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ABSTRACT

Out-of-distribution (OOD) detection is essential for reliable deployment of ma-
chine learning systems in vision, robotics, reinforcement learning, and beyond.
We introduce Score–Curvature Out-of-distribution Proximity Evaluator for Diffu-
sion (SCOPED), a fast and general-purpose OOD detection method for diffusion
models that reduces the number of forward passes on the trained model by an or-
der of magnitude compared to prior methods, outperforming most diffusion-based
baselines and closely approaching the accuracy of the strongest ones. SCOPED
is computed from a single diffusion model trained once on a diverse dataset, and
combines the Jacobian trace and squared norm of the model’s score function into
a single test statistic. Rather than thresholding on a fixed value, we estimate the
in-distribution density of SCOPED scores using kernel density estimation, en-
abling a flexible, unsupervised test that, in the simplest case, only requires a single
forward pass and one Jacobian–vector product (JVP), made efficient by Hutchin-
son’s trace estimator. On four vision benchmarks, SCOPED achieves competi-
tive or state-of-the-art precision-recall scores despite its low computational cost.
The same method generalizes to robotic control tasks with shared state and ac-
tion spaces, identifying distribution shifts across reward functions and training
regimes. These results position SCOPED as a practical foundation for fast and
reliable OOD detection in real-world domains, including perceptual artifacts in
vision, outlier detection in autoregressive models, exploration in reinforcement
learning, and dataset curation for unsupervised training.

1 INTRODUCTION

Out-of-distribution (OOD) detection is essential for the reliable deployment of machine learning
systems in domains such as vision, robotics, and reinforcement learning. Modern models are prone
to high confidence on abnormal or irrelevant inputs, leading to safety and robustness risks in real-
world use (Nguyen et al., 2015; Nalisnick et al., 2018; 2019). To address this, a large body of
work has explored OOD detection methods (Hendrycks et al., 2018; Liu et al., 2020; Graham et al.,
2023; Heng et al., 2024). Unsupervised methods are especially attractive since they require only
in-distribution data, making them broadly applicable regardless of the eventual downstream task.

Generative modeling has emerged as a natural tool for OOD detection, but existing methods have
key limitations. Likelihood-based approaches suffer from well-documented pathologies, such as as-
signing higher likelihood to OOD datasets than to the training set (Nalisnick et al., 2018; Choi et al.,
2018). Reconstruction-based methods, including autoencoders and diffusion reconstructions, de-
pend on carefully tuned information bottlenecks and are brittle in practice (An & Cho, 2015; Pinaya
et al., 2021). More recent diffusion-based approaches such as DiffPath (Heng et al., 2024) lever-
age trajectory geometry for OOD detection, but require evaluating the model along entire denoising
paths which, like earlier diffusion-based OOD methods that require many model evaluations, is com-
putationally expensive and poses a serious challenge for real-time and compute-limited applications.

To address these shortcomings we propose the Score–Curvature Out-of-distribution Proximity Eval-
uator for Diffusion (SCOPED), a general-purpose alternative that requires far fewer model evalu-
ations. Our method exploits fundamental intuition from information geometry (Cover & Thomas,
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2006): near the typical set of a distribution (i.e., for “in-distribution” samples), the local curvature of
the log-probability density is related to the norm of the score function. Since diffusion models learn
the score directly (Ho et al., 2020; Song et al., 2021), this curvature information can be obtained
efficiently by a single Jacobian–vector product (JVP) through the trained model, provided the diffu-
sion step is chosen appropriately. SCOPED constructs a simple statistic that summarizes the balance
between curvature and score function norm, which serves as a reliable signal for whether a given
query point is in- or out-of-distribution. Computing this statistic requires an order of magnitude
fewer evaluations than the 10–1000 calls typical of prior diffusion-based OOD detection methods
(Mahmood et al., 2020; Heng et al., 2024). In addition, we introduce a simple offline procedure for
selecting the diffusion step at which SCOPED is applied. Guided by the monotone decay of the
signal-to-noise ratio under the forward diffusion process, we compute the SCOPED test statistic at
a step early- and mid-way through the denoising schedule (chosen using only in-distribution data),
ensuring robustness without any tuning on OOD datasets.

We first validate SCOPED in reinforcement learning, a setting where the notion of in-distribution
vs. out-of-distribution data is less clear-cut than in vision. Environments can share identical dy-
namics yet differ in rewards (e.g., reacher-easy vs. reacher-hard, humanoid-stand vs.
humanoid-walk), and independently trained policies can induce distinct state–action distribu-
tions even within the same task. On the DeepMind Control Suite (DMC) (Tassa et al., 2018) and
D4RL Gym benchmarks (Fu et al., 2020), SCOPED successfully separates such distribution shifts
in proprioceptive RL domains. Detailed comparisons, including the effects of dataset diversity and
replay mixtures, are provided in Section 5.1.

We then turn to vision, where standardized baselines enable rigorous comparison. Across four
benchmarks (CIFAR-10, SVHN, CelebA, CIFAR-100), SCOPED achieves competitive or state-of-
the-art Area Under the Receiver Operating Characteristic curve (AUROC) scores while requiring an
order of magnitude fewer diffusion model evaluations than most prior methods. Importantly, we use
the same base diffusion model as the most comparable prior work (Heng et al., 2024), making clear
that our efficiency gains are algorithmic rather than a consequence of dataset or model differences.

Key Contributions:
1. We introduce SCOPED, an OOD detection method that leverages information-

theoretic connections between score norm and curvature to define a single test
statistic. SCOPED requires an order of magnitude fewer evaluations than compet-
ing diffusion-based methods, and — unlike path-based approaches — its probes
are independent and can be fully parallelized across samples and timesteps.
We also propose a simple offline noise-level selection strategy using only in-
distribution data.

2. We provide a comprehensive evaluation of SCOPED across both proprioceptive re-
inforcement learning settings (DMC, D4RL) and vision benchmarks (CIFAR-10,
SVHN, CelebA, CIFAR-100), showing that dataset choice fundamentally shapes
OOD separability and that SCOPED achieves competitive or state-of-the-art AU-
ROC on vision tasks.

2 BACKGROUND

Our method applies to both discrete-time Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) and continuous-time Elucidated Diffusion Models (EDMs) (Karras et al., 2022), which
are two widely used and mathematically connected formulations of score-based diffusion.

2.1 SCORE-BASED DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021) train a neural network to approxi-
mate the score function sθ(xt, t) ≈ ∇x log pt(xt) of progressively noised data xt. At step t, Gaus-
sian noise with variance σ2

t is added according to a schedule that grows with t, defining a distribution
over noise scales from which training samples are drawn so the network learns to denoise across the
full noise range. Given a noised input, the network predicts either the score or an equivalent repre-
sentation (e.g. denoised data or noise), from which the score can be recovered; see Appendix B for
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details. Sampling then integrates the corresponding reverse dynamics to map Gaussian noise back
into data. Early noise levels preserve fine detail, while later ones retain only coarse structure.

DDPM and EDM are discrete and continuous instances of this shared framework: both ultimately
train a network to approximate ∇x log pt(xt). This common structure underlies our OOD detec-
tion method. For completeness, we provide a more detailed derivation of DDPM, denoising score
matching, and EDM in Appendix B.

2.2 TYPICALITY AS A MEASURE OF OOD

A core idea in information theory is that typical outcomes of a random process are not necessarily
the most probable. Typical sets are classically defined in terms of sequences: a sequence of i.i.d.
draws {x1, x2, . . . , xn} ∼ p is δ-typical if

H(p)− δ ≤ − 1

n
log p(x1, x2, . . . , xn) ≤ H(p) + δ ,

where H(p) = −Ep[log p(x)] is the (differential) entropy of density p. The asymptotic equipartition
property (AEP) ensures that, in the limit n → ∞, any sequence {xi}ni=1 will be 0-typical with
probability 1 (Cover & Thomas, 2006).

Although the typical set is defined in terms of i.i.d. sequences, it is also natural to discuss typicality
for length n = 1 sequences of high-dimensional distributions. Consider the example of an isotropic
Gaussian distribution in high dimension d, where the density is maximized at the mean, yet almost
all mass lies in a thin shell with radius

√
d. This counterintuitive phenomenon, sometimes referred

to as the Gaussian annulus theorem (Vershynin, 2018; Nalisnick et al., 2019), tells us that with high
probability any random draw will lie on the shell, rather than near the mode at the origin. This shell
is precisely the set of points at which − log p(x) = H(p).

This perspective has two consequences for OOD detection. First, it explains why likelihood-based
methods can fail: points with high density may be atypical if they fall outside the shell where mass
concentrates. Second, it suggests that in-distribution data should lie in the typical set. Formally,
then, we define OOD points as follows.

Definition 1 (δ-OOD points) We call a sequence of n points, {x1, x2, . . . , xn}
i.i.d.∼ p, δ-OOD for

distribution p if they are not δ-typical.

In practice, we seek to identify length n = 1 δ-OOD sequences, with δ specified indirectly by
comparing the test statistic to an adaptive threshold calibrated on in-distribution data.

2.3 THE SCORE-CURVATURE RATIO

Let p(x) be a nondegenerate density and define the score s(x) := −∇x log p(x). Under standard
regularity conditions, classical results provide two equivalent expressions for the Fisher information:

Ep

[
∇2

x log p(x)
]
= −Ep

[
s(x) s(x)⊤

]
, hence Ep

[
Tr
(
∇xs(x)

)]
= Ep

[
∥s(x)∥2

]
,

cf. (Gallager, 2013). The local curvature

κ(x) := Tr
(
∇xs(x)

)
= − Tr

(
∇2

x log p(x)
)

is nonnegative for log-concave models and positive for Gaussians. For in-distribution samples drawn
from p, therefore, the expected score magnitude (measured by p) matches expected curvature.

Nevertheless, one can still define the statistic

T (x) =
∥s(x)∥2

κ(x)

for any point x at which κ(x) ̸= 0, with the intuition that high-dimensional distributions will assign
virtually all probability mass to typical samples, with − log p(x) ≈ H(p) and at which we can expect
T (x) ≈ 1. For numerical stability, when computing T (x) we add a small ε to the denominator to
avoid division by zero, though in practice we observe that κ(x) always takes on large values.
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As a concrete example, consider the d-dimensional isotropic Gaussian setting: x ∼ N (0, σ2Id). In
this case the score is s(x) = x/σ2 and the curvature is κ(x) = d/σ2, so

T (x) =
∥s(x)∥2

κ(x)
=

∥x∥2

d σ2
.

Because ∥x∥2 concentrates sharply around dσ2 in high dimensions, T (x) remains close to one on
the typical set, while samples far from this shell yield values that deviate substantially. This intuition
forms the core of our approach: we hypothesize that the statistic T (x) is highly predictive of a point’s
membership in the δ-typical set, and propose to use it as a metric for OOD detection.

Importantly, diffusion models provide direct access to both the score s(x) and the curvature κ(x)
(via the Jacobian trace, which can be estimated efficiently). This makes T (x) computable from
a single trained diffusion model at a chosen noise level, thereby linking the information-theoretic
notion of the typical set to a practical, model-based criterion for out-of-distribution detection.

A final subtlety is that the typicality ratio admits a global sign ambiguity: the squared norm in the
numerator discards orientation, while the Jacobian trace in the denominator retains sign information.
We correct this with a global sign factor, as detailed in Appendix C, and confirm in Appendix I that
this correction is necessary for stable OOD performance in vision-based tasks.

3 FROM THE SCORE-CURVATURE RATIO TO A PRACTICAL OOD METRIC:
SCOPED

3.1 ACHIEVING COMPUTATIONAL EFFICIENCY

A key advantage of SCOPED over path-based diffusion approaches such as DiffPath (Heng et al.,
2024) is its independence from serial trajectory integration. DiffPath requires propagating samples
through the probability flow ordinary differential equation (ODE) with Denoising Diffusion Implicit
Models (DDIM) (Song et al., 2021), where each step depends on the previous one. This makes
the method inherently sequential: the cost scales linearly with the number of integration steps, and
timesteps cannot be parallelized. As a result, the number of function evaluations (NFEs) grows
directly with the trajectory length.

In contrast, SCOPED probes the diffusion model at arbitrary noise levels without reconstructing
the full denoising path. Each statistic is computed from a forward evaluation and a single JVP at
a chosen timestep, independent of all other timesteps. This independence means that (i) NFEs are
reduced by roughly an order of magnitude compared to path-based methods, since only a handful
of strategically chosen timesteps are required, and (ii) those evaluations are not serially dependent
and can therefore be fully parallelized across both samples and timesteps on modern accelerators.
In practice, this combination of reduced counts and effective parallelism yields efficiency gains that
exceed what raw NFE tallies alone would suggest.

A second source of efficiency comes from curvature estimation. Naively, evaluating the Jacobian
trace Tr(∇xs(x)) is prohibitively expensive in high dimensions. We instead employ Hutchinson’s
stochastic trace estimator (Hutchinson, 1989), which uses randomized projections to form an unbi-
ased estimate with cost linear in the dimension. Each probe requires only a single JVP with the score
network, avoiding explicit Jacobian matrix formation. In practice, a single probe is often sufficient,
and averaging a few probes can further reduce variance (Pearlmutter, 1994; Martens, 2010). This
makes SCOPED at a given noise level comparable in cost to one additional forward pass of the score
network, since Hutchinson’s estimator avoids building the full Jacobian.

Together, these properties make SCOPED practical at scale: an order of magnitude fewer NFEs than
path-based diffusion methods, parallelism across timesteps and samples, and curvature estimation
that avoids the quadratic cost of explicit Jacobian formation, requiring only a few JVPs.

3.2 MOTIVATION AND OOD DETECTION WITH KERNEL DENSITY ESTIMATION

Although T (x) measures typicality and is feasible to compute with Hutchinson’s estimator, its raw
values are not universally calibrated across datasets, diffusion noise levels, or models. On its own,
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(a) Trained on humanoid-walk (b) Trained on humanoid-stand

Figure 1: Distribution of SCOPED OOD scores T (x) for humanoid-stand and
humanoid-walk transitions. In-distribution evaluations concentrate near 1 with tight quantiles,
while cross-task evaluations shift upward and become more dispersed, indicating separability.

T (x) is therefore not a reliable discriminator of in-distribution (ID) versus out-of-distribution (OOD)
data. We illustrate this with a simple RL example, then motivate our approach for calibration.

Motivating example in reinforcement learning. We train high-proficiency Soft Actor-Critic
(SAC) policies (Haarnoja et al., 2019) on humanoid-stand and humanoid-walk, which are
high-dimensional, proprioceptive, continuous control robotics tasks from the DeepMind Control
Suite (Tassa et al., 2020) with identical dynamics but non-overlapping rewards. Each trained pol-
icy is rolled out deterministically to create a transition replay buffer of observation-action-next
observation-reward tuples per task. We fit an Elucidated Diffusion Model (EDM) denoiser (Lu
et al., 2023) to each dataset and evaluate the typicality ratio T (x) on each transition in both ID and
cross-task buffers. As shown in Figure 1, ID evaluations per transition concentrate near 1 with tight
quantiles, while cross-task evaluations shift upward and become much more dispersed. This pair
of datasets is trivially separable via the T (x) statistic, which serves as a sanity check that T (x) can
capture distributional differences; however, we will see below that care must be taken to choose an
effective threshold when data is not trivially separable.

Calibration for a practical detector. Despite the separation in the above example, absolute T (x)
values are not always comparable across datasets and models, so a fixed threshold is unreliable. Dur-
ing training we have access to ID samples. We therefore compute T (x) on ID data, and fit a density
to these values using kernel density estimation (KDE), which estimates a smooth probability density
by placing Gaussian kernels around each observed value. The result is a continuous estimate of the
ID test statistic distribution without assuming a specific parametric form. This converts typicality
into a calibrated anomaly score, given by − log h(T (x)), where h is the KDE fit on in-distribution
values of T (x), which we use for OOD detection with empirical results in Section 5.

It is important to note, however, that the effectiveness of this calibration depends on the domain
and the dataset used to train the diffusion model, which need not coincide with the ID data. In this
RL example, we found that separability between humanoid-stand and humanoid-walk was
robust to the choice of training dataset even without introducing the KDE concept. In contrast, as
we show in Section 5 and mirroring prior work (Heng et al., 2024), training dataset choice plays a
critical role in vision-based settings and even other proprioceptive datasets, where separability can
be strongly affected by the diversity and coverage of the training distribution.

3.3 OFFLINE SELECTION OF NOISE LEVELS FOR SCOPED

Choosing the noise level is crucial for balancing retained signal with injected noise.

For our proprioceptive D4RL and DMC tasks, we evaluate at a single noise level given by the mode
of the log-normal prior over noise scales, σmode = exp(µ − σ2

log), where µ and σ2
log are the mean

and variance of log σ. This corresponds to the most probable noise scale under the prior, which lies
toward the early-middle part of the schedule. It suppresses fine state-action detail while preserving
coarse structure, providing a principled single-point evaluation without requiring a sweep.
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In contrast, for our vision experiments, we estimate the signal-to-noise ratio (SNR) of the distribu-
tion pt(xt) offline using in-distribution data (cf. Appendix D), at different points along the forward
diffusion process t. SNR decays monotonically: early timesteps preserve fine detail, while later
ones approach noise dominance. To ensure robustness across this spectrum, we evaluate SCOPED
at two points: an early step (t = 1) that maximizes fine information, and a mid-level step (t = 300)
where about 95% of the signal remains, the SNR curve enters a roughly linear decline, and coarse
structure is retained while some fine detail is suppressed.

For each test input we compute anomaly scores (negative log-likelihoods under the KDE fit) at
both timesteps and take their maximum as the final anomaly score. This is fully unsupervised,
requires only ID data, and adds negligible cost since the KDE fit is precomputed offline and only
the typicality ratio is evaluated online. Specifically, we fit a KDE to score–curvature statistics of ID
data at the chosen timesteps and compute the negative log-likelihood of the typicality score for a test
input under this density model. For evaluation we report AUROC, which is threshold-free, whereas
for deployment a cutoff can be set from ID data.

We define two reference variants. SCOPED (Single) fixes the noise level at t = 300, chosen once
from in-distribution data using the same procedure as above. SCOPED (Oracle) assumes knowl-
edge of the best-performing timestep for each ID/OOD dataset pair, providing an informative but
unattainable upper bound.

We emphasize that, unlike prior diffusion-based methods such as DiffPath (Heng et al., 2024),
which sweep hyperparameters on OOD benchmarks, SCOPED selects noise levels using only in-
distribution data. Our ablations show robustness, not tuning.

4 RELATED WORK

Out-of-distribution (OOD) detection has been studied through confidence scores (Hendrycks et al.,
2018; Liang et al., 2017), generative likelihoods (Nalisnick et al., 2019; Choi et al., 2018; Ren
et al., 2019), and reconstruction methods (An & Cho, 2015; Pinaya et al., 2021). While effective in
narrow cases, these approaches often fail under dataset shifts, such as high likelihoods on OOD data
or sensitivity of autoencoder reconstructions to bottleneck design.

Diffusion models have recently been applied to OOD detection through reconstruction (Graham
et al., 2023; Liu et al., 2023) and through score-based or trajectory-based statistics (Mahmood
et al., 2020; Heng et al., 2024). However, such approaches often rely on multiple evaluations across
timesteps or full denoising paths, and remain limited by the broader challenge that training OOD
detectors only on ID data is misaligned with the OOD objective (Li et al., 2025). SCOPED ad-
dresses these issues by deriving a single statistic from the score and its curvature at a chosen noise
level, which reduces computation and grounds detection in generative model geometry. It can also
incorporate a foundation dataset alongside ID data to mitigate the ID-only misalignment. To our
knowledge, SCOPED is also among the first approaches to validate diffusion-based OOD detection
on RL benchmarks, including D4RL and the DeepMind Control Suite (Fu et al., 2020; Tassa et al.,
2018).

5 RESULTS

As in prior work, experiments here compare OOD detection across dataset pairs.

For RL, we generate transition tuples (observation, action, next observation, reward) from Deep-
Mind Control Suite (DMC) tasks such as humanoid-stand and humanoid-walk (Tassa et al.,
2018), as well as OpenAI Gym tasks (Brockman et al., 2016) from the offline D4RL benchmark
(Fu et al., 2020). These cover a range of continuous control problems and allow us to examine
shifts across reward functions and independently trained policies. Since OOD baselines are over-
whelmingly vision-focused, we use these RL tasks primarily as sanity checks and case studies, not
competitive benchmarks.

For vision-based tasks, we evaluate OOD detection on CIFAR-10 (C10), SVHN, CelebA, and
CIFAR-100 (C100), which cover both 32×32 and 64×64 resolutions. We use Denoising Diffusion
Probabilistic Models (DDPMs) (Ho et al., 2020), trained unconditionally on CelebA to match the
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strongest comparable baselines (Heng et al., 2024). Following Heng et al. (2024), we adopt a con-
sistent resizing procedure to avoid artifacts that simplify detection due to data fidelity discrepancies:
when datasets have different original resolutions, higher-resolution images are first downsampled to
match the lower-resolution set, and both are then upsampled to the model’s input resolution. This
ensures consistent blur across datasets and prevents artificially inflated OOD detection performance.

We benchmark performance in vision tasks against strong generative baselines, including DiffPath
(Heng et al., 2024), IGEBM (Du & Mordatch, 2019), VAEBM (Xiao et al., 2020), and Improved
CD (Du et al., 2021). We also include likelihood-driven tests, namely Input Complexity (Serrà et al.,
2019), Density of States (Morningstar et al., 2021), WAIC (Choi et al., 2018), Typicality (Nalisnick
et al., 2019), and the Likelihood Ratio (Ren et al., 2019) applied to Glow (Kingma & Dhariwal,
2018). Finally, we compare to diffusion-based baselines: vanilla NLL, Input Complexity computed
from diffusion model likelihoods, and implementations of DDPM-OOD (Graham et al., 2023), LMD
(Liu et al., 2023), and MSMA (Mahmood et al., 2020). We report AUROC and computational cost
measured as the number of function evaluations, defined as forward passes. For comparability, our
method also performs one Jacobian–vector product per evaluation, and we note this cost in the totals.

5.1 REINFORCEMENT LEARNING CASE STUDIES

We first consider reinforcement learning, a domain where the definition of in-distribution is inher-
ently ambiguous. Environments can share identical dynamics while differing in rewards, and even
within a single task, different policies can induce markedly different state–action distributions due
to the highly stochastic nature of RL training. To capture these axes of divergence, we evaluate
SCOPED across three categories: reward changes (e.g., reacher-easy vs. reacher-hard,
humanoid-stand vs. humanoid-walk), transitions induced by different behavior policies as
collected in different replay buffer realizations (e.g., ant-random vs. ant-expert), and policy
realizations that differ only by random seed (e.g., reacher-hard seed A vs. seed B).

DMC results. On DeepMind Control Suite tasks, SCOPED achieves perfect separation across all
tested shifts (Appendix F, Table 2). These results validate that the method captures distributional di-
vergence not only in cases where the state–action–reward distributions are clearly non-overlapping,
such as humanoid-stand versus humanoid-walk (cf. Figure 1), but also in settings where
overlap is expected, such as finger-turn or reacher tasks. In these latter cases, the same
dynamics and similar reward structures generate transitions that occupy overlapping regions of the
state-action space, yet SCOPED still produces strong separation and perfect out-of-distribution de-
tection accuracy. This outcome would not have been obvious a priori and suggests that the statistic is
sensitive to more subtle distributional cues than reward specification alone. While these experiments
may appear straightforward a posteriori, they serve as valuable sanity checks: they confirm that
SCOPED behaves in line with intuition when distributions are clearly distinct, while also demon-
strating sensitivity in cases where overlap exists and separability is less obvious. Together, they
provide a foundation before turning to more challenging benchmarks.

D4RL results. The D4RL benchmarks provide a more nuanced picture (cf. Figure 2). Each
dataset is collected from a different behavior policy (Fu et al., 2020): random from an untrained
agent, expert from a fully trained SAC policy, medium from a partially trained policy at about
one-third expert performance, and medium-replay from the full replay buffer of the medium
agent throughout training, which is more diverse but also noisier due to exploratory behavior.

In hopper-v2 and walker2d-v2, SCOPED achieves near-perfect AUROC across most pairs,
while ant-v2 is harder, especially for medium vs. expert or medium-replay. A key observation
is that training on the most diverse dataset (medium-replay) does not produce the strongest
detector: it consistently underperforms in Hopper and Walker, and only conditionally helps in Ant.

Although counterintuitive, this result is consistent with vision-based OOD methods (Heng et al.,
2024) that rely on a single foundation model rather than ID training: performance depends heavily
on the choice of training distribution, and more diversity of dataset coverage does not always help.
In RL, termination conditions constrain random or partially trained agents to narrow regions of
state space, while replay mixtures add noisy and inconsistent trajectories. This makes superficially
diverse buffers more entangled and less separable. In contrast, proficient and diverse policies such as
expert agents generate broad but coherent coverage, sharpening the boundary between in- and out-
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of-distribution as is consistently shown by our results. Dataset choice is therefore a central factor in
RL OOD detection, and intuitions from vision that “more coverage helps” do not transfer directly.

Figure 2: AUROC heatmaps for D4RL. Rows indicate the training buffer and columns the OOD
buffer. D4RL data is abbreviated R (random), M (medium), E (expert), and MR (medium-replay).

Interpretation. Taken together, these case studies demonstrate that SCOPED naturally extends to
proprioceptive RL data while revealing important trade-offs. The DMC results serve as clear sanity
checks, while the D4RL results illustrate more subtle distinctions that, for example, configurations
that maximize separability for one dataset pair may perform poorly for another. In particular, ter-
mination conditions and replay mixtures can make diverse buffers less separable, whereas expert
datasets sharpen boundaries and yield stronger detectors. We emphasize that these studies are not
intended as a competitive benchmark, but as diagnostic explorations of how SCOPED interacts with
different notions of distribution shift in RL — reward changes, policy changes, and distinct policy
realizations. With this foundation, we next turn to vision benchmarks, where standardized datasets
and strong baselines allow more rigorous quantitative comparison.

5.2 MAIN VISION-BASED RESULTS

Before turning to results, we first clarify the setup for vision-based OOD detection.

Foundation dataset. We follow Heng et al. (2024) and use an unconditional DDPM trained on
CelebA (available here) as the backbone for our diffusion OOD detector. CelebA is a natural choice
because it is large and diverse, and has been shown to yield strong performance in prior diffusion-
based OOD work. Using the same model also ensures that our results are directly comparable to the
strongest diffusion-based baselines, without confounding effects from architecture or training dif-
ferences. In this setting CelebA serves as the foundation dataset for model training, while ID/OOD
evaluation is carried out across CIFAR-10, SVHN, CelebA, and CIFAR-100.

Results. Table 1 reports AUROC across CIFAR-10, SVHN, CelebA, and CIFAR-100, along with
the number of function evaluations (NFE), conventionally measured as the number of forward passes
through the network. To make accounting explicit, we denote a forward network evaluation as 1F
and a JVP as 1J. Although the precise complexity of these operations depends on architecture,
implementation, and batch size, prior work has noted that a JVP has equivalent cost to approxi-
mately one forward (Baydin et al., 2018), so we adopt the convention that 1J ≈ 1F. Each SCOPED
evaluation therefore requires 1F+1J (two effective forward passes), while the two-step variant uses
2F+2J. Although this at minimum doubles the nominal cost relative to forward-only methods, the
crucial difference is that SCOPED evaluations are independent and can be fully parallelized across
samples and timesteps. By contrast, trajectory-based methods such as DiffPath require serial in-
tegration steps whose cost scales linearly with path length. In practice, this independence means
SCOPED achieves substantially lower wall-clock time despite the need for a JVP.

With this setup, the results show that SCOPED achieves competitive or state-of-the-art detection
accuracy while requiring orders of magnitude fewer effective function evaluations than prior meth-
ods. The default two-step variant (2F+2J) offers robustness across dataset pairs while remaining
far cheaper than trajectory-based approaches. Ablations over different early–mid step pairs (Ap-
pendix H) confirm that AUROC remains consistently high across choices, demonstrating that the
two-step procedure provides robust performance across timesteps.

We also evaluate SCOPED (Single), which fixes the noise level at t = 300 chosen once from in-
distribution data. By omitting the earlier fine-detail step, this variant sacrifices some robustness,
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yet it demonstrates that strong performance is achievable with only 1F+1J. Ablations varying the
mid-step choice (Appendix G) confirm that performance remains relatively insensitive to the exact
choice of step.

Finally, SCOPED (Oracle) assumes knowledge of the best-performing timestep for each ID/OOD
dataset pair, constructed by selecting the single step that yields the highest AUROC (highlighted in
bold in Table 3). While unavailable in practice, it provides an informative upper bound. Importantly,
all noise levels for SCOPED and SCOPED (Single) are selected using only in-distribution data; un-
like some prior diffusion-based OOD methods, our ablations do not tune against OOD benchmarks,
preventing evaluation leakage.

Table 1: AUROC scores for in- vs out-of-distribution tasks. Higher is better. Underline second
best, bold best (Oracle excluded). Because SCOPED evaluations are independent across samples
and timesteps, they parallelize fully, making wall-clock cost substantially lower than path-based
methods despite the additional JVPs. We report computational cost as #F + #J, where F denotes a
forward pass and J a Jacobian–vector product. Baseline results reproduced from Heng et al. (2024).

Method C10 vs SVHN vs CelebA vs Avg #F + #J
SVHN CelebA C100 C10 CelebA C100 C10 SVHN C100

IC 0.950 0.863 0.736 - - - - - - - -
IGEBM 0.630 0.700 0.500 - - - - - - - -
VAEBM 0.830 0.770 0.620 - - - - - - - -
Improved CD 0.910 - 0.830 - - - - - - - -
DoS 0.955 0.995 0.571 0.962 1.00 0.965 0.949 0.997 0.956 0.928 -
WAIC1 0.143 0.928 0.532 0.802 0.991 0.831 0.507 0.139 0.535 0.601 -
TT1 0.870 0.848 0.548 0.970 1.00 0.965 0.634 0.982 0.671 0.832 -
LR1 0.064 0.914 0.520 0.819 0.912 0.779 0.323 0.028 0.357 0.524 -

Diffusion-based

NLL 0.091 0.574 0.521 0.990 0.999 0.992 0.814 0.105 0.786 0.652 1000F + 0J
IC 0.921 0.516 0.519 0.080 0.028 0.100 0.485 0.972 0.510 0.459 1000F + 0J
MSMA 0.957 1.00 0.615 0.976 0.995 0.980 0.910 0.996 0.927 0.928 10F + 0J
DDPM-OOD 0.390 0.659 0.536 0.951 0.986 0.945 0.795 0.636 0.778 0.742 350F + 0J
LMD 0.992 0.557 0.604 0.919 0.890 0.881 0.989 1.00 0.979 0.868 104F + 0J

Curvature and Diffusion-Based

DiffPath 0.910 0.897 0.590 0.939 0.979 0.953 0.998 1.00 0.998 0.918 10F + 0J
SCOPED 0.814 0.940 0.477 0.971 0.996 0.959 0.925 0.994 0.962 0.892 2F + 2J
SCOPED (Single) 0.774 0.867 0.460 0.976 1.00 0.966 0.938 1.00 0.971 0.884 1F + 1J

SCOPED (Oracle) 0.964 0.885 0.768 0.993 1.00 0.975 0.938 1.00 0.971 0.944 1F + 1J

6 CONCLUSION

In this work we introduced SCOPED, a diffusion-based OOD detection method that leverages the
score–curvature ratio as a simple, theoretically motivated, and computationally efficient test statistic
that is highly parallelizable. Unlike prior approaches that require long diffusion trajectories or many
function evaluations, SCOPED achieves competitive or state-of-the-art performance on both vision
and RL benchmarks while reducing model evaluations by an order of magnitude.

Our experiments demonstrate that SCOPED generalizes across domains, cleanly separating distri-
bution shifts in RL and delivering strong accuracy on standardized vision benchmarks. These results
show that efficiency and robustness need not be traded off, and that simple geometric properties of
the score function provide powerful signals for detecting atypical inputs.

Looking ahead, the success of SCOPED suggests a broader design principle: OOD detection can be
grounded in the geometric statistics of generative models rather than expensive likelihood or path-
based estimators. Future work could combine SCOPED with more advanced noise-step selection
methods, integrate it with exploration strategies in RL, or extend it to autoregressive models and
multimodal domains. We hope that SCOPED provides both a practical tool for fast OOD detection
and a conceptual bridge between information-theoretic typicality and generative model geometry.
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Reproducibility Statement We have taken several steps to ensure the reproducibility of our re-
sults. Implementation details for SCOPED are provided in Appendix E, with full descriptions of
noise level selection in Section 3.3, score computation in Appendix B, and sign correction in Ap-
pendix C. Additional ablations, including single-step versus two-step variants and noise-level sensi-
tivity, are reported in Appendix G and Appendix H. Vision experiments use the open-source CelebA
DDPM checkpoint from Heng et al. (2024), RL experiments rely on the standard D4RL datasets and
our own trained diffusion models. We will release code for the vision experiments to ensure easy
replication.
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A USAGE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used for paper writing assistance and to aid in brainstorming, software development,
and experiment design.

B ADDITIONAL BACKGROUND ON DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al.,
2022) are generative models that learn to invert a forward noising process. Starting from clean
data x0 ∼ p0(x), the forward process gradually perturbs samples toward Gaussian noise, produc-
ing intermediate marginals pt(x). A neural network is trained to approximate the score function
sθ(xt, t) ≈ ∇x log pt(xt) across noise levels. Sampling then integrates a reverse-time differential
equation, expressed either as a stochastic differential equation (SDE) or its deterministic probabil-
ity flow ordinary differential equation (ODE), to transform noise back into data. Intuitively, high-
frequency details disappear at small amounts of noise, while coarse or global structure is destroyed
at large noise levels (Ho et al., 2020; Song et al., 2021).

DDPM. The Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) defines a discrete
forward Markov chain with variance schedule {βt}Tt=1. Let αt = 1 − βt and ᾱt =

∏t
i=1 αi, and

define the effective noise scale σ2
t = 1− ᾱt. The step-t corruption of the clean data is

xt =
√
ᾱt x0 + σt ϵ, ϵ ∼ N (0, I),

so that p(xt | x0) = N (
√
ᾱt x0, σ

2
t I). A network ϵθ(xt, t) is trained to predict ϵ via

LDDPM(θ) = Et,x0,ϵ

[
∥ϵθ(xt, t)− ϵ∥2

]
.

Using ∇x log pt(xt) = −E[ϵ | xt]/σt, define sθ(xt, t) := − ϵθ(xt, t)/σt. Then

LDDPM(θ) = Et,x0,ϵ

[
σ2
t

∥∥ sθ(xt, t) +
ϵ
σt

∥∥2],
which is a denoising score matching objective with noise level weight w(t) = σ2

t , where w(·)
controls the relative importance of different noise scales.

Continuous SDE formulation. Another general view of diffusion models specifies the forward
process as an SDE (Song et al., 2021). Here f(xt, t) is a drift term, g(t) is the diffusion coefficient,
and Bt denotes standard Brownian motion (with B̄t its time-reversed counterpart). These functions
specify the forward noising process whose marginals are pt(xt):

dx = f(xt, t) dt + g(t) dBt, x0 ∼ p0(x),

with reverse SDE
dx =

[
f(xt, t)− g(t)2∇x log pt(xt)

]
dt + g(t) dB̄t,

and equivalent probability flow ODE

dx

dt
= f(xt, t)− 1

2g(t)
2∇x log pt(xt).
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When viewed in this way, training reduces to the denoising score matching (DSM) objective for
continuous noise scales, arising from a process similar to DDPM. Concretely, letting zσ := x0 + σϵ
with ϵ ∼ N (0, I) and σ > 0, the score estimator sθ(zσ, σ) is trained with the loss

LDSM(θ) = Ex0,σ,ϵ

[
w(σ)

∥∥ sθ(zσ, σ) + ϵ
σ

∥∥2].
Here w(σ)≥ 0 is the general weighting function across noise scales and captures parameterization
or preconditioning of the model. In the DDPM setting, taking σ ∈ {σt}Tt=1 and predicting noise
recovers w(t) = σ2

t as in DDPM.

EDM. One concrete instantiation of the continuous SDE framework is Elucidated Diffusion Mod-
els (EDM) (Karras et al., 2022), which provides a principled continuous noise schedule σ(t), input
and output preconditioning, and solver choices that improve stability and sample quality. EDM often
parameterizes the score function in terms of a denoiser Dθ(x, σ) via the relation

sθ(x, σ) =
Dθ(x, σ)− x

σ2
.

Connection. DDPM and EDM are both instantiations of the same score-based framework: DDPM
corresponds to a discrete, variance-preserving SDE with w(t) = σ2

t , while EDM uses a continuous
noise scale and preconditioning that imply a different effective weighting. Both ultimately train a
network to approximate the score ∇x log pt(xt), providing a common foundation that our method
exploits for OOD detection and highlighting the generality of our approach across diffusion model
variants.

C SIGN AMBIGUITY IN THE TYPICALITY RATIO

The typicality ratio

T (x) =
∥sθ(xt, t)∥2

−Tr(∇xsθ(xt, t))

admits a global sign ambiguity. The numerator is a squared norm, which removes orientation, while
the denominator involves the Jacobian trace without any loss of sign information.

To enforce consistency, we multiply T (x) by a global sign factor derived from the score itself:

sign = sign

(∑
i

sθ(xt, t)i

)
.

Our implementation applies this factor to all OOD scores. We show in Appendix I that this correction
is important for vision tasks.

D SIGNAL-TO-NOISE RATIO OF CIFAR-10

We define the fraction of signal at timestep t as

Eclean

Eclean + Enoise
,

where Eclean is the average energy of clean images from the dataset and Enoise is the energy con-
tributed by Gaussian noise at timestep t. This quantity can be viewed as a normalized signal-to-
noise ratio: it measures the proportion of total energy attributable to signal rather than noise, and
is bounded between 0 and 1. This fraction decreases steadily with timestep, with early timesteps
preserving fine detail and later ones becoming noise-dominated. All quantities are averaged over
CIFAR-10.
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Figure 3: Signal-to-noise ratio curve for CIFAR-10. The fraction of signal retained under the
forward diffusion process decays steadily with timestep. Early timesteps preserve fine image detail,
while later ones become noise-dominated.

E IMPLEMENTATION WALKTHROUGH (VISION EXPERIMENTS)

We summarize here the procedure for computing SCOPED scores in the vision experiments.

1. Backbone model. We use the publicly released unconditional DDPM pretrained on
CelebA by Heng et al. (2024) (available here) as our diffusion backbone. This ensures
fair comparison to recent prior diffusion-based OOD results like (Heng et al., 2024).

2. Select noise levels. For vision tasks, we evaluate at two timesteps: t = 1 (fine detail
preserved) and t = 300 (mid-level, ∼95% signal retained), chosen from the signal-to-noise
ratio curve (Appendix D).

3. Offline calibration. Compute score and curvature values T (x) for in-distribution (ID) data
at each selected noise level, and fit a kernel density estimate (KDE) to these values.

4. Test-time scoring. For each candidate input x0, corrupt to xt at the chosen timestep, run
the model to obtain the score sθ(xt, t), and estimate curvature κ(xt) = Tr(∇xsθ(xt, t))
using Hutchinson’s trace estimator.

5. Form the statistic. Compute

T (x) =
∥sθ(xt, t)∥2

−κ(xt) + ε
,

and apply a global sign factor as described in Appendix C, where ε > 0 is a small constant
added for numerical stability to avoid division by zero.

6. Aggregate across timesteps. For each timestep, evaluate T (x) under its ID KDE and
compute the negative log-likelihood (NLL).

(a) In the two-step variant, take the maximum NLL across the two preselected timesteps
as the anomaly score.

(b) In the single-step variant, use the NLL at a single preselected timestep only.
(c) In the oracle variant, select the single timestep that yields the highest AUROC with

hindsight.

7. Thresholding. For evaluation we report AUROC (threshold-free). For deployment, a cut-
off can be fixed from ID data alone, e.g., the (1 − α) quantile of the in-distribution score
distribution, where α is the desired false positive rate (e.g., α = 0.05 corresponds to a 5%
ID false alarm rate).
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F OFFLINE DMC RESULTS

We provide results for SCOPED on offline DeepMind Control Suite (DMC) replay buffers col-
lected by deploying SAC policies to proficiency in various tasks. These experiments test whether
SCOPED can distinguish distribution shifts induced by either different reward functions (e.g.,
reacher-easy vs. reacher-hard, humanoid-stand vs. humanoid-walk) or by in-
dependently trained policies within the same task. As shown in Table 2, SCOPED achieves perfect
separation (AUROC = 1.0) in all cases.

Table 2: SCOPED AUROC scores under DMC environment shifts.

Case Train buffer → Eval buffer AUROC (OOD)

Reacher easy → hard 1.000
hard → easy 1.000

Finger-Turn easy → hard 1.000
hard → easy 1.000

Humanoid stand → walk 1.000
walk → stand 1.000

Reacher hard policy realizations seedA → seedB 1.000
seedB → seedA 1.000

Finger hard policy realizations seedA → seedB 1.000
seedB → seedA 1.000

G ABLATION OVER SINGLE STEP CHOICES IN NOISE SCHEDULE FOR
SCOPED

We ablate the choice of timestep when SCOPED is deployed at a single noise level. Table 3 reports
AUROC across vision dataset pairs for individual timesteps as well as an oracle baseline that selects
the best-performing timestep with hindsight. Average AUROC is highest at mid-level timesteps,
though performance at individual steps still varies across dataset pairs. This bolsters our claim, based
on the SNR study, that combining early and mid-level evaluations yields a more robust detector than
relying on a single fixed step.

Table 3: AUROC when SCOPED is deployed at individual timesteps in the noise schedule. Bold
entries indicate the best value in each column. The SCOPED (Oracle) row assumes a priori knowl-
edge of both in-distribution and out-of-distribution data and selects the timestep in the denoising
schedule that maximizes AUROC.

Timestep C10 vs SVHN vs CelebA vs Avg
SVHN CelebA C100 C10 CelebA C100 C10 SVHN C100

1 0.6671 0.8852 0.7678 0.8058 0.8773 0.6534 0.9164 0.8891 0.7247 0.7985
2 0.6189 0.8620 0.6947 0.8057 0.9843 0.8844 0.8396 0.9663 0.7267 0.8203
3 0.7241 0.7346 0.5570 0.8830 0.9845 0.8913 0.5437 0.8689 0.5601 0.7497
4 0.7812 0.6241 0.5459 0.9081 0.9816 0.9053 0.6319 0.9474 0.6425 0.7742
5 0.8031 0.5793 0.5465 0.9188 0.9804 0.9159 0.6257 0.9630 0.6472 0.7755
100 0.9118 0.3645 0.5448 0.9623 0.9887 0.9540 0.6357 0.9797 0.6790 0.7801
200 0.9638 0.2801 0.7555 0.9925 1.0000 0.9752 0.7408 0.9999 0.9384 0.8496
300 0.7744 0.8672 0.4596 0.9757 1.0000 0.9655 0.9383 1.0000 0.9705 0.8835
400 0.7827 0.8585 0.4633 0.9275 0.9957 0.9118 0.9140 0.9939 0.9644 0.8680
500 0.8585 0.6506 0.4848 0.9235 0.9376 0.9357 0.8144 0.9628 0.8773 0.8272

SCOPED (Oracle) 0.9638 0.8852 0.7678 0.9925 1.0000 0.9752 0.9383 1.0000 0.9705 0.9437

H ABLATION OVER TWO STEP CHOICES IN NOISE SCHEDULE FOR
SCOPED

We ablate the choice of timestep pairs when SCOPED is deployed with two evaluations. Table 4
reports AUROC across vision dataset pairs for combinations of one early (low-noise) and one mid-
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level timestep. Average AUROC is consistently high across different choices, indicating that the
two-step variant is robust to the precise placement of timesteps and does not depend on careful
tuning.

Table 4: Ablation of timestep selection for SCOPED with NFE=2. Each row shows AUROC when
pairing one early (low-noise) timestep with one mid-noise timestep from the diffusion schedule.
Results are reported across three ID vs OOD benchmarks, with averages in the final column. Per-
formance remains consistently high across different choices, indicating robustness to timestep se-
lection.

Time Steps C10 vs SVHN vs CelebA vs Avg
SVHN CelebA C100 C10 CelebA C100 C10 SVHN C100

(1,100) 0.904 0.367 0.550 0.960 0.989 0.944 0.640 0.975 0.676 0.778
(1,200) 0.904 0.285 0.812 0.987 0.996 0.967 0.735 0.992 0.922 0.844
(1,300) 0.814 0.940 0.468 0.973 0.996 0.959 0.924 0.995 0.961 0.892
(1,400) 0.793 0.926 0.470 0.924 0.994 0.907 0.906 0.991 0.954 0.874
(1,500) 0.866 0.654 0.483 0.926 0.937 0.929 0.824 0.963 0.872 0.828
(2,100) 0.862 0.376 0.554 0.948 0.996 0.952 0.639 0.980 0.680 0.776
(2,200) 0.802 0.346 0.761 0.976 0.999 0.969 0.725 0.997 0.927 0.834
(2,300) 0.839 0.936 0.486 0.965 0.999 0.961 0.922 0.998 0.969 0.897
(2,400) 0.826 0.939 0.480 0.912 0.997 0.911 0.919 0.994 0.965 0.883
(2,500) 0.810 0.773 0.521 0.905 0.957 0.931 0.823 0.965 0.881 0.841
(3,100) 0.875 0.391 0.546 0.956 0.995 0.950 0.633 0.974 0.674 0.777
(3,200) 0.816 0.516 0.618 0.980 0.998 0.968 0.709 0.992 0.910 0.834
(3,300) 0.860 0.892 0.485 0.969 0.999 0.960 0.897 0.994 0.947 0.889
(3,400) 0.845 0.896 0.476 0.928 0.996 0.916 0.897 0.990 0.946 0.877
(3,500) 0.819 0.745 0.518 0.925 0.967 0.931 0.806 0.963 0.860 0.837
(4,100) 0.891 0.395 0.545 0.960 0.995 0.953 0.627 0.978 0.665 0.779
(4,200) 0.858 0.509 0.595 0.984 0.998 0.970 0.702 0.993 0.882 0.832
(4,300) 0.877 0.840 0.490 0.971 0.998 0.962 0.888 0.995 0.931 0.884
(4,400) 0.864 0.853 0.479 0.934 0.996 0.919 0.876 0.992 0.928 0.871
(4,500) 0.851 0.681 0.520 0.933 0.968 0.940 0.801 0.967 0.847 0.834
(5,100) 0.897 0.398 0.545 0.963 0.995 0.955 0.624 0.978 0.661 0.780
(5,200) 0.871 0.503 0.587 0.985 0.998 0.969 0.706 0.993 0.871 0.831
(5,300) 0.882 0.815 0.487 0.972 0.998 0.963 0.868 0.995 0.919 0.878
(5,400) 0.871 0.829 0.482 0.936 0.996 0.921 0.878 0.992 0.919 0.869
(5,500) 0.863 0.638 0.525 0.938 0.968 0.945 0.783 0.969 0.846 0.830

AVG 0.854 0.658 0.539 0.952 0.989 0.946 0.790 0.985 0.865 0.842

I ABLATION OVER TWO STEP CHOICES IN NOISE SCHEDULE FOR SCOPED
WITHOUT SIGN AMBIGUITY TERM

We repeat the two-step ablation without applying the global sign correction described in Ap-
pendix C. Table 5 shows that while AUROC remains non-trivial when SCOPED is applied without
a sign correction, average performance drops to 0.81 compared to 0.84. This confirms that the sign
term is necessary for stable performance in vision benchmarks, even though raw score–curvature
ratios can still capture some separation.
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Table 5: Ablation of timestep selection for SCOPED with NFE=2 and no sign term. Each row
shows AUROC when pairing one early (low-noise) timestep with one mid-noise timestep from the
diffusion schedule. Results are reported across three ID vs OOD benchmarks, with averages in the
final column. Performance remains consistently high across different choices, indicating robustness
to timestep selection.

Time Steps C10 vs SVHN vs CelebA vs Avg
SVHN CelebA C100 C10 CelebA C100 C10 SVHN C100

(1,100) 0.863 0.367 0.543 0.963 0.994 0.955 0.642 0.983 0.685 0.777
(1,200) 0.752 0.280 0.408 0.996 0.999 0.996 0.617 0.992 0.656 0.744
(1,300) 0.850 0.899 0.863 0.996 0.999 0.997 0.602 0.987 0.634 0.870
(1,400) 0.855 0.891 0.861 0.987 0.997 0.986 0.590 0.973 0.615 0.862
(1,500) 0.884 0.651 0.699 0.864 0.940 0.862 0.584 0.950 0.606 0.782
(2,100) 0.858 0.374 0.542 0.947 0.993 0.943 0.639 0.980 0.682 0.773
(2,200) 0.781 0.334 0.452 0.980 0.997 0.982 0.612 0.989 0.651 0.753
(2,300) 0.876 0.890 0.838 0.983 0.997 0.984 0.599 0.984 0.630 0.865
(2,400) 0.889 0.899 0.848 0.955 0.993 0.958 0.585 0.970 0.614 0.857
(2,500) 0.829 0.737 0.697 0.852 0.953 0.853 0.581 0.948 0.603 0.784
(3,100) 0.875 0.389 0.543 0.956 0.995 0.949 0.633 0.974 0.673 0.776
(3,200) 0.797 0.500 0.502 0.985 0.998 0.985 0.608 0.985 0.646 0.778
(3,300) 0.903 0.869 0.814 0.987 0.998 0.987 0.594 0.982 0.628 0.863
(3,400) 0.909 0.874 0.821 0.970 0.995 0.970 0.586 0.969 0.611 0.856
(3,500) 0.835 0.715 0.626 0.878 0.965 0.875 0.580 0.947 0.600 0.780
(4,100) 0.891 0.395 0.545 0.960 0.995 0.953 0.627 0.978 0.665 0.779
(4,200) 0.836 0.506 0.513 0.988 0.998 0.988 0.606 0.987 0.646 0.785
(4,300) 0.923 0.840 0.801 0.990 0.998 0.989 0.597 0.985 0.628 0.861
(4,400) 0.929 0.850 0.813 0.976 0.996 0.976 0.585 0.973 0.611 0.857
(4,500) 0.866 0.676 0.611 0.888 0.968 0.883 0.583 0.953 0.602 0.781
(5,100) 0.897 0.398 0.545 0.963 0.995 0.955 0.624 0.977 0.661 0.779
(5,200) 0.847 0.502 0.514 0.990 0.998 0.989 0.606 0.987 0.646 0.787
(5,300) 0.929 0.815 0.793 0.991 0.998 0.991 0.595 0.985 0.626 0.858
(5,400) 0.935 0.829 0.809 0.979 0.996 0.978 0.585 0.974 0.614 0.855
(5,500) 0.878 0.638 0.600 0.891 0.968 0.887 0.581 0.954 0.603 0.778

AVG 0.867 0.645 0.664 0.957 0.989 0.955 0.602 0.975 0.633 0.810
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