \|W_O\|\sqrt{H} \max_{h} \left\{ \underbrace{\left[\|W^{V,h}\| + \frac{\alpha}{r}\|B^{V,h}\| \left((1 + \eta L)^t \|A_0^{(V,h)}\| + 2^{t+1} \|A^{(V,h)}\| \right) \right]}_{=a_h}$$
(9)

$$\times \underbrace{\left[\frac{4}{\sqrt{d/H}} \left(\|W^{Q,h}\| + \frac{\alpha}{r} \|B^{Q,h}\| \left((1+\eta L)^{t} \|A_{0}^{(Q,h)}\| + 2^{t+1} \|A^{(Q,h)}\| \right) \right) \|W^{K,h}\| + 1 \right]}_{=b_{h}} \right\}. \tag{10}$$

The previous two elements can be written as:

$$\begin{array}{l} a_h \, \leq \, C_h^{(V)} \, + \, \frac{\alpha}{r} \, \|B^{V,h}\| \, (1+\eta L)^t \, \|A_0^{(V,h)}\| \\ b_h \, \leq \, C_h^{(QK)} \, + \, \frac{4}{\sqrt{d/H}} \frac{\alpha}{r} \, \|B^{Q,h}\| \, (1+\eta L)^t \, \|A_0^{(Q,h)}\| \, \|W^{K,h}\| \end{array}$$

Note that since everything is positive (given that the norms by definition are positive), then we have:

$$\max_{h} (a_h b_h) \le \left(\max_{h} a_h\right) \left(\max_{h} b_h\right). \tag{11}$$

Consequently, we can write:

$$\max_{h}(a_h b_h) \le K_1'(1+\eta L)^t \|A_0^{(V)}\|_{\max} + K_2'(1+\eta L)^{2t} \|A_0^{(V)}\|_{\max} \|A_0^{(Q)}\|_{\max} + C_0,$$

with:
$$K_1'=\frac{\alpha}{r}\|B^V\|_{\max},$$

$$K_2'=\frac{4}{\sqrt{d/H}}\Big(\frac{\alpha}{r}\Big)^2\|B^V\|_{\max}\|B^Q\|_{\max}\|W^K\|_{\max},$$

and C_0 is a time-independent constant.

Let's define the following: $A_0^Q = \max_h \|A_0^{(Q,h)}\|$, and $A_0^V = \max_h \|A_0^{(V,h)}\|$.

Then we can finally write:

$$C_1' \le K_1 (1 + \eta L)^t \max_h ||A_0^{(V,h)}|| + K_2 (1 + \eta L)^{2t} \max_h ||A_0^{(V,h)}|| + ||A_0^{(Q,h)}|| + C,$$

with:

$$K_1 = \|W_O\|\sqrt{H}\frac{\alpha}{r}\|B^V\|_{\max},$$
 (12)

$$K_2 = 4\|W_O\| \frac{H}{\sqrt{d}} \left(\frac{\alpha}{r}\right)^2 \|B^V\|_{\max} \|B^Q\|_{\max} \|W^K\|_{\max}.$$
 (13)

Proof of Lemma 1:

Lemma. Consider LoRA matrices for each head h = 1, ..., H initialized with entries drawn i.i.d. from U(-a, a) independently across heads and stacks. Then the expected value of the robustness constant C'_1 satisfies

$$\mathbb{E}[C_1'] = \mathcal{O}\bigg((1 + \eta L)^{2t} \, a^2 \, \Big((\sqrt{r} + \sqrt{k}) + \sqrt{\log H} \Big)^2 \bigg) \, .$$

Proof. From the Theorem 2, for sufficiently large t we have

$$C_1' = \mathcal{O}\left((1 + \eta L)^{2t} \max_{h} \|A_0^{(V,h)}\| \max_{h} \|A_0^{(Q,h)}\|\right). \tag{14}$$

For a random matrix $A \in \mathbb{R}^{r \times k}$ with i.i.d. entries from $\mathcal{U}(-a, a)$, matrix concentration bounds yield

$$\mathbb{E}[\|A\|] \le C_1 a(\sqrt{r} + \sqrt{k}),\tag{15}$$

for a universal constant $C_1 > 0$. Taking the maximum over H independent heads gives

$$\mathbb{E}\left[\max_{h=1,\dots,H} \|A^{(h)}\|\right] \le C_2 a\left(\left(\sqrt{r} + \sqrt{k}\right) + \sqrt{\log H}\right). \tag{16}$$

By independence of Q and V stacks,

$$\mathbb{E}\left[\max_{h} \|A_0^{(V,h)}\| \max_{h} \|A_0^{(Q,h)}\|\right] = \mathbb{E}\left[\max_{h} \|A_0^{(V,h)}\|\right] \cdot \mathbb{E}\left[\max_{h} \|A_0^{(Q,h)}\|\right],\tag{17}$$

which yields the stated bound after plugging in Equation 14, multiplication and absorbing constants.

D ADDITIONAL RESULTS

D.1 ADDITIONAL RESULTS CV

Results SwiN-based Transformer. While in Section 6, Figure 2 provides the results of the success rate of the ViT, we additionally provide the results on the SwiN, which show similar tendencies and insights on the link between loRA and adversarial robustness compared to head-only finetuning.

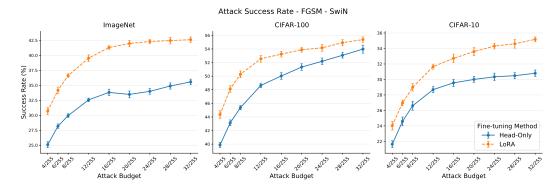


Figure 6: Success Rate of the FGSM Attack when applied to a SwiN-based Model and different datasets and attack budgets.

Clean/Attacked Accuracy. Additionally, as explained in Section 6, we study the adversarial robustness from an attack success rate perspective as a representative metric, but we additionally report the attacked accuracy, which also has the same insights. Note that the success rate is simply a representative function of the attack accuracy (without taking into account the erroneous predictions of the models). In this perspective, Figure 7 provides the results of the average clean and attacked accuracy of a ViT when subject to the FGSM attack for different attack budgets, while Figure 8 provides the results for the SwiN-based transformer.

Other Results on Initialization. In line with what was presented in Section 6.2, we extend the study to take into account the other considered datasets. In this perspective, Figure 9 provides the corresponding results on the ImageNet, the CIFAR-10 and CIFAR-100.

D.2 ADDITIONAL RESULTS NLP

Results for A2T Attack. While in Section 6, Figure 3 presents the results of TextFooler attack on head-only and LoRA finetuning, Figure 10 presents the attack results from A2T attack. Overall, we

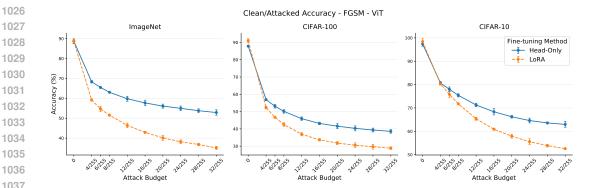


Figure 7: Clean/Attacked Accuracy of a ViT when subject to the FGSM attack for different budgets and datasets.

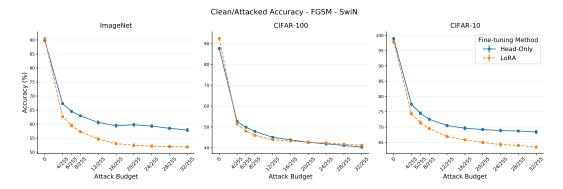


Figure 8: Clean/Attacked Accuracy of a SwiN-based model when subject to the FGSM attack for different budgets and datasets.

have similar overall observations for the adversarial robustness comparison between head-only and LoRA finetuning.

Clean/Attacked Accuracy. In addition to attack success rate, Table 3 and 4 and provides detailed results of clean accuracy and adversarial accuracy of TextFooler and A2T attack.

Table 3: Original accuracy (Orig Acc), attack success rate (ASR, %) and adversarial accuracy (Adv Acc, %) across datasets with TextFooler attack. Attack budget: max number of words changed is 3.

	Dataset		IMDb			SST-2			Yelp Polarity	
	Metric	Orig Acc	ASR	Adv Acc	Orig Acc	ASR	Adv Acc	Orig Acc	ASR	Adv Acc
BERT	Head-Only	83.20 ± 0.87	11.27 ± 0.12	71.93 ± 0.83	83.40 ± 0.53	54.00 ± 0.00	29.40 ± 0.53	86.13 ± 1.53	14.73 ± 2.16	71.40 ± 0.72
DEKI	LoRA	90.53 ± 0.92	16.67 ± 1.01	73.87 ± 1.89	92.13 ± 0.23	53.40 ± 1.64	38.73 ± 1.86	92.60 ± 0.53	15.93 ± 0.81	76.67 ± 1.22
DistilBERT	Head-Only	83.60 ± 0.40	11.40 ± 0.35	72.20 ± 0.72	82.13 ± 0.31	52.00 ± 0.72	30.13 ± 0.50	86.07 ± 1.86	14.60 ± 1.51	71.47 ± 0.70
DISUIDERI	LoRA	90.07 ± 0.31	17.53 ± 1.22	72.53 ± 1.10	89.47 ± 0.83	58.00 ± 0.69	31.47 ± 0.92	92.07 ± 0.42	17.93 ± 3.60	74.13 ± 3.92
GPT-2	Head-Only	85.67 ± 1.01	6.73 ± 0.81	78.93 ± 1.72	82.07 ± 0.50	47.20 ± 0.92	34.87 ± 0.76	85.20 ± 1.60	10.07 ± 0.81	75.13 ± 2.34
GF 1-2	LoRA	91.87 ± 0.90	7.87 ± 0.42	84.00 ± 0.69	90.93 ± 1.33	54.60 ± 2.11	36.33 ± 2.02	92.40 ± 0.53	7.87 ± 0.81	84.53 ± 0.99
Gemma-2B	Head-Only	92.13 ± 0.58	7.73 ± 0.64	84.40 ± 1.22	88.73 ± 0.46	46.80 ± 0.20	41.93 ± 0.50	94.87 ± 0.23	7.80 ± 1.06	87.07 ± 1.15
Geiiiiia-2B	LoRA	94.40 ± 0.53	10.80 ± 0.53	83.60 ± 0.69	96.07 ± 0.31	40.60 ± 1.73	55.47 ± 1.70	97.13 ± 0.50	9.40 ± 1.51	87.73 ± 1.81
LLaMA-3.2-1B	Head-Only	93.33 ± 0.81	7.13 ± 0.81	86.20 ± 1.59	86.73 ± 0.12	47.60 ± 0.53	39.13 ± 0.64	94.53 ± 0.31	10.27 ± 0.81	84.27 ± 0.99
LLawiA-3.2-1D	LoRA	93.33 ± 0.23	8.87 ± 0.42	84.47 ± 0.42	95.93 ± 0.61	43.93 ± 1.79	52.00 ± 1.22	97.40 ± 0.92	8.73 ± 1.10	88.67 ± 0.64
Mistral-7B	Head-Only	93.40 ± 0.53	6.47 ± 0.50	86.93 ± 0.95	91.00 ± 0.53	43.93 ± 0.58	47.07 ± 1.01	96.53 ± 1.55	7.60 ± 0.72	88.93 ± 0.99
MISU ai-/D	LoRA	89.40 ± 6.05	12.40 ± 7.50	77.00 ± 13.53	81.80 ± 2.12	58.33 ± 3.75	23.47 ± 1.75	97.33 ± 0.61	7.07 ± 1.68	90.27 ± 1.14
TinyLLaMA	Head-Only	93.60 ± 0.92	5.53 ± 0.31	88.07 ± 0.81	73.33 ± 0.12	45.60 ± 0.20	27.73 ± 0.31	89.73 ± 1.86	13.33 ± 3.01	76.40 ± 3.82
ImyLLaMA	LoRA	93.13 ± 1.03	10.87 ± 0.42	82.27 ± 1.40	93.80 ± 0.20	49.00 ± 1.59	44.80 ± 1.64	95.33 ± 1.22	13.13 ± 1.63	82.20 ± 2.78

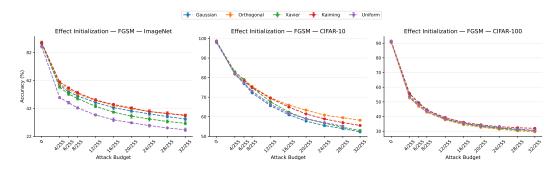


Figure 9: Clean/Attacked Accuracy of a ViT when subject to FGSM under different initialization distribution.

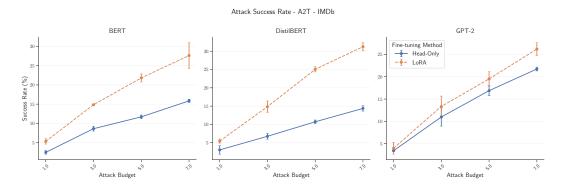


Figure 10: Attack Success Rate of the A2T Attack on BERT, DistilBERT, and GPT-2 when applied to IMDb dataset with different attack budget (number of words changed).

E EXPERIMENTAL DETAILS

Computer-Vision. For all the experiments, we used a learning rate of 1e-03 to train the LoRA and the head-only finetuning, and the training was done using AdaM optimizer (Kingma & Ba, 2014). All the tasks were trained for 5 epochs; all of which yielded stable convergence. All the experiments were run 3 times with different seeds to reduce the effect of randomness, and we report the average and the corresponding standard deviations.

After the convergence of each finetuning strategy, and as explained in Section 6, we used the FGSM and PGD attack with different budget attacks. For the PGD, we set the number of iterations to 10, which is in line with the literature.

Natural-Language-Processing.

For both head-only and LoRA fine-tuning, we take the pretrained checkpoint of the model and further finetune it for 5 epochs using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 2e-4 and batch size of 16. We use the HuggingFace Datasets¹ to get the dataset for the experiment. For the Yelp Polarity dataset, we subsample to 3000 train instances, 1000 validation instances, and 1000 test instances to speed up the training process. For IMDb and SST-2 datasets, we use the full dataset and the original train, validation, and test splits provided by Huggingface.

After the fine-tuning phase, we subsample 500 instances from the test split and run both the TextFooler and A2T attack. The subsampling process is seeded to have a more statistically sound evaluation of the adversarial robustness of head-only and LoRA finetuning.

All experiments are repeated 3 times with different seeds, reporting the average performance together with standard deviations.

¹https://huggingface.co/docs/datasets/en/index

Table 4: Original accuracy (Orig Acc), attack success rate (ASR, %) and adversarial accuracy (Adv Acc, %) across datasets with A2T attack. Attack budget: max number of words changed is 3.

	Dataset		IMDb			SST-2			Yelp Polarity	
	Metric	Orig Acc	ASR	Adv Acc	Orig Acc	ASR	Adv Acc	Orig Acc	ASR	Adv Acc
BERT	Head-Only	86.67 ± 0.92	8.61 ± 0.62	79.20 ± 0.40	83.40 ± 0.53	28.13 ± 0.74	59.93 ± 0.23	87.00 ± 1.06	11.04 ± 1.13	77.40 ± 1.93
	LoRA	92.93 ± 1.01	14.85 ± 0.06	79.13 ± 0.81	92.13 ± 0.23	22.86 ± 0.62	71.07 ± 0.46	93.20 ± 0.72	11.52 ± 0.70	82.47 ± 1.14
DistilBERT	Head-Only	87.67 ± 0.31	6.77 ± 0.78	81.73 ± 0.58	82.13 ± 0.31	28.33 ± 0.40	58.73 ± 0.23	86.40 ± 1.74	11.26 ± 0.74	76.60 ± 1.04
	LoRA	92.87 ± 0.31	14.86 ± 1.55	79.07 ± 1.70	89.47 ± 0.83	27.80 ± 1.71	64.60 ± 1.91	93.33 ± 1.03	17.50 ± 2.00	76.93 ± 2.05
GPT-2	Head-Only	89.27 ± 0.95	10.99 ± 2.04	79.47 ± 2.39	82.07 ± 0.50	30.06 ± 0.42	57.40 ± 0.40	85.80 ± 1.91	12.29 ± 2.30	75.27 ± 3.06
	LoRA	93.93 ± 0.64	13.35 ± 2.32	81.27 ± 2.52	90.93 ± 1.33	22.00 ± 0.77	70.93 ± 1.62	92.73 ± 0.50	8.85 ± 1.37	84.53 ± 1.62