
Learning Latent Graph Structures and their Uncertainty

Alessandro Manenti 1 Daniele Zambon 1 Cesare Alippi 1 2

Abstract
Graph neural networks use relational informa-
tion as an inductive bias to enhance prediction
performance. Not rarely, task-relevant relations
are unknown and graph structure learning ap-
proaches have been proposed to learn them from
data. Given their latent nature, no graph obser-
vations are available to provide a direct training
signal to the learnable relations. Therefore, graph
topologies are typically learned on the prediction
task alongside the other graph neural network pa-
rameters. In this paper, we demonstrate that mini-
mizing point-prediction losses does not guarantee
proper learning of the latent relational informa-
tion and its associated uncertainty. Conversely, we
prove that suitable loss functions on the stochastic
model outputs simultaneously grant solving two
tasks: (i) learning the unknown distribution of
the latent graph and (ii) achieving optimal predic-
tions of the target variable. Finally, we propose
a sampling-based method that solves this joint
learning task 1. Empirical results validate our the-
oretical claims and demonstrate the effectiveness
of the proposed approach.

1. Introduction
Relational information processing has provided break-
throughs in the analysis of rich and complex data coming
from, e.g., social networks, natural language, and biology.
This side information takes various forms, from structuring
the data into clusters to defining causal relations and hier-
archies, and enables machine learning models to condition
their predictions on dependency-related observations. In
this context, predictive models take the form y = fψ(x,A),
where the input-output relation x 7→ y – modeled by fψ

1Università della Svizzera italiana, IDSIA, Lugano, Switzer-
land 2Politecnico di Milano, Milan, Italy. Correspondence to:
Alessandro Manenti <alessandro.manenti@usi.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code available at https://github.com/allemanenti/Learning-
Calibrated-Structures

and its parameters in ψ – is conditioned on the relational
information encoded in variable A. Graph Neural Networks
(GNNs) (Scarselli et al., 2008) are one example of models
of this kind that rely on a graph structure represented as an
adjacency matrix A and have been demonstrated successful
in a plethora of applications (Fout et al., 2017; Shlomi et al.,
2020).

Indeed, relational information is needed to implement such
a relational inductive bias and, in some cases, it is provided
at the application design phase. However, more frequently,
such topological information is not rich enough to address
the problem at hand, and – not seldom – it is completely
unavailable. Therefore, Graph Structure Learning (GSL)
emerges as an approach to learn the graph topology (Kipf
et al., 2018; Franceschi et al., 2019; Yu et al., 2021; Fatemi
et al., 2021; Zhu et al., 2021; Cini et al., 2023) alongside
the predictive model fψ. This entails formulating a joint
learning process that learns the adjacency matrixA – or a pa-
rameterization of it – along with the predictor’s parameters
ψ. This is usually achieved by optimizing a loss function on
the model output y, e.g., a point prediction measure based
on the square or the absolute prediction error.

Different sources of uncertainty affect the graph structure
learning process, including epistemic uncertainty in the
data and variability inherent in the data-generating process.
Learning appropriate models of the data-generating process
can provide valuable insights into the modeled environment
with uncertainty quantification enhancing explainability and
interpretability, ultimately enabling more informed decision-
making. Examples of applications are found in the study
of infection and information spreading, as well as biologi-
cal systems (Gomez Rodriguez et al., 2013; Lokhov, 2016;
Deleu et al., 2022). It follows that a probabilistic framework
is appropriate to accurately capture the uncertainty in the
learned relations whenever randomness affects the graph
topology. Probabilistic approaches have been devised in re-
cent years. For instance, research carried out by Franceschi
et al. (2019); Zhang et al. (2019); Elinas et al. (2020); Cini
et al. (2023) propose methods that learn a parametric dis-
tribution P θA over the latent graph structure A. However,
none of them have studied whether these approaches were
able to learn a calibrated latent distribution P θA for A, prop-
erly reflecting the uncertainty associated with the learned
topology.

1

Learning Latent Graph Structures and their Uncertainty

In this paper, we fill this gap by addressing the joint prob-
lem of learning a predictive model yielding optimal point-
prediction performance of the output y and, contextually, a
calibrated distribution for the latent adjacency matrix A. In
particular, the novel contributions can be summarized as:

1. We demonstrate that models trained to achieve optimal
point predictions do not guarantee calibration of the
adjacency matrix distribution [Section 4].

2. We provide theoretical conditions on the predictive
model and loss function that guarantee simultaneous
calibration of the latent variable and optimal point pre-
dictions [Section 5].

3. We propose a theoretically grounded sampling-based
learning method to address the joint learning problem
[Section 5].

4. We empirically validate the theoretical developments
and claims presented in this paper and show that the
proposed approach outperforms existing methods in
solving the joint learning task [Section 6].

Finally, we emphasize the significance of our contribution.
The inherent latent nature of A presents substantial learning
challenges. Real-world applications rarely provide direct
observations of the (latent) graph structure, making it im-
possible to use such data as learning signals for training
the graph distribution P θA. This lack of real-world observa-
tions not only hampers model training but also complicates
empirical evaluation of the learned latent distribution. Con-
sequently, flawed decisions may be derived from learned
models. This work addresses these limitations by (i) estab-
lishing theoretical guarantees for more robust learning of
the latent variable to mitigate the need for evaluation on
real data, and (ii) conducting a rigorous empirical analysis
on synthetic datasets that provide the – otherwise missing –
ground-truth knowledge required for an accurate validation
of our claims.

2. Related Work
Graph Structure Learning GSL is often employed end-
to-end with a predictive model to better solve a downstream
task. Examples include applications within graph deep learn-
ing methods for static (Jiang et al., 2019; Yu et al., 2021;
Kazi et al., 2022) and temporal data (Wu et al., 2019; 2020;
Cini et al., 2023; De Felice et al., 2024); a recent review
is provided by Zhu et al. (2021). Some approaches from
the literature model the latent graph structure as stochas-
tic (Kipf et al., 2018; Franceschi et al., 2019; Elinas et al.,
2020; Shang et al., 2021; Cini et al., 2023), mainly as a
way to enforce sparsity of the adjacency matrix. To oper-
ate on discrete latent random variables, Franceschi et al.

(2019) utilize straight-through gradient estimations, Cini
et al. (2023) rely on score-based gradient estimators, while
Niepert et al. (2021) design an implicit maximum likelihood
estimation strategy. A different line of research is rooted in
graph signal processing, where the graph is estimated from
a constrained optimization problem and the smoothness as-
sumption of the signals (Kalofolias, 2016; Dong et al., 2016;
Mateos et al., 2019; Coutino et al., 2020; Pu et al., 2021).
A few works from the Bayesian literature have tackled the
task of estimating uncertainties associated with graph edges.
The model-based approaches by Lokhov (2016) and Gray
et al. (2020) are two examples tackling relevant applications
benefiting from uncertainty quantification. Within the deep
learning literature, Zhang et al. (2019) propose a Bayesian
Neural Network (BNN) modeling the random graph realiza-
tions. Differently, Wasserman & Mateos (2024) develop an
interpretable BNN designed over graph signal processing
principles using unrolled dual proximal gradient iterations.
While some results on the output calibration are exhibited,
to the best of our knowledge, no guarantee or evidence of
calibration of the latent variable is provided, which we study
in this paper instead.

Calibration of the model’s output Research on model
calibration has primarily focused on obtaining accurate and
consistent predictions of the statistical properties of the tar-
get (random) variables y, from which uncertainty estimates
on the model’s predictions are derived. For discrete outputs,
such as in classification tasks, Guo et al. (2017) investigated
the calibration of modern deep learning models and pro-
posed temperature scaling as a solution. Other techniques
in the same context include Histogram Binning (Zadrozny
& Elkan, 2001), Cross Entropy loss with label smoothing
(Müller et al., 2019), and Focal Loss (Mukhoti et al., 2020).
For continuous output distributions, Laves et al. (2020) pro-
posed σ scaling, while Kuleshov et al. (2018) developed
a technique inspired by Platt scaling. More recently, con-
formal prediction techniques (Shafer & Vovk, 2008) have
gained popularity for providing confidence intervals in pre-
dictions. We stress that within this paper, we are mainly
concerned with latent variable calibration, rather than output
calibration, although the two are related to each other.

Deep latent variable models Latent variables are exten-
sively used in deep generative modeling (Kingma & Welling,
2013; Rezende et al., 2014), both with continuous and dis-
crete latent variables (Van Den Oord et al., 2017; Bartler
et al., 2019). In deep models, latent random variables often
lack direct physical meaning, with only the outputs being
collected for training. Therefore, studies mainly focused on
maximizing the likelihood of the observed outputs in the
training set, rather than calibrating the latent distribution. A
few works proposed regularization of the latent space to im-
prove stability and accuracy (Xu & Durrett, 2018; Joo et al.,

2

Learning Latent Graph Structures and their Uncertainty

2020), facilitate smoother transitions in the output when the
latent variable is slightly modified (Hadjeres et al., 2017),
and apply other techniques aimed at enhancing data gener-
ation or improving model performance in general (Connor
et al., 2021).

To the best of our knowledge, no prior work has studied
the joint learning problem of calibrating the latent graph
distribution while achieving optimal point predictions.

3. Problem Formulation
Consider a set of N interacting entities and the data-
generating process {

A ∼ P ∗
A

y = f∗(x,A)
(1)

where y ∈ Y is the system output obtained from input
x ∈ X through function f∗ and conditioned on a realiza-
tion of the latent adjacency matrix A ∈ A ⊆ {0, 1}N×N

drawn from distribution P ∗
A; input x is assumed to be drawn

from any distribution P ∗
x and superscript ∗ refers to un-

known entities. Each entry of the adjacency matrix A is a
binary value encoding the existence of a pairwise relation
between two nodes. In the sequel, x ∈ X ⊆ RN×din and
y ∈ Y ⊆ RN×dout are stacks of N node-level feature vec-
tors of dimension din and dout, respectively, representing
continuous inputs and outputs.

Given a training dataset D = {(xi, yi)}ni=1 of n input-
output observations from (1), we aim at learning a prob-
abilistic predictive model{

A ∼ P θA
ŷ = fψ(x,A)

(2)

from D, while learning at the same time distribution P θA
approximating P ∗

A. The two parameter vectors θ and ψ are
trained to approximate distinct entities in (1), namely the
distribution P ∗

A and function f∗, respectively. We assume

Assumption 3.1. The family {P θA} of probability distribu-
tions P θA parametrized by θ and the family of predictive
functions {fψ} are expressive enough to contain the true
latent distribution P ∗

A and function f∗, respectively.

Assumption 3.1 implies that f∗ ∈ {fψ} and P ∗
A ∈ {P θA}

but does not request uniqueness of the parameters vectors
ψ∗ and θ∗ such that fψ∗ = f∗ and P θ

∗

A = P ∗
A. Under such

assumption the minimum function approximation error is
null and we can focus on the theoretical conditions requested
to guarantee successful learning, i.e., achieving both opti-
mal point predictions and latent distribution calibration. In
Section 6.2, we empirically show that the theoretical results
can extend beyond this assumption in practice.

Optimal point predictions Outputs y and ŷ of proba-
bilistic model (1) and (2) are random variables following
push-forward distributions 2 P ∗

y|x and P θ,ψy|x , respectively. A
single point prediction yPP ∈ Y can be obtained through
an appropriate functional T [·] as

yPP = yPP (x, θ, ψ) ≡ T
[
P θ,ψy|x

]
. (3)

For example, T can be the expected value or the value at
a specific quantile. We then define an optimal predictor
as one whose parameters θ and ψ minimize the expected
point-prediction loss

Lpoint(θ, ψ) = Ex∼P∗
x

[
Ey∼P∗

y|x

[
ℓ
(
y, yPP (x, θ, ψ)

)]]
(4)

between the system output y and the point-prediction yPP ,
as measured by of a loss function ℓ : Y × Y → R+.

Statistical functional T is coupled with the loss ℓ as the
optimal functional T to employ given a specific loss ℓ is
often known (Berger, 1990; Gneiting, 2011), when P θ,ψy|x
approximates well P ∗

y|x. For instance, if ℓ is the Mean
Absolute Error (MAE) the associated functional T is the
median, if ℓ is the Mean Squared Error (MSE) the associated
functional is the expected value.

Latent distribution calibration Calibration of a
parametrized distribution P θA requires learning parameters
θ, so that P θA aligns with true distribution P ∗

A. Quantita-
tively, a dissimilarity measure ∆cal : PA × PA → R+,
defined over a set PA of distributions on A, assesses how
close two distributions are. The family of f -divergences
(Rényi, 1961), such as the Kullback-Leibler divergence,
and the integral probability metrics (Müller, 1997), such
as the maximum mean discrepancy (Gretton et al., 2012)
are examples of such dissimilarity measures. In this
paper, we are interested in those discrepancies for which
∆cal(P1, P2) = 0 ⇐⇒ P1 = P2 holds. It follows that the
latent distribution P θA is calibrated on P ∗

A if it minimizes
the latent distribution loss

Lcal = Ex∼P∗
x

[
∆cal

(
P ∗
A, P

θ
A

)]
, (5)

or simply Lcal = ∆cal
(
P ∗
A, P

θ
A

)
, when A and x are inde-

pendent.

The problem of designing a predictive model (2) that both
yields optimal point predictions (i.e., minimizes Lpoint in
(4)) and calibrates the latent distribution (i.e., minimizes
Lcal in (5)) is non-trivial for two main reasons. At first, as
the latent distribution P ∗

A is unknown (and no samples from
it are available), we cannot directly estimate Lcal. Second,
as shown in Section 4, multiple sets of θ parameters may
minimize Lpoint without minimizing Lcal.

2The distribution of y = f∗(x,A) originated from P ∗
A and of

ŷ = fψ(x,A) originated from P θA.

3

Learning Latent Graph Structures and their Uncertainty

4. Limitations of Point-Prediction
Optimization

In this section, we demonstrate that the optimization of a
point prediction loss (Equation (4)) does not generally grant
calibration of the latent random variable A.

Proposition 4.1. Consider Assumption 3.1. Loss func-
tion Lpoint(θ, ψ) in (4) is minimized by all θ and ψ s.t.

T
[
P θ,ψy|x

]
= T

[
P ∗
y|x

]
almost surely on x and, in particular,

Lpoint(θ, ψ) is minimal
⇐=
≠⇒ P θ,ψy|x = P ∗

y|x.

The proof of the proposition is given in Appendix A.1;
we provide a counterexample for which calibration is not
granted even when the processing function fψ is equal to
f∗ in Appendix A.2.

The limitation of point-prediction losses is also empirically
demonstrated in Section 6.3, Table 2, where it is shown that
optimizing point-prediction losses does not grant calibration

Given the provided negative result and the impossibility of
assessing loss Lcal in (5), in the next section, we propose
another optimization objective that, as we will prove, allows
us to both calibrate the latent random variable and to have
optimal point predictions.

5. Predictive Distribution Optimization: Two
Birds with One Stone

In this section, we show that we can achieve an optimal
point predictor (2) and a calibrated latent distribution P θA
by comparing push-forward distributions P ∗

y|x and P θ,ψy|x of
the outputs y conditioned on input x. In particular, The-
orem 5.2 below proves that, under appropriate conditions,
minimization of the output distribution loss

Ldist(θ, ψ) = Ex∼P∗
x

[
∆(P ∗

y|x, P
θ,ψ
y|x)

]
(6)

provides calibrated P θA, even when P ∗
A is not available;

∆ : Py × Py → R+ is a dissimilarity measure between
distributions over space Y . We assume the following on
dissimilarity measure ∆.

Assumption 5.1. ∆(P1, P2) ≥ 0 for all distributions P1

and P2 in Py and ∆(P1, P2) = 0 if and only if P1 = P2.

Several choices of ∆ meet Assumption 5.1, e.g., f -
divergences and some integral probability metrics (Müller,
1997); the dissimilarity measure ∆ employed in this paper
is discussed in Section 5.1.

Theorem 5.2. Let I = {x : A 7→ f∗(x,A) is injective} ⊆
X be the set of points x ∈ X such that map A 7→ f∗(x,A)

is injective. Under Assumptions 3.1 and 5.1, if Px∼P∗
x
(I) >

0 and ψ∗ is such that fψ∗ = f∗, then

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0.

Theorem 5.2 is proven in Appendix A.3. Under the theo-
rem’s hypotheses, a predictor that minimizes Ldist is both
calibrated on the latent random distribution and provides
optimal point predictions. This overcomes limits of Proposi-
tion 4.1 where optimization of Lpoint(θ, ψ∗) does not grant
Lcal(θ) = 0.

The hypotheses under which Theorem 5.2 holds are rather
mild. In fact, condition Px∼P∗

x
(I) > 0 pertains to the data-

generating process and intuitively ensures that, for some
x, different latent random variables produce different out-
puts. A sufficient condition for Px∼P∗

x
(I) > 0 to hold is

the existence of a point x̄ in the support of P ∗
x such that

A 7→ f∗(x̄, A) is injective with f∗ continuous w.r.t. x̄; see
Corollary A.1 in Appendix A.3. Although only a single
point x̄ is required, having more points that satisfy the con-
dition simplifies the training of the parameters. Corollary
A.1 holds for arbitrarily complex processing functions f∗.
More specifically, when considering simple GNN layers
and discrete latent matrices A, we can prove that the con-
dition Px∼P∗

x
(I) > 0 is − except from pathological cases

− always satisfied (see Proposition A.2 in Appendix A.3).
Instead, condition fψ = f∗ is set to avoid scenarios of dif-
ferent, yet equivalent, 3 representations of the latent distribu-
tion. An empirical analysis of the theorem’s assumptions is
provided in Section 6.2, demonstrating that the theoretical
results hold in practice, even when those assumptions do
not strictly apply.

Assumptions 3.1 and 5.1 can be met with an appropriate
choice of model (2) and measure ∆; as such they are control-
lable by the designer. Assumption 5.1 prevents from obtain-
ing mismatched output distributions when Ldist(θ, ψ) = 0
and can be easily satisfied. As mentioned above, popular
measures, e.g., the Kullback-Leibler divergence, meet the
theorem’s assumptions and therefore can be adopted as ∆.
However, as f -divergences rely on the explicit evaluation of
the likelihood of y, they are not always practical to compute
(Mohamed & Lakshminarayanan, 2016). For this reason,
we propose considering the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) as a versatile alternative that
allows Monte Carlo computation without requiring evalua-
tions of the likelihood w.r.t. the output distributions P ∗

y|x and

P θ,ψy|x . Energy distances (Székely & Rizzo, 2013) provide
an alternative feasible choice.

3E.g., fψ(A, x) = f∗(1−A, x) and P θA encoding the absence
of edges instead of their presence as in P ∗

A.

4

Learning Latent Graph Structures and their Uncertainty

5.1. Maximum Mean Discrepancy

Given two distributions P1, P2 ∈ Py, the MMD can be
defined as

MMDG [P1, P2] = sup
g∈G

{
Ey∼P1

[
g(y)

]
− Ey∼P2

[
g(y)

]}
,

(7)
i.e., the supremum, taken over a set G of functions Y → R,
of the difference between expected values w.r.t. P1 and P2.
An equivalent form is derived for a generic kernel function
κ(·, ·) : Y × Y → R:

MMD2
Gκ
[P1, P2] = E

y1,y′1∼P1

[
κ(y1, y

′
1)
]

− 2 E
y1∼P1
y2∼P2

[
κ(y1, y2)

]
+ E
y2,y′2∼P2

[
κ(y2, y

′
2)
]
, (8)

and it is associated with the unit-ball Gk of functions in
the reproducing kernel Hilbert space of κ; note that (8)
is the square of (7). Moreover, when universal kernels
are considered (e.g., the Gaussian one), then (8) fulfills
Assumption 5.1 (see Theorem 5 in (Gretton et al., 2012)).
Dissimilarity in (8) can be conveniently estimated via Monte
Carlo (MC) and employed within a deep learning framework.
Accordingly, we set ∆ = MMD2

Gκ
and learn parameter

vectors ψ and θ by minimizing Ldist(θ, ψ) via gradient-
descent methods.

5.2. Finite-Sample Computation of the Loss

To compute the gradient of Ldist(θ, ψ) =

Ex∼P∗
x

[
MMD2

Gκ

[
P θ,ψy|x , P

∗
y|x

]]
w.r.t. parameter vec-

tors ψ and θ, we rely on MC sampling to estimate in (6)
expectations over input x ∼ P ∗

x , target output y ∼ P ∗
y|x

and model output ŷ ∼ P θ,ψy|x . This amounts to substitute
MMD2

Gκ
with

M̂MD
2

θ,ψ(x, y) = 2

∑Nadj

j<i=1 κ(ŷi, ŷj)

Nadj(Nadj − 1)
− 2

∑Nadj

i=1 κ(y, ŷi)

Nadj
.

(9)
In (9), Nadj > 1 is the number of adjacency matrices sam-
pled from P θA to obtain output samples ŷi = fψ(x,Ai) ∼
P θ,ψy|x , whereas the pair (x, y) is a pair from the training set
D. We remark that in (9) the third term of (8) – i.e., the one
associated with the double expectation with respect to P ∗

y|x
– is neglected as it does not depend on ψ and θ.

Gradient ∇ψLdist(θ, ψ) is computed via automatic differen-

tiation by averaging ∇ψM̂MD
2
(θ, ψ) within a mini-batch

of observed data pairs (xi, yi) ∈ D. For ∇θLdist(θ, ψ),
the same approach is not feasible. This limitation arises
because the gradient is computed with respect to the same
parameter vector θ that defines the integrated distribution.
Here, we rely on a score-function gradient estimator (SFE)

(Williams, 1992; Mohamed et al., 2020) which uses the log
derivative trick to rewrite the gradient of an expected loss L
as ∇θEA∼P θ [L(A)] = EA∼P θ [L(A)∇θ logP

θ(A)], with
P θ(A) denoting the likelihood of A ∼ P θ. Applying the
SFE to our problem the gradient w.r.t. θ reads:

∇θLdist = E
x,y∗

[
E

ŷ1,ŷ2

[
κ(ŷ1, ŷ2)∇θ log

(
P θ,ψy|x (ŷ1)P

θ,ψ
y|x (ŷ2)

)]
− 2Ê

y

[
κ(y∗, ŷ)∇θ logP

θ,ψ
y|x (ŷ)

]]
(10)

where ŷ1, ŷ2, ŷ ∼ P θ,ψy|x . An apparent setback of SFEs
is their high variance (Mohamed et al., 2020), which we
address in Section 5.3 by deriving a variance-reduction tech-
nique based on control variates that requires negligible com-
putational overhead.

5.3. Variance-Reduced Loss for SFE

Two natural approaches to reduce the variance of MC esti-
mates of (10) involve (i) increasing the numberB of training
data points in the mini-batch used for each gradient estimate
and (ii) increasing the number Nadj of adjacency matrices
sampled for each data point in (9). These techniques act on
two different sources of noise. Increasing B decreases the
variance coming from the data-generating process, whereas
increasing Nadj improves the approximation of the predic-
tive distribution P θ,ψy|x . Nonetheless, by fixing B and Nadj ,
it is possible to further reduce the latter source of variance
by employing the control variates method (Mohamed et al.,
2020) that, in our case, requires only a negligible compu-
tational overhead but sensibly improves the training speed
(see Section 6).

Consider the expectation EA∼P θ [L(A)∇θ logP
θ(A)] of

the SFE – both terms in (10) can be cast into that form.
With the control variates method, a function with null ex-
pectation is subtracted from L(A)∇θ logP

θ(A).

G(A) = L(A)∇θ logP
θ(A)− β

(
h(A)− EA∼P θ [h(A)]

)
(11)

that leads to a reduced variance in the MC estimator of the
gradient while maintaining it unbiased. In this paper, we set
function h(A) to ∇θ logP

θ(A) and show how to compute a
near-optimal choice for scalar value β, often called baseline
in the literature. As the expected value of ∇θ logP

θ(A) is
zero, gradient (10) rewrites as

∇θLdist= E
x,y∗

[
− 2E

A

[
(κ(y∗, ŷ)− β2)∇θ logP

θ
A(A)

]
+ E
A1A2

[
(κ(ŷ1, ŷ2)− β1) ∇θ log

(
P θA(A1)P

θ
A(A2)

)]]
.

(12)

5

Learning Latent Graph Structures and their Uncertainty

In Appendix B, we show that in our setup the best values of
β1 and β2 are approximated by

β̃1 = Ex
[
EA1,A2∼P θ

A

[
κ
(
fψ(x,A1), fψ(x,A2)

)]]
,

β̃2 = Ex,y∗
[
EA∼P θ

A

[
κ
(
y∗, fψ(x,A)

)]]
, (13)

which can be efficiently computed via MC reusing the kernel
values already computed for (12).

5.4. Computational Complexity

Focusing on the most significant terms, for every data pair
(x, y) in the training set, computing the loss Ldist requires
O(N2

adj) kernel evaluations κ(ŷi, ŷj) in (9), O(Nadj) for-
ward passes through the GNN ŷi = fψ(x,Ai) in (9) and
O(Nadj) likelihood computations P θA(Ai) in (12). The
computation of baselines β1 and β2 in (13) requires vir-
tually no overhead, as commented in previous Section 5.3.
Similarly, computing the loss gradients requires O(N2

adj)
derivatives for what concerns the kernels, O(Nadj) gradi-
ents ∇ψ ŷi and ∇θ logP

θ
A(Ai). We empirically observed

that forNadj ≥ 16, both the latent distribution loss Lcal and
the point prediction loss Lpoint of final models are equiva-
lent for the considered problem. This suggests that Nadj is
not a critical hyperparameter.

Since we can employ sparse representations of adjacency
matrices, the GNN processing costs scale linearly in the
number of nodes N for bounded-degree graphs. From our
experience, the GNN processing is the most demanding
operation and the cost of quadratic components, such as the
parameterization of θij , do not pose significant overhead.

6. Experiments
This section empirically validates the proposed technique
and the main claims of the paper. While point predictions
can be evaluated on observed input-output pairs (x, y) pro-
vided as a test set, assessing latent-variable calibration per-
formance – the discrepancy between P ∗

A and the learned P θA
– requires knowledge of the ground-truth latent distribution
itself or of observation thereof. Such ground-truth knowl-
edge, however, is not available in real-world datasets, as the
latent distribution is indeed unknown. Therefore, to validate
the theoretical results, we designed a synthetic dataset that
allows us to evaluate different performance metrics on both
y and A. We remark that the latent distribution is used only
to assess performance and does not drive the model training
in any way.

Section 6.1 demonstrates that the proposed approach can
successfully solve the joint learning problem across dif-
ferent graph sizes and highlights the effectiveness of the
proposed variance reduction technique. Section 6.2 empir-
ically investigates the generality of the theoretical results

we develop, demonstrating appropriate calibration of the la-
tent distribution even in scenarios where the assumptions of
Theorem 5.2 do not hold. Section 6.3 demonstrates that the
proposed approach is more effective than existing methods
in solving the joint learning task. As a last experiment, in
Appendix C.5 we test our approach and show that sensible
graph distributions can be learned in real-world settings.

Dataset and models Consider data-generating process
(1) with latent distribution P ∗

A = P θ
∗

A producing N -node
adjacency matrices. Random graph A ∼ P ∗

A is given
as a set of independent edges (i, j), for i, j = 1, . . . , N ,
each of which is sampled with probability θ∗i,j . Function
f∗ = fψ∗ is a generic GNN with node-level readout, i.e.,
fψ∗(·, A) : RN×din → RN×dout . The components θ∗ are
set to either 0 or 3/4 according to the pattern depicted in Fig-
ure 1; additional specifics are detailed in Appendix C. We
result in a dataset of 35k input-output pairs (x, y), 80% of
which are used as training set, 10% as validation set, and the
remaining 10% as test set. As predictive model family (2),
we follow the same architecture of fψ∗ and P θ

∗

A ensuring
that during all the experiments Assumption 3.1 is fulfilled;
similar models have been used in the literature (Franceschi
et al., 2019; Elinas et al., 2020; Kazi et al., 2022; Cini et al.,
2023). In Section 6.2 we test the method’s validity beyond
this assumption. The model parameters are trained by opti-
mizing the expected squared MMD in (9) with the rational
quadratic kernel (Bińkowski et al., 2018).

6.1. Graph Structure Learning & Optimal Point
Predictions

To test our method’s ability to both calibrate the latent dis-
tribution and make optimal predictions, we train the model
minimizing Ldist as described in Section 5.2.

Figure 2 reports the validation losses during training: MMD
loss Ldist as in (6), MAE between the learned parameters
θ and the ground truth θ∗ as Lcal (5), and point-prediction
loss Lpoint as in (4) with ℓ being the MSE. The results are
averaged over 8 different model initializations and error bars
report ±1 standard deviations from the mean. Results are
reported with and without applying the variance reduction
(Section 5.3), by training only parameters θ while freezing ψ
to ψ∗ (same setting of Theorem 5.2), and by jointly training
both ψ and θ.

Solving the joint learning problem Figure 2a shows that
the training succeeded and the MMD loss Ldist converged
to its minimum value. 4 Having minimized Ldist, from
Figure 2b we see that also the calibration of latent distri-

4Numerical estimation shows that the minimum value of Ldist

for the given kernel is approximately −0.088; note that although
the MMD2 ≥ 0, the third term in (8) is dropped from (9).

6

Learning Latent Graph Structures and their Uncertainty

Figure 1. Adjacency matrices sampled from P ∗
A = P θ

∗
A for the

experiment of Section 6 are subgraphs of the top graph; in this
picture, 3 communities of an arbitrarily large graph are shown.
Each edge in orange is independently sampled with probability
θ∗ij ; parameters θ∗ij defining the edge probabilities are represented
at the bottom for a two communities graph.

bution P θA was successful; in particular, the figure shows
that the MAE on θ parameters (N−2∥θ∗ − θ∥1) approaches
zero as training proceeds (MAE < 0.01). Regarding the
point predictions, Figure 2c confirms that Lpoint reached
its minimum value; recall that optimal prediction MSE is
not 0, as the target variable y is random, and note that a
learning rate reduction is applied at epoch number 5. The
optimality of the point-prediction is supported also by the
performance on separate test data and with respect to the
MSE as point-prediction loss ℓ. Moreover, we observe that
calibration is achieved regardless of the variance reduction
and whether or not parameters ψ are trained. Lastly, Figure
5 in Appendix C.2 shows the learned parameters θ of the la-
tent distribution and the corresponding absolute discrepancy
resulted from a (randomly chosen) training run.

Variance reduction effectiveness Figures 2a, 2b and 2c
demonstrate that the proposed variance reduction method
(Section 5.2) yields notable advantages training speed up
(roughly 50% faster). For this reason, the next experiments
rely on variance reduction.

Larger graphs The theoretical results developed hold for
any number of nodes N . However, the number of possible
edges scales quadratically in the number of nodes – a po-
tential issue inherent to the GSL problem, not our approach.
Therefore, for extremely large graphs the ratio between the

Table 1. Calibration of P θA under varying levels of misconfigura-
tion for predictive function fψ . Results are the mean ± 1 standard
deviation assessed over 8 independent runs.

Max pert. Ψ MAE on θ Max AE on θ

0 0.009 ± 0.001 0.06 ± 0.01
0.1 0.010 ± 0.001 0.07 ± 0.01
0.2 0.012 ± 0.004 0.08 ± 0.02
0.5 0.028 ± 0.011 0.16 ± 0.06
0.8 0.047 ± 0.009 0.28 ± 0.06

number of free parameters in θ and the size of the training
set can become prohibitive. Nonetheless, in Figure 7, we
show all ∼ 15K parameters of the considered P θA can be
effectively learned even for relatively large graphs; the final
MAE on θ parameters is 0.003.

6.2. Beyond Assumption 3.1

In this section, we empirically study whether Assumption
3.1 is restrictive in practical applications. Specifically, we
consider different degrees of model mismatch between the
system model in (1) and the approximating model in (2).
Unless otherwise specified, we use the same dataset and ex-
perimental setup as described in Appendix C.1. Additional
details and results are deferred to Appendix C.3.

Perturbed fψ∗ As a first experiment, we train P θA while
keeping the parameters of the predictive function fψ fixed
to a random perturbation of the data-generating model f∗ =
fψ∗ . A perturbed version of f∗ψ is built by uniformly draw-
ing independent perturbation scalar values δi ∼ U [−Ψ,Ψ],
one for each parameter ψ∗

i of fψ∗ . Then, each parameter of
GNN fψ is given as ψi = (1 + δi)ψ

∗
i . Table 1 shows that

the learned latent distribution remains reasonably calibrated.
Finally, Figures 8-11 show the learned parameter vectors θ
for randomly extracted runs and highlight that the maximum
AE of Table 1 is observed only sporadically.

Generic GNN as fψ In this second experiment, we set fψ
to be a generic multilayer GNN which we jointly train with
graph distribution P θA. The model family {fψ} employed
does not include f∗, as f∗ uses L-hop adjacency matrices
generated from the sampled adjacency matrix A, while fψ
relies on multiple nonlinear 1-hop layers; additional details
are reported in Appendix C.3. Upon convergence, models
achieved Lpoint < 0.19 using the MSE as loss function ℓ in
(4); The performance is in line with results in Figure 2c. At
last, note that as the GNN used adds self-loops, the diag-
onal elements of the adjacency matrix are learned as zero,
resulting in a larger MAE on θ (see Figure 12). However,
this does not impair learning the off-diagonal θij parameters
(i.e., for i ̸= j). Notably, in the worst-performing model,
these off-diagonal parameters achieve a MAE of less than

7

Learning Latent Graph Structures and their Uncertainty

(a) (b) (c)

Figure 2. Validation losses Ldist, Lcal and Lpoint during training. At epoch 5, the learning rate is decreased to ensure convergence. Ldist
in Subfigure 2a is negative as the third term in (8) is constant and not considered.

Table 2. Calibration and point-prediction performance of models
trained by minimizing different loss functions. Losses Ldist follow
the approach proposed in this paper. Bold numbers indicate the
best-performing models (p-value of the Welch’s t-test < 0.01).

Train loss MAE on θ MAE on y MSE on y

Lliterature
1,ℓ: MAE .087± .001 .270± .003 .180± .003

Lliterature
1,ℓ: MSE .087± .001 .293± .001 .161± .002

Lliterature
2,ℓ: MAE .086± .001 .270± .002 .176± .002

Lliterature
2,ℓ: MSE .085± .001 .295± .001 .161± .002

Lliterature
elbo .082± .001 .310± .010 .191± .020

Lpoint
ℓ: MSE .025± .001 .271± .003 .161± .002

Ldist
∆: CRPS .010± .002 .269± .001 .159± .001

Ldist
∆: MMD .009± .001 .269± .001 .159± .001

0.03, effectively calibrating the latent distribution.

Misconfigured P θA Finally, we violate Assumption 3.1 by
fixing fψ = f∗ and constraining some components of θ
to incorrect values. Specifically, we force parameters θi,j
for all edges i, j associated with nodes with id 2 and 3 in
Figure 1 to 0.25, instead of the correct value of θ∗i,j = 0.75
as in P ∗

A. Results indicate that the free parameters in θ
are learned appropriately. Notably, increased uncertainty
is observed for spurious edges linking to nodes in the first
node community (see Figure 1). This is expected given that
nearly 60% of the edges in the community were significantly
downsampled. Figures 13 and 14 in Appendix C.3 show the
learned parameters from randomly selected runs.

6.3. Comparison of Loss Functions

As a final experiment, we empirically demonstrate that the
proposed choice of loss functions (6) is more effective at
calibrating the latent graph distribution, while maintaining
or sometimes improving point prediction performance com-
pared to other commonly used loss functions.

Considered loss functions Following our approach we
consider two distributional losses, based on the MMD
Ldist
∆: MMD and the energy distance 5 Ldist

∆: CRPS. As point pre-
diction loss, we use Lpoint

ℓ: MSE defined in (4) based on the mean
squared error. Additionally, we consider three families of
losses used in the GSL literature. The first one, defined as

Lliterature
1,ℓ = Ex,y∗EA∼P θ

A
[ℓ(fψ(x,A), y

∗)] (14)

has been employed, e.g., in Franceschi et al. (2019) and
Cini et al. (2023). Note that, differently from Lpoint

ℓ:MSE, the
expectation over A is taken outside function ℓ. The second
family, denoted as Lliterature

2,ℓ , is inspired by Kazi et al. (2022).
Lliterature
2,ℓ refines Lliterature

1,ℓ focusing its optimization to node-
level predictions; further details follow in Appendix C.4.
For Lliterature

1,ℓ and Lliterature
2,ℓ , we use both MAE and MSE as ℓ.

Finally, we adapt the loss function used in (Elinas et al.,
2020) for the synthetic regression task:

Lliterature
elbo = −Ex,y∗EA∼P θ

A

[
log(Pψy|x∗,A(y

∗))
]

+KL
[
P θA(A)||P̄A(A)

]
(15)

where P̄A(A) is a prior distribution and Pψy|x∗,A(y
∗) is a

Gaussian distribution whose mean vector is determined for
each node by the GNN output and standard deviation is
set as a hyperparameter. We explored different standard
deviations and choices of the prior. Details can be found in
Appendix C.4

Results on point prediction Table 2 shows that mod-
els trained with Lliterature

1,ℓ , Lliterature
2,ℓ and Lpoint

ℓ achieve near-
optimal 6 point predictions according to their respective

5By following Section 5.2, the energy distance reduces to the
well-known Continuous Ranked Probability Score (CRPS) (Gneit-
ing & Raftery, 2007).

6Numerical estimates suggest that the ground-truth optimal
MAE and MSE achievable by a predictor are approximately 0.267
and 0.158, respectively.

8

Learning Latent Graph Structures and their Uncertainty

performance metric (MAE or MSE). Namely, optimizing
Lliterature
1,ℓ:MAE and Lliterature

2,ℓ:MAE leads to minimal MAE, but not to
minimal MSE; similarly, optimizing Lliterature

1,ℓ:MSE and Lliterature
2,ℓ:MSE

results in minimal MSE. Conversely, predictors trained
with either Ldist

∆:MMD or Ldist
∆:CRPS achieve optimal prediction

performance for both metrics. Interestingly, also Lpoint
ℓ:MSE

leads to near-optimal predictions in terms of both MAE and
MSE. We attribute the superiority of Lpoint over Lliterature

1,ℓ and
Lliterature
2,ℓ to the use of functional T in (3) which enables a

more accurate probabilistic modeling of the data-generating
process. A similar observation holds for the calibration
error, discussed in the next paragraph.

Results on calibration Optimizing the proposed losses
(Ldist

∆:MMD or Ldist
∆:CRPS) yields the smallest calibration errors,

as measured by the MAE of the latent distribution param-
eters θ in P θA. In contrast, loss functions commonly used
in the literature result in statistically worse calibration per-
formance. Notably, while the point-prediction loss Lpoint

ℓ:MSE
outperforms Lliterature

1 and Lliterature
2 in terms of calibration

error, it remains statistically inferior to the proposed distri-
butional loss Ldist

∆ .

We conclude that the proposed approach was the only one
capable of effectively solving the joint learning problem.

7. Conclusions
Graph structure learning has emerged as a research field
focused on learning graph topologies in support of solving
downstream predictive tasks. Assuming stochastic latent
graph structures, we are led to a joint optimization objective:
(i) accurately learning the distribution of the latent topology
while (ii) achieving optimal prediction performance on the
downstream task. In this paper, at first, we prove both
positive and negative theoretical results to demonstrate that
appropriate loss functions must be chosen to solve this joint
learning problem. Second, we propose a sampling-based
learning method that does not require the computation of
the predictive likelihood. Our empirical results demonstrate
that this approach achieves optimal point predictions on the
considered downstream task while also yielding calibrated
latent graph distributions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
This work was supported by the Swiss National Science
Foundation project FNS 204061: HORD GNN: Higher-
Order Relations and Dynamics in Graph Neural Networks
and partly supported by International Partnership Pro-
gram of the Chinese Academy of Sciences under Grant
104GJHZ2022013GC.

References
Bartler, A., Wiewel, F., Mauch, L., and Yang, B. Training

variational autoencoders with discrete latent variables us-
ing importance sampling. In 2019 27th European Signal
Processing Conference (EUSIPCO), pp. 1–5. IEEE, 2019.

Berger, J. O. Statistical decision theory. In Time Series and
Statistics, pp. 277–284. Springer, 1990.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton,
A. Demystifying mmd gans. In International Conference
on Learning Representations, 2018.

Cini, A., Zambon, D., and Alippi, C. Sparse graph learning
from spatiotemporal time series. Journal of Machine
Learning Research, 24:1–36, 2023.

Connor, M., Canal, G., and Rozell, C. Variational autoen-
coder with learned latent structure. In International Con-
ference on Artificial Intelligence and Statistics, pp. 2359–
2367. PMLR, 2021.

Coutino, M., Isufi, E., Maehara, T., and Leus, G. State-space
network topology identification from partial observations.
IEEE Transactions on Signal and Information Processing
over Networks, 6:211–225, 2020.

De Felice, G., Cini, A., Zambon, D., Gusev, V., and Alippi,
C. Graph-based Virtual Sensing from Sparse and Partial
Multivariate Observations. In The Twelfth International
Conference on Learning Representations, 2024.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Dong, X., Thanou, D., Frossard, P., and Vandergheynst,
P. Learning laplacian matrix in smooth graph signal
representations. IEEE Transactions on Signal Processing,
64(23):6160–6173, 2016.

Elinas, P., Bonilla, E. V., and Tiao, L. Variational infer-
ence for graph convolutional networks in the absence of
graph data and adversarial settings. Advances in Neural
Information Processing Systems, 33:18648–18660, 2020.

9

Learning Latent Graph Structures and their Uncertainty

Fatemi, B., El Asri, L., and Kazemi, S. M. Slaps: Self-
supervision improves structure learning for graph neural
networks. Advances in Neural Information Processing
Systems, 34:22667–22681, 2021.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
Advances in neural information processing systems, 30,
2017.

Franceschi, L., Niepert, M., Pontil, M., and He, X. Learning
discrete structures for graph neural networks. In Interna-
tional conference on machine learning, pp. 1972–1982.
PMLR, 2019.

Gneiting, T. Making and Evaluating Point Forecasts.
Journal of the American Statistical Association, 106
(494):746–762, June 2011. ISSN 0162-1459. doi:
10.1198/jasa.2011.r10138.

Gneiting, T. and Raftery, A. E. Strictly Proper Scoring Rules,
Prediction, and Estimation. Journal of the American
Statistical Association, 102(477):359–378, 2007. ISSN
0162-1459.

Gomez Rodriguez, M., Leskovec, J., and Schölkopf, B.
Structure and dynamics of information pathways in online
media. In Proceedings of the sixth ACM international
conference on Web search and data mining, pp. 23–32,
2013.

Gray, C., Mitchell, L., and Roughan, M. Bayesian inference
of network structure from information cascades. IEEE
Transactions on Signal and Information Processing over
Networks, 6:371–381, 2020.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Hadjeres, G., Nielsen, F., and Pachet, F. Glsr-vae: Geodesic
latent space regularization for variational autoencoder
architectures. In 2017 IEEE symposium series on compu-
tational intelligence (SSCI), pp. 1–7. IEEE, 2017.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in science & engineering, 9(03):90–95, 2007.

Jiang, B., Zhang, Z., Lin, D., Tang, J., and Luo, B. Semi-
supervised learning with graph learning-convolutional
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11313–
11320, 2019.

Joo, W., Lee, W., Park, S., and Moon, I.-C. Dirichlet vari-
ational autoencoder. Pattern Recognition, 107:107514,
2020.

Kalofolias, V. How to learn a graph from smooth signals. In
Artificial intelligence and statistics, pp. 920–929. PMLR,
2016.

Kazi, A., Cosmo, L., Ahmadi, S.-A., Navab, N., and Bron-
stein, M. M. Differentiable graph module (dgm) for
graph convolutional networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(2):1606–
1617, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems. In
International conference on machine learning, pp. 2688–
2697. PMLR, 2018.

Kuleshov, V., Fenner, N., and Ermon, S. Accurate uncer-
tainties for deep learning using calibrated regression. In
International conference on machine learning, pp. 2796–
2804. PMLR, 2018.

Laves, M.-H., Ihler, S., Fast, J. F., Kahrs, L. A., and Ort-
maier, T. Well-calibrated regression uncertainty in medi-
cal imaging with deep learning. In Medical imaging with
deep learning, pp. 393–412. PMLR, 2020.

Lokhov, A. Reconstructing parameters of spreading models
from partial observations. Advances in Neural Informa-
tion Processing Systems, 29, 2016.

Mateos, G., Segarra, S., Marques, A. G., and Ribeiro, A.
Connecting the dots: Identifying network structure via
graph signal processing. IEEE Signal Processing Maga-
zine, 36(3):16–43, 2019.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

10

Learning Latent Graph Structures and their Uncertainty

Mohamed, S. and Lakshminarayanan, B. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte carlo gradient estimation in machine learning. The
Journal of Machine Learning Research, 21(1):5183–5244,
2020.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4602–4609, 2019.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.,
and Dokania, P. Calibrating deep neural networks using
focal loss. Advances in Neural Information Processing
Systems, 33:15288–15299, 2020.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in applied probability, 29
(2):429–443, 1997.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? Advances in neural information
processing systems, 32, 2019.

Niepert, M., Minervini, P., and Franceschi, L. Implicit MLE:
Backpropagating Through Discrete Exponential Family
Distributions. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 14567–14579. Curran
Associates, Inc., 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pu, X., Cao, T., Zhang, X., Dong, X., and Chen, S. Learning
to learn graph topologies. Advances in Neural Informa-
tion Processing Systems, 34:4249–4262, 2021.

Rényi, A. On measures of entropy and information. In Pro-
ceedings of the fourth Berkeley symposium on mathemati-
cal statistics and probability, volume 1: contributions to
the theory of statistics, volume 4, pp. 547–562. University
of California Press, 1961.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Shafer, G. and Vovk, V. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(3), 2008.

Shang, C., Chen, J., and Bi, J. Discrete graph structure learn-
ing for forecasting multiple time series. In International
Conference on Learning Representations, 2021.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural
networks in particle physics. Machine Learning: Science
and Technology, 2(2):021001, 2020.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Székely, G. J. and Rizzo, M. L. Energy statistics: A class
of statistics based on distances. Journal of statistical
planning and inference, 143(8):1249–1272, 2013.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Wasserman, M. and Mateos, G. Graph structure learning
with interpretable bayesian neural networks. Transactions
on machine learning research, 2024.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. Graph
wavenet for deep spatial-temporal graph modeling. In
Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pp. 1907–1913, 2019.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang, C.
Connecting the dots: Multivariate time series forecasting
with graph neural networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 753–763, 2020.

Xu, J. and Durrett, G. Spherical latent spaces for stable vari-
ational autoencoders. arXiv preprint arXiv:1808.10805,
2018.

Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. Graph-
revised convolutional network. In Machine Learning and
Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2020, Ghent, Belgium, September 14–
18, 2020, Proceedings, Part III, pp. 378–393. Springer,
2021.

Zadrozny, B. and Elkan, C. Obtaining calibrated probability
estimates from decision trees and naive bayesian clas-
sifiers. In Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 609–616, 2001.

11

Learning Latent Graph Structures and their Uncertainty

Zhang, Y., Pal, S., Coates, M., and Ustebay, D. Bayesian
graph convolutional neural networks for semi-supervised
classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5829–5836, 2019.

Zheng, Y., Liu, F., and Hsieh, H.-P. U-air: When urban
air quality inference meets big data. In Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1436–1444,
2013.

Zhu, Y., Xu, W., Zhang, J., Liu, Q., Wu, S., and Wang,
L. Deep graph structure learning for robust representa-
tions: A survey. arXiv preprint arXiv:2103.03036, 14:
1–1, 2021.

12

Learning Latent Graph Structures and their Uncertainty

A. Proofs of the Theoretical Results
A.1. Minimizing Lpoint does not guarantee calibration

In this section, we prove Proposition 4.1.

Proof of Proposition 4.1. Recall the definition of Lpoint in (4) using (3)

Lpoint(ψ, θ) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P θ,ψy|x

])]]
Given loss function ℓ, T is, by definition (Berger, 1990; Gneiting, 2011), the functional that minimizes

Ey∗∼P∗
y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]

Therefore, if P θ,ψy|x = P ∗
y|x =⇒ Lpoint is minimal. If another distribution over y, namely, Pψ

′,θ′

y|x parametrized by θ′ and ψ′

satisfies:
T
[
Pψ

′,θ′

y|x

]
= T

[
P ∗
y|x

]
almost surely on x, then,

Lpoint(θ′, ψ′) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
Pψ

′,θ′

y|x
])]]

= Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]]

Thus, Pψ
′,θ′

y|x minimizes Lpoint.

Appendix A.2 discusses graph distributions as counterexamples where T
[
Pψ

′,θ′

y|x
]
= T

[
P ∗
y|x
]

but Pψ
′,θ′

y|x ̸= P ∗
y|x. By this,

we conclude that reaching the minimum of Lpoint(ψ, θ) does not always imply Pψ,θy|x = P ∗
y|x.

A.2. Minimizing Lpoint does not guarantee calibration: an example with MAE

This section shows that Lpoint equipped with MAE as ℓ admits multiple global minima for different parameters θ, even for
simple models and fψ = f∗.

Consider a single Bernoulli of parameter θ∗ > 1/2 as latent variable A and a scalar function f∗(x,A) such that f∗(x, 1) >
f∗(x, 0) for all x. Given input x the value of functional T (P ∗

y|x) that minimizes

Ey∼P∗
y|x

[∣∣∣y − T
[
P ∗
y|x
]∣∣∣] = θ∗

∣∣∣f∗(x, 1)− T
[
P ∗
y|x
]∣∣∣+ (1− θ∗)

∣∣∣f∗(x, 0)− T
[
P ∗
y|x
]∣∣∣

is T (P ∗
y|x) = f∗(x, 1); this derives from the fact that range of f∗ is {f∗(x, 0), f∗(x, 1)} and the likelihood of f∗(x, 1) is

larger than that of f∗(x, 0).

Note that T
[
P ∗
y|x
]
= f∗(x, 1) for all x, therefore also Lpoint is minimized by such T . Moreover, T

[
P ∗
y|x
]

is function of θ∗

and equal to f∗(x, 1) for all θ > 1/2. We conclude that for any θ ̸= θ∗ distributions P θ,ψy|x and P ∗
y|x are different, yet both of

them minimize Lpoint if θ > 1/2.

A similar reasoning applies for θ∗ < 1/2.

A.3. Minimizing Ldist guarantees calibration and optimal point predictions

This section proves Theorem 5.2 and a corollary of it.

Proof of Theorem 5.2. Recall from Equation (6) that

Ldist(θ) = Ex
[
∆(P ∗

y|x, P
θ,ψ
y|x)

]
13

Learning Latent Graph Structures and their Uncertainty

We start by proving that if Ldist(θ, ψ) = 0 =⇒ Lpoint(θ, ψ) is minimal.

Note that Ldist(θ, ψ) = 0 implies that ∆(P ∗
y|x, P

θ,ψ
y|x) = 0 almost surely in x. Then, by Assumption 5.1, P ∗

y|x = P θ,ψy|x
almost surely on x and, in particular, T [P ∗

y|x] = T [P θ,ψy|x], which leads to Lpoint(ψ, θ) being minimal (Proposition 4.1).

We now prove that if Ldist(θ, ψ∗) = 0 =⇒ Lcal(θ) = 0.

From the previous step, we have that Ldist(θ, ψ) = 0 implies P ∗
y|x = P θ,ψy|x almost surely for x ∈ I . Under the assumption

that fψ = f∗ and the injectivity of f∗ in such x ∈ I , for any output y a single A exists such that f∗(x,A) = y. Therefore,
the probability mass function of y equals that of A. Accordingly, P ∗

y|x = P θ,ψy|x implies P ∗
A = P θA.

We also prove a corollary of Theorem 5.2.

Corollary A.1. Under Assumptions 3.1 and 5.1, if

1. ∃x̄ ∈ Supp(P ∗
x) ⊆ X such that f∗(x̄; ·) is injective,

2. f∗(x,A) is continuous in x, ∀A ∈ A,

then

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0.

The corollary shows that it is sufficient that f∗ is continuous in x and there exists one point x̄ where f∗(x̄, ·) is injective to
meet theorem’s hypothesis Px∼P∗

x
(I) > 0; we observe that, as A is discrete, the injectivity assumption is not as restrictive

as if the domain were continuous.

Proof. As A is a finite set, the minimum ϵ̄ = minA̸=A′∈A∥f∗(x̄, A) − f∗(x̄, A′)∥ > 0 exists and, by the injectivity
assumption, is strictly positive.

By continuity of f∗(· , A), for every ϵ < 1
2 ϵ̄ there exists δ, such that for all x ∈ B(x̄, δ) we have ∥f∗(x̄, A)−f∗(x,A)∥ < ϵ.

It follows that, ∀x ∈ B,

∥f∗(x,A)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ∥f∗(x̄, A)− f∗(x,A)∥ − ∥f∗(x̄, A′)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − 2ϵ

≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ϵ̄ > 0.

Where the second inequality holds for the continuity of x 7→ f∗(x,A) ∀A. Finally, as x̄ ∈ Supp(P ∗
x) and B(x̄, δ) ⊆ I , we

conclude that
Px(I) ≥ Px(B(x̄, δ)) > 0,

therefore, we are in the hypothesis of Theorem 5.2 and can conclude that

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0.

A.4. Injectivity hypothesis for graph neural networks

Now, we show that hypothesis Px∼P∗
x
(I) > 0 of Theorem 5.2 is always met for certain families of graph neural networks.

Proposition A.2. Consider a 1-layer GNN of the form f∗(x,A) : σ(Ax) = y, with x, y ∈ RN and nonlinear bijective
activation function σ. If the support Supp(P ∗

x) of x contains any ball B in RN then Px∼P∗
x
(I) > 0.

14

Learning Latent Graph Structures and their Uncertainty

To prove Proposition A.2, we rely on following lemma.
Lemma A.3. Given g(x, a) = ax with a ∈ {0, 1}1×N and x ∈ RN×1. Let Ig = {x : g(x, a) is injective in a} ⊆ X be the
set of points x ∈ X such that map a 7→ g(x, a) is injective. The following implication holds:

x ̸∈ Ig ⇐⇒ ∃δ ̸= 0 ∈ {−1, 0, 1}1×N s.t. δ ⊥ x. (16)

Proof. We prove the two implications separately.

(=⇒) If x ̸∈ Ig , then there exist a′, a′′ ∈ {0, 1}1×N with a′ ̸= a′′ such that a′x = a′′x. This implies that (a′ − a′′)x = 0.
Defining δ as (a′ − a′′), we have proven that there exist δ ̸= 0 ∈ {−1, 0, 1}1×N such that δx = 0, i.e., δ ⊥ x.

(⇐=) Assume that ∃ δ ̸= 0 ∈ {−1, 0, 1}1×N such that δ ⊥ x. Each component δi of δ can be written as the difference
between two values a′i, a

′′
i ∈ {0, 1}. As δ ̸= 0 then there exists at least one index j ∈ {1, . . . , N} such that a′j ̸= a′′j .

This implies that ∃ a′, a′′ ∈ {0, 1}1×N with a′ ̸= a′′ s.t. (a′ − a′′)x = 0, which implies that x ̸∈ Ig .

Proof of Proposition A.2. We begin by considering the projection ḡ(x, a) = ax with a ∈ {0, 1}1×N and x ∈ RN . Then we
extend to A ∈ {0, 1}N×N and to nonlinear functions.

Let ICḡ = RN \ Iḡ be the complement in RN of Iḡ. Recalling Lemma A.3 and its notation, we have 3N − 1 possible
δ, defining a collection of (3N − 1)/2 hyperplanes of vectors x perpendicular to at least one δ; set ICḡ is the union of
such a finite collection of hyperplanes. By hypothesis, Supp(P ∗

x) contains a ball B ∈ RN , therefore Supp(P ∗
x) ̸⊂ ICḡ and

Px∼P∗
x
(ICḡ) < 1. We conclude that Px∼P∗

x
(Iḡ) = 1− Px∼P∗

x
(ICḡ) > 0.

A similar result is proven for Ḡ(x,A) = Ax with A ∈ {0, 1}N×N . In fact, Ḡ is a stack of N functions ḡ above and IḠ = Iḡ .
Finally, composing injective function G with injective function σ leads to function g(x,A) = σ(G(x,A)) being injective in
A for the same points x for which G is injective, thus proving the proposition.

B. Estimation of Optimal β1 and β2

Here we show that, when reducing the variance of the SFE via control variates in (12), the best β1 and β2 can be approximated
by

β̃1 = E
x∼P∗

x

A1,A2∼P θ
A

[
κ (fψ(x,A1), fψ(x,A2))

]
, β̃2 = E

(x,y∗)∼P∗
x,y

A∼P θ
A

[
κ (y∗, fψ(x,A))

]
, (17)

Consider generic function L(A) depending on a sample A of a parametric distribution P θA(A) and the surrogate loss L̃(A)
in (11), i.e.,

G(A) = L(A)∇θ logP
θ(A)− β

(
h(A)− EA∼P θ [h(A)]

)
; (18)

Following existing literature (Sutton et al., 1999; Mnih et al., 2016) where β is often referred to as baseline we set
h(A) = ∇θ logP

θ(A). The 1-sample MC approximation of the gradient becomes

∇θEA∼P θ [L(A)] ≈ G(A′) = (L(A′)− β)∇θ logP
θ(A′), (19)

with A′ sampled from P θA. The variance of the estimator is

VA∼P θ

[
(L(A)− β)∇θ logP

θ(A)
]
= VA∼P θ

[
L(A)∇θ logP

θ(A)
]
+

+ β2 EA∼P θ

[(
∇θ logP

θ(A)
)2]− 2β EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

(20)

and the optimal value β that minimizes it is

β̃ =
EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

EA∼P θ

[
(∇θ logP θ(A))

2
] . (21)

15

Learning Latent Graph Structures and their Uncertainty

If we approximate the numerator with E[L(A)]E[(∇θ logP
θ(A))2], we obtain that β̃ ≈ E[L(A)]. By substituting L(A)

with the two terms of (10) we get the values of β1 and β2 in (17).

We experimentally validate the effectiveness of this choice of β in Section 6.

C. Further Experimental Details
C.1. Dataset description and models

In this section, we describe the considered synthetic dataset, generated from the system model (1). The latent graph
distribution P ∗

A is a multivariate Bernoulli distribution of parameters θ∗ij : P
∗
A ≡ Pθ∗(A) =

∏
ij θ

∗Aij

ij (1− θ∗ij)
(1−Aij). The

components of θ∗ are all null, except for the edges of the graph depicted in Figure 3 which are set to 3/4. A heatmap of the
adjacency matrix can be found in Figure 4.

Figure 3. The adjacency matrices used in this paper are sampled from this graph. Each edge in orange is independently sampled with
probability θ∗. In the picture, 3 communities of an arbitrarily large graph are shown.

Figure 4. θ∗ij parameters for each edge of the latent adjacency matrix. Each square corresponds to an edge, and the number inside is the
probability of sampling that edge for each prediction.

Table 3. Table of the parameters used to generate the synthetic
dataset.

Parameter Values

θ∗ 0.75

σx 1.5

N 12

din 4

dout 1

ψ∗
1 [0.3,−0.2, 0.1,−0.2]

ψ∗
2 [−0.3, 0.1, 0.2,−0.1]

Regarding the GNN function f∗, we use the following
system model:

y = fψ∗(A, x) = tanh

(
L∑
l=1

1[Al ̸= 0]xψ∗
l

)
A ∼ Pθ∗(A)

(22)

where 1[·] is the element-wise indicator function: 1[a] =
1 ⇐⇒ a is true. x ∈ RN x din are randomly generated
inputs: x ∼ N (0, σ2

xI). ψ∗
l ∈ Rdout x din are part of the

system model parameters. We summarize the parameters
considered in our experiment in Table 3.

16

Learning Latent Graph Structures and their Uncertainty

The approximating model family (2) used in the experiment is the same as the data-generating process, with all components
of parameter vectors θ and ψ being trainable. The squared MMD discrepancy is defined over Rational Quadratic kernel
(Bińkowski et al., 2018)

κ(y′, y′′) =

(
1 +

∥y′ − y′′∥22
2ασ2

)−α

(23)

of hyper-parameters σ = 0.04 and α = 0.5 tuned on the validation set.

The model is trained using Adam optimizer (Kingma & Ba, 2014) with parameters β1 = 0.9, β2 = 0.99. Where not
specified, the learning rate is set to 0.05 and decreased to 0.01 after 5 epochs. We grouped data points into batches of size
128. Initial values of θ are independently sampled from the U(0.0, 0.1) uniform distribution.

C.2. Additional details on the experiments of Section 6.1

We present here additional figures discussed in Section 6.1. Figure 5 reports the values of the learned parameters θ, while
Figure 6 the absolute discrepancy from θ∗. Figure 7 reports the values of the learned parameters θ when considering a graph
of 120 nodes.

Figure 5. The learned parameters for the latent distribution corre-
sponding to the stochastic adjacency matrix.

Figure 6. Absolute error made on the parameters of the latent distri-
bution.

Figure 7. Learned θ parameters for a graph with ∼ 15K possible edges.

C.3. Additional details on the experiments of Section 6.2

We present here additional details discussed in Section 6.2.

Fixed perturbed fψ Figures in this paragraph correspond to the experiment where the processing function fψ is fixed on
a perturbed version of f∗. Figures 8 − 11 correspond to runs with increasing perturbation factor Ψ.

17

Learning Latent Graph Structures and their Uncertainty

(a) (b)

Figure 8. Learned θij parameters (a) and Absolute Error (b) for
maximum perturbation factor Ψ of 10%.

(a) (b)

Figure 9. Learned θij parameters (a) and Absolute Error (b) for
maximum perturbation factor Ψ of 20%.

(a) (b)

Figure 10. Learned θij parameters (a) and Absolute Error (b) for
maximum perturbation factor Ψ of 50%.

(a) (b)

Figure 11. Learned θij parameters (a) and Absolute Error (b) for
maximum perturbation factor Ψ of 80%.

Table 4. Network configurations and corresponding convergence re-
sults.

Layers dimensions Convergence

[4, 1] x
[4, 1, 1] x
[4, 2, 1] ✓
[4, 8, 1] ✓
[4, 8, 2, 1] ✓
[4, 16, 8, 1] ✓
[4, 32, 8, 1] ✓
[4, 64, 8, 1] ✓
[4, 64, 16, 1] ✓
[4, 64, 32, 1] ✓
[4, 8, 8, 4, 1] ✓

Generic GNN as fψ To evaluate our approach in a more
realistic setting, we use a generic GNN as fψ . Specifically,
we implement GNNs from (Morris et al., 2019) with
varying numbers of layers and layer sizes. It is important
to note that the GNN implementation includes self-loops,
which prevents the diagonal elements from being correctly
learned. However, this does not impede our method from
learning the remaining edges accurately.

Table 4 presents the network configurations and whether
they successfully converged to the ground truth distribu-
tion. Since diagonal elements artificially inflate the MAE
for θ, we consider a model to have converged if the final
MAE on θ is less than 0.11.

Most of the models successfully converged, except those with high bias. This demonstrates that our method is effective even
beyond Assumption 3.1. In Figure 12 we show the learned parameters of P θA for a randomly extracted run.

Misconfigured P θA Figures 13 and 14 correspond to the experiment where some θij values of P θA are fixed at incorrect
values, while the processing function fψ is fixed to the true one. In the community affected by the perturbation, free θij
values tend to be sampled more frequently to compensate for the downsampling imposed by the perturbation. Interestingly,
all the edges with at least one edge in the second community (75% of the edges) appear unaffected by the perturbation.

18

Learning Latent Graph Structures and their Uncertainty

(a) (b)

Figure 12. (a) Learned θij parameters when the parametric processing function fψ is a generic GNN as presented in (Morris et al., 2019)
and (b) Absolute Error made with respect to true parameters θ∗ij . As self-loops are deterministically added by the network, the diagonal
elements should not be considered.

(a) (b)

Figure 13. Learned θij parameters (a) and Absolute Error (b) for
misconfigured P θA

(a) (b)

Figure 14. Learned θij parameters (a) and Absolute Error (b) for
misconfigured P θA

C.4. Additional details on the experiments of Section 6.3

All models have been learned using SFE. Lpoint rely on the following gradient with respect to θ

∇θLpoint = Ex,y∗ [2(EA[ŷ]− y∗)EA[ŷ∇θ logP
θ
A(A)]].

For Lliterature
1 , the gradient is rewritten as

∇θLliterature
1,ℓ = Ex,y∗,A[(ℓ(ŷ, y∗)− b)∇θ logP

θ
A(A)]

with b estimating the expected value Ex,y∗,A[ℓ(ŷ, y∗)].

The second family of loss functions Lliterature
2 focuses on node-level prediction rewriting ℓ(ŷ, y∗) as the mean

1
N

∑N
i=1 ℓ(ŷi, y

∗
i) over the prediction error at each node i. The gradient with respect to θ is then written as

∇θLliterature
2,ℓ = Ex,y∗EA∼P θ

A

[∑N
i (ℓ(yi, y

∗
i)− bi)∇θ log(P

θ
A(Ai,:))

N

]
(24)

where bi are computed as moving averages of ℓ(yi, y∗i).

The last family of loss functions (i.e., Lliterature
elbo) requires (i) prior distributions P̄A(A) and (ii) a standard deviations for

Pψy|x∗,A(y
∗) to be set. We consider the following priors and standard deviations, selecting the combination with the lowest

validation loss:

(i) For the prior distributions, we assume that each edge is sampled independently according to a Bernoulli distribution.
We consider three different prior specifications:

19

Learning Latent Graph Structures and their Uncertainty

• The first prior is a Bernoulli distribution with parameter p = 0.01 for all edges.
• The second prior is a Bernoulli distribution with parameter p = 0.5 for all edges.
• The third prior is defined based on the ground truth graph structure: for edges sometimes present in the ground

truth structure (i.e., θ∗ij ̸= 0), the Bernoulli parameter is p = 0.75, while for edges never present in the ground
truth structure (i.e., θ∗ij = 0), the parameter is p = 0.05.

(ii) the standard deviations considered are: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

C.5. Real-world experiment

To demonstrate that our method learns meaningful graph distributions in real-world settings, we train a neural network on air
quality data in Beijing (Zheng et al., 2013). The dataset consists of pollutant measurements collected by sensors in Chinese
urban areas across several months. We do not use this dataset as a benchmark because the graph structure provided with
the data is based on physical distance, and there is no guarantee that it represents the true underlying structure. The neural
network we use consists of a GRU unit for processing each time series, followed by a GNN with a learnable graph structure.
Figure 15 shows the graph structure learned by our approach, demonstrating its capability to learn meaningful distributions
in real-world settings.

Figure 15. Graph structure learned by our approach on Beijing air quality data. The nodes correspond to sensor locations. The thickness
of the edges is proportional to the corresponding probability. Map data from OpenStreetMap.

C.6. Compute resources and open-source software

The paper’s experiments were run on a workstation with AMD EPYC 7513 processors and NVIDIA RTX A5000 GPUs; on
average, a single model training terminates in a few minutes with a memory usage of about 1GB.

The developed code relies on PyTorch (Paszke et al., 2019) and the following additional open-source libraries: PyTorch
Geometric (Fey & Lenssen, 2019), NumPy (Harris et al., 2020) and Matplotlib (Hunter, 2007).

20

