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Abstract

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal
technique for large language model (LLM) alignment. This paper studies the set-
ting of online RLHF and focuses on improving its sample efficiency. All existing
algorithms for online RLHF, whether doing passive exploration or active explo-
ration, suffer from a sample complexity that scales exponentially with the range
of the reward function. This statistical inefficiency hinders their effectiveness in
scenarios with heavily skewed preferences, e.g. questions with objectively correct
answers. To address this, we introduce Self-Exploring Preference-Incentive Online
Preference Optimization (SE-POPO), an online RLHF algorithm that for the first
time achieves a sample complexity that scales polynomially with the reward range,
answering an open problem raised by Xie et al. [2024]. Theoretically, we demon-
strate that the sample complexity of SE-POPO dominates that of existing exploration
algorithms. Empirically, our systematic evaluation confirms that SE-POPO is more
sample-efficient than both exploratory and non-exploratory baselines, in two pri-
mary application scenarios of RLHF as well as on public benchmarks, marking a
significant step forward in RLHF algorithm design.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique in the
post-training of Large Language Models (LLMs) [Christiano et al., 2017, Ziegler et al., 2019, Ouyang
et al., 2022]. Earlier works on RLHF focus primarily on the offline setting [Ouyang et al., 2022,
?], where the preference data are pre-collected and fixed prior to the fine-tuning phase. However,
in this setting, the quality of alignment is fundamentally limited by the quality of response in the
pre-collected preference dataset. To overcome this limitation, recent works attempt to perform RLHF
in an online setting. By continually generating and subsequently labeling new samples during training,
online RLHF allow the agents to receive feedbacks on out-of-distribution (OOD) responses and
achieves improved empirical performance [Dong et al., 2024].

Similar to online reinforcement learning, the most critical challenge in online RLHF is how to balance
the exploration-exploitation trade-off. In naive online RLHF algorithms [Guo et al., 2024], the
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exploration is carried out passively, relying solely on the inherent randomness of the LLM policy.
Such a passive approach fails to sufficiently explore the prompt-response space even with many
samples. More recently, a number of active exploration algorithms have been proposed [Dwaracherla
et al., 2024, Xiong et al., 2024a, Xie et al., 2024, Cen et al., 2024, Zhang et al., 2024]. By leveraging
optimism-based approaches to encourage the policy to target OOD regions, active exploration has
demonstrated superior performance over passive exploration both in theory and in practice. A more
comprehensive discussion on related works is deferred to Appendix A.

However, all existing online RLHF algorithms share one common flaw: They remain effective
only when the reward is small. In particular, under the Bradley–Terry (BT) model and assuming
the reward satisfies r ∈ [0, Rmax], all existing algorithm have a sample complexity in the form of
O(exp(Rmax)/ϵ

2), scaling exponentially with Rmax. Intuitively, this issue arises because human
feedback in RLHF is given in the form of preferences instead of numerical rewards. Under the BT
model, even if there is a significant gap in rewards between two responses, they may behave very
similar in their chance of being preferred when pairing with another response that is significantly
worse than both. As a result, exponentially many samples are necessary to distinguish the quality of
responses based on preference signals. This leads to the open question raised by Xie et al. [2024]:

Does there exist an online RLHF algorithm that avoids the exponentially dependency on the
reward scale?

In this work, we answer this question in the positive with a new online RLHF algorithm, Self-
Exploring Preference-Incentive Online Preference Optimization (SE-POPO), that for the first time
achieves a sample complexity that scales polynomially with the reward scale. Our algorithm is
provably sample-efficient, scalable and easy to implement. We summarize our contributions below.

• We introduce a preference-based exploration technique, distinct from the reward-based exploration
done in all prior works. Based on this new technique, we design a subroutine algorithm Preference-
Incentive Online Preference Optimization (POPO), which achieves a preference-based regret that
scales polynomially with Rmax against a fixed comparator policy.

• Building upon POPO, we propose a self-sampler update technique that effectively prevents the
sample complexity from exploding as reward scale increases. Leveraging this idea, we develop our
main algorithm SE-POPO, achieving a sample complexity scaling polynomially with Rmax.

• We perform a comprehensive empirical evaluation of our algorithm across multiple training and
testing settings as well as on major public benchmarks. In addition, we perform ablation studies
to further understand the effect of the sampler update mechanism in our algorithm. The results
show that our algorithm outperforms both exploratory and non-exploratory baselines across all
benchmarks with a large margin.

2 RLHF Preliminaries

In RLHF, we denote a policy by π, which generates an answer y ∈ Y given a prompt x ∈ X according
to the conditional probability distribution π(·|x). Given two responses y and y′ with respect to prompt
x, we assume a preference oracle, i.e. a human evaluator, will evaluate the quality of two responses
and indicate the preferred one. Following prior works, we consider Bradley–Terry model as the
preference oracle. The mathematical definition is below.
Assumption 2.1. (Bradley–Terry (BT) Model) There exists an underlying reward function r⋆ :
X × Y → R such that for every x, y, y′ ∈ X × Y × Y ,

P⋆(y ≻ y′|x) = exp(r⋆(x, y))

exp(r⋆(x, y)) + exp(r⋆(x, y′))
= σ(r⋆(x, y)− r⋆(x, y′)),

where P⋆(y ≻ y′|x) represents the probability that y is preferred to y′ given x and σ represents
the sigmoid function. Without loss of generality, we assume that for all x, y ∈ X × Y , we have
r⋆(x, y) ∈ [0, Rmax] and Rmax ≥ 1.

The Two-stage RLHF pipeline: In the classic two-stage RLHF framework [Christiano et al., 2017,
Ouyang et al., 2022], the algorithm assumes access to a dataset D = {xn, y

1
n, y

2
n, ot}Nn=1, where

xn ∼ ρ, y1n ∼ πref, y
2
n ∼ πref, on ∼ Ber (P⋆(y ≻ y′|x)) .
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Here, ρ denotes the underlying prompt distribution. πref is a reference language model, which is
typically obtained via supervised fine-tuning. on is obtained by the preference oracle. For simplicity,
we redefine the dataset asD = {xn, y

w
n , y

l
n}Nn=1, where ywn and yln are assigned based on the value of

on. Given the dataset, we first estimate the reward function via maximum likelihood estimation, i.e.,

r̂ = argmin
r∈R
−

N∑
n=1

log σ
(
r(xn, y

w
n )− r(xn, y

l
n)
)
=: argmin

r∈R
ℓ(r,D). (1)

With the learned reward function, the objective of RLHF is to fine-tune the policy π to maximize the
reward. Following prior theoretical works on RLHF, we consider a KL-regularized reward objective,
that is,

π̂ = argmax
π∈Π

Ex∼ρ,y∼π(·|x)

[
r̂(x, y)− β log

π(y|x)
πref(y|x)

]
=: argmax

π∈Π
J(r̂, π). (2)

The DPO pipeline: An alternative approach of RLHF is introduced by [?], namely Direct Prefer-
ence Optimization (DPO). The key motivation of DPO is from the closed-form solution of (2), that is,
given a reward function r̂, the solution π̂ satisfies

π̂(y|x) =
πref(y|x) exp(r̂(x, y)/β)

Z(r, x)
, ∀x, y ∈ X × Y (3)

where Z(r, x) =
∑

y πref(y|x) exp(r̂(y|x)/β) is a partition function independent of y. The closed
form solution allows us to represent the reward by π̂

r̂(x, y)− r̂(x, y′) = β log
π̂(y|x)
πref(y|x)

− β log
π̂(y′|x)
πref(y′|x)

(4)

for every ∀(x, y, y′) ∈ X ×Y ×Y . By substituting (4) into (1), DPO bypasses the need for explicitly
learning the reward function. Instead, it optimizes the policy directly with objective

π̂ = argmin
π∈Π
−

N∑
n=1

log σ

(
β log

π(ywn |xn)

πref(ywn |xn)
− β log

π(yln|xn)

πref(yln|xn)

)
=: argmin

π∈Π
ℓ(π,D). (5)

Performance metric The performance of a learned policy π̂ is measured by the suboptimal gap
SubOpt(π̂) = Ex∼ρ,y∼π⋆(·|x),y′∼π̂(·|x)[r

⋆(x, y)− r⋆(x, y′)],

where π⋆ = argmaxπ∈Π Ex∼ρ,y∼π⋆(·|x)[r
⋆(x, y)] denotes the optimal policy. Our goal is to propose

a sample-efficient and also implementation-friendly algorithm to learn a policy π̂ ∈ Π such that
SubOpt(π̂) ≤ ϵ for some small ϵ > 0.

Online Feedback and Exploration In early RLHF studies, the preference dataset D is typically
assumed to be given. Although such offline RLHF has been highly successful in aligning language
models, it is inherently limited by the quality of the preference data and πref. To overcome these
limitations, RLHF with online feedback is proposed [Guo et al., 2024]. In the online framework, the
dataset is constructed with human feedbacks on the responses generated from the language model on
the fly. Formally, online RLHF proceeds in T rounds with each round as follows:

1. The agent computes πt using current data Dt and samples xt ∼ ρ, y1t ∼ πt(·|x), y2t ∼ πt(·|x).
2. Human labels responses (xt, y

1
t , y

2
t )→ (xt, y

w
t , y

l
t). Update Dt+1 = Dt ∪ {(xt, y

w
t , y

l
t)}.

Although numerous empirical studies have demonstrated the benefits of online RLHF, the theoretical
foundation has been missing. The main reason is that existing methods rely on passive exploration
to collect data, i.e. the responses are sampled directly from the policy πt relying purely on the
randomness of πt for exploration. Motivated by this, recent works [Cen et al., 2024, Xie et al., 2024,
Zhang et al., 2024] start to incorporate the optimism principle into RLHF, which encourages explicitly
exploration in the policy πt. Although their implementations differ, the essence of their algorithms is
to replace the MLE objectives (1) and (2) in vanilla RLHF with

rt+1 = argmax
r∈R
{−ℓ(r,Dt) + αJ(r, π(r))} , s.t. π(r) = argmax

π∈Π
J(r, π) (6)

where αmaxπ∈Π J(r, π) is a reward-based exploration bonus that encourages exploration. Such a
bonus leads to an overestimation of rewards with high uncertainty, thereby incentivizing policy to
explore uncertain responses. As shown by Cen et al. [2024], Xie et al. [2024], this design offers a
practical and provably sample-efficient online exploration algorithm for RLHF with general function
approximation.
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3 Preference-based Exploration

Although existing algorithms based on (6) obtain theoretical sample efficiency guarantees, there is a
significant gap between their bounds and what could be achieved under the standard MDP framework.
In particular, the best known sample complexity bound takes the form of O(exp(Rmax)/ϵ

2), which
scales exponentially with the reward scale Rmax. This makes existing guarantees quite subtle, as the
bound quickly becomes vacuous as soon as Rmax is moderately large. In practical LLM applications,
it is common that one response can strictly dominate another, i.e., P⋆(y ≻ y′|x)→ 1. Under the BT
model (Asm. 2.1), this implies a very large Rmax. Authors of prior works have admitted that this
is a significant drawback of these results and in fact conjectured that the exponential dependency
might be unavoidable [Xie et al., 2024]. In this paper, we resolve this conjecture in the negative by
presenting the first algorithm that avoids such exponential dependency on the reward scale. In what
follows, we start by discussing the cause of exponential dependency on Rmax and why it’s a real
limitation of the algorithms rather than merely an artifact of the analysis. After that, we will present
our technique that solves it.

3.1 The cause of exp(Rmax) scaling

Using online-to-batch technique, the sample complexity of an online algorithm can be de-
rived from its regret, which is defined by

∑T
t=1 SubOpt(πt). In the standard analysis of

optimism online RLHF, the regret can be bounded by the sum of reward uncertainty, i.e.,∑T
t=1 Ex∼ρ,y∼πt(·|x)[|rt(x, y) − r⋆(x, y)|], where rt is the induced reward function from πt as

in DPO. To bound the reward uncertainty, prior works reduce it to the preference uncertainty, i.e.,∑T
t=1 Ex∼ρ,y∼πt(·|x),y′∼πt(·|x)[|Pt(y ≻ y′|x)−P⋆(y ≻ y′|x)|], as the preference uncertainty can be

effectively bounded using concentration inequalities. Unfortunately, this reduction is not a free lunch:
due to the presence of sigmoid function in Bradley–Terry Model, for some x, y, y′, there is

|rt(x, y)− r⋆(x, y)| ≈ |Pt(y ≻ y′|x)− P⋆(y ≻ y′|x)|
∇σ(r⋆(x, y)− r⋆(x, y′))

(7)

Therefore, the reward uncertainty could be of order 1/∇σ(Rmax) ≈ O(exp(Rmax)) times the pref-
erence uncertainty, in the worst case where the reward gap between the two responses y and y′ is
large. Similar issues have also been discovered in logistic bandits [Faury et al., 2020]. This explains
where exp(Rmax) comes from in the theoretical analysis of existing works and highlights the key
question in algorithm design: How should we sample the responses y and y′ in online RLHF?
A number of prior works [Xiong et al., 2024a, Dong et al., 2024, Shi et al., 2024] use πt to sample
y1t and use πref, or a policy distinct from πt, to sample y2t . This destines to perform poorly due to
(7). In general, sampling y2t using an underperformed policy, such as πref implies that the reward gap
r⋆(xt, y

1
t )− r⋆(xt, y

2
t ) would be relatively large, causing y1t to be consistently favored, even if y1t

itself is suboptimal. As a result, such algorithms will struggle to learn the optimal response, as such a
comparison provides very little information on how to improve based on the current best policy πt.

3.2 Algorithm Design

Given the above intuition, we propose Preference-Incentive Online Preference Optimization with
Self-updated Sampler (SE-POPO), which for the first time enjoys a sample complexity bound that
scales polynomially with Rmax. Conceptually, SE-POPO differs from prior algorithms in two main
aspects: 1) it uses a preference-based exploration bonus instead of a reward-based bonus to explore
more efficiently, and 2) it updates the second sampler at intervals instead of fixing it as πref, bypassing
the design flaw discussed above. The pseudocode of the algorithms is presented in Algorithm 1 and 2.

SE-POPO operates over K intervals. In each interval, SE-POPO selects a fixed sampler πsam to generate
the second response and runs the subroutine POPO for T iterations. The output of POPO is used as the
sampler for the next interval, and the output from the last interval serves as the output of SE-POPO.
Let us now present the subroutine POPO. As illustrated in Algorithm 2, POPO shares a similar structure
with existing optimism RLHF algorithms [Xie et al., 2024, Zhang et al., 2024, Cen et al., 2024].
However, unlike prior designs that are tailored towards bounding the reward-based regret, i.e.∑T

t=1 SubOpt(πt), POPO takes an indirect approach and instead optimize the preference-based
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Algorithm 1 SE-POPO: Self-Exploring Preference-Incentive Online Preference Optimization
Input: Reference policy πref, Policy set Π, Iterations T , Intervals K
Initialize π1

sam ← πref.
for k = 1, . . . ,K − 1 do

Update the sampler πk+1
sam ← POPO(πref, π

k
sam,Π, T ).

end for
Return policy π̄ = POPO(πref, π

K
sam,Π, T ).

regret over a fixed sampler πsam:

Regpref(πsam, T ) :=

T∑
t=1

E
x∼ρ,(y⋆,y,y′)∼π⋆⊗πt⊗πsam(·|x)

[
P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)

]
. (8)

To achieve this, POPO optimizes the following objective function instead of (6):

rt+1 = argmax
r∈R
{−ℓ(r,Dt) + αG(r, π(r))I(r,Dt)} , s.t. π(r) = argmax

π∈Π
J(r, π) (9)

Here, G is the expected preference rate of π over πsam

G(r, π) = Ex∼ρ,y∼π(·|x),y′∼πsam(·|x) [Pr (y ≻ y′|x)] ,

where Pr denotes the preference oracle parameterized by reward r. I(Dt) is an indicator function

I(r,Dt) = 1 {ℓ(r,Dt)− ℓ(r̄,Dt) ≤ γ} ,

where r̄ = argminr∈R ℓ(r,Dt) represents the MLE-based reward estimator. In brief, POPO applies a
truncated preference-based exploration bonus on the reward learning objective. This design ensures
that optimistic exploration is conducted directly with respect to preferences rather than rewards, while
also constraining the exploration to regions near the current MLE estimator, thereby mitigating the
risk of over-exploration.

Assuming that POPO achieves low preference-based regret, let’s now look at how POPO with self-
updated samplers eliminates the exponential dependence on Rmax in the reward-based regret. The
key observation is a novel Preference-to-Reward reduction lemma as follows.
Lemma 3.1. (Preference-to-Reward reduction) Given any prompt x ∈ X , let y⋆ denotes the optimal
response y⋆ = argmaxy∈Y r⋆(x, y). For every (y, y′) ∈ Y × Y , there is 1{r⋆(x, y)− r⋆(x, y′) ≤
1}[r⋆(x, y⋆)− r⋆(x, y)] ≤ 20Rmax [P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)].

The proof of Lemma 3.1 is deferred to the appendix. Intuitively, Lemma 3.1 tells us that the
exponential blow-up in preference-to-reward reduction only occurs when r⋆(x, y)− r⋆(x, y′) is large.
Assuming y′ ∼ πsam(·|x). If πsam is “good enough” such that r⋆(x, y)− r⋆(x, y′) ≤ 1 holds for all
x, we can easily bound the reward-based regret by Regr(T ) ≤ O(Rmax)Regpref(πsam, T ), and thus
get rid of the exponential dependence on Rmax. So how do we find a good enough sampler πsam? An
intuitive idea is to first run POPO to find a suboptimal policy, then use this policy as πsam and rerun
POPO. However, notice that finding a good enough policy by running POPO from scratch would still
requires O(exp(Rmax)) iterations, as we would have been using πref as the sampler, and πref might be
O(Rmax) worse than π∗. The trick, as shown in Algorithm 1, is to repeat the POPO subroutine for many
times and gradually improve πsam. The main observation is that even if the sampler performs poorly,
POPO’s output policy can still achieve a reward higher by a constant amount compared to the sampler.
For instance, consider x, y⋆, y′ such that r⋆(x, y⋆) − r⋆(x, y′) is large. If we use y′ as the second
response, after T iterations, we can find a y such that P ⋆(y ≻ y′|x) ≥ P ⋆(y⋆ ≻ y′|x)− Õ(1/

√
T )

by the preference-based regret (8). Since r⋆(x, y⋆)− r⋆(x, y′) is large, P ⋆(y⋆ ≻ y′|x) will be close
to 1, resulting in P ⋆(y ≻ y′|x) being significantly greater than 1/2, which implies that there is a
constant improvement between r⋆(x, y) and r⋆(x, y′). Therefore, by repeating POPOK = O(Rmax)
intervals, the sampler will finally become sufficiently effective.

3.3 Implementation-friendly Objective

Similar to that of vanilla two-stage RLHF, (9) is a bilevel optimization involving both reward and
policy, and is challenging to solve in practice. Fortunately, π(r) remains to be the solution to the
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Algorithm 2 POPO: Preference-Incentive Online Preference Optimization
Input: Reference policy πref, Sampler πsam, Policy set Π, Iterations T
Initialize π1 = πref.
for t = 1, . . . , T do

Generate data x1 ∼ ρ, y1t ∼ πt(·|x), y2t ∼ πsam(·|x).
Label the two responses: (xt, y

1
t , y

2
t )→ (xt, y

w
t , y

l
t).

Optimize objective (10). Get πt+1.
end for
Return policy π̄ = Uniform(π1, . . . , πt).

KL-regularized reward optimization objective, therefore (4) continues to hold. By substituting (4)
into (9), similar to what is done in DPO, we can bypass the reward model and directly optimize the
policy. Therefore, the objective can be rewritten as

πt+1 = argmax
π∈Π
{−ℓ(π,Dt) + αG(π)I(π,Dt)} , (10)

where ℓ(π,Dt) is the DPO loss as in (5). G(x) is the exploration bonus defined by

G(π) = E
x∼ρ,y∼π(·|x),y′∼πsam(·|x)

[
σ

(
β log

π(y|x)
πref(y|x)

− β log
π(y′|x)
πref(y′|x)

)]
,

and I(π,Dt) = 1 {ℓ(π,Dt)− ℓ(π̄,Dt) ≤ γ} with π̄ = argminπ∈Π ℓ(π,Dt). In addition, evaluat-
ing I(r,Dt) requires pre-computing the MLE estimator π̄ first, which doubles the computation cost.
In our experiments, we find that the truncation I(r,Dt) is rarely active and can therefore be omitted.
These steps result in the implementation-friendly objective below

πt+1 = argmax
π∈Π

t∑
s=1

log σ

(
β log

π(yws |xs)

πref(yws |xs)
− β log

π(yls|xs)

πref(yls|xs)

)
+ α E

x∼ρ,y∼π(·|x),y′∼πsam(·|x)

[
σ

(
β log

π(y|x)
πref(y|x)

− β log
π(y′|x)
πref(y′|x)

)]
. (11)

On paper, (11) can already be implemented efficiently into existing online DPO pipeline Guo et al.
[2024] with a one-line change of the code. However, one challenge we encounter when implementing
(11) is that calculating the gradient of the objective function requires sampling new responses
y ∼ π(·|x). While such sampling is techniquely feasible, we empirically found that this on-policy
sampling step is extremely slow in language model finetuning due to the lack of efficient LLM online
inference libraries. To bypass this issue, we decide to prune the first term within the bonus all together,
resulting in the following objective:

πt+1 = argmax
π∈Π

t∑
s=1

log σ

(
β log

π(yws |xs)

πref(yws |xs)
− β log

π(yls|xs)

πref(yls|xs)

)
+ α E

x∼ρ
y′∼πsam(·|x)

[
σ

(
− β log

π(y′|x)
πref(y′|x)

)]
. (12)

Surprisingly, objective (12) still yields in a sample-efficient algorithm in theory. We defer further
discussion on (12) to Appendix B and now move on to presenting our main theoretical results.

3.4 Theoretical Guarantees

Let the regularization parameter β > 0 be fixed. We start by a reward realizability assumption, which
states that the reward class used in SE-POPO is sufficiently expressive.
Assumption 3.2. (Reward realizability) There exists a set of reward functionsR satisfying r⋆ ∈ R.

Given Assumption 3.2, we define P as the set of preference model induced by R, and define
Π as the optimal policies induced by R under KL-regularized reward objective (2). Notice that
|P| = |R| = |Π| by definition. For ease of understanding, we will present our main theorems under
the linear reward model setting and defer results for general function approximation to Appendix J.
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Assumption 3.3. (Linear reward oracle) Every reward r ∈ R can be parameterized by

rθ(x, y) = ⟨ϕ(x, y), θ⟩, ∀(x, y) ∈ X × Y,

where ϕ(x, y) : X × Y → Rd is a fixed feature mapping and θ ∈ Rd is the parameter. Without loss
of generality, we define ϕ(x, y, y′) = ϕ(x, y) − ϕ(x, y′). We further assume that |ϕ(x, y, y′)| ≤ 1
for all x, y, y′ and ∥θ∥2 ≤ Rmax.

The following is the preference-based regret bound for POPO.

Theorem 3.4. Given Assumption 3.2 and 3.3, setting α =
√

d log T/d
RmaxT log |R|/δ and γ = 2 log |R|

δ , with
probability 1− 2δ, POPO output a policy π̄ such that

E
x∼ρ

(y⋆,y,y′)∼π⋆⊗π̄⊗πsam(·|x)

[
P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)

]

≤O


√

dRmax log
TRmax

d log |R|
δ

T
+

d exp(Rmax)

T
log

TRmax

d
log
|R|
δ

+ βCKL


where CKL = Ex∼ρ [DKL(π

⋆(·|x)||πref(·|x))] 1

Theorem 3.4 established a clean Õ(
√
dT ) bound on the preference-based regret. This implies, for

example, if one were to train against a strong baseline πsam, e.g. GPT-4o, POPO would achieve a
winrate against GPT-4o similar to that of the optimal policy with a fast rate of convergence. Of course,
in practice, we may not have such strong baselines at our disposal. SE-POPO is designed to achieve a
similar performance even without such baselines, by iteratively updating its πsam. Our main theorem
is presented as follows.
Theorem 3.5. Assuming CKL is well-bounded. Setting K = ⌈Rmax⌉, with probability 1− δ, SE-POPO
output a policy π̄ such that

E
x∼ρ

(y⋆,y)∼π⋆⊗π̄(·|x)

[
r(x, y⋆)− r(x, y)

]
≤ Õ


√

dR8
max log

|R|
δ

N
+ βR3

maxCKL

 .

Specifically, with β = o(1/
√
T ), SE-POPO outputs ϵ-optimal policy with Õ

(
dR8

max log
|R|
δ

ϵ2

)
samples.

Remark 3.6. Theorem 3.5 offers a significant improvement over all prior sample complexity bounds
for RLHF algorithms under the BT-model, being the first sample complexity bound that scales
polynomially with Rmax. Compared to prior works on online RLHF [Das et al., 2024b, Rosset
et al., 2024, Xie et al., 2024, Zhang et al., 2024, Cen et al., 2024], Theorem 3.5 retains the same
dependencies on the coverage parameter d and precision ϵ, while successfully eliminating the
exponential dependence on Rmax and 1/β. Furthermore, in Appendix J, we demonstrate that the
theoretical results of POPO and SE-POPO can be generalized beyond linear preference oracle using a
general complexity measure proposed in [Zhong et al., 2022], extending our theoretical results to the
general function approximation setting.

4 Experiments

In this section, we provide a comprehensive empirical evaluation of SE-POPO in LLM alignment
tasks. There are two primary use cases for LLM alignments in real practices:

1. Domain-specific alignment: This is where the goal is to fine-tune LLMs for a specific type of
task, e.g. fashion design.

2. Generalist algnment: This is where the goal is to train a general-purpose question answering AI
that could answer a wide variety of questions. This is for instance what GPTs are designed for.
1While Theorem 3.4 eliminates the exponential dependence in the leading sample complexity term, there

still exists an exp(Rmax) burn in cost in the lower order term. This is consistent with known lower bounds in
logistic bandit literature [Faury et al., 2020] and is believed to be not improvable.
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Model IID Data Alpaca Data AE2 LC MT-Bench Avg. Len. (in AE2)
WR AvgR WR AvgR

Llama-3-8B-SFT - -5.56 - -7.94 10.20 7.69 1182

DPO-iter1 62.4 -4.50 78.1 -6.02 - - 1645
DPO-iter2 66.6 -3.59 87.1 -3.34 - - 2045
DPO-iter3 72.4 -2.33 91.3 -0.02 36.10 8.28 2257

XPO-iter1 62.6 -4.40 78.3 -5.79 - - 1674
XPO-iter2 67.3 -3.28 88.0 -2.60 - - 2200
XPO-iter3 73.0 -2.09 91.8 0.60 38.23 8.21 2346

SE-POPO-iter1 62.5 -4.32 80.0 -5.68 - - 1797
SE-POPO-iter2 68.2 -3.15 89.1 -2.45 - - 2302
SE-POPO-iter3 73.3 -2.03 92.4 0.61 40.12 8.39 2358

Llama-3-8B-Instruct 48.4 -6.77 87.0 -3.42 22.92 8.16 1899
Llama-3-405B-Instruct - - - - 39.30 - 1988

Table 1: Performance comparison across multiple chat benchmarks.

Importantly, in both use cases, the preference feedback during both training and evaluation would
have been provided by the same oracle, e.g. human evaluators. In other words, there should not
be any distribution shift in the underlying preference model between training and testing. What
distinguishes the two use cases is the prompt distribution during training and deployment. For use
case 1, the prompts should come from the same domain during both training and deployment, i.e. no
distribution shift in the prompt distribution. For use case 2, the prompt distribution between training
and testing could be different.

Motivated by the real use cases discussed above, we present three sets of experiments. For all
experiments, our implementation build upon the iterative DPO codebase from [Dong et al., 2024], and
we use the 3-iteration online RLHF framework following the setting in [Xie et al., 2024]. Across all
three experiments, we use Llama-3-8B-SFT as the base model 2, RLHFlow-ultrafeedback dataset
as the training prompt sets, and GRM-Llama3-8B-rewardmodel-ft as the training preference model.
More details about the experiment setup are deferred to Appendix K.1. The results from the three
sets of experiments are shown as three columns in Table 1:

• “IID data" refers to the setting where the models are evaluated on a held-out test prompt set that
are drawn from the same distribution as the training prompt set, and the responses are evaluated by
the same preference model used during training. This is to simulate Use Case #1.

• “Alpaca data" refers to the setting where the models are evaluated on the AlpacaEval 2.0 dataset,
but the responses are still evaluated by the same preference model used during training. This is to
simulate Use Case #2.

• Public benchmarks: Finally, we also evaluate our algorithm on public benchmarks including
AlpacaEval 2.0 and MT-bench shown in Table 1 as well as the academic benchmarks that are
deferred to Table 5 in the appendix. These public benchmarks all have one common characteristic:
the training and evaluation preference models are different, usually with GPT-4o as the evaluation
oracle during testing. As discussed above, such a distribution shift in the preference model
between training and testing rarely happen in practice. Thus, we believe that the performances
on such benchmarks offer little insight on how well an RLHF algorithm works in practice.
Nevertheless, we include them for completeness due to their wide adoption in prior RLHF research.

Baselines: We compare against two baseline algorithms: iterative DPO [Dong et al., 2024], which
is the state-of-the-art passive exploration algorithm and XPO [Xie et al., 2024] which is the state-of-
the-art active exploration algorithm. Importantly, here we use the practical implementation of XPO,
where both responses are drawn from the previous policy πt, rather than from πt and the reference
policy πref

3. Empirically, this practical variant of XPO substantially outperforms its theoretical
counterpart described in the original paper. However, it is important to note that this modification

2To further verify the robustness of SE-POPO, we additionally evaluate with another base model
Qwen2.5-7B-Instruct, where the results are deferred to Appendix K.2

3For completeness, we also test the the theoretical XPO and defer the results to Appendix K.4
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Figure 1: Rewards Distribution with Different Samplers.

Model WR AvgR

(πt, πt)-iter2 87.0 -3.35
(πt, πt)-iter3 91.2 -0.02

(πt, πref)-iter2 86.8 -4.09
(πt, πref)-iter3 89.4 -2.63

Table 2: Average Reward and Win
Rate Comparison.

Model Gap Mean Gap Max Ratio (Gap > 3)

(πt, πt)-iter2 2.33 23.6 0.28
(πt, πt)-iter3 2.90 26.0 0.36

(πt, πref)-iter2 3.84 28.4 0.49
(πt, πref)-iter3 7.14 33.9 0.71

Table 3: Reward Gap Statistics.

is not supported by the original theoretical analysis. In particular, as shown by Cen et al. [2024],
when both responses are drawn from πt, the sample complexity scales as O(exp(1/β)), leading
to substantially weaker theoretical guarantees. By contrast, our algorithm adheres strictly to its
theoretical formulation, which we view as crucial for the principled development of LLM alignment
algorithms.

Results: As can been seen in Table 1, SE-POPO outperforms both DPO and XPO across all experiment
setups. Moreover, on the public benchmarks, SE-POPO achieves better performance compared to
the industry-level 8B model (Llama-3-8B-Instruct) and comparable performance to model with
two orders of magnitude more parameters (Llama-3-405B-Instruct). Beyond instruction-following
benchmarks, we also evaluate SE-POPO and the baselines on a suite of academic benchmarks, to
demonstrate that our improvements in chat capabilities do not come at an additional expense of
reasoning ability compared to other baselines. The results are deferred to Appendix K.3. Across the
9 academic tasks evaluated, our algorithm performs best in 4, while DPO leads in 3 and XPO in 2.
These evaluation results resoundingly support the effectiveness of our algorithm.

Slight length exploitation in XPO and SE-POPO: It is worth noting that the length of the responses
generated with models trained by XPO and SE-POPO are slightly longer compared to DPO. This makes
sense in theory, considering that the exploration term in both XPO loss and (12) encourages minimizing
log π(y′|x)

πref(y′|x) , which inherently incentives models to generate longer responses. We speculate that

using objective (11) can mitigate this exploitation, as the on-policy term log π(y|x)
πref(y|x) in (11) will

encourage π to generate shorter responses, thereby counteracting the effect incurred by log π(y′|x)
πref(y′|x) .

Unfortunately, we cannot implement the version of SE-POPO with objective (11) and have to defer a
more comprehensive study of this phenomenon to future work.

Ablation study on the impact of sampler πsam: We conduct an ablation study to better understand
the impact of samplers. We use iterative DPO as the base algorithm and consider two sampling
subroutines:

1. both responses are sampled by the policy of the previous iteration, i.e., x ∼ ρ, (y1, y2) ∼ πt(·|x);
2. one response is sampled from the previous iteration’s policy and one from the initial policy, i.e.,

x ∼ ρ, y1 ∼ πt(·|x), y2 ∼ πref(·|x).
As shown in Table 2, we study two metrics: 1). the reward corresponding to the responses produced
by the models, 2). the win rate with respect to the base model πref. Notice that for both iteration 2 and
iteration 3, the difference in win rate between the two sampler settings is relatively small, whereas the
discrepancy in average reward is substantial. In addition, we plot the reward distribution of the model

9



outputs, as illustrated in Figures 1. For samplers (πt, πref), the reward distribution remains relatively
unchanged between iteration 2 and 3. In contrast, samplers (πt, πt) demonstrates a more pronounced
change in the reward distribution. These results are consistent with our theoretical intuition in Section
3.1: collecting data by (πt, πref) can result in πt consistently winning, thereby limiting its capacity to
acquire new information. Consequently, the models can only learn a policy that is sufficiently better
than πref (with 86% and 89% win rate), but fail to improve any further.

As shown in Table 3, we investigate the reward gap between paired responses (y1, y2) under the two
sampling schemes. We report three metrics: the mean reward gap, the maximum reward gap, and
the proportion of large gaps (i.e., Gap > 3). Compared to sampler (πt, πref), (πt, πt) consistently
produces smaller gaps across all metrics. In particular, at iteration 3, (πt, πref) exhibits a substantial
fraction of large gaps (ratio = 0.71), indicating that the effect of exp(Rmax) becomes increasingly
pronounced—aligning with the observation in Table 2. Overall, these results demonstrate that
iteratively updating πref effectively reduces reward disparity, thereby enabling smoother and more
stable policy improvement.

Ablation study on the choices of β: Lastly, we conduct an ablation study to investigate the
discrepancy between theoretical and empirical choices of the KL coefficient β. According to
Theorem 3.5, a smaller β is theoretically preferable, as regularization drives the policy away from
optimality. To examine this, we consider three choices of β: {0.1, 0.03, 0.01}. Specifically, we
adjust the exploration coefficient α in accordance with β to keep αβ constant, thereby ensuring that
the scale of the exploration term’s gradient remains stable. The results, summarized in Table 7 in
Appendix K.5, reveal that β = 0.03 performs best, followed by β = 0.1, and lastly β = 0.01. This
suggests that while smaller β values are theoretically desirable, an excessively small β can introduce
instability during training, leading to suboptimal performance in practice.

5 Limitation & Conclusion

In this work, we propose SE-POPO, the first practical and provably sample-efficient online exploration
algorithm for RLHF with a polynomial dependence on the reward scale. SE-POPO offers a strictly
superior sample complexity guarantee in theory, while outperforming existing baselines in practice.
One limitation of the approach is that SE-POPO does not extend to general preference models beyond
Bradley–Terry model, particularly those where the preference is not necessarily monotonic. Future
directions include investigating online exploration algorithms with minimal length exploitation
[Singhal et al., 2023, Meng et al., 2024], extending our algorithms to token-level MDP [Xie et al.,
2024, Zhong et al., 2024] and multi-turn RLHF settings [Shani et al., 2024, Gao et al., 2024, Xiong
et al., 2024b].
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A Related Works

RLHF and RLHF algorithms The current RLHF framework was first popularized by [Christiano
et al., 2017], which served to direct the attention of the deep RL community to the preference-based
feedback. Due to its significant success in LLM alignment [OpenAI, 2022, Touvron et al., 2023],
RLHF has gained substantial interest and become one of the prominent research topics in recent
years. The most widely adopted and standard RLHF framework, as described in [Ouyang et al.,
2022, Touvron et al., 2023], consists of two primary stages: 1) optimizing a reward model using
the preference dataset, and 2) refining the LLM policy using PPO [Schulman et al., 2017] based on
the optimized reward model. While this RLHF framework has achieved tremendous success in the
industry, its adoption by academic and open-source communities is challenging due to the essential
limitations of PPO, such as issues with reproducibility [Choshen et al., 2019], hyperparameters
sensitivity [Engstrom et al., 2020], and its significant computational resource requirements. Inspired
by the limitations of this two-stage approach, a new line of research focuses on single-stage algorithms,
including SLiC [Zhao et al., 2023], DPO [?], and its variants, such as IPO [Azar et al., 2024], SPPO
[Wu et al., 2024], VPO [Cen et al., 2024], XPO [Xie et al., 2024], and SELM [Zhang et al., 2024].
These algorithms bypass the reward modeling step and learn a policy by optimizing a designed loss
function on the preference dataset directly. It is observed that such algorithms are much more stable
than PPO and achieve impressive performance on public benchmarks [Tunstall et al., 2023, Dubois
et al., 2024, Zheng et al., 2023].

Theoretical Study on RLHF The earliest theoretical frameworks for RLHF trace back to the
dueling bandits literature [Yue et al., 2012, Saha and Gopalan, 2018, Bengs et al., 2021], along with
studies considering tabular RL with finite state space [Xu et al., 2020, Novoseller et al., 2020] and
linear RL or general function approximation RL with infinite state space [Pacchiano et al., 2021,
Chen et al., 2022, Wu and Sun, 2023, Zhan et al., Das et al., 2024a, Wang et al., 2023]. Apart from
the online setting, a substantial body of research focuses on offline RLHF [Zhu et al., 2023, Zhan
et al., 2023, Ji et al., 2024, Liu et al., 2024], which leverages predetermined offline datasets with
appropriate coverage conditions over the state-action space and can be considered complementary to
our work. Although these studies offer sample complexity guarantees for RLHF, most algorithms
are not scalable enough to be applicable to modern LLMs with large transformer architectures. For
instance, Pacchiano et al. [2021], Das et al. [2024a] incorporate exploration bonuses tailored for
linear models in the reward estimation. Chen et al. [2022], Zhan et al. [2023], Wang et al. [2023]
rely on model-based function approximation and explicitly estimate the policy confidence set. These
approaches fail to yield efficient or practical algorithms when applied to LLMs.

Exploration for online LLM alignment Exploration in online RLHF has seen rapid development
recently. Earlier attempts, such as online DPO [Guo et al., 2024] and iterative DPO [Xu et al.,
2023, Dong et al., 2024, Xiong et al., 2024b], primarily rely on passive exploration, i.e. the inherent
randomness of LLM policy, and lack explicit mechanisms to encourage diverse and exploratory
responses. The importance of active exploration in RLHF has been highlighted by Dwaracherla
et al. [2024]. Subsequently, Ye et al. [2024], Xiong et al. [2024a] propose algorithms with an active
exploration mechanism and provide a sample complexity guarantees for online RLHF. However, these
exploration strategies involve solving an intractable optimization problem, making them impractical
to implement in LLM alignment. Notably, in these works, experiments are often conducted based
on heuristic variants of the proposed algorithms, resulting in a significant gap between theory
and practice. More recently, Cen et al. [2024], Xie et al. [2024], Zhang et al. [2024] introduce
implementation-friendly and provably sample-efficient exploration algorithms for RLHF, which are
most relevant to our work. All three papers are based on the common idea of augmenting the DPO
loss with a reward-based optimistic bonus to encourage exploration. Among them, Zhang et al.
[2024], Cen et al. [2024] mainly focus on the exploration under the contextual bandit formulation of
RLHF, whereas Xie et al. [2024] provides analysis for the token-level MDP formulation. However, a
significant limitation of these algorithms is that their sample complexity scales exponentially with
Rmax, the scale of the reward function (see Asm. 2.1), which is highly inefficient in both theory and
practice. Our algorithm becomes the first that remove such exp(Rmax) dependency.
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B Lightweight Implementation of SE-POPO

In this section, we demonstrate that the moving from (11) to (12) is virtually a “free-lunch” reduction,
based on the following neat observation.

Lemma B.1. Define H(r, π) = E
x∼ρ

y′∼πsam(·|x)

[
σ
(
−β log π(y′|x)

πref(y′|x)

)]
, then for every r ∈ R, we have

|G(r, π(r))−H(r, π(r))| ≤ β

2
Ex∼ρ[DKL(π

⋆
r (·|x)||πref(·|x))],

where π⋆
r = argmaxπ Ex∼ρ,y∼π(·|x)[r(x, y)].

Lemma B.1 implies that the gap between using G(r, π(r)) and H(r, π(r)) scales with β and the
KL divergence between π⋆

r and πref. In this case, given β = o(1/
√
T ), replacing G(r, π(r)) with

H(r, π(r)) in the optimization objective (10) still guarantees that Theorem 3.4 essentially holds, i.e.,

Theorem B.2. By replacing G(r, π(r)) in the optimization objective (10) with H(r, π(r)), with
probability 1− 2δ, POPO guarantees that Regpref(πsam, T ) ≤

O

(√
dRmaxT log

TRmax

d
log
|R|
δ

+ d exp(Rmax) log
TRmax

d
log
|R|
δ

+ βTC ′
KL

)
,

where C ′
KL = maxr∈R Ex∼ρ [DKL(π

⋆
r (·|x)||πref(·|x))].

Theorem B.2 establishes a preference regret bound that is fundamentally consistent with Theorem 3.4,
with the only difference being in the KL term. In particular, when β is sufficiently small, Theorem B.2
reduces to Theorem 3.4 immediately. Therefore, assuming C ′

KL is well-bounded, it follows that the
reward regret in Theorem 3.5 remains valid with the new exploration bonus.

C Supporting Lemmas

We now present several auxiliary lemmas that will be used in next section’s proof.

Lemma C.1. (MLE estimation error [Cen et al., 2024, Xie et al., 2024]) With probability at least
1− δ, for all r ∈ R and t ∈ [T ], there is

ℓ(r⋆,Dt−1)− ℓ(r,Dt−1)

≤ −1

2

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(P⋆(y ≻ y′|x)− Pr(y ≻ y′|x))2

]
+ 2 log

|R|
δ

.

Lemma C.2. Define

R(D) =
{
r ∈ R | ℓ(r,D)− min

r′∈R
ℓ(r′,D) ≤ 2 log

|R|
δ

}
.

Conditioning on Lemma C.1, for all t ∈ [T ], there is r⋆ ∈ R(Dt).

Lemma C.3. Conditioning on Lemma C.2, for all t ∈ [T ], there is

rt+1 = arg max
r∈R(Dt)

{−ℓ(r,Dt) + αG(r, π(r)}

Lemma C.4. With probability at least 1− δ, for all r ∈ R and t ∈ [T ], there is

t−1∑
s=1

(
P⋆(ys ≻ y′s | xs)− Pr(ys ≻ y′s | xs)

)2
≤ 2

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(P⋆(y ≻ y′ | x)− Pr(y ≻ y′ | x))2

]
+ log

|R|
δ

.
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D Proof of Theorem 3.4

By the definition of G, there is

Regpref(πsam, T ) ≤
T∑

t=1

[G(r⋆, π⋆)−G(r⋆, πt)]

=

T∑
t=1

[G(r⋆, π⋆
β)−G(rt, πt)]︸ ︷︷ ︸

TERM 1

+

T∑
t=1

[G(rt, πt)−G(r⋆, πt)]︸ ︷︷ ︸
TERM 2

+

T∑
t=1

[G(r⋆, π⋆)−G(r⋆, π⋆
β)]︸ ︷︷ ︸

TERM 3

where π⋆
β = argmaxπ∈Π J(r⋆, π) and rt represents the reward corresponding to πt, i.e., πt =

argmaxπ∈Π J(rt, π).

Bounding TERM 1 Notice that in objective (9), πt is completely dependent on rt. In this regard,
the function G can be considered as a function that depends only on the reward. By Lemma C.2 and
C.3, we have

−ℓ(r⋆,Dt−1) + αG(r⋆, π⋆
β) ≤ −ℓ(rt,Dt−1) + αG(rt, πt),

thus

G(r⋆, π⋆
β)−G(rt, πt) ≤

1

α
[ℓ(r⋆,Dt−1)− ℓ(rt,Dt−1)].

By Lemma C.1, it holds that

TERM 1 ≤ − 1

2α

T∑
t=1

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(P⋆(y ≻ y′|x)− Prt(y ≻ y′|x))2

]
+

2

α
T log

|R|
δ

.

Bounding TERM 2 By Assumption 3.3, we can rewrite TERM 2 into

TERM 2

=

T∑
t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x) [Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x)]

=

T∑
t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x) [σ (rt(x, y)− rt(x, y
′))− σ (r⋆(x, y)− r⋆(x, y′))]

≤
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x) [σ (⟨θt, ϕ(x, y, y′)⟩)− σ (⟨θ⋆, ϕ(x, y, y′)⟩)]

≤
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)

[
min

{
max

v∈[−|θ⋆,ϕ(x,y,y′)|,|θt,ϕ(x,y,y′)|]
σ̇(v)|⟨θt − θ⋆, ϕ(x, y, y′)⟩|, 1

}]

≤
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x) [min {exp(|⟨θt − θ⋆, ϕ(x, y, y′)⟩|)σ̇(|⟨θ⋆, ϕ(x, y, y′)⟩|)|⟨θt − θ⋆, ϕ(x, y, y′)⟩|, 1}]

≤
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)
[
min

{
|⟨θt − θ⋆, ϕ(x, y, y′)⟩|2, 1

}]
︸ ︷︷ ︸

TERM 2(1)

+ 3

T∑
t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x) [σ̇(|⟨θ
⋆, ϕ(x, y, y′)⟩|)|⟨θt − θ⋆, ϕ(x, y, y′)⟩|]︸ ︷︷ ︸

TERM 2(2)

.

Here, σ̇ represents the derivative of the sigmoid function. The second inequality uses σ(a)− σ(b) ≤
min

(
maxv∈[−|b|,|a|] σ̇(v)|a− b|, 1

)
, which holds since σ̇ is symmetric and σ is bounded above by
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1. The third inequality is because maxv∈[−|b|,|a|] σ̇(v) ≤ σ̇(b) exp(|a− b|), which follows from the
exponential tail behavior of the logistic derivative. The last inequality is due to min{exp(a)b, 1} ≤
min{a2, 1}+ exp(1)b for any a, b ≥ 0. Denote by

Wt = θt − θ⋆, Xt = ϕ(xt, yt, y
′
t), wt = σ̇(|⟨θ⋆, ϕ(xt, yt, y

′
t)⟩|),

Yt = wtXt, Λt = ϵI+

t−1∑
s=1

XsX
⊤
s , Σt = ϵI+

t−1∑
s=1

YsY
⊤
s ,

for some ϵ > 0. We first focus on bounding TERM 2(1). By the definition of θt, it suffices to note
that

∥Wt∥2Λt
= ϵ∥Wt∥2 +

t−1∑
s=1

⟨Wt, Xs⟩2

≤ ϵR2
max +

t−1∑
s=1

((rt(xs, ys)− rt(xs, y
′
s))− (r⋆(xs, ys)− r⋆(xs, y

′
s)))

2

≤ ϵR2
max + (1 + exp(Rmax))

t−1∑
s=1

(P⋆(ys ≻ y′s|xs)− Prt(ys ≻ y′s|xs))
2
.

By Lemma C.1, C.3 and C.4, there is
t−1∑
s=1

(P⋆(ys ≻ y′s|xs)− Prt(ys ≻ y′s|xs))
2

≤ 2

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(P⋆(y ≻ y′ | x)− Prt(y ≻ y′ | x))2

]
+ log

|R|
δ

≤ 9 log
|R|
δ

+ 4ℓ(rt,Dt−1)− 4ℓ(r⋆,Dt−1)

≤ 9 log
|R|
δ

+ 4ℓ(rt,Dt−1)− 4 min
r′∈R

ℓ(r′,Dt−1) ≤ 17 log
|R|
δ

.

Thus we have

∥Wt∥2Λt
≤ ϵR2

max + 17(1 + exp(Rmax)) log
|R|
δ

, ∀t,

which means

TERM 2(1)

≤
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)

[
min

{
∥Wt∥2Λt

∥Xt∥2Λ−1
t
, 1
}]

≤
(
ϵR2

max + 4 exp(Rmax) log
|R|T
δ

)( T∑
t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)

[
min

{
∥Xt∥2Λ−1

t
, 1
}])

.

To proceed, we recall the elliptical potential lemma.
Lemma D.1. ([Abbasi-Yadkori et al., 2011], Lemma 11) Let {Xt} be a sequence in Rd and Λ0 ∈
Rd×d a positive definite matrix. Define Λt = Λ0 +

∑t−1
s=1 XsX

⊤
s , if ∥Xt∥2 ≤ L for all t , there is

T∑
t=1

min
{
1, ∥Xt∥2Λ−1

t

}
≤ 2(d log(trace(Λ0) + TL2/d)− log det(Λ0)).

Applying this lemma we can get

T∑
t=1

min
{
1, ∥Xt∥2Λ−1

t

}
≤ 2d log

(
1 +

4TR2
max/d

ϵ

)
:= d(ϵ).
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Thus
T∑

t=1

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)

[
min

{
∥Xt∥Λ−1

t
, 1
}]

= E{xt,yt,y′
t}T

t=1

[
T∑

t=1

min
{
∥Xt∥2Λ−1

t
, 1
}]
≤ d(ϵ)

and

TERM 2(1) ≤ ϵd(ϵ)R2
max + 17d(ϵ)(1 + exp(Rmax)) log

|R|
δ

Now we start to bound TERM 2(2). We decompose the term into

TERM 2(2) = E{xt,yt,y′
t}T

t=1

[
T∑

t=1

|⟨Wt, Yt⟩|

]

= E{xt,yt,y′
t}T

t=1

[
T∑

t=1

|⟨Wt, Yt⟩|1
{
∥Yt∥Σ−1

t
≤ 1
}]

+ E{xt,yt,y′
t}T

t=1

[
T∑

t=1

|⟨Wt, Yt⟩|1
{
∥Yt∥Σ−1

t
> 1
}]

. (13)

Now we control the term terms in (13) respectively.

• The first term is bounded by
T∑

t=1

|⟨Wt, Yt⟩|1
{
∥Yt∥Σ−1

t
≤ 1
}

≤
T∑

t=1

∥Wt∥Σt
∥Yt∥Σ−1

t
1
{
∥Yt∥Σ−1

t
≤ 1
}

≤
T∑

t=1

∥Wt∥Σt min
{
1, ∥Yt∥Σ−1

t

}

=

T∑
t=1

[
ϵ∥Wt∥2 +

t−1∑
s=1

⟨Wt, Ys⟩2
]1/2 [

min
{
1, ∥Yt∥2Σ−1

t

}]1/2

≤

{
T∑

t=1

[
ϵ∥Wt∥2 +

t−1∑
s=1

⟨Wt, Ys⟩2
]}1/2{ T∑

t=1

min
{
1, ∥Yt∥2Σ−1

t

}}1/2

≤
√

d(ϵ)ϵTR2
max +

√
d(ϵ)

{
T∑

t=1

t−1∑
s=1

⟨Wt, Ys⟩2
}1/2

≤
√

d(ϵ)ϵTR2
max +

d(ϵ)

2µ
+

µ

2

T∑
t=1

t−1∑
s=1

⟨Wt, Ys⟩2,

where the third inequality is due to Cauchy–Schwarz inequality, the fourth inequality is
because

√
a+ b ≤

√
a+
√
b, and the last inequality is by Young’s inequality.

• The second term is bounded by applying Lemma D.1, i.e.,
T∑

t=1

|⟨Wt, Yt⟩|1
{
∥Yt∥Σ−1

t
> 1
}
≤ Rmax

T∑
t=1

1
{
∥Yt∥Σ−1

t
> 1
}

≤ Rmax

T∑
t=1

min
{
1, ∥Yi∥Σ−1

i

}
≤ Rmaxd(ϵ).

Summing up the two terms we arrive at
T∑

t=1

|⟨Wt, Yt⟩| ≤ Rmaxd(ϵ) +
√

d(ϵ)ϵTR2
max +

d(ϵ)

2µ
+

µ

2

T∑
t=1

t−1∑
s=1

⟨Wt, Ys⟩2.
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thus

TERM 2(2) ≤ Rmaxd(ϵ) +
√
d(ϵ)ϵTR2

max +
d(ϵ)

2µ
+

µ

2
E{xt,yt,y′

t}T
t=1

[
T∑

t=1

t−1∑
s=1

⟨Wt, Ys⟩2
]

As expectation of sum is sum of expectation, we have

E{xt,yt,y′
t}T

t=1

[
T∑

t=1

t−1∑
s=1

⟨Wt, Ys⟩2
]
=

T∑
t=1

t−1∑
s=1

Exs∼ρ,(ys,y′
s)∼πs⊗πsam(·|x)

[
⟨Wt, Ys⟩2

]
=

T∑
t=1

t−1∑
s=1

Exs∼ρ,(ys,y′
s)∼πs⊗πsam(·|x)

[
σ̇(⟨θ⋆, Xs⟩)2 (⟨θt, Xs⟩ − ⟨θ⋆, Xs⟩)2

]
.

To proceed, we introduce an auxiliary lemma.
Lemma D.2. For any a, b ∈ [−Rmax/2, Rmax/2], there is

σ̇(a)|a− b| ≤ 3Rmax|σ(a)− σ(b)|.

By Lemma D.2, we have

T∑
t=1

t−1∑
s=1

Exs∼ρ,(ys,y′
s)∼πs⊗πsam(·|x)

[
σ̇(⟨θ⋆, Xs⟩)2 (⟨θt, Xs⟩ − ⟨θ⋆, Xs⟩)2

]
≤ 3Rmax

T∑
t=1

t−1∑
s=1

Exs∼ρ,ys∼πs(·|x),y′
s∼πsam(·|x)

[
(σ(⟨θt, Xs⟩)− σ(⟨θ⋆, Xs⟩))2

]
= 3Rmax

T∑
t=1

t−1∑
s=1

Ex∼ρ,y∼πs(·|x),y′∼πsam(·|x)

[
(Prt(y ≻ y′|x)− P⋆(y ≻ y′|x))2

]
.

Combining the above, we finally get

TERM 2 ≤ Rmaxd(ϵ) +
√

d(ϵ)ϵTR2
max +

d(ϵ)

2µ
+ ϵd(ϵ)R2

max + 17d(ϵ)(1 + exp(Rmax)) log
|R|
δ

+
3µRmax

2

T∑
t=1

t−1∑
s=1

Ex∼ρ,y∼πs(·|x),y′∼πsam(·|x)

[
(Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x))2

]
.

Bounding TERM 3 By the choice of πt in (9), we have J(r⋆, π⋆) ≤ J(r⋆, π⋆
β). This implies that

Ex∼ρ,(y⋆,y)∼π⋆⊗π⋆
β(·|x) [r

⋆(x, y⋆)− r⋆(x, y)] ≤ Ex∼ρ,(y⋆,y)∼π⋆⊗π⋆
β(·|x)

[
β log

π⋆(y⋆|x)
πref(y⋆|x)

− β log
π⋆
β(y|x)

πref(y|x)

]
.

The key observation is that for any y′ ∈ Y , there is

r⋆(x, y⋆)− r⋆(x, y) ≥ 4[P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)].

This is because y⋆ is always the best response, which means that r⋆(x, y⋆) ≥ r⋆(x, y) for sure.
Moreover, the gradient of sigmoid function is less than 1/4, thereby the gap between the preferences
is at most 1/4th of the gap between rewards. Using the inequality, we have

Ex∼ρ,(y⋆,y,y′)∼π⋆⊗π⋆
β⊗πsam(·|x)

[
P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)

]
≤ 1

4
Ex∼ρ,(y⋆,y)∼π⋆⊗π⋆

β(·|x)

[
β log

π⋆(y⋆|x)
πref(y⋆|x)

− β log
π⋆
β(y|x)

πref(y|x)

]
≤ 1

4
Ex∼ρ,y⋆∼π⋆(·|x)

[
β log

π⋆(y⋆|x)
πref(y⋆|x)

]
=

β

4
Ex∼ρ [DKL(π

⋆(·|x)||πref(·|x))] ,

Thus we have TERM 3 ≤ O(βTEx∼ρ [DKL(π
⋆(·|x)||πref(·|x))]).
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Finishing up Combining Term 1 and Term 2, with probability 1− 2δ and ϵ = 1
T , there is

T∑
t=1

[G(r⋆, π⋆
β)−G(r⋆, πt)] ≤ O

(
1

α
T log

|R|
δ

+
d(ϵ)

µ
+ d(ϵ) exp(Rmax) log

|R|
δ

)
.

as long as 3Rmaxµ
2 ≤ 1

2α . Setting α =

√
d log T

d

RmaxT log
|R|
δ

, µ = 1
3

√
T log

|R|
δ

Rmaxd log T
d

, we finally bound

Regpref(πsam, T ) by

O

(√
dRmaxT log

TRmax

d
log
|R|
δ

+ d exp(Rmax) log
TRmax

d
log
|R|
δ

+ βTCKL

)
,

Therefore, for T ≥ Õ(d exp(2Rmax) log
|R|
δ /Rmax), we have

E
x∼ρ

(y⋆,y,y′)∼π⋆⊗π̄⊗πsam(·|x)

[
P⋆(y⋆ ≻ y′|x)− P⋆(y ≻ y′|x)

]
=

1

T
Regpref(πsam, T )

≤ Õ


√

dRmax log
|R|
δ

T
+ βCKL

 ,

which completes the proof.

E Proof of Theorem 3.5

For every k = 1, . . . ,K, by Theorem 3.4, with probability 1− δ, there is

Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1
sam ⊗πk

sam(·|x)

[
P⋆(y⋆ ≻ y′|x)− P ⋆(y ≻ y′|x)

]

=
Regpref(π

k
sam, T )

T
≤ Õ


√

dRmax log
|R|
δ

T
+ βCKL

 (14)

By Lemma 3.1, we have

Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1
sam ⊗πk

sam(·|x)

[
1{r⋆(x, y)− r⋆(x, y′) ≤ 1} [r⋆(x, y⋆)− r⋆(x, y)]

]

≤ Õ


√

dR3
max log

|R|
δ

T
+ βRmaxCKL

 =: Gap(T ) (15)

For notation simplicity, we denote r⋆(x, y)− r⋆(x, y′) by ∆(x, y, y′). To proceed, we note that

1
{
∆(x, y, y′) ≤ 1

}
≥ 1

{
∆(x, y⋆, y) > max(Rmax − k, 1)

}
1
{
∆(x, y⋆, y′) ≤ max(Rmax − k + 1, 1)

}
.

This is because when ∆(x, y⋆, y) > max(Rmax − k, 1) and ∆(x, y⋆, y′) ≤ max(Rmax − k + 1, 1),
we have

∆(x, y, y′) = ∆(x, y⋆, y′)−∆(x, y⋆, y)

≤ max(Rmax − k + 1, 1)−max(Rmax − k, 1) ≤ 1.
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In this regard, given r⋆(x, y⋆)− r⋆(x, y) ≥ 0 for sure, we have

Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1
sam ⊗πk

sam(·|x)

[
1{r⋆(x, y)− r⋆(x, y′) ≤ 1} [r⋆(x, y⋆)− r⋆(x, y)]

]
= Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1

sam ⊗πk
sam(·|x)

[
1{∆(x, y, y′) ≤ 1}∆(x, y⋆, y)

]
≥ Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1

sam ⊗πk
sam(·|x)

[
1
{
∆(x, y⋆, y) > max(Rmax − k, 1)

}
1
{
∆(x, y⋆, y′) ≤ max(Rmax − k + 1, 1)

}
∆(x, y⋆, y)

]
≥ Ex∼ρ,(y⋆,y,y′)∼π⋆⊗πk+1

sam ⊗πk
sam(·|x)

[
1
{
∆(x, y⋆, y) > max(Rmax − k, 1)

}
1
{
∆(x, y⋆, y′) ≤ max(Rmax − k + 1, 1)

}]
≥ Ex∼ρ,(y⋆,y′)∼π⋆⊗πk

sam(·|x)

[
1
{
∆(x, y⋆, y′) ≤ max(Rmax − k + 1, 1)

}]
− Ex∼ρ,(y⋆,y)∼π⋆⊗πk+1

sam

[
1
{
∆(x, y⋆, y) ≤ max(Rmax − k, 1)

}]
.

The second inequality is because the inner term is non-zero only if ∆(x, y⋆, y) > max(Rmax−k, 1) ≥
1. Combining this with (15), with probability 1−Kδ, there is

Ex∼ρ,(y⋆,y)∼π⋆⊗πK+1
sam (·|x)

[
1
{
∆(x, y⋆, y) ≤ max(Rmax −K, 1)

}]
≥ Ex∼ρ,(y⋆,y′)∼π⋆⊗πK

sam(·|x)

[
1
{
∆(x, y⋆, y′) ≤ max(Rmax −K + 1, 1)

}]
− Gap(T )

≥ Ex∼ρ,(y⋆,y′)∼π⋆⊗π1
sam(·|x)

[
1
{
∆(x, y⋆, y′) ≤ max(Rmax, 1)

}]
−KGap(T )

= 1− Õ

K

√
dR3

max log
|R|
δ

T
+KβRmaxCKL

 .

Setting K = ⌈Rmax⌉ − 1, we achieve that

E
x∼ρ,(y⋆,y)∼π⋆⊗π

⌈Rmax⌉
sam

[
1
{
∆(x, y⋆, y) > 1

}]

≤ Õ


√

dR5
max log

|R|
δ

T
+ βR2

maxCKL

 .

This result implies that

E
x∼ρ,(y,y′)∼π̄⊗π

⌈Rmax⌉
sam

[
1
{
∆(x, y, y′) > 1

}]

≤ Õ


√

dR5
max log

|R|
δ

T
+ βR2

maxCKL

 .

for all π̄. In this regard, it suffices to note that π⌈Rmax⌉
sam is a “good enough” sampler: it can return a

response y′ such that ∆(x, y, y′) ≤ 1 with high probability. Denote by π̄ = POPO(πref, π
⌈Rmax⌉
sam , T ),
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with probability 1− δ, there is

Ex∼ρ,(y⋆,y)∼π⋆⊗π̄(·|x) [r
⋆(x, y⋆)− r⋆(x, y)]

= E
x∼ρ,(y⋆,y,y′)∼π⋆⊗π̄⊗π

⌈Rmax⌉
sam (·|x) [1{∆(x, y, y′) ≤ 1}[r⋆(x, y⋆)− r⋆(x, y)]]

+ E
x∼ρ,(y⋆,y,y′)∼π⋆⊗π̄⊗π

⌈Rmax⌉
sam (·|x) [1{∆(x, y, y′) > 1}[r⋆(x, y⋆)− r⋆(x, y)]]

≤ E
x∼ρ,(y⋆,y,y′)∼π⋆⊗π̄⊗π

⌈Rmax⌉
sam (·|x) [1{∆(x, y, y′) ≤ 1}[r⋆(x, y⋆)− r⋆(x, y)]]

+RmaxEx∼ρ,(y,y′)∼π̄⊗π
⌈Rmax⌉
sam (·|x) [1{∆(x, y, y′) > 1}]

≤ Õ


√

dR7
max log

|R|
δ

T
+ βR3

maxCKL

 .

Setting β ≤ o
(

1√
T

)
, T = N/⌈Rmax⌉ and resizing δ = δ/⌈Rmax⌉ immediately complete the proof.

F Proof of Theorem B.2

In the proof of Theorem 3.4, the only place where we use the condition that πt+1 is the optimal
solution to objective (11) is in the proof of bounding TERM 1. Therefore, it suffices to focus on
TERM 1 itself. As Lemma C.2 and C.3 still hold, we have

−ℓ(r⋆,Dt−1) + αH(r⋆, π⋆
β) ≤ −ℓ(rt,Dt−1) + αH(rt, πt),

Using Lemma B.1, it suffices to note

− ℓ(r⋆,Dt−1) + αG(r⋆, π⋆
β)−

αβ

2
max
r∈R

Ex∼ρ [DKL(π
⋆
r (·|x)||πref(·|x))] ≤ −ℓ(r⋆,Dt−1) + αH(r⋆, π⋆

β)

− ℓ(rt,Dt−1) + αH(rt, πt) ≤ −ℓ(rt,Dt−1) + αG(rt, πt) +
αβ

2
max
r∈R

Ex∼ρ [DKL(π
⋆
r (·|x)||πref(·|x))] ,

thus

G(r⋆, π⋆
β)−G(rt, πt) ≤

1

α
[ℓ(r⋆,Dt−1)− ℓ(rt,Dt−1)] + βmax

r∈R
Ex∼ρ [DKL(π

⋆
r (·|x)||πref(·|x))] .

This completes the proof.

G Proof of Lemma 3.1

Assuming r⋆(x, y) ≤ r⋆(x, y′) + 1. In this case, we note that

P ⋆(y ≻ y′|x) = exp(r⋆(x, y)− r⋆(x, y′))

1 + exp(r⋆(x, y)− r⋆(x, y′))
≤ e

1 + e
≤ 3

4
.

Given this, it suffices to focus on the case where P ⋆(y⋆ ≻ y′|x) ≤ 4/5, otherwise

P ⋆(y⋆ ≻ y′|x)− P ⋆(y ≻ y′|x) ≥ 4

5
− 3

4
≥ r⋆(x, y⋆)− r⋆(x, y)

20Rmax
.

Similarly, since P ⋆(y⋆ ≥ y′|x) ≥ 1/2, it suffices to focus on the case where P ⋆(y ≻ y′|x) ≥ 9/20,
otherwise

P ⋆(y⋆ ≻ y′|x)− P ⋆(y ≻ y′|x) ≥ 1

2
− 9

20
≥ r⋆(x, y⋆)− r⋆(x, y)

20Rmax
.

In this way, we obtain certain constraints on the preferences P ⋆(y⋆ ≻ y′|x) and P ⋆(y ≻ y′|x). This
further leads to constraints on the differences in rewards, i.e.,

0 ≤ r⋆(x, y⋆)− r⋆(x, y′) ≤ 3

2
, −1

2
≤ r⋆(x, y)− r⋆(x, y′) ≤ 1.
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Thus, it suffices to focus on the interval [− 1
2 ,

3
2 ]. It is easily to see that

P ⋆(y⋆ ≻ y′|x)− P ⋆(y ≻ y′|x)
= σ(r⋆(x, y⋆)− r⋆(x, y′))− σ(r⋆(x, y)− r⋆(x, y′))

≥ min
∆∈[− 1

2 ,
3
2 ]
∇σ(∆)[r⋆(x, y⋆)− r⋆(x, y′)− (r⋆(x, y)− r⋆(x, y′))]

=
r⋆(x, y⋆)− r⋆(x, y)

20
.

Combining the above we have

r⋆(x, y⋆)− r⋆(x, y) ≤ 20Rmax[P
⋆(y⋆ ≻ y′|x)− P ⋆(y ≻ y′|x)]

with r⋆(x, y)− r⋆(x, y′) ≤ 1. This completes the proof.

H Proof of Lemma B.1

Fix r ∈ R. Recall π(r) is the optimal solution of the KL-regularized reward objective and π⋆
r =

argmaxπ Ex∼ρ,y∼π(·|x)[r(x, y)]. By the analysis of bounding TERM 3 in the proof of Theorem 3.4,
we first note that

G(r, π⋆
r )−

β

4
Ex∼ρ[DKL(π

⋆
r (·|x)||πref(·|x))] ≤ G(r, π(r)) ≤ G(r, π⋆

r ).

It suffices to focus on G(r, π⋆
r ). Then, we have

G(r, π⋆
r ) = Ex∼ρ,y∼π⋆

r (·|x),y′∼πsam(·|x) [σ(r(x, y)− r(x, y′))]

= Ex∼ρ,y∼π⋆
r (·|x),y′∼πsam(·|x)

[
σ

(
β log

πr(y|x)
πref(y|x)

− β log
πr(y

′|x)
πref(y′|x)

)]
where πr = π(r). Since here y represents the response with the highest reward under r, it suffices to
note that πr(y|x) ≥ πref(y|x). In this case, β log πr(y|x)

πref(y|x) can be bounded by [0, β log 1
πref(y|x) ]. By

the smoothness of sigmoid function, there is

Ex∼ρ,y′∼πsam(·|x)

[
σ

(
−β log

πr(y
′|x)

πref(y′|x)

)]
≤ Ex∼ρ,y∼π⋆

r (·|x),y′∼πsam(·|x)

[
σ

(
β log

πr(y|x)
πref(y|x)

− β log
πr(y

′|x)
πref(y′|x)

)]
≤ Ex∼ρ,y∼π⋆

r (·|x),y′∼πsam(·|x)

[
σ

(
−β log

πr(y
′|x)

πref(y′|x)

)
+

β

4
log

πr(y|x)
πref(y|x)

]
≤ Ex∼ρ,y′∼πsam(·|x)

[
σ

(
−β log

πr(y
′|x)

πref(y′|x)

)]
+

β

4
Ex∼ρ[DKL(π

⋆
r (·|x)||πref(·|x))]

The last inequality is due to q = argmaxp
∑

y q(y) log p(y). Combining the above we can conclude∣∣∣∣G(r, π(r))− Ex∼ρ,y′∼πsam(·|x)

[
σ

(
−β log

πr(y
′|x)

πref(y′|x)

)]∣∣∣∣ ≤ β

2
Ex∼ρ[DKL(π

⋆
r (·|x)||πref(·|x))].

This completes the proof.

I Proof of Auxiliary Lemmas

I.1 Proof of Lemma C.1

The proof refers to the proof of Lemma 2 in [Cen et al., 2024]. To begin with, there is

ℓ(r⋆,Dt−1)− ℓ(r,Dt−1) = −
t−1∑
s=1

log
Pr⋆(y

+
s ≻ y−s |xs)

Pr(y
+
s ≻ y−s |xs)

.

26



Define

Xs
r = log

Pr⋆(y
+
s ≻ y−s |xs)

Pr(y
+
s ≻ y−s |xs)

.

Recall a martingale exponential inequality.
Lemma I.1. ([Zhang, 2023], Theorem 13.2) Let {Xt}∞t=1 be a sequence of random variables adapted
to filtration {Ft}∞t=1. It holds with probability 1− δ such that for any t ≥ 1,

−
t∑

s=1

Xs ≤
t∑

s=1

logE[exp(−Xs)|Fs−1] + log
1

δ
.

Notice that {Xt
r}∞t=1 is a sequence of random variables adapted to filtration {Ft}∞t=1 with Ft given

by the σ-algebra of {(xs, y
+
s , y

−
s ) : s ≤ t}. Applying the above lemma and taking a union bound

among all r ∈ R, we have with probability 1− δ, for every r ∈ R and t, there is

−1

2

t−1∑
s=1

Xs
r ≤

t−1∑
s=1

logE
[
exp

(
−1

2
Xs

r

) ∣∣∣∣Fs−1

]
+ log

|R|
δ

≤
t−1∑
s=1

(
E
[
exp

(
−1

2
Xs

r

) ∣∣∣∣Fs−1

]
− 1

)
+ log

|R|
δ

,

where the last inequality is due to log(1 + x) ≤ x for all x ≥ −1. To proceed, note that

E
[
exp

(
−1

2
Xs

r

) ∣∣∣∣Fs−1

]
≤ E

[√
Pr(y

+
s ≻ y−s |xs)

Pr⋆(y
+
s ≻ y−s |xs)

∣∣∣∣Fs−1

]

= Ex∼ρ,(y,y′)∼πs⊗πsam(·|x),(+,−)∼Pr⋆ (·|x,y,y′)

[√
Pr(y+ ≻ y−|x)
Pr⋆(y+ ≻ y−|x)

]

= Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

 ∑
(+,−)

√
Pr(y+ ≻ y−|x)Pr⋆(y+ ≻ y−|x)


= 1− 1

2
Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

 ∑
(+,−)

(√
Pr(y+ ≻ y−|x)−

√
Pr⋆(y+ ≻ y−|x)

)2
≤ 1− 1

8
Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

 ∑
(+,−)

(
Pr(y

+ ≻ y−|x)− Pr⋆(y
+ ≻ y−|x)

)2
= 1− 1

4
Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(Pr(y ≻ y′|xs)− Pr⋆(y ≻ y′|xs))

2
]
,

where the second inequality is due to |
√
x−√y| ≥ |x− y|/2 for any x, y ∈ [0, 1]. The last equality

is because |Pr(y ≻ y′|xs) − Pr⋆(y ≻ y′|xs)| = |Pr(y
′ ≻ y|x) − Pr⋆(y

′ ≻ y|x)|. Combining the
above, we finally have

ℓ(r⋆,Dt−1)− ℓ(r,Dt−1) ≤ −
1

2

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(Pr(y ≻ y′|x)− Pr⋆(y ≻ y′|x))2

]
+ 2 log

|R|
δ

,

which completes the proof.

I.2 Proof of Lemma C.2

Conditioning on the event in Lemma C.1, we have

ℓ(r⋆,Dt−1)− ℓ(r,Dt−1) ≤ 2 log
|R|
δ

for all r ∈ R and t ∈ [T ]. This completes the proof.
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I.3 Proof of Lemma C.3

For any r ∈ R satisfying ℓ(r,Dt)−minr′∈R ℓ(r′,Dt) > 2 log |R|
δ , there is

ℓ(r,Dt)− ℓ(r⋆,Dt) > 2 log
|R|
δ
− 2 log

|R|
δ

= 0

since ℓ(r⋆,Dt−1)−minr′∈R ℓ(r′,Dt) ≤ 2 log |R|
δ by Lemma C.2. Therefore,

−ℓ(r,Dt) +G(r, π(r))I(r,Dt) = −ℓ(r,Dt) < −ℓ(r⋆,Dt)

< −ℓ(r⋆,Dt) +G(r⋆, π(r⋆))

≤ max
r′∈R

{−ℓ(r′,Dt) +G(r′, π(r′))I(r′,Dt)} .

The last inequality is due to I(r⋆,Dt) = 1 by Lemma C.2. This implies that such r ̸∈ R(Dt)
cannot be the optimal solution of (10). In this case, it suffices to focus on r ∈ R(Dt). Consider
I(r⋆,Dt) = 1 for every r ∈ R(Dt), we complete the proof.

I.4 Proof of Lemma C.4

Let Ft be a filtration. Denote by Xt =
(
P⋆(yt ≻ y′t | xt) − Pr(yt ≻ y′t | xt)

)2
and Pt =

Ex∼ρ,(y,y′)∼πt⊗πsam(·|x)

[
(P⋆(y ≻ y′ | x)− Pr(y ≻ y′ | x))2

]
, it suffices to note that (Xt)t∈N+ is a

sequence of non-negative random variables satisfying E[Xt | Ft−1] = Pt. We first have
E[exp(Xt − 2Pt) | Ft−1] ≤ E[1 + (Xt − 2Pt) + (Xt − 2Pt)

2 | Ft−1]

= E[1− Pt +X2
t | Ft−1] ≤ 1,

where the first inequality is because exp(a) ≤ 1 + a + a2 for a ∈ [−1, 1] and the last is due
to X2

t ≤ Xt. Denote by Yt = exp(
∑t

s=1(Xs − 2Ps)), it suffices to note that Y1, . . . , YT is a
non-negative supermartingale. By Ville’s inequality, we immediately have

P
(
∃t, Yt >

1

δ

)
≤ δ,

which implies

P

(
∃t,

t∑
s=1

Xs > 2

t∑
s=1

Ps + log
1

δ

)
≤ δ.

Taking a union bound on r ∈ R completes the proof.

I.5 Proof of Lemma D.2

Proof. Without loss of generality, we assume a ≥ 0. We prove by case analysis.

1. (b ∈ [a− 1, a+ 1]):

|σ(a)− σ(b)| ≥ σ̇(a+ 1)|a− b| ≥ 1

3
σ̇(a)|a− b|.

2. (b ̸∈ [a− 1, a+ 1]):

|σ(a)− σ(b)| =
∣∣∣∣ 1

1 + exp(a)
− 1

1 + exp(b)

∣∣∣∣
≥
∣∣∣∣ 1

1 + exp(a)
− 1

1 + exp(a+ 1)

∣∣∣∣
=

1

1 + exp(a)

exp(a+ 1)− exp(a)

1 + exp(a+ 1)

≥ 1

3

1

1 + exp(a)

exp(a)

1 + exp(a)

≥ 1

3
σ̇(a) ≥ 1

3
σ̇(a)

|b− a|
Rmax

.
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J Generalization beyond linear preference oracle

In this section, we extend Theorem 3.4 from the linear reward oracle to a more general preference
oracle. To do this, we introduce a general complexity measure—preference-based generalized eluder
coefficient (PGEC)—which aligns with the complexity measures definitions in prior works [Xie et al.,
2024, Zhang et al., 2024].

Definition J.1. (Preference-based GEC) Given a reward class R, we define the preference-based
Generalized Eluder Coefficient (PGEC) as the smallest dPGEC such that there exist B ∈ O(1),
s.t. for any T , γ > 0, sequence of policies πt ∈ Π and rewards rt ∈ R satisfying∑t−1

s=1 (P⋆(ys ≻ y′s|xs)− Prt(ys ≻ y′s|xs))
2 ≤ γ, we have

T∑
t=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x) [Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x)]

≤

√√√√dPGEC

T∑
t=1

t−1∑
s=1

Ex∼ρ,(y,y′)∼πs⊗πsam(·|x)

[
(Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x))2

]
+
√
dPGECT +Bγ

The definition of PGEC is an variant of the Generalized Eluder Coefficient (GEC) proposed
in Definition 3.4 of Zhong et al. [2022]. Specifically, initializing B = Õ(d exp(Rmax)),
it suffices to note dPGEC = dRmax for the linear reward case, as our selected rt satisfies∑t−1

s=1 (P⋆(ys ≻ y′s|xs)− Prt(ys ≻ y′s|xs))
2 ≤ O(log(|R|/δ)) for every t. By leveraging Defi-

nition J.1, we can extend the proof of Theorem 3.4 beyond the linear reward oracle. The only required
modification is in the proof for bounding TERM 2. Notice that

TERM 2 =

T∑
t=1

Ex∼ρ,y∼πt(·|x),y′∼πsam(·|x) [Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x)]

≤

√√√√dPGEC

T∑
t=1

t−1∑
s=1

Ex∼ρ,y∼πs(·|x),y′∼πsam(·|x)

[
(Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x))2

]
+
√
dPGECT +Bγ

≤ dPGEC

2µ
+

µ

2

T∑
t=1

t−1∑
s=1

Ex∼ρ,y∼πs(·|x),y′∼πsam(·|x)

[
(Prt (y ≻ y′|x)− P⋆ (y ≻ y′|x))2

]
+
√
dPGECT +Bγ,

which matches the bound of TERM 2 in Theorem 3.4. Hence, with Definition J.1, it suffices to say
that POPO guarantees

Regpref(πsam, T ) ≤ Õ

(√
dPGECT log

|R|
δ

+ βTCKL

)
,

which also implies that the sample complexity of SE-POPO can be bounded by Õ
(

dPGECR
7
max log

|R|
δ

ϵ2

)
.

K Experiments Details

K.1 Implementation Details

The experiments were conducted on 4 x Nvidia A100 80G GPUs. The pseudocode of our algorithm’s
implementation is illustrated in Algorithm 3. In the implementation, we set πsam = πt and use the
chosen responses to simulate the on-policy responses. To accelerate training, following Dong et al.
[2024], we do not restart from the initial model at each iteration but use the last-iteration model as
the initial checkpoint. Moreover, following Zhang et al. [2024], we update πref = πt+1 for each
iteration to avoid performance regression. For the implementations of DPO and XPO, they differ from
Algorithm 3 only in the optimization objectives: DPO does not include the exploration bonus (i.e.,
α = 0), while XPO replaces the exploration bonus to −α

∑
(x,y1)∈Dt

log π(y1|x)
πref(y1|x) .
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Algorithm 3 Practical Implementation of SE-POPO
Input: Reference policy πref, Prompt dataset D, Iterations T
for t = 1, . . . , T do

Set Dt as the t-th portion of D and generate (y1, y2) ∼ πref(·|x) for each prompt x ∈ Dt.
Annotate responses (x, y1, y2)→ (x, yw, yl).
Optimize

πt+1 = argmax
π

∑
(x,yw,yl)∈Dt

log σ

(
β log

π(yw|x)
πref(yw|x)

− β log
π(yl|x)
πref(yl|x)

)

+ α
∑

(x,y2)∈Dt

σ

(
− β log

π(y2|x)
πref(y2|x)

)

Update πref ← πt+1.
end for

Across all three experiments, we use Llama-3-8B-SFT 4 as the base
model, RLHFlow-ultrafeedback 5 dataset as the training prompt sets, and
GRM-Llama3-8B-rewardmodel-ft 6 as the training preference model. For hyperparame-
ters, we mainly follow the settings in Xie et al. [2024] and Zhang et al. [2024]. We set β = 0.1, use a
global batch size of 128, use a learning rate of 5 × 10−7 with cosine scheduling. For exploration
coefficient α, we employ a decreasing strategy across iterations as in Xie et al. [2024] and do a grid
search for α in the first iteration over {0.1, 0.01, 0.001, 0.0001, 0.00001}. Based on the empirical
performance on AlphcaEval benchmark, we finally select {1 × 10−3, 5 × 10−4, 0} for XPO and
{1× 10−1, 5× 10−2, 0} for SE-POPO respectively.

K.2 Experiment results with base model Qwen2.5-7B-Instruct

To demonstrate that our algorithm generalizes across different base models, we further conduct
experiments using base model Qwen2.5-7B-Instruct. In this experiment, we directly use all the
hyperparameters from the setup in Appendix K.1. The results are shown below.

Model IID Data Alpaca Data
WR AvgR WR AvgR

Qwen2.5-7B-Instruct - -2.86 - -3.39

DPO-iter1 61.7 -1.93 64.2 -2.20
DPO-iter2 67.1 -1.26 78.3 -0.81
DPO-iter3 71.7 -0.55 84.4 0.66

XPO-iter1 61.8 -1.92 69.5 -1.80
XPO-iter2 68.5 -1.14 81.2 -0.27
XPO-iter3 73.5 -0.19 86.0 0.97

SE-POPO-iter1 62.5 -1.86 68.4 -1.72
SE-POPO-iter2 69.2 -1.09 81.7 -0.10
SE-POPO-iter3 74.1 -0.21 86.6 1.18

Table 4: Performance with base mode Qwen2.5-7B-Instruct

As shown, SE-POPO consistently outperforms both DPO and XPO even after to switching to a different
base model. This further validates the robustness and effectiveness of our algorithm.

4https://huggingface.co/RLHFlow/LLaMA3-SFT
5https://huggingface.co/datasets/RLHFlow/ultrafeedback_iter1, https://huggingface.co/datasets/RLHFlow/ultrafeedback_iter2,

https://huggingface.co/datasets/RLHFlow/ultrafeedback_iter3
6https://huggingface.co/Ray2333/GRM-Llama3-8B-rewardmodel-ft
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K.3 Academic Benchmarks

For academic benchmarks, following Xie et al. [2024], we select tasks MMLU Hendrycks et al.
[2020], AGIEval Zhong et al. [2023], ANLI Nie et al. [2019], GPQA Rein et al. [2023], GSM8K
Cobbe et al. [2021], WinoGrande Sakaguchi et al. [2019], TruthfulQA Lin et al. [2022], ARC
Challenge Clark et al. [2018] and HellaSwag Zellers et al. [2019] as the benchmarks. The results
are proposed in Table 5. It can be observed that with increasing iterations, both SE-POPO and other
baselines may degrade on certain benchmarks, which is known as the alignment tax Askell et al.
[2021], ?], Lin et al. [2024]. Nevertheless, the evaluation result suggests that our method exhibits no
additional degradation compared to DPO and XPO, while still effectively improving the base model
across most benchmarks.

Table 5: Performance comparison across academic benchmarks

Model MMLU AGIE ANLI GPQA GSM8K WINOG TRUTH ARC HELLA
Llama-3-8B-SFT 62.56 39.36 41.80 32.37 71.80 75.93 53.46 56.14 59.91

DPO-iter1 62.75 40.32 44.00 32.81 76.64 76.24 56.18 55.97 79.58
DPO-iter2 63.01 41.00 44.90 30.80 77.86 76.40 57.59 55.63 80.05
DPO-iter3 63.11 41.56 46.90 31.25 77.55 76.16 59.48 54.78 80.33

XPO-iter1 62.65 40.38 43.90 32.37 76.35 76.56 56.17 55.97 79.64
XPO-iter2 63.14 41.38 45.70 31.25 77.33 76.95 58.58 55.38 80.29
XPO-iter3 63.09 41.65 46.10 31.03 78.24 77.19 59.43 54.95 80.43

POPO-iter1 62.80 40.45 44.00 32.37 76.80 76.00 56.21 56.14 79.80
POPO-iter2 62.86 41.39 45.10 31.70 77.48 76.87 57.75 54.95 80.27
POPO-iter3 63.13 41.68 45.60 31.92 77.63 76.63 59.14 54.35 80.67

K.4 XPO theoretical implementation

Model IID Data Alpaca Data AE2 LC MT-Bench Avg. Len. (in AE2)
WR AvgR WR AvgR

XPO-theory-iter1 62.6 -4.40 78.3 -5.79 - - 1674
XPO-theory-iter2 68.8 -3.37 87.5 -3.79 - - 1886
XPO-theory-iter3 71.7 -2.62 91.0 -1.21 30.70 7.91 2183

Table 6: Performance of XPO theoretical implementation

K.5 Choices of KL-regularized coefficient β

Model IID Data Alpaca Data
WR AvgR WR AvgR

SE-POPO-Beta-1e-1-iter1 62.5 -4.32 80.0 -5.68
SE-POPO-Beta-1e-1-iter2 68.2 -3.15 89.1 -2.45
SE-POPO-Beta-1e-1-iter3 73.3 -2.03 92.4 0.61

SE-POPO-Beta-3e-2-iter1 62.3 -4.27 80.6 -5.51
SE-POPO-Beta-3e-2-iter2 70.0 -3.10 88.6 -2.49
SE-POPO-Beta-3e-2-iter3 72.9 -2.01 93.2 0.83

SE-POPO-Beta-1e-2-iter1 62.8 -4.32 78.7 -5.70
SE-POPO-Beta-1e-2-iter2 67.5 -3.23 89.4 -2.65
SE-POPO-Beta-1e-2-iter3 72.0 -2.10 92.3 0.54

Table 7: Performance across β = {0.1, 0.03, 0.01}
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately present the primary claims of the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5 and the assumptions are presented
in Section 3.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All of the detailed proof are provided in the appendix, including theorems,
formulas, and proofs numbered and cross-referenced and assumptions stated and referenced
in the statement of the theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of experiments are in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide an anonymized version of data and code as supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We show the details of datasets, hyperparameters, and empirical implementa-
tion code in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are conducted on models and datasets that are significantly
large.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments compute resources are discussed in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the models and dataset used in the paper in Appendix K.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code used in the paper is well documented with instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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