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ABSTRACT

In recent years, neural operators have emerged as a prominent approach for learn-
ing mappings between function spaces, such as the solution operators of paramet-
ric PDEs. A notable example is the Fourier Neural Operator (FNO), which models
the integral kernel as a convolution operator and uses the Convolution Theorem
to learn the kernel directly in the frequency domain. The parameters are decou-
pled from the resolution of the data, allowing the FNO to take inputs of different
resolutions. However, training at a lower resolution and inferring at a finer resolu-
tion does not guarantee consistent performance, nor can fine details, present only
in fine-scale data, be learned solely from coarse data. In this work, we address
this misconception by defining and examining the discretization mismatch error:
the discrepancy between the outputs of the neural operator when using different
discretizations of the input data. We demonstrate that neural operators may suffer
from discretization mismatch errors that hinder their effectiveness when inferred
on data with resolutions different from that of the training data or when trained on
data with varying resolutions. As neural operators underpin many critical cross-
resolution scientific tasks, such as climate modeling and fluid dynamics, under-
standing discretization mismatch errors is essential. Based on our findings, we
propose a Cross-Resolution Operator-learning Pipeline that is free of aliasing and
discretization mismatch errors, enabling efficient cross-resolution, multi-spatial-
scale learning, resulting in superior performance.

1 INTRODUCTION

In diverse fields across science and engineering, researchers aim to investigate the behavior of phys-
ical systems under different parameters, such as different initial conditions or forcing functions.
Traditional numerical approaches often prove to be excessively time-consuming for simulating para-
metric physical systems. Data-driven surrogate models, known as neural operators (NOs), present
an efficient alternative (Anandkumar et al., 2019; Raonic et al., 2023; Lu et al., 2021). Neural op-
erators learn the mapping from parameter function space to the solution function space. After the
training phase, performing inference only necessitates a forward pass of the network, which can be
several orders of magnitude faster than traditional numerical methods. A particular example is the
Fourier Neural Operator (FNO) (Li et al., 2021), which models the integral kernel as a convolution
operator and employs the Convolution Theorem to learn the kernel directly in the frequency domain
to decouple the parameters from the resolution of the data.

However, there is a long-standing misconception in the operator learning community: It is widely
believed that training an FNO on one resolution allows inference on another without degrading its
performance, since FNO operates and parameterizes the kernel on the Fourier space. In reality, it still
exhibits a strong bias toward the training resolution. We attribute this inconsistency across different
resolutions to discretization error. Traditionally, in numerical methods, discretization error refers to
the discrepancy between continuous mathematical models and their discrete approximations, which
arises due to the finite resolution of computational systems. In the context of neural operators, the
continuous mathematical model is represented when the neural operator G(·; θ), parameterized by
network parameters θ, takes a continuous function a as input: G(a; θ). In contrast, the discrete
approximations occur when the neural operator takes a discretization of the continuous function
as input: Ĝ(a|ΩJ

; θ), where a|ΩJ
denotes a discretization of J observation points of the function

a. In practice, network parameters are optimized on discretizations of functions; therefore, we
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Figure 1: Neural operators map between function spaces and can handle different discretizations.
However, their architectures still introduce discretization errors. In computational math, researchers
analyze the discrepancies between continuous processes and their discrete approximations. In the
case of FNOs, we never have the continuous model that is trained with continuous data. In-
stead, we define discrepancies between two discrete approximations as discretization mismatch er-
rors (DMEs) in Sec. 4.1. Minimizing DMEs is crucial in cross-resolution tasks.

argue that for neural operators, it is essential to minimize the discrepancy between different discrete
representations. We will refer to this type of error as the discretization mismatch error (DME).

DMEs are caused by the network architectures; a simple example is Convolutional Neural Networks
(CNNs), which are generally not considered discretization-invariant models. When the resolution
of the input data converges to infinity, discrete convolution, whose kernel remains fixed in size, con-
verges to a point-wise operation (Liu-Schiaffini et al., 2024). In this work, we analyze the DME in
FNO, which is the most popular discretization-invariant neural operator. This work is a prototypi-
cal analysis of DMEs in neural operators, especially for mesh-based neural operators. We refer to
tasks where the inference resolutions differ from the training resolution as cross-resolution tasks for
the reasons given in Sec. 4.1, and the analysis of DMEs is pivotal for such tasks. As an integral
neural operator, the mathematical formulation of FNO operates in the continuum, representing a
groundbreaking approach to function space mappings via neural networks. However, the realization
of FNO is still at a discrete level as the inputs and intermediate outputs are discrete; thus, we ar-
gue that FNO suffers from DMEs. Our work does not seek to criticize FNO in any way but rather
builds upon this revolutionary framework while highlighting the issue of DMEs for the community’s
consideration to advance the designs of neural operators.

In this work, we study and locate the sources of DMEs. Both theoretical analysis and empirical
evaluation are provided to convey our findings. Moreover, neural operators may suffer from alias-
ing errors that stem from inadequate sampling of high-frequency contents introduced by the neural
operator (Raonic et al., 2023). To mitigate these issues, we propose the Cross-Resolution Operator-
learning Pipeline (CROP); CROP is free of both DMEs and aliasing errors. We summarize and
compare several popular neural operators in Table 1. Our contributions can be summarized in
four parts: (1) We address this important, yet often overlooked, issue of the accumulation of DMEs
in neural operators. (2) We provide mathematical analysis and empirical evaluation to identify the
sources and accumulation of DMEs. (3) We design CROP components that capture global patterns
and are robust in cross-resolution tasks. (4) CROP represents a general pipeline in which the in-
termediate neural operator can be freely chosen to map the feature functions between band-limited
function spaces, such as CNN-based networks for fine-grained feature extraction.

2 RELATED WORK

Over the past few years, neural PDE solvers have emerged as a promising alternative to conventional
numerical methods for solving PDE problems across various domains in practical engineering and
life sciences (Sirignano et al., 2020; Pathak et al., 2022; Zhang et al., 2022; Azizzadenesheli et al.,
2024; Zhang et al., 2023). Traditionally, solving a PDE involves seeking a smooth function satis-
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Table 1: A comparison of various popular architectures for learning function space mappings.

Architecture Discretization
Invariance

Free of
Aliasing Error

Free of
DME Efficiency

FNO ✓ ✗ ✗ ✓
U-Net ✗ ✗ ✗ ✓
CNO ✓* ✓* ✓ ✗*

DeepONet ✓! ✓ ✗! ✓
CROP (ours) ✓ ✓ ✓ ✓

In Sec. 4.1, the notions of discretization invariance and discretization mismatch error are introduced.
The notion of aliasing error (continuous-discrete equivalence) is introduced in Raonic et al. (2023).
* Interpolation is employed for resolution independence and being free of discretization mismatch errors.
* Interpolation operations in up and down samplings for activation functions can be computationally costly.
! DeepONet is only resolution independent on the output.

fying the derivative constraints imposed by the equations. From this perspective, Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019) have been developed to approximate solutions of
PDEs individually. An alternative perspective views differential operators as mappings between
function spaces, where the solution operators are the inverses of these mappings. Building upon this
viewpoint, neural operators have been introduced as a method for solving a family of parametric
PDEs (Anandkumar et al., 2019; Lu et al., 2021; Brandstetter et al., 2022; Fanaskov & Oseledets,
2024; Raonic et al., 2023). Neural operators parameterize solution operators with neural networks to
map the input parameter functions to their respective solutions directly. More generally, beyond the
solution operators of PDEs, neural operators can approximate other function-to-function mappings,
including derivative operators, integral operators, etc..

Integral neural operator is a general framework that parameterizes the operator as a sequence of ker-
nel integrals and nonlinear activations (Kovachki et al., 2023; Anandkumar et al., 2019). FNO is a
type of integral neural operator in which the kernel integral is imposed to be a convolution (Li et al.,
2021). Global convolution is performed via Fourier layers in the frequency domain. By leverag-
ing low-frequency modes and truncating high-frequency modes, FNO captures global information
while incurring low computational costs and achieving discretization invariance. Although FNO is
discretization-invariant, its inconsistent performance in super-resolution tasks has been noted in sev-
eral works (Raonic et al., 2023; Li et al., 2022). Mesh-based neural operators including FNO, GNO
(Anandkumar et al., 2019), CNO (Raonic et al., 2023), and DeepONet (Lu et al., 2021) either are
not completely discretization-invariant or suffer from DMEs. While function-basis models, such as
SNO (Fanaskov & Oseledets, 2022), may not suffer from DMEs, they might be inferior in capturing
spatial information and dependencies. In this work, we specifically analyze the DMEs in FNO, a
model that is not intuitively expected to encounter such issues.

Relations with Prior Work. In Li et al. (2022), the inconsistent super-resolution performance
has been noted and the authors propose to mitigate this issue by using physics-informed constraints
to fine-tune the neural operator. However, this method is limiting, as different physics-informed
constraints (losses) can be difficult to optimize and balance (McClenny & Braga-Neto, 2020; Gao &
Wang, 2023; Wang et al., 2023), and in practical applications, we might have only data available, not
the governing PDEs. In Raonic et al. (2023); Bartolucci et al. (2023), aliasing errors in neural op-
erators have been investigated. The notion of continuous-discrete equivalence (CDE) is formalized
to study whether there is an equivalence between their continuous and discrete representations in
neural operators, i.e., whether the outputs of the neural operator reside in the band-limited function
space of interest. Based on CDE, Convolutional Neural Operators are proposed to be an operator
adaptation of the widely used U-Net architecture. Their views on aliasing errors in neural operators
are constructive and critical. However, while aliasing error is a very important perspective on the
design of neural operators, we note that anti-alias activation functions do not overcome the afore-
mentioned issues; this will be discussed further in Sec. 5.1. We provide a different explanation as to
why FNO is not robust across different resolutions. In this work, DMEs are defined and analyzed;
we propose the Cross-Resolution Operator-learning Pipeline that minimizes DMEs to achieve robust
performance across different resolutions. Our CROP components can be seamlessly used in FNO or
CNN-based architectures such as CNO to enable efficient learning of both global features and local
details while decoupling the network parameters from discretizations of the input data.
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3 BACKGROUND

3.1 OPERATOR LEARNING

Operator learning refers to the use of neural networks to approximate or learn an operator, G, map-
ping between function spaces Kovachki et al. (2023). Neural operators are particularly relevant in
the field of scientific computing, where complex mathematical operators are often involved in solv-
ing partial differential equations (PDEs). A particular and commonly seen example of operators is
for the solution operator of parametric PDEs. Consider a parametric PDE of the form:

N (a, u)(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

where Ω ⊂ Rd is a bounded open set, N is a, possibly non-linear, differential operator, a is the
parametric input function, f is a given fixed function in an appropriate function space determined
by the structure of N , and u is the PDE solution. The PDE solution operator is defined as G(a) = u.

In practice, for appropriate function spaces A and U , we are interested in learning an operator
G : A 7→ U with a neural operator G(·; θ) through a finite collection of observations of input-output
pairs {aj , uj}Ndata

j=1 , where θ ∈ Θ is a set of network parameters and aj ∼ µ are i.i.d. samples drawn
from some probability measure µ supported on A. We aim to control the L2

µ(A;U) Bochner norm
of the approximation on average with respect to µ:

min
θ∈Θ

∥G(·)− G(·; θ)∥2L2
µ(A;U) = Ea∼µ∥G(a)− G(a; θ)∥2U

=

∫
A
∥G(a)− G(a; θ)∥2Udµ(a)

≈ 1

Ndata

Ndata∑
j=1

∥uj − Gθ (aj)∥2U .

Practically, each aj and uj are functions that come with a discretization (function values at some
sensor points), one could seek to approximately solve the empirical-risk minimization problem di-
rectly at those sensor points.

3.2 FOURIER NEURAL OPERATORS

Inspired by the kernel method for PDEs, each integral neural operator layer consists of a fixed non-
linearity and a kernel integral operator K modeled by network parameters, defined as (Kv)(x) =∫
κ(x, y)v(y)dy. All operations in integral neural operators are defined on functions; thus, integral

neural operators are understood as function space architectures.

As a natural choice inspired by CNNs and the perspective of fundamental solutions, FNO imposes
the integral kernel to be translation invariant, κ(x, y) = κ(x− y). Thus, the kernel integral operator
becomes a convolution operator, and FNO performs global convolution in the frequency domain.
Each Fourier layer in FNO consists of a fixed non-linearity and a convolution operator K modeled
by network parameters:

(Kv)(x) =

∫
Rd

κ(x− y)v(y)dy. (1)

Convolution can be efficiently carried out as element-wise multiplication in the frequency domain:
(Kv)(x) = F−1(Fκ · Fv)(x), (2)

where F and F−1 are the Fourier transform and its inverse, respectively. FNO directly learns Fκ
in the frequency domain instead of learning the kernel κ in physical space. The Fourier transform
captures global information effectively and efficiently, leading to superior performance for FNO.

4 CROSS-RESOLUTION OPERATOR-LEARNING PIPELINE

In this section, we delve into the following questions: (1) Do neural operators exhibit robustness
across different resolutions? (2) If not, what factors contribute to this instability? (3) Based on
the analysis, how can we improve the resilience of neural operators across various resolutions and
potentially achieve additional benefits? We first define DMEs in Sec. 4.1; we answer the first two
questions in Sec. 4.2 and the last question in Sec. 4.3. We will use FNO as an example for the
analysis of DMEs; however, the concepts and analysis can be extended to other mesh-based neural
operators, such as the Wavelet neural operator (Gupta et al., 2021).
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4.1 DISCRETIZATION ERROR AND DISCRETIZATION MISMATCH ERROR

For simplicity, we consider Hs
(
Td
)

and Hs′
(
Td
)

as the input-output function spaces, a unit torus
Ω = Td = [0, 1)d as the domain, and equidistant (uniform) grids as the form of our discretization.
The FNO architecture is usually applied to such discretizations to harness the power of the Fast
Fourier Transform (FFT). The operations in FNO are mainly defined on general geometries and
discretization. The FNO architecture is not limited to rectangular domains, periodic functions, or
uniform grids. Likewise, our analysis is not limited by these constraints; however, the derivation can
become considerably more tedious; thus, we adopt this simplification.
Definition 4.1. A uniform discrete refinement (ΩJ)

∞
J=1 of the domain Ω = Td is a sequence of

nested sets of equidistant grids Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω with |ΩJ | = Jd for any J ∈ N such that, for
any h > 0, there exists a number J = ⌈ 1

h⌉ ∈ N such that

Ω ⊆
⋃

x∈ΩJ

{
y ∈ Rd : ∥y − x∥2 < h

}
.

Any member ΩJ is called a discretization of the domain Ω. Note that, for an Rm-valued function
a : Ω → Rm defined on Ω, we call the pointwise evaluation of the function on ΩJ , a|ΩJ

= {a (xj) :

xj ∈ ΩJ}, a discretization of the function a(x). Notice that a|ΩJ
can be viewed as a vector in RJd.

Therefore, an FNO that takes discrete inputs can be viewed as a mapping Ĝ : RJd × Θ → U , in
contrast to its continuous counterpart G : A×Θ → U . Here, Ĝ indicates a pseudo-FNO that handles
discrete data inputs. For simplicity, we will omit the ·̂ notation as the context will make it clear.

As we assume uniform grids, storing the sensor point coordinates, xj , is unnecessary; thus, a|ΩJ

can be directly used as input to the Fourier neural operator. While including coordinates as input
to the neural network may sometimes improve performance, as noted in Kovachki et al. (2023).
Nevertheless, our analysis still applies if we consider coordinate inputs as the identity function (the
function’s output at point xj is xj itself). For the purposes of discussion in this work, we will treat
a|ΩJ

as a vector in RJd. For a discretization of size N , we will view it as a function reconstructed
by the N Fourier coefficients. This view is natural from the perspective of the orthogonal Fourier
projection operators.

It is well known in the field of operator learning that FNO is regarded as a discretization-invariant
model. We herein present the definition of discretization invariance as given in Kovachki et al.
(2023), with slight modifications related to our notations and conventions.
Definition 4.2 (Kovachki et al. (2023)). Let Θ ⊆ Rp be a finite-dimensional parameter space and
G : A× Θ → U a map representing a parametric class of operators with parameters θ ∈ Θ. Given
a discrete refinement (ΩJ)

∞
J=1 of the domain Ω ⊂ Rd, we say G is discretization-invariant if there

exists a sequence of maps G1, Ĝ2, . . ., where ĜJ : RJd ×Θ → U , such that

lim
J→∞

sup
a∈K

∥∥G (a|ΩJ
; θ
)
− G(a; θ)

∥∥
U = 0,

for any θ ∈ Θ and any compact set K ⊂ A.

Generally speaking, discretization invariance defined in Kovachki et al. (2021) refers to the property
that a neural operator taking discrete data as input converges to the continuum operator taking con-
tinuous functions as input as the discretization becomes finer. However, this does not necessarily
imply that the neural operator’s performance is consistent regardless of the input data’s discretiza-
tion, which is a common misconception within the operator learning community. We note that this
property implies convergence to the continuum, rather than the ability to achieve cross-resolution
tasks. Instead, throughout this paper, we will refer to discretization invariance as the property that
the neural operator’s parameters remain decoupled from the resolution of the data and that the neu-
ral operator can take inputs of different discretizations directly without sacrificing its performance.
Many in the operator learning community interpret this as the meaning of discretization invariance,
often conducting zero-shot super-resolution tests in their research. To avoid confusion with the
discretization (or resolution) invariance as defined in Kovachki et al. (2021), we will use the term
“cross-resolution”. To this end, we introduce DMEs, a key concept for cross-resolution pipelines.
Definition 4.3. Let Θ ⊆ Rp be a finite dimensional parameter space and G : A × Θ → U a map
representing a parametric class of Fourier neural operators with parameters θ ∈ Θ. Given a uniform

5
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discrete refinement (ΩJ)
∞
J=1 of the domain Ω ⊂ Rd, the discretization mismatch error between the

Fourier neural operator taking two different discretizations of the function a is defined as

EMN :=
∥∥Gθ

(
a|ΩM

)
− Gθ

(
a|ΩN

)∥∥
U .

4.2 THE ACCUMULATION OF DISCRETIZATION MISMATCH ERROR

To provide a detailed analysis of discretization errors in FNOs, we formally and mathematically
outline the full FNO architecture in Appendix A.1 and present Proposition 4.4.
Proposition 4.4. Let Θ ⊆ Rp be a finite dimensional parameter space, A = Hs

(
Td;Rda

)
,

U = Hs′
(
Td;Rdu

)
, and G : A × Θ → U a map representing a parametric class of Fourier

neural operators with parameters θ ∈ Θ with L Fourier layers. Consider σ(x) as the activation
function that is (globally) ω-Lipschitz continuous for all layers. Given a discretization a|ΩN

, then
the discretization mismatch error between the Fourier neural operator taking a|ΩN

and another dis-
cretization a|ΩM

, given by EMN =
∥∥Gθ

(
a|ΩM

)
− Gθ

(
a|ΩN

)∥∥ with M > N , will increase as M
increases. Additionally, the discretization mismatch error might increase as L and ω increase.

Proposition 4.4 indicates that DMEs propagate and accumulate across the intermediate Fourier lay-
ers, and as a straightforward extension from the continuity property of G, the DMEs also propagate
over time in autoregressive tasks. The training resolution can be M or N , so this bound suggests
that as long as the inference resolution differs from that of the training, it will suffer from DMEs,
nevertheless it is a super-resolution or sub-resolution (lower resolution) task. We demonstrate this
empirically in Sec. 5.1. The proof for this proposition and formal statements on the upper bound
is given in Appendix B. We experimentally verify our findings in Sec. 5.1. These findings suggest
that neural operators may struggle to perform cross-resolution tasks. Therefore, we propose the
Cross-Resolution Operator-learning Pipeline to address this issue.

4.3 CROP: MINIMIZING THE DISCRETIZATION MISMATCH ERROR

As shown in Sec. 4.2, the DMEs arise in neural operators, limiting their ability to perform cross-
resolution tasks. To address this, we propose the CROP lifting and projection layers:

PCROP : Hs
(
Td;Rda

)
→ Bw

(
Td;Rd0

)
and QCROP : Bw

(
Td;RdL

)
→ Hs

(
Td;Rda

)
.

The CROP lifting layer, PCROP, maps the input function to a band-limited, usually high-dimensional,
latent feature function through a global convolution with a band-limited convolution kernel C(x−y).
Hence, v0(x) =

∫
Td C(x − y)a(x)dy, and the resulting latent feature function v0(x) will be band-

limited as well. As we consider a band-limited function space, we can fix the discretization of the
latent feature function in accordance with the band-limit we choose. Since the discretization is fixed
for the latent feature functions, any intermediate neural operator architecture L can be chosen to
learn the mapping between latent feature functions, including those that are mesh-dependent:

L : Bw

(
Td;Rd0

)
7→ Bw

(
Td;RdL

)
.

Moreover, because the latent discretizations are fixed, CROP does not suffer from the DME, and we
can interpret the intermediate neural operator as an operation on these discretizations. As a result, it
will not introduce high-frequency components beyond the established band-limit that the discretiza-
tion can accommodate. Therefore, the intermediate neural operator satisfies the Continuous-Discrete
Equivalence (Raonic et al., 2023).

Similarly, the CROP projection layer, QCROP, consists of a global band-limited kernel convolution
combined with a fully connected point-wise network to map the band-limited latent feature function
to an output function with frequencies that can exceed the band-limit in the appropriate function
space. The high-frequency information beyond the band-limit is learned in the CROP projection
layer through a fully connected point-wise network, potentially augmented by a residual connection
to the input, as tolerated by the refined discretization.
Remark 4.5. Let v(x) ∈ Bw

(
Td;RdL

)
be a band-limited function, and let an analytic non-linear

function σ(·) be the fixed activation function in the fully connected point-wise network. Then the
resulting function may not be band-limited anymore. Additionally, the high frequencies of the re-
sulting function is determined by both the fully connected point-wise network and the learned latent
feature function v(x).

The proof of this remark is given in Appendix C. This remark suggests that the high-frequency com-
ponents beyond the band-limit are determined by both the fully connected point-wise network and v.
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Figure 2: Cross-Resolution Operator learning Pipeline: Firstly, a CROP lifting layer maps the input
parametric function to a latent feature function in a band-limited function space with a fixed dis-
cretization. Consequently, an intermediate neural operator that operates on band-limited function
spaces is applied to process the latent feature function. This intermediate neural operator does
not necessarily have to be discretization invariant, so we can choose models of local features
such as the U-Net. Finally, a CROP projection layer will map the latent feature function to final
output function in the appropriate function space. A Fully connected, point-wise network is incor-
porated in the CROP projection layers to learn higher frequency information beyond the band-limits.

The intermediate neural operator is tasked to learn an appropriate latent feature function v to capture
high-frequency components in conjunction with the fully connected point-wise network. The key
ideas of CROP is to have the latent feature functions to be in a band-limited function space so that
they can be processed by an intermediate neural operator that can be more freely chosen; for exam-
ple, we can use mesh-dependent architectures such as CNNs. This process, however, will “CROP”
out high frequencies, we utilize the CROP projection layer to recover such frequencies. We provide
a spectral comparison between FNO and CROP in Appendix C.1. The CROP lifting and projection
layers are able to capture global information efficiently; thus, we can select an intermediate neural
operator of the local nature, such as U-Nets, without sacrificing the ability to learn global features.
Overall, this framework is more robust for cross-resolution tasks by having an intermediate neural
operator that maps between band-limited function spaces and we can choose appropriate intermedi-
ate neural operators to efficiently learn the multi-spatio-scale nature of many problems in physical
modeling (Gupta & Brandstetter, 2022).

5 EXPERIMENTAL RESULTS

In this section, we conduct experiments to substantiate our claims and demonstrate the effectiveness
of our proposed CROP components. In Sec. 5.1, we conduct experiments on the incompressible
Navier-Stokes equation to showcase the accumulation of DMEs and verify our CROP components’
ability to perform cross-resolution tasks. In Sec. 5.2, we conduct experiments to demonstrate the
efficient multi-spatio-scale learning capability of our CROP components.

5.1 CROSS-RESOLUTION TESTS

In this example, we demonstrate the DME in neural operators as discussed in Sec. 4.2 and then
explore the ability of CROP components for cross-resolution tasks.

Description. We consider the 2D Navier-Stokes equation for a viscous, incompressible fluid in
vorticity form, as described in Li et al. (2021):

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2
(3)

where u ∈ C
(
[0, T ];Hr

per

(
(0, 1)2;R2

))
for any r > 0 is the velocity field, w = ∇ × u is the

vorticity, w0 ∈ L2
per

(
(0, 1)2;R

)
is the initial vorticity, ν = 1e − 3 is the viscosity coefficient, and

f ∈ L2
per

(
(0, 1)2;R

)
is the forcing function. We are interested in learning the operator that maps

the vorticity up to time 10 to the vorticity up to a later time T = 50 in an auto-regressive manner for
all the intermediate time steps with a step size of 1 following Li et al. (2021). More details on the
experimental setups can be found in Appendix D.1.1 and D.1.2.
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5.1.1 THE ACCUMULATION OF DISCRETIZATION MISMATCH ERROR

First, we recognize that neural operators may not be robust across different resolutions. In Figure
3 (a), we present results from a well-trained FNO on 200 testing input parametric functions and
plot the average relative ℓ2 error under different resolutions; we can clearly observe the impacts
of the DME. Even at the very first time step when the error has not propagated through time yet,
inferences at 128× 128 (0.66%) are three times as high as those at the training resolution (0.22%),
and inferences at other resolutions are even worse.

(a) (b)

Figure 3: (a): The relative ℓ2 error during inference for the Navier-Stokes equation across different
input resolutions. We can clearly observe the effects of DME on performance, even at the very
first time step. Unsurprisingly, this effect propagates through the auto-regressive time steps. (b):
The growth in relative DME with respect to increasing numbers of layers. This highlights our
observation that DMEs propagate through the Fourier layers.

As shown in Figure 3 (b), there is a clear trend: as the network stacks more layers, the DME in-
creases. As significant discretization errors exist within the network architecture, their impact on the
overall performance of super-resolution tasks is profound. Therefore, based on both experimental
observations and mathematical analysis, we conclude that FNO is not suited for cross-resolution
tasks (inference on resolutions different from that of the training). However, we emphasize again
that the formulation of FNO is revolutionary and lays the foundation for function space mappings.
Philosophically, since the training data lacks high-resolution information, it remains unclear whether
neural operators can learn what they have not seen (high-resolution information) to achieve zero-
shot super-resolution without the inclusion of specific designs, such as transfer learning, physics-
informed loss (Li et al., 2022), conservation laws (Liu et al., 2024a), symmetries (Helwig et al.,
2023), etc.. However, we believe that FNO offers great potential to achieve data-driven super-
resolution tasks; we will discuss this further in Appendix E.

5.1.2 CROP: MINIMIZING THE DISCRETIZATION MISMATCH ERROR

We demonstrate that CROP can achieve robust performance across different resolutions of inference.
We compare the CROP-enhanced FNO model with the plain FNO and the FNO with anti-alias
activation functions (Raonic et al., 2023).

Table 2: The mean and standard deviation of relative ℓ2 error over 10 runs during inference are re-
ported for the Navier-Stokes Equation with varying resolutions of input parametric functions. CROP
is consistent across all resolutions. Baseline models continue to show a strong bias toward the train-
ing resolution. The DME is obviously shown when inferred on data with different resolutions.

256× 256 128× 128 64× 64♢ 32× 32
FNO 4.65(±1.47) 3.35(±0.97) 0.58(±0.04) 9.45(±2.92)

Alias-free FNO (2×) 6.91(±2.73) 6.18(±3.01) 0.61(±0.04) 39.74(±14.11)
Alias-free FNO (Fixed) 6.95(±2.60) 6.40(±3.49) 0.61(±0.04) 42.08(±15.03)

CNO (with interpolation) 4.17(±1.46) 2.95(±1.06) 1.98(±0.14) 7.69(±1.69)
CROP (ours) 0.54(±0.05) 0.54(±0.05) 0.54(±0.05) 0.54(±0.05)

♢ Training resolution is 64× 64.

We present the results in Table 5.1.2 as percentages. It is clear that FNOs exhibit a strong bias
toward the training resolution, regardless of whether upsampling and downsampling are used to
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mitigate aliasing issues (Raonic et al., 2023). We additionally include the cross-resolution results
for CNO (Raonic et al., 2023) with downsampling and bicubic interpolation to illustrate that relying
on explicit up/downsampling may degrade performance. Therefore, we assert that alias-free activa-
tion functions cannot fully enable FNO to succeed in cross-resolution tasks. The major challenge
we need to solve is the discretization error inherent in the realization of neural operators at a discrete
level. Clearly, CROP minimizes the DME and achieves the best results on cross-resolution tasks.
Moreover, CROP exhibits superior performance compared to other baselines even when inferring at
the same resolution of the training data. This can be attributed to the fact that CROP is continuous-
discrete-equivalent; FNO truncates some high-frequency modes in each layer for efficiency and re-
duction of the number of parameters, but this truncation will break continuous-discrete-equivalence.
Moreover, such truncations are necessary if we aim to train at a lower resolution and infer at a
different resolution. CROP strictly adheres to the band-limits in accordance with the truncation;
thus, CROP improves the overall results. Additionally, as CROP does not suffer from DMEs in any
autoregressive time step, CROP is stable for long-term roll-outs in terms of cross-resolution abilities.

5.2 LEARNING CAPABILITY TEST

In this example, we explore the learning capabilities of CROP components. We demonstrate that
CROP achieves superior performance compared to the baselines. This performance gain can be
attributed to factors such as exceptional multi-spatio-scale abilities while being free from aliasing
and DMEs, as outlined in Sec. 4.3. Additionally, we include the results of cross-resolution tests in
Appendix D.4 to showcase CROP’s cross-resolution capabilities.

5.2.1 NAVIER-STOKES EQUATION WITH HIGH REYNOLDS NUMBER

Description. We examine the same Navier-Stokes equation discussed in Section 5.1, but with an
increased Reynolds number. High Reynolds numbers pose significant learning challenges due to
the turbulent characteristics and small-scale features of the flow (Liu-Schiaffini et al., 2024). We
conduct experiments at Reynolds numbers of 5, 000 and 10, 000, respectively. As higher Reynolds
numbers lead to more complex problems, we utilize a larger training dataset for Re = 10, 000. More
details can be found in Appendix D.1.3.

Table 3: Results on the Navier-Stokes equation with high Reynolds numbers are presented. The
mean and standard deviation of the relative ℓ2 error over 10 inference runs are provided. Timing
results are also included as a reference. Clearly, CROP outperforms all baselines.

Re = 5000 Re = 10000
#Par. (M) BPS IT Test (%) Test (%)

FNO 2.27∗ 18.47 3.39 7.25(±0.38) 8.35(±0.55)
CNO 2.61 1.64 9.73 5.77(±0.19) 4.66(±0.07)
U-Net 7.76 34.54 1.56 8.96(±0.06) 8.75(±0.22)
ResNet 23.50 2.01 6.73 57.79(±2.11) 53.01(±0.96)

DeepONet 4.89 50.35 0.89 16.93(±0.40) 17.60(±0.37)
CROP (ours) 4.03∗ 12.70 4.69 3.84(±0.09) 4.06(±0.22)
BPS (Batch per Second): The number of batches processed per second during training.
IT (Inference Time): The time, in milliseconds, it takes to infer on a batch of 16 samples.
∗: Each complex parameter (which is twice the size of a real parameter) is counted as 2.

Results and Discussion. The results clearly demonstrate that CROP exhibits exceptional learning
capabilities, effectively capturing both fine-scale and global features. While Fourier Neural Operator
(FNO) performs well at low Reynolds numbers, as shown in Sec. 5.1, it tends to over-smooth
fine-scale details, leading to degraded performance. Although the Convolutional Neural Operator
(CNO) can learn global features through its U-path, it excels primarily in local contexts due to
its convolutional nature, making it less effective at capturing long-range dependencies compared
to our CROP components. Similarly, U-Net and ResNet also struggle with learning long-range
dependencies. We recognize that DeepONet is a groundbreaking framework that performs well
in various applications; however, like FNO, it may also over-smooth fine-scale details. Overall,
CROP’s ability to effectively learn complex patterns results in superior performance compared to
the baselines. An interesting phenomenon is that FNO performs worse while CNO performs better
under higher Reynolds numbers. Our hypothesis is that as the Reynolds number increases, fine-scale
details become more crucial to learn due to the increased chaos. CROP consistently performs well
under both Reynolds numbers due to the multi-spatio-scale learning capabilities it offers.
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5.2.2 DARCY FLOW EQUATION AND POISSON EQUATION

Description: the Darcy Flow Equation. We consider the steady-state of the 2D Darcy Flow equa-
tion given by: −∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2

where a(x) is the coefficient function and f(x) is the forcing function. We learn both the non-linear
operator mapping a 7→ u following the same set up and data as in Li et al. (2021) and the opeartor
mapping f 7→ u following the set up in Hasani & Ward (2024), where the diffusion coefficient,

a(x), that accounts for anisotropy in the flow is taken as a(x) =
[

x2
1 sin (x1x2)

x1 + x2 x2

]
.

Description: the Poisson Equation. We consider a prototypical 2D Poisson equation learning the
solution operator, G : f 7→ u from Raonic et al. (2023) given by:

−∆u(x) = f(x), x ∈ (0, 1)2

u(x), x ∈ ∂(0, 1)2
(4)

Results and Discussion. The findings clearly indicate that CROP demonstrates outstand-
ing learning abilities because we can freely choose an intermediate operator while maintain-
ing properties such as resolution-invariance, discrete-continuous equivalence, and freedom from
DMEs. This flexibility enables us to select a suitable intermediate neural operator that fo-
cuses on local details. For the Darcy tasks, as this is a relatively easy learning task, all
models, except ResNet, perform well; however, CROP still shows improvement over all base-
lines. We additionally include the cross-resolution performance for CROP and FNO on
nonlinear Darcy in Appendix D.2. For the Poisson equation, we note that architectures
with local characteristics, including CNO, U-Net, and ResNet, all perform better than FNO.

Table 4: Results for the Darcy flow equation and the Poisson equation
are presented. Nonlinear Darcy denotes the non-linear mapping a 7→
u. It is evident that CROP achieves competitive performance while
maintaining the cross-resolution property.

Nonlinear Darcy Darcy Flow Poisson
FNO 0.68(±0.03) 1.58(±0.14) 7.21(±0.74)
CNO 0.59(±0.04) 1.32± (0.33) 1.67(±0.56)
U-Net 1.34(±0.03) 2.68(±0.17) 1.40(±0.21)
ResNet 7.26(±0.59) 9.85(±0.68) 5.64(±0.34)

DeepONet 2.99(±0.10) 1.36(±0.16) 12.26(±1.48)
CROP (ours) 0.51(±0.01) 1.11(±0.08) 0.80(±0.13)

CROP, as a multi-spatio-
scale learning paradigm
with both local and global
learning capabilities, out-
performs all baselines by
attending to global pat-
terns while focusing on
local structures. Al-
though all models, except
ResNet, perform well on
the Darcy flow equation,
CROP achieves the best
performance for similar reasons.
6 CONCLUSION
In this work, we have explored the challenges posed by discretization mismatch errors (DMEs) in
neural operators. Despite FNO’s advantages in formulating the kernels in the Fourier domain to
capture global features and learn dynamic physical phenomena, its performance is not consistent
across different resolutions. Moreover, FNO tends to over-smooth fine-scale details. We identified
the sources of these discrepancies and introduced a Cross-Resolution Operator-learning Pipeline
(CROP) designed to mitigate DMEs. Our proposed method not only succeeds in cross-resolution
tasks but also outperforms baselines in learning complex dynamics, as it upholds continuous-discrete
equivalence and efficiently learns both global and local features through CROP designs.

Limitations and Future Work. First, like FNO, CNO, and other CNN-based architectures, our
CROP components perform optimally with rectangular domains and uniform grids. We acknowl-
edge that this limitation may affect the applicability of CROP. Efforts have been made to address
these drawbacks in FNO and CNN-based architectures (Liu et al., 2023; Gao et al., 2021). While
these concepts may be adapted for CROP, we plan to explore this in the future. Second, although
we can capture high-frequency information using both the learned feature function and the fully-
connected pointwise network, further investigation into the expressive power and universality of
these components would enhance our understanding and inform better designs for intermediate neu-
ral operators and activation functions in operator learning. Lastly, while we have tested CROP on
widely used datasets, it would be valuable to conduct studies on additional challenging and insight-
ful learning tasks, such as the rough Darcy and Helmholtz learning tasks (Xu et al., 2024; Liu et al.,
2024b; De Hoop et al., 2022).
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ETHICS STATEMENT

This research focuses on the development and evaluation of neural operators, which are mathemati-
cal and deep learning tools designed to model complex systems. The study does not involve human
subjects, personal data, or sensitive information that could raise privacy, security, or fairness con-
cerns. No potential conflicts of interest, legal compliance issues, or harmful applications have been
identified in this work.

REPRODUCIBILITY

All baseline models used in this work were adopted with minimal or no modifications from their
original implementations. The datasets utilized are either open-source or generated using publicly
available code, as described in detail in the appendix. Upon acceptance of the paper, we will provide
the source code, datasets, pre-trained models, plotting scripts, and configuration files necessary to
replicate the key experiments. Comprehensive instructions for training and evaluation will also be
included. Additionally, all theoretical claims are accompanied by proofs in the appendix, which
have been empirically verified through experiments.
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A ACCUMULATION OF DISCRETIZATION ERROR IN FNO

A.1 MATHEMATICAL FORMULATION OF THE FNO ARCHITECHTURE

To give a details analysis of discretization errors in FNOs, we first formally and mathematically
lay out the most common FNO architecture. Let A

(
Ω,Rda

)
and U

(
Ω,Rdu

)
be two appropriate

function spaces defined on bounded domain Ω ⊂ Rd. The Fourier neural operator G : A → U is
defined as a compositional mapping between functions spaces:

G(a) := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (a). (5)
The input function a ∈ A is lifted to the latent space of Rdv0 -valued (usually dv0 > da) functions
through a lifting layer acting locally:

P :
{
a : Ω → Rda

}
7→
{
v0 : Ω → Rdv0

}
.

Lifting layer usually is implemented as a linear layer represented by a matrix P ∈ Rdv×da or as a
point-wise multi-layer perceptron (1 by 1 convolution layers) with activation function σ.

Then the result goes through L Fourier layers:

Lℓ(v)(x) = σ

(
Wℓv(x) + bℓ(x) +Kℓv(x)

)
, ℓ = 1, 2, . . . , L, (6)

where, σ is a non-linear activation function, Wℓ acts locally and can be represented by a matrix
∈ Rdvℓ−1

×dvℓ , bℓ(x) ∈ U
(
Ω;Rdv

)
is the bias function (usually a constant function for easy imple-

mentation), and
Kℓv(x) = F−1

(
Pℓ(k) · F(v)(k)

)
(x)

is a linear but non-local convolution operator carried out in the Fourier space with Pℓ : Zd →
Cdv×dv being the Fourier coefficients of the convolution kernels. We will denote the output of the
ℓ-th Fourier layer by vℓ.

The output function is obtained from the projection layer acting locally, similar to the lifting layer:

Q :
{
vL : Ω → RdvL

}
7→
{
u : Ω → Rdu

}
.

For simplicity, we will assume that all the inputs and outputs to the Fourier layers have the same
channel dimension, i.e., dv0 = dv1 = . . . dvL = dc.

In practice, the FNO, as well as all the intermediate layers, takes discretizations of functions as
inputs and produces discretizations of functions as outputs. Therefore, this discrete implementation
is terms as the Pseudo Fourier Neural Operators, readers are referred to Kovachki et al. (2021) for
more details.

B PROOF TO PROPOSITION 4.4

We first present the following lemma for the discretization error of L Fourier layers and with only
a single hidden channel. We will later extend this result to the full FNO architecture and with dc
hidden channels in general. In this section, all norms are ℓ2 norms unless specified otherwise.
Lemma B.1. Let Θ ⊆ Rp be a finite-dimensional parameter space, and let s > 2 be an integer.
Consider L : Hs (T;R) × Θ → Hs (T;R) being the composition of L parametric Fourier layers
with parameters θ ∈ Θ and a hidden channel dimension of one. Assume the activation function
σ : R → R is ω-Lipschitz continuous. Given a discretization v|ΩN

, the discretization mismatch
error between the Fourier layers L taking v|ΩN

and another discretization v|ΩM
is bounded by

ENM = ∥L (v|ΩN
)− L (v|ΩM

)∥L2(T)

≤ ωL

(
L∏

ℓ=1

Cℓ

)
N−1∑
ξ=0

[
2π|N −M |

NM
ξ

∣∣∣∣∣
N∑

n=1

v(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

v(xn)e
−i2π n

M ξ

∣∣∣∣∣
]
,

(7)
where without the loss of generality we assume M > N , Cℓ = ∥Wℓ∥ + Cκℓ

, with ∥Wℓ∥ being the
operator norm of the linear operator Wℓ in the ℓ-th layer, and Cκℓ

is a constant depending on the
ℓ-th layer’s kernel κℓ.
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Proof. We aim to establish a bound on the discretization mismatch error EMN between the outputs
of L = LL ◦ LL−1 ◦ · · · ◦ L1 applied to the input function at different discretizations ΩN and ΩM ,
where each layer Lℓ is defined as Lℓ(f(x)) = σ (Wℓf(x) + bℓ(x) +Kℓ(f(x))). We view vN and
vM as functions through their Fourier coefficients that are approximated numerically.

Applying L1 to vN and vM , we have:

L1(vN )(x) = σ (W1vN (x) + b1(x) +K1(vN )(x)) ,

L1(vM )(x) = σ (W1vM (x) + b1(x) +K1(vM )(x)) .

Let the difference between the outputs be ∆1(x) = L1(vN )(x)− L1(vM )(x).

By the Lipschitz continuity of σ, we have:

|∆1(x)| ≤ ω |(W1vN (x) +K1(vN )(x))− (W1vM (x) +K1(vM )(x))|
= ω (|W1 (vN (x)− vM (x))|+ |K1(vN )(x)−K1(vM )(x)|) . (8)

Assuming that W1 is a bounded linear operator with operator norm ∥W1∥, we have:

|W1 (vN (x)− vM (x))| ≤ ∥W1∥ |vN (x)− vM (x)| .

Moreover, the convolution difference is:

K1(vN )(x)−K1(vM )(x) =

∫
T
κ1(x− y) (vN (y)− vM (y)) dy.

The difference after the ℓ-th layer is:

∆(ℓ) = v
(ℓ)
N − v

(ℓ)
M .

Using the Lipschitz continuity of σ with constant ω and the boundedness of Wℓ and Kℓ, we have:∥∥∥∆(ℓ)
∥∥∥
L2(T)

≤ ω (∥Wℓ∥+ Cκℓ
)
∥∥∥∆(ℓ−1)

∥∥∥
L2(T)

,

where Cκℓ
=
∫
T |κℓ(z)|dz. By induction over L layers, it follows that:∥∥∥∆(L)

∥∥∥
L2(T)

≤ ωL

(
L∏

ℓ=1

(∥Wℓ∥+ Cκℓ
)

)∥∥∥∆(0)
∥∥∥
L2(T)

.

We now estimate
∥∥∆(0)

∥∥
L2(T). Let the difference between the Fourier coefficients be

∆̂(ξ) = v̂N (ξ)− v̂M (ξ) =

N∑
n=1

v(xn)
(
e−i2π n

N ξ − e−i2π n
M ξ
)
−

M∑
n=N+1

v(xn)e
−i2π n

M ξ,

where e−i2π n
N ξ − e−i2π n

M ξ can be approximated using a Taylor expansion:

e−i2π n
N ξ − e−i2π n

M ξ ≈ −i2πn

(
1

N
− 1

M

)
ξe−i2π n

N ξ = −i2πn
N −M

NM
ξe−i2π n

N ξ.

It follows that∣∣∣∆̂(ξ)
∣∣∣ ≤ 2π

|N −M |
NM

ξ

∣∣∣∣∣
N∑

n=1

v(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

v(xn)e
−i2π n

M ξ

∣∣∣∣∣ .
Using Parseval’s identity, we can sum over the relevant frequencies:∥∥∥∆(0)

∥∥∥
L2(T)

≤
N−1∑
ξ=0

(∣∣∣∆̂(ξ)
∣∣∣+ ∣∣∣∆̂(−ξ)

∣∣∣) .
Substituting the estimate of

∣∣∣∆̂(ξ)
∣∣∣, we obtain:

∥∥∥∆(0)
∥∥∥
L2(T)

≤
N−1∑
ξ=0

[
2π

|N −M |
NM

ξ

∣∣∣∣∣
N∑

n=1

v(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

v(xn)e
−i2π n

M ξ

∣∣∣∣∣
]
.
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Therefore, combining the above estimates and simplify, we have:

ENM = ∥L (v|ΩN
)− L (v|ΩM

)∥L2(T)

≤ ωL

(
L∏

ℓ=1

Cℓ

)
N−1∑
ξ=0

[
2π|N −M |

NM
ξ

∣∣∣∣∣
N∑

n=1

v(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

v(xn)e
−i2π n

M ξ

∣∣∣∣∣
]
,

(9)
where without the loss of generality we assume M > N , Cℓ = ∥Wℓ∥+ Cκℓ

, with ∥Wℓ∥ being the
operator norm of the linear operator Wℓ in the ℓ-th layer.

Intepretation of this bound: When N = M , clearly this bound will be 0. Without loss of general-
ity, we assume M > N , when N is fixed, |N−M |

NM gradually increases to 1, and as M increases, this

bound increases. Moreover,
∑N−1

ξ=0

∣∣∣∑M
n=N+1 v(xn)e

−i2π n
M ξ
∣∣∣ behaves as a term that quantifies the

difference between the input functions. The errors will propagate through the layers.

Now, we are ready to prove Proposition 4.4, which has been written to help readers better under-
stand our results. We begin by proving the following lemma concerning the error bound of the
discretization error for the full FNO, which implies Proposition 4.4.

Lemma B.2. Let Θ ⊆ Rp be a finite-dimensional parameter space, A = Hs
(
Td;Rda

)
, U =

Hs′
(
Td;Rdu

)
, and G : A × Θ → U a map representing a parametric class of Fourier neural

operators with parameters θ ∈ Θ with L Fourier layers and dc hidden channels. Consider σ(x) as
the activation function that is (globally) ω-Lipschitz continuous. Given a discretization a|ΩN

, then
the discretization mismatch error between the Fourier neural operator taking a|ΩN

and another
discretization a|ΩM

, given by

ENM = ∥G (a|ΩN
)− G (a|ΩM

)∥L2(Td)

≤ CωL

(
L∏

ℓ=1

Cℓ

)
N−1∑
ξ=0

[
2π|N −M |

NM
ξ

∣∣∣∣∣
N∑

n=1

a(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

a(xn)e
−i2π n

M ξ

∣∣∣∣∣
]
.

(10)
where both C and Cℓ are constants independent of N , M , and L.

Proof. We aim to establish the bound equation 10 on the discretization mismatch error EMN by
extending Lemma B.1 to the composite mapping G = Q ◦ L ◦ P with dc hidden channels. Without
the loss of generality, we assume s = min{s, s′}.

Let aN = a|ΩN
and aM = a|ΩM

denote the discretizations of the input function a.

Applying the lifting layer P to aN and aM , we obtain

a0N = P (aN ), a0M = P (aM ),

where the superscript denotes the number of Fourier layers that the latent feature functions have
gone through.

By the linearity of P , Q, and the channel mixing of intermediate layers, and a ∈ Hs(Td;Rda), we
have:

ENM = ∥G (a|ΩN
)− G (a|ΩM

)∥L2(Td;Rda )

≤ ∥Q∥ · ∥P∥ ·
∥∥L (a0N)− L

(
a0M
)∥∥

L2(T)

= C · ∥L′ (a)− L′ (a)∥L2(Td;Rdc ) ,

(11)

where C is a constant depends on all the linear channel mixings and independent of N,M , and L,
and L′ is the induced single channel operator of Fourier layers.

To estimate the error propagation through L, we utilize Lemma B.1, which provides an error bound
for a single-channel case on T. We extend this result to the multi-channel, dc-dimensional setting
by considering each channel separately and summing the contributions. The error in each channel
propagates similarly due to the Lipschitz continuity of σ and the boundedness of the operators Wℓ
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and Kℓ. We can bound the error after L layers by:

ENM = ∥G (a|ΩN
)− G (a|ΩM

)∥L2(Td)

≤ CωL

(
L∏

ℓ=1

Cℓ

)
N−1∑
ξ=0

[
2π|N −M |

NM
ξ

∣∣∣∣∣
N∑

n=1

a(xn)ne
−i2π n

N ξ

∣∣∣∣∣+
∣∣∣∣∣

M∑
n=N+1

a(xn)e
−i2π n

M ξ

∣∣∣∣∣
]
.

(12)
This completes the proof.

Now, Proposition 4.4 follows immediately. Interpretation of this bound is similar to that of
Lemma B.1. Note that we can fix N or M to be the training resolution; thus, this bound sug-
gests that as long as the inference resolution deviates from that of the training, DMEs arise. In the
main text, we use plain language to ensure easier interpretation for readers.

C FULLY CONNECTED POINT-WISE NETWORK AND BAND-LIMITS

For the definition of band-limited function spaces, we refer readers to Raonic et al. (2023). Once the
latent feature function is obtained, a fully connected point-wise network (implemented as a 1 × 1
convolution with non-linear activations) is applied to capture information beyond the band-limit.
Remark 4.5. Let v(x) ∈ Bw

(
Td;RdL

)
be a band-limited function, and let an analytic non-linear

function σ(·) be the fixed activation function in the fully connected point-wise network. Then the
resulting function may not be band-limited anymore. Additionally, the high frequencies of the re-
sulting function is determined by both the fully connected point-wise network and the learned latent
feature function v(x).

Proof. As point-wise linear transforms will only results in a linear transform of the feature func-
tion. Thus, it does not introduce any high frequency information nor does it involve any interaction
between different frequency modes. Without loss of generality, consider only one layer of fully
connected point-wise network, and we analyze the non-linear activations. Let v̂(ξ) = F [v(x)](ξ)
denote the Fourier transform of v(x), defined by

v̂(ξ) =

∫
Ω

v(x)e−2πiξx dx.

If σ(x) is a smooth function of x, we can expand σ as follows:

σ(x) = σ(0) + σ′(0)x+
1

2!
σ′′(0)x2 +

1

3!
σ′′′(0)x3 + . . . .

Thus, we can express σ ◦ v(x) as:

σ ◦ v(x) = σ(0) + σ′(0)v(x) +
1

2!
σ′′(0)v(x)2 + . . . .

Now, performing the Fourier transformation, we obtain:

F [σ ◦ v(x)](ξ) = 2πσ(0)v(ξ) + σ′(0)v̂(ξ) +
1

2!
σ′′(0)

∫
Ω

dξ0
2π

v̂ (ξ0) v̂ (ξ − ξ0) dξ0

+
1

3!
σ′′′(0)

∫∫
Ω

dξ0
2π

dξ1
2π

v̂ (ξ0) v̂ (ξ1 − ξ0) v̂ (ξ − ξ1) dξ0dξ1 + . . . .

We observe that, without loss of generality, if there exists n > 1 such that σ(n)(0) ̸= 0, σ ◦ v(x)
may introduce frequencies beyond the band-limit of v(x).
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It is important to note that, based on the formulation, the high-frequency components beyond the
band-limit are determined by both the fully connected point-wise network and the latent feature
function v learned by the intermediate neural operator. The intermediate neural operator is tasked to
learn an appropriate latent feature function to capture high-frequency components together with the
fully connected point-wise network. Whether or not this structure can be proven to have universality
is of interests to future exploration.

C.1 SPECTRAL COMPARISON: FNO AND CROP

In Figure 4, we present a spectral comparison between FNO and CROP on the Burgers example,
adapted directly from Li et al. (2021). Both FNO and CROP demonstrate the ability to learn high-
frequency information beyond their truncation or band-limit when performing inference at the same
resolution as training. However, under super-resolution inference, high frequencies show a slight
deviation from the ground truth. Notably, CROP consistently performs better at higher frequencies
in both scenarios. It should be mentioned that this plot is in semilog scale, which visually amplifies
the error for high frequencies.

(a) (b)

Figure 4: (a): Illustration of the magnitude spectra of CRNO and FNO for inference at the same
resolution as training. (b): Illustration of the magnitude spectra of CRNO and FNO for super-
resolution inference.

Most importantly, the issue with DMEs is not just on the ability to recover unseen high frequencies.
Instead, DMEs cause significant errors in the low-frequency range. We demonstrate this with the
spectral error plot for low frequencies, shown in Fig. 5, for the results in Table 5.1.2 (the Navier-
Stokes equation). It is evident that DMEs cause high errors in low frequencies. At the training res-
olution, both FNO and CROP exhibit minimal errors in low frequencies; however, FNO introduces
substantial errors in low frequencies during super-resolution inferences, whereas CROP remains
consistent.

D EXPERIMENTAL DETAILS

All the experimental results, especially the timing results, are recorded on NVIDIA RTX A6000
with 48 GB GDDR6.
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Figure 5: Illustration of the magnitude spectra of the error for FNO and CRNO at a training resolu-
tion of 64× 64. It is evident that DMEs cause significant inaccuracies in the low-frequency range.

D.1 THE NAVIER-STOKES EQUATION

We consider the 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form
from Li et al. (2021):

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2
(13)

where u ∈ C
(
[0, T ];Hr

per

(
(0, 1)2;R2

))
for any r > 0 is the velocity field, w = ∇ × u is the

vorticity, w0 ∈ L2
per

(
(0, 1)2;R

)
is the initial vorticity, ν is the viscosity coefficient, and f ∈

L2
per

(
(0, 1)2;R

)
is the forcing function.

D.1.1 THE ACCUMULATION OF DISCRETIZATION ERRORS IN SEC. 5.1

For Sec. 5.1, ν is set to 1e − 3. We are interested in learning the operator mapping the vorticity
up to time 10 to the vorticity up to a later time T = 50 in an auto-regressive manner for all the
intermediate time steps with a step size of 1 as in Li et al. (2021). This dataset is generated using
the data generation scripts provided by the authors of Li et al. (2021) in their GitHub repository.
The PDE is solved using numerical solvers on a 256 × 256 grid. The training dataset contains
1,000 trajectories (input-output function pairs), while the testing dataset includes 200 trajectories.
Following the setups in Li et al. (2021), we downsample the training dataset to 64 × 64; the FNO
model is fully trained on this data and evaluated on the testing data at different resolutions, namely
256× 256, 128× 128, 64× 64, and 32× 32, also obtained through downsampling.

For Figure 3 (a), the FNO architecture is followed exactly as provided by the authors of Li et al.
(2021) in their GitHub repository (4 Fourier Layers and a hidden channel dimension of 20) except
that the teaching forcing training strategy from Tran et al. (2023) is adopted. The FNO model is
trained on 64× 64 data and we make inferences on different resolutions mentioned above.

The relative ℓ2 error is given by

relative ℓ2 error =
∥uθ − u∥2

∥u∥2
,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where uθ is the prediction and u is the label produced by numerical solvers. Since the obtained
results are discrete, the 2-norm is calculated as the 2-norm of vectors. We report the relative ℓ2 error
for all results in this paper unless otherwise specified. The experiment is repeated 10 times and we
record the mean.

In Figure 3 (b), we consider the same Navier-Stokes Equation and generated data. Due to the
tremendous computational resources it might take, we are only interested in learning the mapping
G : u10 7→ u11 without auto-regressive time steps, where ut denotes the vorticity at time t. The
FNO is trained on data at 64 × 64, and we compare the difference between the FNO output when
taking input data of resolution 64× 64 and that of 256× 256. The relative DME is given by∥∥Gθ

(
u10|Ω64

)
− Gθ

(
u10|Ω256

)∥∥
2

∥u11∥2
,

where the numerator is the DME and the denominator ∥u11∥2 is applied to help the readers to
compare the DME relative to the label solution to which the neural operator is trained to map. As
Gθ

(
a|Ω64

)
and Gθ

(
a|Ω256

)
practically have different resolutions, the 2-norm is calculated using the

Parsevals identity: ∥v∥2 := (2π)d

2

∑
k∈Zd |v̂k|2 for a mapping v : Td 7→ Rd, where v̂k = F(v)(k)

denotes the k-th Fourier coefficient of v fr any k ∈ Zd.

The experiment is repeated 20 times; the mean and standard deviation are reported in Table 5.
In addition, we observe that for different datasets and different settings of FNO, the DME might
fluctuate or not increase much after a few layers (potentially due to residual connections). As we are
interested in the upper bound, we report one set of results that clearly reflects our findings. However,
for all the experiments we have conducted, DME clearly exists, even with only 2 to 3 Fourier layers.

Table 5: The growth in relative discretization mismatch error (in percentage) with respect to increas-
ing numbers of layers. This highlights our observation that discretization mismatch errors propagate
through Fourier layers.

Number of Layers 1 2 3 4 5
Mean (Std) 0.28(±0.09) 0.45(±0.09) 0.43(±0.07) 0.46(±0.11) 0.43(±0.13)

Number of Layers 6 7 8 9 10
Mean (Std) 0.46(±0.12) 0.52(±0.13) 0.65(±0.26) 0.91(±0.45) 1.55(±0.69)

Number of Layers 11 12 13 14 15
Mean (Std) 1.90(±0.76) 2.73(±0.77) 3.30(±0.88) 3.93(±0.70) 4.19(±0.62)

D.1.2 CROSS RESOLUTION TEST IN SEC. 5.1

For the cross-resolution test of different models in Sec. 5.1, the experiment is repeated 10 times and
the mean and standard deviation of the average relative ℓ2 error over 40 auto-regressive time steps
are plotted and also given in Table 8 in percentage.

We implemented two versions of the alias-free activation functions. For the 2× upsampling im-
plementation, which is directly taken from Raonic et al. (2023), we increase the spatial grid size
by a factor of two by bicubic spline interpolation, e.g. 64 × 64 to 128 × 128, apply the activation
functions on higher-resolution grids, then downsample to the original grid size by, again, bicubic
spline interpolation. For the fixed upsampling implementation, inputs of different grid sizes are all
interpolated to the same size (e.g. 128×128) to apply the activation functions, and then interpolated
back to their original grid sizes. The main difference between these two is that, during inference,
the grid sizes also increase by a factor of two in the 2× upsampling implementation while they are
fixed in the fixed upsampling implementation.

D.1.3 THE NAVIER-STOKES EQUATION WITH HIGH REYNOLDS NUMBERS

In Sec. 5.2.1, ν is set to 5e − 4 and 1e − 4, respectively for Reynolds numbers 5, 000 and 10, 000.
We are interested in learning the operator mapping the vorticity from time 0 to the vorticity at
time T = 10 and T = 5 for Reynolds numbers 5, 000 and 10, 000, respectively. This dataset
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Table 6: Average ℓ2 error during inference for the Navier-Stokes Equation under different resolutions
of input parametric functions. CROP result with more significant digits. We can rarely observe any
difference between inferences at different resolutions.

256× 256 128× 128 64× 64♢ 32× 32
CROP 0.54137(±0.0529) 0.54140(±0.0527) 0.54154(±0.0527) 0.54142(±0.0526)
♢ Training resolution is 64× 64.

is generated using the data generation scripts provided by the authors of Li et al. (2021) in their
GitHub repository. The PDE is solved using numerical solvers on a 256 × 256 grid. For Reynolds
numbers 5, 000, the dataset contains 1, 024 trajectories and follows a 768/128/128 split. As higher
Reynolds number leads to a more diffulty learning task, for Reynolds numbers 10, 000, the dataset
contains 2, 048 trajectories and follows a 1792/128/128 split.

D.2 THE DARCY FLOW EQUATION

We consider the steady-state of the 2D Darcy Flow equation from given by:

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2

where a(x) is the coefficient function and f(x) is the forcing function. We learn the non-linear
operator mapping a 7→ u following the exact set up and data as in Li et al. (2021) and the opeartor
mapping f 7→ u following the set up in Hasani & Ward (2024), where the diffusion coefficient,
a(x), that accounts for anisotropy in the flow is taken as

a(x) =

[
x2
1 sin (x1x2)

x1 + x2 x2

]
,

where x1 and x2 are the two dimensions of x. We are interested in learning the solution operator,
G : f 7→ u, maps the source term f(x) to the solution u(x). 1000 input-output pairs of resolution
256× 256 are generated based on Hasani & Ward (2024) and the program provided in their GitHub
repository. The data is downsampled to 64 × 64 for training, and the train/val/test data follows a
800/100/100 split.

Cross-Resolution Results on the Non-linear Mapping a 7→ u. In Table 7, we present the com-
parison of cross-resolution tasks between CROP and FNO. Clearly, CROP remains consistent under
different resolutions of inference, while FNO suffers from DMEs. This is not an autoregressive task,
so the DMEs do not propagate through time; however, we still observe a significant downgrade in
performance for FNO.

Table 7: The mean and standard deviation of relative ℓ2 error over 10 runs during inference are
reported for the nonlinear operator a 7→ u on the Darcy flow equation with varying resolutions of
input parametric functions. CROP is consistent across all resolutions. FNO shows a strong bias
toward the training resolution. The DME is obviously shown when inferred on data with different
resolutions.

421× 421 141× 141 85× 85♢ 43× 43
FNO 0.87(±0.04) 0.75(±0.03) 0.68(±0.03) 0.97(±0.03)

CROP (ours) 0.52(±0.01) 0.51(±0.01) 0.51(±0.01) 0.57(±0.01)
♢ Training resolution is 85× 85.

D.3 THE POISSON EQUATION

We consider a prototypical 2D Poisson equation with a classical Dirichlet boundary condition from
Raonic et al. (2023) given by

−∆u(x) = f(x), x ∈ (0, 1)2

u(x), x ∈ ∂(0, 1)2
(14)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The solution operator, G : f 7→ u, maps the source term f(x) to the solution u(x). The source term
are given by

f(x, y) =
π

K2

K∑
i,j=1

aij ·
(
i2 + j2

)−r
sin(πix) sin(πjy), ∀(x, y) ∈ D,

with r = −0.5, the corresponding exact solution can be analytically computed by

u(x, y) =
1

πK2

K∑
i,j

aij ·
(
i2 + j2

)l−1
sin(πix) sin(πjy).

The data is generated by fixing K = 16 and choosing aij to be i.i.d. uniformly distributed from
[−1, 1].

D.4 ADDITIONAL CROSS-RESOLUTION RESULTS

Table 8: The Relative ℓ2 error for varying resolutions of input parametric functions. In the Navier-
Stokes example, the 256 × 256 data does not contain more high-frequency information. We can
clearly see that CRNO performs consistently.

Navier-Stokes (Re = 10, 000) Darcy Flow
256× 256 64× 64♢ 256× 256 64× 64♢

FNO 8.903623 5.789168 3.636376 1.281445
CROP 2.466607 2.466613 2.804997 1.096139

We provide the cross-resolution results for FNO and CROP in Table D.4. Other models either cannot
directly perform cross-resolution tasks (e.g., DeepONet) or exhibit dramatically poor performance
(e.g., CNN-based models), which leads us to omit their comparison.

We test the cross-resolution performance for both models using the first batch of data from the test
dataset. In the Navier-Stokes example, the 256 × 256 data does not contain more high-frequency
information than the 64 × 64 data. We can clearly see that CRNO performs consistently during
inference at different resolutions. In the Darcy Flow (linear operator f 7→ u) example, however, the
256 × 256 data does contain more high-frequency information, resulting in a degradation for both
models. This again demonstrates our concerns about zero-shot super-resolution tasks, which we will
discuss further in Appendix E.

D.5 IMPLEMENTATION DETAILS

Model details:

• FNO (Li et al., 2021): Adopted from the code provided by the authors in their GitHub
repository with no change to their architecture except that we increase the modes to 24
with a width of 16.

• CNO (Raonic et al., 2023): Adopted from the code provided by the authors in their GitHub
repository with no change to their architecture.

• U-Net: Adopted from the code provided by PDEBench (Takamoto et al., 2024) with no
change to their architecture at all.

• ResNet: Adopted from the well-known ResNet50 architecture, we made minor adjustments
to adapt it for our function mapping tasks instead of classification tasks. Specifically, we
removed the final pooling and linear layers, and we used a padding of 1 and a stride of 1 to
ensure that all channels maintain the same spatial size as the input. Finally, we employed a
1× 1 convolutional layer to project the feature maps into the final output.

• DeepONet: Adopted from the code provided by the authors of Raonic et al. (2023) in their
GitHub repository, we made some corrections to make it runnable on our end. Specifially,
a CNN-based network is used as the branch network and an MLP is used as the trunk
network.
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• CROP (ours): For the Navier Stokes equation with a Reynold number of 1, 000, we apply
the FNO as the intermediate neural operator as the pattern is rather global. For all other ex-
periments, we use a U-Net or FNO with local 3×3 convolution kernels as the intermediate
neural operator to capture fine details.

All models are trained using the hyperparameters in Table 9, with early stopping implemented if the
validation error does not improve over a specified number of epochs.

Table 9: Training Hyper-parameters
Hyper-parameter Value
Learning Rate 0.001; 0.0005 for ResNet; 0.0001 for DeepONet
Weight Decay 1e− 6
Scheduler Step 10
Scheduler Gamma 0.98
Epochs 1000; 2000 for DeepONet
Batch Size 16
Patience for Early Stopping 100; 500 for DeepONet

E SUPER-RESOLUTION AND ZERO-SHOT SUPER-RESOLUTION

Zero-shot super-resolution refers to performing super-resolution without prior training on high-
resolution target data. For FNO (Li et al., 2021), this concept suggests that the model can be trained
on lower-resolution data (e.g., 64× 64) and applied to higher-resolution inference (e.g., 256× 256).
However, as demonstrated in this work, FNO fails to achieve zero-shot super-resolution due to dis-
cretization mismatch errors. Philosophically, without high-resolution information in the training
set, it is questionable whether neural operators can infer unseen high-resolution features without
leveraging techniques like transfer learning, physics-informed losses, conservation laws, or Hamil-
tonian principles. Therefore, we encourage the community to shift focus from super-resolution tests
for neural operators toward fundamentally improving their design, incorporating physics and prior
knowledge about the operator. Despite these challenges, we believe FNO offers strong potential for
data-driven super-resolution tasks.

Super-resolution, on the other hand, typically relies on training a model on a dataset that contains
high-resolution target data, learning to predict high-resolution details from lower-resolution inputs
(Dong et al., 2016; Lim et al., 2017; Liang et al., 2021). The main difference between zero-shot
super-resolution and data-driven super-resolution is that high-resolution images are actually seen
by the model during training of the model. Interestingly, neural operators recently have been in-
vestigated and applied for such tasks; for example, Wei & Zhang (2023) employs a deep operator
learning framework for super-resolution tasks in computer vision, specifically targeting natural im-
age applications, and has achieved notable results.

A key task in physical models is reconstruction with limited sensors, which can be framed as a super-
resolution problem. The objective is to infer missing information and enhance resolution or fidelity
by leveraging underlying physical principles or learned patterns. Specifically, this task involves
reconstructing a high-resolution or fine-scale field f ∈ Rh from coarse-grained or limited sensor
measurements s ∈ Rl, where l < h, and often l ≪ h. The goal is to learn a mapping F : Rl → Rh

from data, such that F(s) ≈ f . Neural operators extend this approach by mapping from fixed-size
vectors to continuous functions, i.e., F : Rl → U for some appropriate function space U . This task
aligns well with the DeepONet paradigm (Lu et al., 2021). Indeed, Neural Implicit Flow (Pan et al.,
2023), which differs from but shares similarities with DeepONet, has been proposed in this context.
We believe that FNO holds strong potential for such tasks as well, especially for application with
symmetries such as modeling climate dynamics on spherical geometries. Although some innovation
may be needed to adapt FNO for these applications, it is a very interesting future work to explore.
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