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Abstract—The success of deformable part-based models (DPMs)
for visual object detection relies on a large number of labeled
bounding boxes. With only image-level annotations, our goal is
to propose a model enhancing the weakly supervised DPMs by
emphasizing the importance of location and size of the initial
class-specific root filter. To adaptively select a discriminative set
of candidate bounding boxes as this root filter estimate, first,
we explore the generic objectness measurement to combine the
most salient regions and ‘“‘good” region proposals. Second, we
propose learning of the latent class label of each candidate window
as a binary classification problem, by training category-specific
classifiers used to coarsely classify a candidate window into either
a target object or a nontarget class. Finally, we design a flexible
enlarging-and-shrinking postprocessing procedure to modify
the DPMs outputs, which can effectively match the approximative
object aspect ratios and further improve final accuracy. Extensive
experimental results on the challenging PASCAL Visual Object
Class 2007 and the Microsoft Common Objects in Context 2014
dataset demonstrate that our proposed framework is effective for
initialization of the DPM’s root filter. It also shows competitive final
localization performance with state-of-the-art weakly supervised
object detection methods, particularly for the object categories that
are relatively salient in the images and deformable in structures.

Index Terms—Deformable part-based models (DPMs), object
detection, region proposals, weakly supervised learning.

1. INTRODUCTION

BJECT detection/localization in images/videos is one of
O the most widely studied problems in computer vision
applications [1]-[3] with the explosive growth of online im-
ages/videos today. It can also be extended to numerous applica-
tions related to the multimedia community, e.g., image and video
retrieval, video surveillance [4], [5], traffic safety: self or assisted
driving systems, efc. This task remains challenging mainly due
to scale and viewpoint variation, deformation, occlusion, back-
ground clutter, intra-class variations and inter-class similarities
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for objects in real world images/videos. For most of the existing
methods, a fully supervised learning (FSL) approach is adopted
[2], [3], [6]-[8], where positive training images are manually
annotated with bounding boxes encompassing the objects of in-
terest. This manual annotation of object location for large-scale
image databases is extremely laborious and unreliable though
quite valuable for learning accurate object detectors. However,
it is usually far easier to obtain weakly labeled data, where
image-level labels (e.g., user generated image tags on Inter-
net) are presented. For example, the recently popular ImageNet
ILSVRC dataset [9] contains far fewer object-level annotations
(bounding boxes) than image-level labels. As a result, in this
paper, in contrast to the traditional FSL, we are concerned with
weakly supervised learning (WSL) for object detection, where
the exact object locations in positive training examples are not
provided, giving only the binary labels indicating the presence
or absence of the objects of interest.

A. Related Work

Inrecent years, there has been a substantial amount of work on
weakly supervised object detection. Based on weakly annotated
examples, the common practice is to jointly learn an appearance
model together with the latent object location. The majority
of related work treats WSL for object detection as a multiple
instance learning (MIL) [10] problem. In the MIL framework,
there are some positive and some negative bags. A bag is positive
when it has at least one positive instance, while it is negative
if all the instances are negative. The objective of MIL is to
train a classifier which can correctly classify a test instance as
either positive or negative. MIL problems are usually solved
by finding a local minimum of non-convex objective functions
(e.g., MI-SVM [11]). Galleguillos et al. [12] first use the MIL
model to recognize and localize objects based on multiple stable
segmentations. [13] and [14] use variants of MIL to learn object
detectors from weakly labeled images and videos. Cinbis ef al.
[15] use a multi-fold training procedure for MIL to avoid rapid
convergence to poor local optima. Also, to get rid of bad local
minima, Song et al. [16] initialize the object locations via a
discriminative submodular covering method.

Another main strategy for WSL detection is to utilize a
category-independent saliency measure to predict whether a
given image region belongs to an object or not. For example, De-
selaers et al. [17] propose a fully connected conditional random
field (CRF) [18] which aims at selecting a candidate window
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with the highest objectness score [19] in each positive training
image.

Some works identify the WSL problem as a transfer learning
(TL) problem. For example, Shi et al. [20] formulate a ranking
based transfer learning method, which effectively transfers a
model for predicting object location from an auxiliary dataset
to a target dataset with completely unrelated object categories.
Hoffman et al. [21] propose an algorithm which can learn the
difference between the image classifier and the object detector,
and which can transfer this knowledge to classifiers for cate-
gories without bounding box annotated data, turning them into
detectors. However, for both of these methods, auxiliary object
level annotations for part of the dataset are required.

In addition, Pandey and Lazebnik [22] modify the fully su-
pervised DPMs in a weakly supervised manner without object
level annotations, which learns structural object detectors based
on randomly initialized windows in the positive training images.
Shi et al. [23] propose a WSL framework based on Bayesian
joint topic modeling which localizes objects across different
classes concurrently. Recently, Wang et al. [24] propose to learn
the latent categories using probabilistic latent semantic analysis
(pLSA), and to select the target object category by evaluating
each latent category’s discrimination. Bilen [25] et al. propose
to couple a smooth discriminative learning procedure with a
convex clustering algorithm, by imposing the similarity among
objects of the same class.

Tang et al. [26] focus on the problem of unsupervised ob-
ject detection through co-localization, which further alleviates
the need for annotations, requiring only a set of images each
containing some common object to be localized. In object co-
localization, we do not know which objects are contained in the
image set, and no negative images or images known not to con-
tain the object are provided. Co-localization outputs bounding
boxes as weakly supervised localizations without strong super-
vision. [26] proposes a joint optimization of the prior, similarity,
and discriminability of both images and boxes. The proposed
formulation is capable of accounting for noisy annotations in
real-word images.

B. Motivation and Contribution

Deformable part-based models (DPMs) [7] and their variants
[27]-[29] have achieved remarkable success in supervised ob-
ject detection on challenging PASCAL VOC datasets [30] for
a long period. The DPMs represents an object with a holistic
root filter that approximately covers an entire object and with
several higher resolution part filters that capture smaller local
appearances (parts) of the object. It also characterizes the de-
formations by links connecting different parts. In the standard
(fully supervised) DPMs framework, the root filter is initial-
ized with the positive ground-truth object bounding box, and
is allowed to move around in its small neighborhood to max-
imize the filter score. The locations of object parts are always
treated as latent information due to the unavailability of object
part annotations upon most occasions. A latent SVM (LSVM)
is adopted to learn object deformation, which can alternate be-
tween fixing latent values (part locations) for positive examples
and optimizing its objective function.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 2, FEBRUARY 2017

Pandey and Lazebnik [22] modify the fully supervised DPMs
in a weakly supervised manner without object level annotations:
this treats the location of root filter and part filters fully latent and
learns structural object detectors based on the entire image. Root
filter location is initialized randomly, based on a window that
has at least 40% overlap with the positive training image, while
its aspect ratio is initialized roughly to the average of the aspect
ratios of positive training examples. However, the specific size
and location of the initial root filter, as well as their aspect ratio,
are indicated to have a significant impact on the final localization
result [6], [7], [22]. By random initialization, the object detector
tends to learn spurious models of other classes or background
regions, leading to lower accuracy during testing. To the best
of our knowledge, methods for initializing the root filter based
on theoretical deduction in weakly supervised DPMs, as well as
the definition of the object aspect ratios, have not been properly
studied in [22].

To make up the performance gap between weakly and fully
supervised DPMs, in this paper, our goal in this paper is to
propose a model enhancing the weakly supervised DPMs by
emphasizing the importance of location and size of the initial
class specific root filter. To be more precise, our goal is to dis-
cover a reliable initial set of image windows that are likely
to contain the target objects in the positive training images with
only category level annotations, so as to represent the object
instances. Hence, our WSL framework incorporates adaptive
window selection from class independent object proposals and
training of deformable part-based models. In particular, we ex-
plore the “objectness” approaches [19], [31], which generate
class independent object proposals with corresponding scores
indicating their probabilities of being object instances. We then
adaptively select a reliable set of windows from the derived
object proposals for each image as initialization, by incorpo-
rating visual saliency and “objectness” scores. Two different
initialization schemes are developed: single region and multiple
region initilization. The former tends to select one relative larger
bounding box which may contain the most salient part in the im-
age, while the latter is far more general, which selecting a small
number of object estimations that can also capture smaller and
scattered objects. For multiple region initialization, the region
labels are latent information. We learn the latent class label by
framing it as a classification problem, which tries to coarsely
classify each region into a target object class or a non-target class
by some class specific classifiers. The generated object estima-
tions are treated as the initial root filter estimates for training
DPMs detectors.

The main contributions in this work are four-fold:

1) We propose a selection model based on generic “ob-
jectness” and visual saliency to adaptively select a dis-
criminative set of candidate windows which tend to
represent the object instances in each weakly labeled train-
ing image.

2) We frame the learning of the latent class label of each
candidate window as a binary classification problem, by
training category specific classifiers, which try to coarsely
classify a candidate window into either a target object or
a non-target class.
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3) We propose to use a flexible enlarging-and-shrinking post-
processing procedure to modify the predicted output of the
DPMs detector, which can effectively generate more ac-
curate bounding boxes by better conserving foreground
and cropping out plain background regions, to approxi-
matively match the object aspect ratios.

4) Extensive experiments are carried out on two subsets
and on the entire set of the challenging PASCAL VOC
2007 database [30] with different criteria, namely annota-
tion accuracy in terms of correct localization on training
set, and detection accuracy in terms of average preci-
sion on test set. Experimental results demonstrate that our
proposed framework is effective for initialization of the
DPMs root filter and that it shows shows competitive final
localization performance with the state-of-the-art weakly
supervised object detection methods. To the best of our
knowledge, we are the first to present weakly supervised
results on the Microsoft COCO 2014 dataset [32].

A preliminary version of this work appeared in [33], incor-
porating the generic “objectness” with deformable part-based
models for WSL detection. While including that work, this pa-
per significantly extends it in the following ways. First, we
explore a far more general M-WDPMs (multiple region initial-
ization for weakly supervised deformable part-based models)
model which tries to select multiple regions, and we learn the
latent label information of these regions in an effective way. This
model shows its superiority in discovering not only salient ob-
jects but also smaller and scattered objects in comparison with
S-WDPMs (single region initialization for weakly supervised
DPMs) in [33]. Second, we additionally experiment with ad-
vanced region proposals generated by Selective Search [31], as
well as adopting the deep convolutional neural network (CNN)
[34] features as image representation in contrast with traditional
low-level handcrafted features (e.g., HOG [6]). Third, we eval-
uate our framework on the entire PASCAL VOC 2007 dataset,
and compare it with state-of-the-arts. We also analyze the types
of error that our detection framework tends to make, in or-
der to give insights for future improvement. Finally, we report
the detection results on the challenging Microsoft COCO 2014
dataset.

C. Organization of the Paper

The rest of the paper is organized as follows: we present
our weakly supervised DPMs framework in detail in Section II,
while in Section III we present our experimental results and the
comparison with other methods on PASCAL VOC 2007 and
Microsoft COCO 2014 datasets. In Section IV, we conclude our
work.

II. FUSING GENERIC OBJECTNESS AND DEFORMABLE
PART-BASED MODELS FOR WEAKLY
SUPERVISED OBJECT DETECTION

In this section, we detail our approach of the weakly su-
pervised DPMs for object detection. First, we introduce our
approach to adaptively select the representative and discrimi-
native candidate regions from the category-independent object
proposals. Second, we elaborate how to learn latent class in-
formation when multiple regions are selected. We then briefly

describe the weakly supervised learning procedures using the
selected regions with DPMs and the detection rescoring algo-
rithm for testing. Finally, we propose our new post-processing
method to further refine the predicted object bounding box ob-
tained by a weak DPMs detector, so as to cover the object more
precisely.

A. Object Estimations: Initialization

In the weakly supervised DPMs training procedure, good ini-
tialization of the root filter is crucial. Our goal is thus to discover
a reliable initial set of image windows likely to contain the tar-
get objects in the positive training images with only image-level
annotations, so as to represent the object instances.

1) Region Extraction: Two general approaches have been
proposed for generating class-independent object proposals in
recent years: window scoring methods such as Objectness [19],
BING [35], EdgeBoxes [36] and grouping methods such as Se-
lective Search [31], Constrained Parametric Min-Cuts (CPMC)
[37], Multiscale Combinatorial Grouping (MCG) [38]). We use
Selective Search since it has been used as the proposal generat-
ing method by the state-of-the-art supervised R-CNN detector
[3]. We also report results using the Objectness method [19] to
compare with prior detection work [19], [33].

Given an input image I (shown in Fig. 1(a)), we first select top
n scored windows W = {wy, ws, ..., w,} and corresponding
scores, denoted as S = {s1, $9,..., $,}, indicating the proba-
bilities of covering objects within them, generated by Selec-
tive Search (shown in Fig. 1(b)). To balance a high recall (i.e.,
covering more objects) and computation efficiency (i.e., small
number of region proposals), we set n = min (1000, V) accord-
ing to [39], where N is the number of proposals generated by
Selective Search.

Based on the fact that the region proposal method is designed
to capture all possible objects within an image, we assume that
it is sufficiently reliable to provide a set of good candidate
windows W* C W covering the objects of interest. However,
windows with higher scores are not always the effective choices
[20]: they usually encompass other noisy background, or they
may cover only some object parts. To extract a reliable set of
object estimations from the pool of n windows, we design a
sequential selection scheme shown in Fig. 1(c)—(g).

2) Salient Reference Region: For weakly supervised learn-
ing of DPMs detectors, it is obvious that the initialization of
the root filter is significant. The detector will be seriously dam-
aged if it shoots on the background region. Consequently, it is
an absolute necessity to start from visually meaningful regions
(foreground objects). Inspired by the success of visual saliency
applied in salient object recognition [1], [40], we compute the
reference region R [shown in Fig. 1(d)] by taking the threshold
and merging the discrete saliency map (or heat map) M into one
or more connected region(s) using [41] [shown in Fig. 1(c)]. The
value of saliency map M at pixel (4, j) is obtained by summing
up the scores of the windows that cover this pixel

M(i,j) =Y My, ) ()
k=1
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Fig. 1. Ilustration of our proposed method to extract the initial object estimations: for (a) an input image, (b) object proposals and corresponding scores indicating
the probabilities of containing objects are generated using the objectness [19] or selective search [31] method. (c) is the saliency map derived from (b), and
(d) is the reference region obtained by thresholding (c). A coarse set of candidate windows (f) is selected based on the sorted scores of object proposals (e) after
non-maximum suppression (NMS). In the top image of (g), which indicates the single region selection scheme, the blue window is our initial object estimation
obtained by optimizing the overlap between (d) and (f). The bottom image of (g) indicates the multiple region selection scheme. Its color windows with solid lines
are multiple finer regions which are assumed to represent the objects in the original image. For both images of (g), the green dot line windows are ground-truth

bounding boxes for person and horse, respectively.

where

Sk, ifI(i,j)ewk,VwkeW
M (i, j) = (2)
e(9) 0, otherwise.

The reference region R can be one connected (continuous) re-
gion or several discrete regions in the image according to the
score range and threshold value.

3) Coarse Candidate Window Pool: It is known that the
score predicted by Selective Search (i.e., objectness score) cor-
responds to the probability of containing a target object to some
extent. To take advantage of this auxiliary information, we con-
currently select the top 200 scored windows out of n windows
as candidates, [shown in Fig. 1(e)]. To avoid near duplicate
candidate windows, we further perform non-maximum sup-
pression (NMS) to obtain a finer set of candidates. Fig. 1(f)
illustrates the derived smaller set of [ confident candidates
w = {1, s, ..., } and their corresponding scores denoted
as S = {§1,§2,. . .,§l}.

4) Object Invariant Estimations: Given the reference region
R which implies the most salient region (or regions) within
an image, and confident candidate windows W with scores S ,
the overlap between them provides valuable information for
finding the locations of target objects. We will propose two
different schemes to fuse the salient region(s) with the extracted
candidate windows.

a) Single region initialization: In [22], the root filter of
the DPMs is randomly initialized from a single window which
covers at least a 40% overlap with the original image. Hence, we
also filter out only one single window w* from the candidate pool
W in order to obtain a direct comparison with [22]. Intuitively,
we expect this window estimation to have a larger overlap with
the salient reference region R, as well as a relatively higher
objectness score. Therefore, the estimation of the initial object
bounding box with objectness score (w*,s*) (Fig. 1(g), top

image) can be determined by optimizing the following function:

area(R N w;)

(w', s7) = area(RUw;) |’

argmax |a$; + (1 —«)

W, EW .8, €8
i€ [L,1] 3

where « is a parameter used to control the influence of the
objectness score s;. In practice, o = 0.2, was selected by a
grid search over {0.1, 0.2, 0.3, 0.4} on a validation set, for
the purpose of emphasizing the priority of the intersection over
union (IoU) overlap between the candidate window and the
merged salient reference region.

The single region initialization scheme prefers to select a rel-
atively large region which may contain the most salient part in
the image. When very few objects are closely gathered in im-
ages, it can produce good DPMs object detectors in a weakly
supervised manner. For example, by adopting the single region
scheme, the blue window in Fig. 1(g) top image, is used as a
positive training example (i.e. DPMs root filter initialization)
for both the horse and the person categories. Moreover, the
strategy of taking large windows in positive images exploits
the inclusion structure of the multiple instance learning (MIL)
problem for object detection: although large windows may
contain a significant amount of background features, they are
likely to include positive object instances and their contextual
information.

b) Multiple region initialization: In fact, multiple objects
(e.g., 2.5 objects on average for PASCAL VOC 2007 trainval
dataset, 7.7 for MS COCO 2014) can be scattered anywhere in
an image. We can therefore further improve DPMs detectors by
providing more object estimations as root filter initialization,
instead of training the object detectors with a single window
for each image. For each image, we are motivated to select a
small number of object estimations that can also capture smaller
and scattered objects, better representing the original image.
Meanwhile, object proposal algorithms such as Selective Search
and Objectness tend to generate more overlapping bounding
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Tllustration of our latent class learning framework for the horse category. For each object category, we train a linear SVM classifier with the CNN features

(output of CNN’s f¢6 layer) of image-level samples (as shown in the left part). Object estimations from the positive training images of this category are scored by
its SVM. We select the regions with higher scores by thresholding as the representative objects of this category (horse vs. non horse for this example).

Heat map by Eq. (1) Heat map by Eq. (4)

Original image

i

Fig. 3.

Some heat map examples generated by (1) and (4).

boxes on larger objects than on smaller ones. Consequently,
scattered small objects are likely to be ignored using (1). Hence,
in order to fully consider these objects which were originally
ignored by (1), we modified it by dividing the sum of scores by
the square root of the number of windows that cover this pixel:

M(i, j) = %ZMMZ}J') )
k=1

where, M}, (i, j) is defined as the same in (2), and k is the number
of windows that cover pixel I(7,j). We show some heat map
examples generated by (1) and (4) in Fig. 3.

We adopt similar criteria to the score function (3), with the
best « being set to 0.4 (for both PASCAL VOC 2007 and
MS COCO 2014) from a grid search over {0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8}. Instead of only selecting the maximum scoring
window in (3), we pick out top ) scored windows W* for
each image. We will discuss the value of () in the experiment
part.

After generating several object estimations from each image,
the next step is to approximately identify the class label of each
estimation given only the labels of the whole image. For exam-
ple, in Fig. 1(g) bottom image, the color windows with solid
lines are associated with the horse and person labels. However,
so far we have no idea which object(s) (or even background)
is/are inside each bounding box. Our goal will be to solve this
problem in the next subsection.

B. Learning Latent Object Classes via Region Classification

For each positive training image, we have generated () ob-
ject invariant estimations with the multiple region initialization
scheme (@) = 1 for single region initialization, and we use the
image-level labels as training annotations). Consider an object
category, e.g., horse, which has P positive training images,
we can obtain a total number of z = P % () object estimations.
Obviously, some of these object estimations come from other
categories (e.g., person, sheep, object parts or the background
regions as well), where the class labels are latent information.
For single region initialization, the unique generated window is
used to initialize the DPMs root filter for any categories appear-
ing in the image. As for multiple region initialization, in this
paper we frame the latent class learning problem as a classifi-
cation problem by coarsely classifying these object estimations
into either the target object category or the non-target category
(i.e., other classes, object parts or background).

1) Region Representation: We use the deep convolutional
neural network (CNN) features to represent the regions (object
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estimations). Firstly, we pre-train an eight-layer (five convo-
lutional layers and three fully-connected layers) Alex-Net [34]
CNN with caffe implementation [42] on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2012 classifi-
cation dataset [9], which contains 1.2 million images of 1000
categories. We then warp each region into a required fixed pixel
size of 227 x 227, and subtract it with the mean RGB image
of the training set, before forward propagating it through the
network. Finally, we take the output of the fc6 layer as R-CNN
[3], which is a 4096-dimensional feature vector, to represent the
input region. While this feature extraction process is similar to
that of R-CNN, it is worth noticing that we do not fine-tune the
pre-trained CNN on the target dataset. This is because the object
level annotations are assumed not to be available in the weakly
annotated data. We do not pad the region with additional image
context around it either, as our region estimation is already ex-
pected to have a significant coverage of the context information
due to our selection schemes in Section II-A.3.

2) Region Classification: Consider training a horse detector.
For all the P positive training images in the horse category, we
generate z object invariant estimations. Intuitively, only part
of these z regions contains the target horse object, others may
have person, sheep, dog or even background. We learn the latent
categories in these regions via region classification.

We first train a horse linear SVM classifier [43] using the
images labeled with horse as positive training examples and
those without horses as negative examples. We compute the
fc6 4096-dimensional CNN features as in Section II-B.1 on
whole images. We then run the trained horse classifier on the
z object invariant estimations in the positive training images.
By thresholding the SVM scores, finally we obtain a subset
Z' regions from z estimations (z’ < z). These 2z’ regions are
assumed to represent the target horse category, which can be
treated as positive training examples of the horse detector.

Suppose we have K categories that we want to detect. We train
one binary SVM classifier on positive and negative images of
each category, and run these K classifiers on their corresponding
object estimations. We select high scoring regions for each target
category so as to represent the objects of interest. Fig. 2 shows
the latent class learning framework using SVM classification on
the horse category.

C. Weakly Supervised DPMs Training and Testing Details

We design two different kinds of deformable part based mod-
els for weakly supervised object detection according to different
initialization schemes in Section II-A.

1) Single Region Initialization for Weak DPMs (S-WDPMs)
Detection: Similarly to [7], each root filter hypothesis in a pos-
itive training image is initialized with the corresponding derived
bounding box from the single region initialization scheme. The
size and aspect ratio of the DPMs root filter are decided by
the average size and aspect ratio of the object estimation boxes
(ground-truth bounding box and aspect ratio are used in [7]).
The root filter hypothesis is allowed to move around in a small
neighborhood to maximize the filter score so as to compen-
sate for imprecise bounding box estimation from Section II-
Ada. In order to obtain a direct comparison with [22], we also
represent an image by a multiscale HOG feature pyramid [6]
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of 16 levels. For this S-WDPMs model, we use only a single
component, since the multiple components are used for detect-
ing objects with different views (S-WDPMs is trained on each
view/category, e.g., Left, Right, etc.). We set the number of parts
in this DPMs to 8 as in [7]). For negative training examples, we
use random negatives from other object categories. For testing,
the sliding window approach is adopted. This single region ini-
tialized weakly supervised DPMs detection model is denoted as
S-WDPMs. We refer the reader to [7] for more details concerning
the DPMs training and detection procedures.

2) Multiple Region Initialization for Weak DPMs (M-
WDPMs) Detection: For the M-WDPMs (multiple region ini-
tialized weakly supervised DPMs), we make it much “deeper”
with the DeepPyramid feature [44], for the reason that the HOG
feature is suboptimal compared to deep features computed by
CNN [3], [8], [24], [45], [46]. The feature map is computed
by the fifth convolutional layer (convb), which has 256 feature
channels. We represent each image (or region) with a feature
pyramid of 7 levels as in [44]. For training, the selected object
estimations from Section II-B.2 are treated as positive training
examples, and the random windows from negative images are
defined as negative examples. We use a DPMs with 3 compo-
nents and 8 parts per component according to [44]. The training
and testing procedures are similar to S-WDPMs above, but we
add a simple bounding box rescoring stage with the help of a
front-to-end CNN padded with a softmax classifier as follows.

The contextual information provided by classification and
detection can mutually boost the performance of the other, based
on the assumption that they adopt different information [47],
[48]. Classification looks at the objects and their contextual
information, while detection mainly focuses on the object shape
and all parts. For example, if an object is occluded or truncated,
it will be difficult for the detector while the classifier could
still have enough information such as context and certain parts.
Inversely, the detector is able to find small objects and objects
appearing in non standard context, while the classifier may fail.
Hence, we are motivated to combine the classification score
and the detection score. We formulate the rescoring function as
a linear combination of the DPMs detection score and region
classification score

Shet = K8y _wopms + (L= K)sl,, i€ [1,K] (5

where, 0 < 8%, wppus < 1 is the normalized DPMs detection
score on a sub-window of the i'" detector, and 0 < sils < listhe
softmax classification score of the corresponding i*" category
on this sub-window. « is a hyper-parameter used to leverage the
two scores, which ranges from 0.5 to 1.0. K is the number of
object categories. The final predicted windows are obtained by
thresholding the S’ in (5).

To train this front-to-end CNN classifier described above,
we fine-tune the pre-trained CNN with image level annotations
on the training set of the target dataset. We implement it by
removing the last 1000-way softmax layer while keeping all
the other parameters and adding a new randomly initialized K-
way softmax classification layer. We then fine-tune the entire
network based on the image-level labels.

In [7], contextual information is exploited to rescore the
bounding boxes. However, it needs object-level annotations
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Fig. 4.

Ilustration of detection rescoring using an M-WDPMs and CNN softmax classifier. For a testing image, K (number of classes in the target dataset)

class-specific M-WDPMs are applied on it in a sliding window manner. For each subwindow detected by M-WDPMs, the normalized detection score is rescored
by the softmax classifier of the detected category. In this example, the wrongly detected car and bicycle are finally discarded by the detector after the rescoring

stage.

to extract the contextual information. Our detection rescor-
ing method does not require the object-level annotations, and
leads to a remarkable improvement in average precision on
several classes in the PASCAL VOC 2007 dataset (see Sec-
tion III-B). In [48], the image classification scores are used
as contextual features, and concatenated with the object de-
tection scores to form a final feature vector, based on which
a linear SVM is learned to refine the detection score. An
example of our bounding box rescoring procedure is shown
in Fig. 4.

D. Bounding Box Post-Processing

In many cases, the bounding boxes generated by DPMs de-
tectors are too large (resp. small) when detecting very small
(resp. large) objects due to the restrictions of the size of the root
filter and the scale of the feature pyramid. To improve local-
ization and obtain a more precise prediction of the bounding
box aspect ratio, we post-process each bounding box by enlarg-
ing or shrinking (ES post-processing) it to cover the object as
much as possible. This is done using an improved version of the
method proposed in [49], which measures the amount of area
that the edge energy occupies. In brief, we first augment the
original bounding box w = (Zmin s Ymins Tmaxs Ymax) t0 120%
of the original width and height (i.e., 144% in total area, denoted
as w8 = (018 ynt8 paug yang ) We expand from the cen-
troid if applicable. Otherwise, we stop when reaching the border
of the image and calculate the absolute values of the gradients
L, ..s by applying a 3 x 3 Laplacian filter with v = 0.2 over
the augmented bounding box. To simplify calculation of the
edge spatial distribution, we then resize the gradient magnitude
image size to 100 x 100 and normalize the image sum to 1, i.e.,
L! ... . Moreover, we set the values that are less than 10% of the
maximum Ly, to 0. Finally, we expand the bounding box in
four directions from the current centroid (., y.) and stop when

it contains 98% of the total gradient magnitude (edge energy)
in the augmented box. The detailed algorithms are shown in
Algorithm 1.

This post-processing technique is not only able to crop out
plain background regions, but can also expand to cover the fore-
ground regions which are not encompassed by the original box.
However, the cropping method in [22] can only shrink to reduce
the background. Fig. 5 shows a few examples of our bounding
box post-processing results. It is also worth noticing that this
post-processing technique works efficiently for the objects with
a unique or plain background, but is of limited help for those
with cluttered or textured backgrounds.

III. EXPERIMENTAL EVALUATION

In this section, we present the experimental results of our pro-
posed framework with two different initialization schemes (i.e.,
S-WDPMs using single region initialization and M-WDPMs
using multiple region initialization) on the challenging PAS-
CAL VOC 2007 dataset [30] and the Microsoft COCO 2014
dataset [32].

A. Experiments With S-WDPMs

1) Datasets: Following the protocol used in previous works
[17], [22], [26], [50], we evaluate the performance of our
proposed S-WDPMs (single region initialized weak DPMs)
framework on two subsets from the training and validation
set (trainval) of the PASCAL VOC 2007 dataset (VOC07)[30]:
VOCO07-6 x 2 and VOCO7-14. The VOCO7-6 x 2 subset contains
6 classes (aeroplane, bicycle, boat, bus, horse and motorbike)
with Left and Right views (aspects) of each class, resulting in a
total of 12 separating classes. The VOCO07-14 subset (same as
PASCALO7-all defined in [22]) consists of 42 class/view com-
binations covering 14 classes and 5 views (Left, Right, Frontal,
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Algorithm 1: Bounding box post-processing pipeline.

Input:
Original bounding box:
w = (xmina Ymins Tmax, ymax);
Original image width: w,; original image height: h,;
Maximal expanding rate: 5 = 1.2;
Laplacian filter shape: v = 0.2.

Output:
Cropped bounding box:
w' = (x;nin’ y;nin? ;na)m y;nax)'
1: centroid: (,y,) = (Luinfines Ynintinos )
2: augmented width: @ = 8 * (Zmax — Tmin)
3: augmented height: b = 5 * (Ymax — Ymin)
4: if x. — 5 > 0 then
50 ahih = ceil(r. — %)
6: else
70 2t =1
8: end if
9: ifx, + § < w, then
10: a8 = floor(z. + §)
11: else
12: it = w,
13: end if
14: % and 218 : process in the same way as x;
15 W™ = (2055 Yonin» T Yimatx )3
16: Ly = filter(image(w™®), laplacian’,v);
17: L!,uue = norm(resize(| Lyaue |, [100,100]), 1);
18: Liax = maz (Ll .. );
19: fori=1,2,...,100 do
20:  forj=1,2,...,100 do
211 if Ly (4,5) < 0.1 % Lyyay then
22: L (i,§) =0
23: end if
24:  end for
25: end for
26: current centroid: (z., /) < average energy point of
L s s
27: while energy in w” < 0.98 % > (L] ... ) do
28: w'” = (x;lnin’ y;;xin? xglax’ yl/l/lax) — update by

expanding bounding box in four directions
(—x, —y, x4+, y+) from the current centroid

(T4s Ye)-
29: end while

30: project w” into original image:
/o / / / /
w = (‘xmin’ Ymin> Tmaxs ymax) —
/A " " " /"
w = (xmin’ Ymins> Tmax> ymax)

Rear and Unspecified). Similar to [17], [22], [26], [50], we re-
move all the images annotated as difficult or truncated in both
the training and the evaluation steps.

2) Evaluation Protocol: To make fair comparisons with pre-
vious works [17], [22], [23], [50], we only choose the detection
window with the highest DPMs score per image, although our
method can detect multiple instances appearing in the image
using the sliding window approach. We also report both results

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 2, FEBRUARY 2017

Fig. 5. Examples of bounding box enlarging and shrinking. Boxes before
(resp. after) post-processing are shown in red (resp. yellow).

for initial and refined localization as [22], [50]. A refined local-
ization is obtained by an iteratively trained DPMs detector for
one/several iteration(s) to refine the initial detection using the
previous annotations as ground truth. Performance is evaluated
with the percentage of training (train + val) images in which an
object is correctly covered by the window (i.e. CorLoc [17]),
if the strict PASCAL-overlap criterion IoU (intersection-over-
union) > 0.5 is satisfied.

3) Experimental Evaluation: We compare our S-WDPMs
with Weak DPMs [22], Weak objectness [17] and the Joint topic
model [23]. For the Weak objectness approach [17], the region
proposal with the highest “Objectness” score is selected as the
predicted window. As shown in Table I, our method outperforms
[17] and our baseline approach [22] on both datasets. Both [22]
and our S-WDPMs use the same HOG feature pyramid for the
DPMs. We present our results using two kinds of object pro-
posal generating methods: Objectness (obj) and Selective Search
(8S). For obj, our average performance of initial detection be-
fore post-processing the bounding boxes on the VOCO07-6 x
2 and VOCO7-14 subsets is 38.74% and 21.73% respectively,
versus 37.22% and 19.98% in [22]. These improvements are
due to the initial object estimate of our method described in
Section II-A.4a, which ensures better initialization of the root
filter of DPMs detectors. We can also observe that both the
post-processing method of cropping [22] (i.e., S-WDPMs(crop)
in Table I) and our enlarging-or-shrinking [i.e., S-WDPMs(ES)]
post-processing method steadily improves average localization
accuracy. In particular, our ES method is superior to the crop-
ping method of [22], as our cropped bounding box is able not
only to shrink to crop out the background regions, but is also
capable of enlarging to cover the whole foreground object re-
sulting from incomplete coverage of the original window. An
example is shown in the last row of Fig. 6, where the target ob-
ject (motorbike) is only partially localized by the initial detector
(shown in red rectangles in the middle and right images) for both
[22] and our method. However, in the final detection (shown in
yellow) after post-processing, our method is able to enlarge the
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TABLE I
AVERAGE LOCALIZATION ACCURACY (AS A %) OF OUR S-WDPMS (SINGLE REGION INITIALIZED WEAK DPMS WITH HOG FEATURES)
COMPARED WITH STATE-OF-THE-ART COMPETITORS ON THE TWO VARIATIONS OF THE PASCAL VOC 2007 DATASETS

no post-processing

with post-processing

S-WDPMs S-WDPMs(crop) ~ S-WDPMs(ES) [23]

[22] obj SS [22]-crop obj SS obj SS N G
Dataset VOCO07-6 x 2
Initialization 3722 3874 4152 44.62 47.85 48.40 48.59  51.01 508 515
Refinement 1 51.63  55.85  63.31 53.11 56.78 64.25 58.02  67.13 655  66.1
Refinement 2 56.99  59.82 — 59.31 63.31 — 63.91 — — —
Refinement 3 59.32 — — 61.05 — — — — — —
Result from [17] 50.00
Dataset VOCo07-14
Initialization 19.98  21.73 2487 23.00 24.20 26.30 2512 3184 322 305
Refinement 1 25.11 2746  31.15 26.38 28.21 33.10 2894 3491 338 325
Refinement 2 27.69  28.95 — 29.39 32.87 — 32.82 — — —
Refinement 3 28.98 — — 30.31 — — — — — —
Result from [17] 26.00

“crop” and “ES” denote the cropping method from [22] and our enlarging & shrinking post-processing. “obj” and “SS”
denote the objectness and Selective Search region proposal generating method. “S” and “G” denote the Sampling and

Gaussian strategy from [23].

Ground Truth Our S-WDPM

Pandey et al. ICCV2011

a Eﬁ’ﬂ ‘

Fig. 6. Examples of localization results for our S-WDPMs on PASCAL VOC
2007 images. The left column: ground-truth bounding boxes in green rectangles.
The middle and right columns are detection results with [22] and our S-WDPMs
framework, respectively. Initial detections are shown in red, while detections
refined by detectors are shown in yellow. Both results use the individual post-
processing approach.

bounding box to approximately include the whole object, while
[22] tends to crop out both foreground and background regions.

Furthermore, the rows starting with “Refinement” in Table I
indicate that localization accuracy can benefit from the iterative

TABLE II
CLASS LEVEL LOCALIZATION ACCURACY (AS A %) FOR THE VOCO07-6x2
DATASET FOR OUR S-WDPMS(ES) USING Objectness
PROPOSALS VERSUS [17], [22], [50]

Initialization Refined by detector

ours [22] [50] [26] ours [22] [17]
aero left 651 558 39.1 491 69.7  65.1 58.0
aero right 64.1 61.5 50.0 513  84.6 82.1 59.0
bike left 313 313 284 250 854 875 460
bike right 420 440 306 240 540 68.0 40.0
boat left 9.1 4.6 15.1 114 13.6 2.3 9.0
boat right 9.3 9.3 207 116 14.0 7.0 16.0
bus left 238 238 31.0 381 429 286 380
bus right 652 522 351 56.5 69.6 478 74.0
horse left 64.6 604 485 435 875 833 580
horse right 739 674 452 522 76.1 804 520
mbike left 641 487 463 513 872 923 670
mbike right  70.6 765 553 647 824 882 760
average 48.6 446  37.1 39.3 63.9 61.1 50.0

refinement process. It is worth mentioning that with a better ini-
tialization, our models converge to a steady level of performance
after one less round of costly re-training than in [22] (both using
Objectness), and achieve slightly better results in the meantime.

The detailed comparisons for our S-WDPMs using Object-
ness with the state-of-the-arts on the VOC07-6 x 2 dataset are
listed in Table II. The results show that our method outperforms
[17], [22], [50] for many of the categories. In particular, our
method achieves the state-of-the-art results in the classes where
the target object possesses the most salient regions in that cat-
egory (e.g., aeroplane, bus, horse). Interestingly, even without
the refinement process, the accuracy of our method in certain
categories (e.g., aeroplane left) is superior to competitors using
the time-consuming refinement procedure. Fig. 6 visually com-
pares some of our results with those of [22]. We also list the
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TABLE III
COMPARISONS OF WEAKLY SUPERVISED OBJECT DETECTORS ON PASCAL VOC 2007 TRAINVAL SET
IN TERMS OF CORRECT LOCALIZATION (CORLOC [17], AS A %) ON POSITIVE TRAINING IMAGES

method / class aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv  mean
our S-WDPMs-HOG 49.1 328 272 98 6.6 380 467 482 89 357 153 345 422 495 167 138 31.6 263 47.8 231 302
our M-WDPMs-HOG 679 524 344 219 121 420 599 584 99 420 135 389 481 586 204 195 408 249 489 427 379
our M-WDPMs-deep 72.0 588 385 246 148 462 634 630 184 499 17.0 403 52,6 632 222 229 461 262 528 468 420
our M-WDPMs-rescore’  80.3 59.1 389 260 149 488 654 651 166 585 173 427 588 69.6 228 207 529 240 533 466 44.1
Joint Learning [13] 307 165 230 149 49 296 265 353 72 234 205 321 244 331 172 122 208 288 40.6 7.0 224
MI-SVM [51] 37.8 177 267 138 49 344 337 466 54 298 145 328 348 416 199 114 250 236 452 86 254
Model Drift [14] 424 465 182 8.8 29 409 732 448 54 305 19.0 340 488 653 8.2 106 167 323 548 55 304
MIL-Negative [50] 458 21.8 309 204 53 376 408 51.6 7.0 298 275 413 418 473 24.1 122 28.1 328 487 94 302
Transfer Learning [20] 547 227 337 245 46 339 425 570 73 39.1 241 433 413 515 253 133 28.0 295 546 118 32.1
Joint Topic [23] 673 544 343 178 13 466 60.7 689 25 324 162 589 515 64.6 18.2 3.1 209 347 634 59 362
Convex Cluster.” [25] 664 593 427 204 213 634 743 596 21.1 582 14.0 385 495 60.0 198 392 417 301 502 441 437
LCL-pLSAT [24] 80.1 639 515 149 210 557 742 435 262 534 163 567 583 695 141 383 588 472 49.1 609 485
T indicates methods using auxiliary training data from ILSVRC 2012.
TABLE IV

COMPARISON OF WEAKLY SUPERVISED OBJECT DETECTORS ON PASCAL VOC 2007 IN TERMS OF AP (AVERAGE PRECISION, AS A %) IN THE TEST SET

method / class aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv  mean
our S-WDPMs-HOG 262 250 88 9.1 65 374 407 229 58 198 106 206 279 351 8.2 6.6 153 149 278 122 19.1
our M-WDPMs-HOG 345 416 100 141 9.0 39.8 439 266 58 228 10.8 241 322 417 10.0 123 225 146 329 191 236
our M-WDPMs-deep 383 432 181 159 103 402 419 331 62 314 113 274 343 452 127 125 250 149 343 19.1 257
our M-WDPMs-rescore 433 435 18.6 168 10.5 452 423 338 66 372 125 327 367 508 14.1 13.8 282 147 38.0 206 277
Model Drift [14] 134 440 3.1 31 00 312 439 71 01 93 99 15 294 383 4.6 0.1 0.4 38 342 0 13.9
Multi-fold MIL [15] 358 406 81 176 31 359 418 168 14 230 49 141 319 419 193 11.1 276 121 31.0 406 224
Min-Supervision [16] 27.6 419 197 9.1 104 358 39.1 336 06 209 100 277 294 392 9.1 193 205 171 356 7.1 227
Pattern Config [52] 363 47.6 233 123 11.1 36.0 466 254 07 235 125 235 279 409 148 192 242 17.1 377 116 246
Posterior Reg. [53] 422 439 231 92 125 449 451 249 83 240 139 186 31.6 436 7.6 209 266 206 359 29.6 264
Convex Cluster. [25] 462 469 241 164 122 422 471 352 7.8 283 127 215 301 424 7.8 200 268 208 358 296 277
LCL-pLSA [24] 488 410 23.6 121 11.1 427 409 355 111 366 184 353 348 513 172 174 268 328 351 45.6 309
DPMs 5.0 [7] 332 603 102 16.1 273 543 582 23.0 200 241 267 127 581 482 432 120 21.1 361 46.0 435 337
TDP-DPMs conv5 [44] 423 65.1 322 244 367 568 557 380 282 473 37.1 392 610 564 522 266 470 350 512 56.1 444
fR-CNN [3] 68.1 728 568 430 368 663 742 67.6 344 635 545 612 69.1 68.6 587 334 629 511 625 648 585

(" supervised methods using object level annotations.)

co-localization results of [26], which does not utilize negative
images.

We find that the best detection result using Selective Search
(63.31%) is 3.49% better than Objectness (59.82%) within the
same S-WDPMs detection model without post-processing, and
is 3.22% better (67.13% vs. 63.91%) with post-processing, on
the VOCO07-6 x 2 dataset. This tallies with the conclusion
in [39], where Selective Search provides more reliable detection
proposals than Objectness. Moreover, it achieves comparable or
slightly better results than the sophisticated joint topic learning
models in [23] when running DPMs refinement only once. As
shown in Table I, SS also outperforms obj on the VOCO07-14
dataset. Consequently, we entirely adopt the Selective Search
method (“fast” option) for our subsequent experiments.

The localization accuracy on full PASCAL VOC 2007 trainval
set and detection precision on test set using S-WDPMs are
shown in the first row of Tables III and IV.

B. Experiments With M-WDPMs on PASCAL VOC

1) Dataset and Settings: We evaluate our generalized
model: M-WDPMs (multiple region initialized weak DPMs)

on the far more challenging dataset: the whole PASCAL VOC
2007 dataset. This contains a total number of 9963 images of 20
object categories, which are split into training (2501), validation
(2510) and test (4952) sets. This dataset is challenging because
it has large inter-class similarities, intra-class variances, clut-
tered backgrounds, and scale changes. We only use the image
level category labels for this task. Moreover, images labeled as
“difficult” are discarded as common practice in previous stud-
ies. With respect to M-WDPMs testing, we only run the DPMs
once for efficiency, although iterative detector refinement can
steadily improve final performance to a certain extent. Annota-
tion accuracy (i.e., correct localization, CorLoc) on the trainval
(training + validation) set and average precision (AP) for de-
tection on the test set are reported. For DeepPyramid feature
extraction, we use NVIDIA GeForce GTX Titan X GPUs, each
with a 12 GB memory, thus allowing us to upsample image
pyramids to 1713 x 1713 as in [44] to facilitate detection of
small objects.

2) Parameter Selection: As discussed in Section II-A.4b,
we can generate () region estimations for each image. () is a
parameter which impacting the quality of the positive training
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Fig. 7. Impact of parameter Q (number of selected regions for each image in

the multiple region initialization scheme). The average annotation accuracy on
PASCAL VOC 2007 validation (HOG feature) and MS COCO 2014 vall (CNN
feature) is evaluated with different ().

examples. If it is too large, there would be an enormous num-
ber of noisy samples for latent class learning. However, if it is
set to be very small, the instances in the original image could
not be comprehensively represented. Therefore, we experimen-
tally vary @ = {3, 5,10, 15, 20, 30} to see which one performs
best on the PASCAL VOC 2007 validation set. We implement
this by directly measuring average annotation accuracy for all
classes, on the generated bounding boxes (() per image) with
the PASCAL-overlap criterion. Fig. 7 shows annotation accu-
racy for different (). We find that () = 10 obtains the best result
(36.1% average accuracy). When it is very small (e.g., 3), per-
formance drops dramatically to 26.8%. This is because some
of the “good” region proposals are not selected due to very
small ), while some selected “bad” regions may degenerate the
model. When @ rises from 10 to 30, performance deteriorates
progressively.. One explanation for this might be that many ob-
ject parts or background regions would be included when @)
is large. Hence, we set () = 10 in all of our experiments on
PASCAL VOC. Fig. 8 shows three example images and their 10
selected regions. The « in (5), which leverages the classification
and detection scores, is set to 0.7 according to cross-validation
on a subset of the validation data.

3) Annotation Evaluation: We evaluate the same CorLoc
[17] as in Section III-A.2 on the PASCAL VOC 2007 trainval
set. Table III reports our experimental results compared with the
state-of-the-art WSL methods for object detection.

Concerning our M-WDPMs-HOG baseline, which computes
the HOG features and does not make use of auxiliary train-
ing data from the ILSVRC 2012 classification task [9] as [24],
[25], it outperforms most of the previous works [13], [14],
[20], [23], [50], [51] (ours: 37.9% vs. best from the previous
works (Joint topic): 36.2%). The M-WDPMs-HOG outperforms
the S-WDPMs-HOG (by 7.7%) by benefiting initialization of
DPMs from multiple regions in the image. Our M-WDPMs-
HOG shows modest improvement in most of the classes, thus
proving that our multiple region initialization method has very

Fig. 8.

Three example images and their 10 selected regions (resized to the
same squared size for regularity).

discriminative power for selecting the “good” regions in the
original image for training the DPMs root filters.

We also observe that, with the help of auxiliary training data
and recently popular deep features, the average accuracy of our
M-WDPMs-deep model increases by 4.1% in comparison with
the M-WDPMs-HOG model. Moreover, our detection rescor-
ing method (i.e., M-WDPMs-rescore) further improves perfor-
mance for most of the categories. The average improvement for
detection rescoring on all 20 classes is 2.1% (44.1% vs. 42.0%).
Our M-WDPMs-rescore method is slightly better than the newly
invented convex clustering approach [25], but is worse than the
LCL-pLSA method [24] on average. Though [24] achieves state-
of-the-art performance on many classes, it depends on more
sophisticated Super-Vector (SV) coding [54] of the deep CNN
features, thus unfortunately increasing feature dimensionality
(e.g., 10,000 visual words). It also fails in some categories such
as boat and table. However, our M-WDPMs-rescore exhibits a
steady agreeable performance in all the categories with accept-
able feature dimension (256 dimensional conv 5 features for
detection and 4,096 dimensional fc6 features for classification).
In particular, our M-WDPMs-rescore works well in categories
where target objects are relatively salient, such as aeroplane,
boat, cow, horse and motorbike. Among these categories, cow,
horse and motorbike have deformable shapes, thus ensuring
good detection for the DPM.

4) Detection Evaluation: Table IV shows the comparison
of our M-WDPMs and other methods for object detection on
the PASCAL VOC 2007 test set. Our M-WDPMs-HOG base-
line method achieves an mAP of 23.6%, which outperforms
[14] (13.9%) by a large margin, and is slightly better than [15]
(22.4%). Both [14] and [15] represent the image windows with
a SIFT [57] descriptor. [14] uses a Bag-of-Words (BOW) [58]
histogram with 2000 dimensions, while [15] use Fisher Vectors
(FV) encoding [59] to represent the candidate windows. [22]
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Analysis of top-ranked detections on PASCAL VOC 2007 test set. Pie charts show the distributions of the true positives (TP) and false positives (FP)

generated by the detection error analysis tool of [55]. Percentage of the top 1" detections (7" is the number of ground truth objects in the whole test dataset) that
are correct (Cor), or false positives due to poor localization (Loc), confusion with similar objects (Sim), confusion with other objects (Oth), or confusion with
background or unlabeled objects (BG) [55]. The three charts on the left show the analysis of our methods, while the one on the right is the analysis of the state-
of-the-art supervised detection results obtained by NoC [56].(a) M-WSDPM-HOG mAP = 23.6%; (b) M-WSDPM-deep mAP = 25.7%; (c) M-WSDPM-rescore

mAP = 27.7%; (d) state-of-the-art supervised: NoC mAP = 68.8%.

uses the same HOG pyramid features. M-WDPMs shows con-
sistently better performance than S-WDPMs (19.1%), except
for the sofa category, where S-WDPMs shows trivial superi-
ority. Among these methods that adopt low level visual fea-
tures, our M-WDPMs-HOG works best. Although [16] utilizes
powerful deep CNN features to represent the discovered object
windows, its performance (22.7%) is more or less the same with
our HOG based M-WDPMs, which proves the stronger discrim-
ination of our window selection method. When using the deep
features with additional training data from ImageNet [9], our
M-WDPMs-deep can achieve an mAP of 25.7%. The boost
(2.1%) is not as much as that of the annotation task (4.1%, see
Section III-B.3), it is probably due to the use of distinct measur-
ing criteria (mean average precision v.s percent of correct local-
ization). Our detection rescoring method M-WDPMs-rescore
continues to improve the average precision (MAP = 27.7%)
for nearly all classes except for the sofa class (0.2% decrease).
Its performance is better when compared with [52], [53], and
it displays the same range of performance in comparison with
[25]. The performance gap (3.2%) between our method and
that of [24] might be partly caused by the use different deep
feature representations as discussed in Section III-B.3. We con-
jecture that our detection performance could be further boosted
if a complex feature encoding method such as SV [54] was
adopted as [24]. We achieve the best detection results for the
boat, bus, cow, horse, sheep and train classes for this dataset.
We attribute the success on these categories to object saliency
(e.g., boat, bus), deformable structures (e.g., cow, horse, sheep),
and possibly their combination (e.g., train) which united by
our framework. Image saliency and object structures provide
good representations for these kinds of object categories. Hence,
the combination of the two ensures good detection results on
these categories. And our M-WDPMs yields moderately low av-
erage precision on categories such as bird, bottle, chair and pot-
ted plant. These categories typically have notably small and/or
textured instances, where object proposal method such as Se-
lective Search can be misleading, and they are hard to detect
even by supervised DPMs [7], [44].

aeroplane

Fig. 10.  Analysis of false positives for some classes on which our M-WDPMs
outperforms DPMs 5.0 [7]. Each category named within “Sim” shows the cate-
gory names on which detector tends towards confusion.

In addition, we provide the results obtained by popular su-
pervised object detection methods [3], [7], [44] in the bottom
lines of Table IV. It is clear that there is still a gap between the
weakly supervised detection framework and supervised frame-
works, although our weakly supervised DPMs yields better re-
sults for some classes (e.g., aeroplane, cat, dog, sheep etc.) than
the supervised DPMs 5.0 [7] which uses the low level HOG fea-
ture. The state-of-the-art supervised object detection framework
(i.e., Faster R-CNN [60]) achieves 78.9% mAP by adopting very
deep neural networks (VGG-16 [61]).

5) Error Analysis: We present an analysis of the types of er-
rors that our M-WDPMs make on the PASCAL VOC 2007 test
set. We use the diagnosis tool of [55] and consider four types
of false positive (FP) errors: Loc (poor localizations), Sim (con-
fusion with similar objects), Oth (confusion with other objects,
e.g., correctly localizing an object but classifying it to a wrong
class) and BG (confusion with background or unlabeled objects).
In addition, Cor indicates correctly located true positives (TP).

We visually show the fraction of correct detections (TP) and
errors of each kind (FP) among the top ranking 7" windows in
Fig. 9, where T is the number of ground-truth object windows
in the PASCAL VOC 2007 test set.

We consider the M-WDPMs-HOG as our baseline and show
the distribution of TP and each kind of FP in Fig. 9(a). We can
see that the majority of errors are due to poor localizations (Loc)
and confusion with background regions (BG). When adopting
the deep features, our M-WDPMs-deep encounters fewer Loc
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Fig. 11.  Detection results of weakly supervised DPMs detectors on MS COCO

con5 features are adopted.

and Oth, but continues to suffer from the Sim and BG error [as
shown in Fig. 9(b)]. On the contrary, after detection rescoring,
our best performing method M-WDPMs-rescore has fewer er-
rors caused by Loc, BG and Oth [Fig. 9(c)], thus confirming that
our rescoring approach is very efficient in excluding the back-
ground regions and avoiding misclassification. Fig. 9(d) shows
the error distribution of the state-of-the-art supervised object
detection framework NoC (Networks on Convolutional feature
maps) [56]. NoC adopt even deeper VGG-16 nets [61] with
bounding box fine-tuning on PASCAL VOC 2007 + 2012 train-
val. A comparison between NoC and our M-WDPMs indicates
that: 1) a deeper network helps increase correct localization
(Cor) substantially; 2) fine-tuning deep CNN and supervised
training with ground-truth bounding boxes yield far fewer Sim
and Oth errors.

We also display some class specific false positive analysis
in Fig. 10, on the classes where our M-WDPMs outperforms
DPMs 5.0 [7].

6) Running Time: The time it takes to extract the Selective
Search region proposals (can be shared among different de-
tector learning) is 10.27 s. Reference region computation takes
778 ms, generation of initial object estimations from region pro-
posals and reference regions takes 190 ms, while computation of
CNN features is 18.97 s and conv5 feature pyramid from CNN
feature is 631 ms. Running time is averaged on 100 random
PASCAL images, and is evaluated on an Intel Core 17-5960X
CPU @ 3.00GHz with 32GB memory and a single NVIDIA Ti-
tan X GPU. For M-WDPMs, training binary SVM and learning
latent class takes 228.20 s on the horse class and 196.05 s on
the motorbike class (except for CNN pre-training and feature
extraction time). Besides, training of the horse DPMs detector
takes 84.82 min and 76.45 min for motorbike. Running a detec-
tor costs 9.76 s per image (including rescoring time) on average
on the PASCAL dataset.

C. Preliminary Results With M-WDPMs on MS COCO

The Microsoft Common Objects in Context (MS COCO)
dataset [32] involves 80 object categories. It contains consider-
ably more object instances per image (7.7) compared to PAS-
CAL VOC (2.5), and has 82,783 training images and 40,504
validating images in the 2014 release (COCO 2014). We split
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2014 val2 in terms of average precision (AP, as a %). For both methods, deep

the validation set equally into vall and val2, where vall is used
as a validation set and val2 is used as a test set. In spite of this,
this subset of MS COCO is much larger and more difficult than
PASCAL VOC. We evaluate the PASCAL VOC metric (mAP
@IoU = 0.5) on val2.

We set the parameter Q to 25 regions, since there are signif-
icantly more object instances per image on MS COCO than on
PASCAL VOC. The influence of Q on MS COCO is shown in
Fig. 7, while the rescoring weight « is set to 0.8 by choosing
from [0.5, 1.0] on vall. The increase of x on MS COCO prob-
ably means that there is a larger number of smaller objects in
this dataset and that the detector has more influence than the
classifier on the final detection score. The other training and
testing settings of M-WDPMs remain as the same as on PAS-
CAL VOC. We compare our method with the WDPM-random
baseline method [22], which sets a large random window as ini-
tialization. For both of these two methods, we adopt deep con5
feature pyramids.

Fig. 11 shows the detection results of our M-WDPMs and
the WDPMs-random baseline. Overall, our M-WDPMs results
in 17.0% mAP on this MS COCO val2 set, boosting the mAP
by 4.3 points over the WDPMs-random. The results on 20 com-
mon categories in MS COCO are significantly lower than on
PASCAL. This is because there are far more small objects on
COCO, making it a fairly challenging dataset for detection. We
observed that our M-WDPMs exhibits a relatively good perfor-
mance on similar categories both in COCO and in PASCAL,
such as aeroplane, bus, horse, motorbike and train, and has
favorable performances on truck, bear and oven, etc. classes in
COCO. This confirms that our M-WDPMs is capable of detect-
ing object categories that are salient visually and/or deformable
structurally.

IV. CONCLUSION

In this paper, we proposed a model enhancing weakly su-
pervised learning by emphasizing the importance of location
and size of the initial class specific root filter of deformable
part-based models. We follow the general setup of [22] and
introduce several substantial improvements to the weakly su-
pervised deformable part-based model (DPMs). The main con-
tributions included a new selection model based on generic
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“objectness” (region proposals) and visual saliency to adap-
tively select a reliable set of candidate windows which tend to
represent the object instances in the image, and a latent class
learning process by coarsely classifying a candidate window
into either a target object or a non-target class. Furthermore,
we designed a flexible enlarging-and-shrinking post-processing
procedure to modify the output bounding boxes of DPMs, which
can effectively further improve the final accuracy. Experimen-
tal results on the PASCAL VOC 2007 database according to
various criteria demonstrate that our proposed framework is ef-
ficient and competitive with the state-of-the-art, especially for
the object categories which are relatively salient and deformable.
We also report some preliminary weakly supervised detection
results on the very challenging MS COCO 2014 dataset. Fu-
ture work includes extracting more knowledge from different
domains (e.g., both visual and semantic domains), using bet-
ter representations, and investigating the possibility of using
category-invariant properties, e.g., the difference between fea-
ture distributions of whole images and target objects, to further
improve weakly supervised object detection.
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