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ABSTRACT

Current RLHF approaches for aligning large language models (LLMs) typically
assume a fixed prompt distribution, which is sub-optimal and limits the generaliza-
tion capabilities for language models. To address this issue, we introduce a general
framework that casts alignment as an asymmetric game between two players: (i)
a creator that generates increasingly informative prompt distributions using the
reward model, and (ii) a solver that learns to produce more preferred responses
on prompts produced by the creator. This framework of Evolving Alignment via
Asymmetric Self-Play (eva), results in a simple and scalable approach that can
utilize any existing RLHF algorithm. eva outperforms state-of-the-art methods
on widely-used benchmarks, without the need of any additional human crafted
prompts. Specifically, eva improves the win rate of GEMMA2-9B-IT on Arena-
Hard from 51.6% to 60.1% with DPO, from 55.7% to 58.9% with SPPO, from
52.3% to 60.7% with SimPO, and from 54.8% to 60.3% with ORPO, surpassing
its 27B version and matching claude-3-opus. This improvement is persistent
even when new human crafted prompts are introduced. Finally, we show eva is

effective and robust under various ablation settings.

What I cannot create, I do not understand.

evolve prompts

creator solver
n;f —_—m ”$|x
propose responses

Figure 1: eva: Open-Ended RLHF via
Asymmetric Self-Play. The creator is
the prompt generation policy 7x and
the solver is the response policy 7y |x.

1 INTRODUCTION

— Richard P. Feynman

Arena-Hard AlpacaEval
MT-Bench 501 p 555
8.90 “ )
~ ~ = 51.68
Sl S 8
S 8 51.6 PE
80 ] s
£ .66 £ .
5 = = |38.39
= |57 as
SFT  DPO  DPO-eva SFT  DPO  DPG-eva SFT  DPO DPO-eva

Figure 2: Results: Our method eva achieves concrete per-
formance gain especially on hard alignment benchmarks,
without relying on any additional human prompts. Here,
we report results for DPO-eva; see more in §4.1.

Long-lived artificial intelligence must deal with an ever-evolving, open-ended world, yet currently
face constraints in both the scale and quality of available data, and the growth rate at which new,
useful information is created. High quality human data, crucial for scaling large language model
(LLM) based intelligence, is projected to run out in the next few years (Villalobos et al., 2024); the
quality of such data is also expected to stagnate: as LLMs become more capable, they need to solve
increasingly complex or new challenges, requiring training data beyond abilities of humans to create.
This necessitates a new fundamental mechanism for self-improving, where models can continuously
self-generate and self-solve harder problems. We thereby investigate the research question below:

Can language models self-create new, learnable tasks to work on,
to self-improve to generalize better for human preferences alignment?
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Figure 3: Pipeline: We generalize classical RLHF with open-ended RLHF, optimized with a creator-
solver game for self-improving language models. Our proposed eva strategically evolves prompt
distributions with a creator policy, which synthesizes prompts with an easy-to-implement estimate,
sample then evolve procedure; specifically, it estimates the informativeness for each prompt by how
contrastive the self-generated responses are to the prompt, from the reward signals it receives. The
creator evolves new prompts from highly informative prompts, which the solver uses for continual
training. Both the solver and creator policy can share the same network or operate independently.
See more on our minimax-regret objective that drives the above design in § 3.

Many preference optimization algorithms (Christiano et al., 2017; Rafailov et al., 2023; Zhao et al.,
2023; Wu et al., 2024; Liu et al., 2023a; Guo et al., 2024) have been proposed to improve the
alignment of language models, however, they all default to fixed prompt training distributions. Such
fixed training paradigm inevitably leads to: (i) generalization issues (models may underperform or
hack on instructions that are insufficiently represented within the fixed set) and (ii) efficiency issues
(data annotation and model training are costly, however not all prompt provide the same utility; it
is wasteful to invest in sub-optimal fixed set, while identifying informative prompts through human
efforts is expensive and time-consuming) (Team et al., 2023; 2024b; Dubey et al., 2024).

The objective thereby should not only be to optimize over a specific, static distribution of prompts, yet
to develop an agent that can autonomously evolve the training data distribution for self-improvement,
to align well across unseen, novel environments or tasks (instantiated by prompts).

Thus, we develop eva (Evolving Alignment via Asymmetric Self-Play), as illustrated in Figure 1.
Central to our approach is a game with the minimax-regret objective, achieved through alternating
optimization between creating prompts and solving them. The interplay encourages evolving curric-
ula (Parker-Holder et al., 2022), potentially benefits both generalization and efficiency (see also § 3.4).
Orthogonal to many recent self-play studies in LLM alignment (Munos et al., 2023; Choi et al., 2024;
Wu et al., 2024), eva is asymmetric (Sukhbaatar et al., 2017), with two policies of different goals:

* Creator: evolves the prompt distribution for alignment.

* Solver: produces responses and optimizes alignment based on the evolving prompts.

Our main contributions are summarized as:

* A new principle: We propose a generalized Open-Ended RLHF objective for aligning
language models, which seeks to jointly optimize the prompt distribution and the response
policy, thus incentivizes models to self-improve to generalize well on new, unseen tasks
beyond the initial training prompt distribution for alignment, as in Definition 1.

* A new algorithm: To optimize the objective, we design a practical algorithm via asymmetric
self-play, which is implemented through alternating optimization in a creator-solver game,
and can be easily plugged into any existing alignment pipeline, as in Algorithm 1.

* State-of-the-art performance: We empirically validate our method on public alignment
benchmarks and present general strong performance improvement when plugged in with
different preference optimization algorithms (i.e., DPO, SPPO, SimPO, ORPO). We also
conduct extensive ablation studies that provide additional insights on the choice of informa-
tiveness metric, reward model, and training schedules, as in § 4.

eva is easy to implement. We hope it can serve as a scalable method for the research community to
build open-ended, robust, and self-improving language agents, that align with human values.
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2 PRELIMINARIES

We hereby review major concepts, which we later in § 3 use regret and the proxy by advantage to
identify informative prompts, leading to learning curricular implicitly maximizing contrastive ratio .

Alignment by RLHF. Classical RLHF (Ouyang et al., 2022) optimizes on a fixed distribution D:

max Exnp,y~mo(-|x) lT(X,Y) 1 —Ex~p|B- DKL{WB(Y | x) || TsFr(y | x) H ; (1)

where x and y denote the prompts and responses, and (-, -) is the reward function.

Reward. Let the oprimal policy of Eq. 1 be 7*(-) and Z(-) be the partition function, we have:

AL R Z(x). ©)

r(x,y) = -log p— oy

Regret. Given the optimal policy 7*, the regret of a policy g at x is:
Regret(x,79) = Eyr(y|x) {r(x, y)] —Eyro(ylx) [r(x, y)} . 3)

Advantage. The advantage function quantifies how much better a response y is w.r.t. a baseline:

A(x,y) = r(%,¥) = Byrnyrio | 706Y) |. )

*
min

Variants of advantage (e.g., the worst-case advantage A* . ) are related to regret, as shown in Table 2.

Direct preference optimization. The DPO (Rafailov et al., 2023) objective for RLHF is:
£BPO(779) = Z —log [a (6 WAV ref)} , 5)

(y+.y-,x)€ED
where we use +, — to denote chosen and rejected responses, and denote the contrastive ratio as:
mo (y+ | %) mo (y— | %)
—lo . (6)
Tret (Y4 | X) Trer (Y- | X)
By reward reparameterization with Eq. 2, advantage also relates to contrastive ratio, as in § 3.4.

A?; ref * = IOg

3 METHOD

Algorithm overview. On a high level, eva extends classical RLHF to open-ended RLHF via a
creator that adapts prompt distributions with an easy-to-implement estimate, sample then evolve
procedure, mimicing the minimax-regret policy of asymmetric self-play games, as detailed in §3.3.

Algorithm 1 eva: Evolving Alignment via Asymmetric Self-Play

Input: initial policy mg,, initial prompt set Xp
1: for iterationt =1,2,...do

creator step

2: estimate informativeness: Xi—1 « {(xi,info(x;)) | x; € Xy—1}
sample subset: X;"° + sample(X;_1)
self-evolve prompts: X + evolve (X} 1°)

solver step

3: self-generate responses: YV x; € X, generate {ygj)} ~mo, (| xs)
annotate rewards: X! +— X U {(yl(j)jrl(j))}
preference optimization: 0, 0,1 —nVeLl x| ©)

4: end for

5: return final solver policy 7o,
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Section overview. We aim to develop language models that can self-improve to generalize well on
new, unseen tasks beyond the initial training prompt distribution for alignment. In §3.1, we present
the limitations of classical RLHF and generalize it to the new objective of open-ended RLHF. In
§3.2, we introduce the creator-solver game to tractably optimize the objective. In §3.3, we detail
the practical algorithm, compatible with any preference optimization method as the solver, with our
designed creator in the loop. Lastly in §3.4, we present various interpretations for eva.

3.1 THE PRINCIPLE: OPEN-ENDED RLHF FOR JOINT SELF-IMPROVEMENT

Intuition. Classical RLHF (cf., Eq. 1) optimizes over a static prompt distribution, meaning that the
agent is only aligned to a fixed prompt set D, making it brittle when it is evaluated on new problems
from the ever-changing real world. Our Open-Ended RLHF breaks away from this static framework,
with the goal to develop an agent that generalizes well across unseen, novel environments (where the
tasks entailed in prompts may not have been explicitly encountered during training). To achieve this,
we must design a new objective that agents can generate its own problems for self-improvement.

Formalization. We introduce an open-ended reference distribution prr(x), which is conceptually
approached by a prompt policy 74 (x), co-evolving with the response policy for alignment:

Definition 1 (Open-Ended RLHF) We define evolving alignment as the open-ended joint
optimization on the prompt and response policy for alignment w.r.t the joint reference policy:

Ig)abx ExmﬂdJ(-), y~me(-|x) [T(Xa y) ‘| - ﬂ : ]D)KL 7T¢,9(Xa y) H ’/Tref(xa Y) ) (7)

where Ty 9(X,y) = Tp(X) - mo(y | X) and Tf(X,y) 1= Drep(x) - mspr(y | x)°.

“This generalizes classical RLHF (Eq. 1). One may extend the above and rewrite coefficients to be:

maxe,e Exwﬂ,,(-){ Ey (-1 [7(%, ¥)] — BiDxe [me (y]x) || wser(y )] } — B2 Dk {%(X) | Pref(x)] - ®

Here, prt(x) represents an underspecified, potentially intractable probability distribution over possible
tasks (instantiated via prompts) in the wild, as a realizable open-ended reference that covers the
full diversity and complexity of tasks agents may encounter, not the initial static prompt set D. The
joint regularization towards m.r(X,y) captures the objective for agents to generalize on alignment in
Pref(x) with broader open-ended prompts, while being close to the SFT policy mspr(y|x).

3.2 THE MECHANISM: ASYMMETRIC SELF-PLAY via THE CREATOR V.S. SOLVER GAME

Intuition. It can be hard to directly solve Eq. 7, due to (i) the intractability of the underspecified
reference (Dennis et al., 2020), (ii) the instability of joint differentiation (Goodfellow et al., 2014).
We present a heuristic of iterative alternating optimization by casting it as an asymmetric creator-
solver game, that implicitly achieves the conceptual probability matching of Dy [74(x) || pret(x)]
by iteratively creating a sequence of prompt distributions to expand over the task space.

* Creator : the prompt player 74 (x) that strategically generate new prompt distributions.

* Solver : the response player 7¢(y | x) that learns to optimize for preference alignment.

This game serves as one potential choice to implicitly achieve the Open-Ended RLHF principle.

* By design, the creator can guide the solver with an informative prompt curriculum, for it to
develop more general capabilities to handle complexities in the wild (Jiang, 2023).

* Intuitively, this resembles RL optimization via expectation-maximization (Dayan and Hinton,
1997; Singh et al., 2023), where ¢ for the prompt distribution is fixed at each step.

Formalization. We consider the minimax regret strategy (Savage, 1951), where the solver minimizes
and the creator maximizes regret!, i.e., the reward difference of the current and KL-optimal policy:

Regret(ﬂ-qﬁv 71-9) = Ex~7r¢(-) |:Ey~7r9(y|x) [ T(X, y) ] - Ey~‘n’ﬁ(y|x) [ T(X, y) ]:| . (9)

"Please see § G and Eq. 14 for details on the KL-optimal policy 7 (y | x).
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At the equilibrium (Nash et al., 1950), prior works (Dennis et al., 2020) have shown:

Remark 1 (Minimax Regret) If the above solver-creator game reaches an equilibrium, the
solver follows a minimax regret policy, i.e., the worst-case regret is bounded:

Ty € arg min max By r,, [ Regret(x, Ty x) } (10)

Tylx X

To illustrate, open-ended RLHF allows for the creation of evolving prompt distributions that challenge
the agent progressively for better generalization; the introduced minimax regret objective further adds
robustness on top of such evolving curricula by incentivizing agents to perform well in all cases.

However, while it is often straightforward for the solver to minimize the regret (e.g., by direct policy
optimization), the optimal policy remains unknown during optimization, thus regret as the decision
signal is often intractable to the creator — regret approximation is needed. We design the proxy below
for creator’s regret approximation (see § G for more), also as a metric for prompt informativeness:

Definition 2 (Informativeness) We estimate the informativeness of a prompt X in preference
optimization by the (absolute) worst-case optimal advantage, approximating regret in Eq. 3:

|Regret(x, mg)|  infog(x) := r(x,y4+) —r(x,y-), (11)

where )
y+ = argmaxy, r(x,y), y- :=argming r(X,y), (12)

and {y;}i=1 is a set of responses sampled from wg (- | x) and r (-, -) is the reward oracle.

We use the informativeness proxy to guide the creator for prompt distribution adaptation, which has a
few useful properties under different interpretations, as in § 3.4. In this way, we define a mechanism
that the solver learns to improve, as the creator keeps challenging the solver on its weaknesses.

3.3 THE PRACTICAL ALGORITHM

We now illustrate eva of Algorithm 1, with practical implementations specified in § A.

3.3.1 THE CREATOR STEP: ESTIMATE, SAMPLE THEN EVOLVE

Plainly, the creator finds most useful prompts and generate variants of them for preference optimiza-
tion. One may relate this to evolution strategies (Schwefel, 1977) which find the most promising
species, then mutate and crossover, or to curriculum RL (Parker-Holder et al., 2022) which finds
environments with high-regret levels, then edits within some distance. As in Section 3.2, we do not
seek a differentiable creator in this work. The creator is implemented in three steps as in Figure 3.

Step 1: info(-) — estimate the informativeness. For each x in the prompt set X;, we generate
responses, annotate rewards and estimate a informativeness metric to x by Eq. 11 (see also Table 2).

Step 2: sample(-) — weighted sampling for an informative subset. By using the informativeness
metric as the weight, we sample an informative prompt subset X" to be evolved later. This is
similar to finding high-regret levels in curriculum RL.

Step 3: evolve(-) — evolving for a proximal region of high-advantage prompts. Our algorithm is
agnostic to and does not rely on any specific evolving method. We take Evollnstruct (Xu et al., 2023a)
as an off-the-shelf method, which conducts in-depth (i.e., adding constraints, deepening, concretising,
complicating) and in-breadth evolving (i.e., mutation) for prompts. Specifically, we iterate over each
prompt in the X"*°, where each one is evolved to multiple variations, then optionally mix the newly
generated prompts with a uniformly sampled buffer from X to create X;.

3.3.2 THE SOLVER STEP: SOLVE THEN OPTIMIZE

This step is the classical preference optimization (Rafailov et al., 2023), where responses are generated
and the gradient descent is performed. Take the pointwise reward model setting as an example, for
every prompt, we sample n responses with reward annotated for each; we take the responses with
the maximal and the minimal reward to construct the preference pairs, then optimize upon. This
implicitly minimizes the regret to the KL-optimal policy, which we present in more details at § G.
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Put together, eva can unify existing iterative optimization pipeline (Tran et al., 2023) with a new
creator module, which can either share the same network as the solver policy or operate independently.

3.4 UNDERSTANDING THE INFORMATIVENESS PROXY IN DIFFERENT INTUITIVE WAYS

Learning potential. Our metric intuitively identifies the learning potential of a prompt by measuring
the gap between the best and worst response to it from the solver. We reason, that prompts eliciting
both high-reward and low-reward outcomes, reflect learnable tasks where the model is capable of
improving but has not yet mastered, thereby implying learning potential (cf., Jiang et al. (2021b)).

Worst-case guarantees. The minimax-regret objective, by design, leads to solvers that perform
robustly across the prompt space, thus gives the worst-case guarantee. While exact equilibrium may
not be attainable with approximation, our empirical results in § 4.2.1 demonstrate robustness.

Auto-curricula for the players. We visualize curriculum induced by eva in § E. With the stochastic
policy, the advantage may be heuristically understood as the reward difference between a base solver
and a reference solver. Rather than optimizing separate solvers (Dennis et al., 2020), we sample
multiple times from the same policy to create the pair. In this way, the creator is incentivized to
produce new prompts that are just out of the comfort zone of solvers (Chaiklin et al., 2003):

* For overly challenging prompts, both solutions perform poorly, leading to a low proxy.
* For overly easy prompts, the base solution already performs well, again giving a low proxy.
» The optimal strategy is to find prompts that are just beyond the solver’s current capability.

Auto-curricula inherent to Contrastive Optimization. Contrastive preference optimization gen-
eralizes DPO and a family of algorithms (c.f., Hejna et al. (2023); Rafailov et al. (2023); Tang et al.
(2024)), many of whose losses monotonically decrease as the contrastive ratio increases. Here, by
Eq. 2 and Eq. 6, the contrastive ratio can be written via the advantage-based proxy:

A:nin(x) =p- Az*; ref* (13)
By our proxy, we implicitly incentivize the creator to generate prompts that bring the most contrastive
responses, which decrease the loss the most. This matches the curriculum learning literature, which
prioritizes (in eva, generatively prioritizes) examples with smaller losses for better convergence
and generalization (Bengio et al., 2009). We hence suggest the Contrastive Curriculum Hypothesis :
in contrastive preference optimization, prioritizing prompts with higher contrastive ratio improves
sample efficiency and generalization. We show initial empirical results on this in § 4.2.1 and § 4.2.4.

4 EXPERIMENTS

Datasets and models for training. We use UltraFeedback (Cui et al., 2023) as the training
dataset, which contains diverse high-quality prompts that are primarily human-generated. We use the
instruction-finetuned GEMMA-2-9B (Team et al., 2024b) as the primary model, which is a strong
baseline for models of its size. Detailed experimental setting can be found in § A.

Evaluation settings. We choose: (i) AlpacaEval 2.0 (Dubois et al., 2024), which assesses general
instruction following with 805 questions; (ii)) MT-Bench (Zheng et al., 2023), which evaluates
multi-turn instruction following with 80 hard questions in 8 categories; (iii) Arena-Hard (Li et al.,
2024b), which is derived from 200K user queries on Chatbot Arena with 500 challenging prompts
across 250 topics. We use gpt-4-1106 as the judge and gpt-4-0314 as the baseline for win rate.

Optimization algorithms. We focus on direct preference optimization and consider the following:

¢ With reference policy: DPO (Rafailov et al., 2023), SPPO (Wu et al., 2024).
* Without reference policy: SimPO (Meng et al., 2024), ORPO (Hong et al., 2024).

Reward models as preference oracles. We use ARMORM-8B (Wang et al., 2024) as our default
reward model as the human-preference proxy, and consider the following for ablation studies:
* Pointwise: ARMORM-8B (Wang et al., 2024), SKYWORKRM-27B (Liu and Zeng, 2024).
* Pairwise: PATRRM-0.4B (Jiang et al., 2023), PAIRRM-8B (Dong et al., 2024).
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4.1 MAIN RESULTS

In general, eva brings notable gains in alignment without relying on any human-crafted data, thus
offering more efficiency. In the base setup, building on the one-iteration finetuned model (8y_,1),
eva adds a creator to self-evolve the prompt set of the initial iteration and uses any preference

2

optimization algorithm for an additional open-ended RLHF iteration, resulting in 8, _,;°.

eva achieves self-improvement. As shown in red rows in Table 1, eva yields notable performance
improvement over 6y_,; across different optimization algorithms, especially on the harder Arena-
Hard benchmark, which is recognized to be more challenging and distinguishable among others
due to the complexity of its prompts and its fairer scoring system (Li et al., 2024b; Meng et al.,
2024). Specifically, eva brings 8.4% gain with SimPO as the solver, and 8.5% gain with DPO as
the solver, surpassing its 27B version and matching claude-3-opus—-240229 as reported on the
AH leaderboard, while using fully self-automated prompt generation for alignment. Interestingly,
eva brings the least gains on AlpacaEval 2.0, a simpler evaluation benchmark. This indicates
eva improves the most for challenging tasks.

eva can surpass human-crafted prompts. We further show that eva-prompt-trained models
(6, _,7) can match and even outperform those trained on additional new prompts from UltraFeedback
(61—2) (which we denoted as human prompts), while being much cheaper and more efficient. Addi-
tionally, on MT-Bench, training with new human prompts typically show decreased performance in
the first turn and only modest gains in the second turn. In contrast, eva notably enhances second-turn
performance. We hypothesize that eva evolves novel, learnable prompts that include characteristics
of second-turn questions, reflecting emergent skills like handling follow-up interactions.

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method (|) / Metric (—) WR (%) avg. score 1% turn 2" turn LC-WR (%) WR (%)
6y: SFT 41.3 8.57 8.81 8.32 47.11 38.39
6y_.1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
6, i +eva 60.1 8.90 9.04 8.75 55.35 55.53
6y_.1: SPPO 55.7 8.62 9.03 8.21 51.58 42.17
6,_i: +eva 58.9 8.78 9.11 8.45 51.86 43.04
6y_.1: SImPO 52.3 8.69 9.03 8.35 54.29 52.05
6,_i: +eva 60.7 8.92 9.08 8.77 55.85 55.92
6y_1: ORPO 54.8 8.67 9.04 8.30 52.17 49.50
6,_;: +eva 60.3 8.89 9.07 8.71 54.39 50.88

Table 1: Main results. Our eva achieves notable alignment gains and can surpass human prompts
on major benchmarks across a variety of representative direct preference optimization algorithms.

4.2 ABLATION STUDIES

We conduct in-depth ablation studies on eva, with findings below to be elaborated on later:

e §4.2.1 - informativeness metric: our regret-based metric outperforms other alternatives.
* §4.2.2 - sample-then-evolve procedure: our method outperforms greedy selection.
* §4.2.3 - scaling w/ reward models: the alignment gain of eva scales with reward models.

* §4.2.4 - continual training : our method has monotonic gain with incremental training; the
evolved data and schedule by eva serves as an implicit regularizer for better local minima.

?Unless stated otherwise, each iteration uses 10K prompts (i.e., 1/6 partition from UltraFeedback in classical
training). We denote 0;_,+1 as the model trained with new human prompts based on the ¢-th checkpoint, and
0,_,; as the model trained with evolved prompts from the ¢-th checkpoint w/o adding any new human prompts.


https://github.com/lm-sys/arena-hard-auto/tree/efc012e192b88024a5203f5a28ec8fc0342946df?tab=readme-ov-file#full-leaderboard-updated-0831
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4.2.1 THE CHOICE OF INFORMATIVENESS METRICS: INFO (*)

Metric info(x) Related Approximation
Ar..: worst-case optimal advantage | miny r(x,y) — maxy r(x,y’)| minimax regret (savage, 1951)
A+ average optimal advantage |+ >y T(x,y) — maxy r(x,y’)] Bayesian regret (anos, 1968)
A} dueling optimal advantage | maxy 4y« 7(X,y) — maxy r(X,y’)| min-margin regret (vuand Liu, 2016)

Table 2: The reward-advantage-based metrics that serve as the informativeness proxies for prompts.

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method (|) / Metric (—) WR (%) avg. score 1% turn 21 turn LC-WR (%) WR (%)
6y_,1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
0,_,;: +eva (uniform) 57.5 8.71 9.02 8.40 53.43 53.98
0, ;: +eva (var(r)) 54.8 8.66 9.13 8.20 54.58 52.55
0,_i: +eva (avg(r)) 58.5 8.76 9.13 8.40 55.01 55.47
0,.;: +eva (1/avg(r)) 56.7 8.79 9.13 8.45 55.04 54.97
0, .;: +eva (1/A%) 52.3 8.64 8.96 8.31 53.84 52.92
0, ,i: +eva (A},) ouin 60.0 8.85 9.08 8.61 56.01 56.46
0,71 +eva (A}, wurvarian 60.0 8.86 9.18 8.52 55.96 56.09
0, 1 +eva (AL ourdetaln 60.1 (5 8.90 9.04 8.75 013 55.35 55.53

Table 3: Choice of informativeness metric matters. Our metric by advantage achieves the best
performances, comparing with others as weights to sample for evolving. See also § F for visualization.

Advantage as the informativeness metric outperforms baselines. As in Table 3, eva offers an
effective curriculum by the advantage-based proxy as the informativeness metric (bottom row):

o Comparing w/ uniform evolving (brown): Existing baselines generate prompts in a uniform
manner (Yuan et al., 2024) w/o informativeness measure (cf., the principle of insufficient
reason (Keynes, 1921; Tobin et al., 2017)). eva concretely outperforms, corroborating Das
et al. (2024) that uniform learners can suffer sub-optimality gaps.

* Comparing w/ other heuristics (blue): Prior practices (Team et al., 2023) tried heuristics like
prioritizing prompts w/ the most variance in its rewards or w/ the lowest/highest average.
We find our advantage based methods (red) outperforms those heuristics; see § F for more.

* Comparing w/ the inverse advantage (purple): Contrary to curriculum learning, a line
of works conjecture that examples w/ higher losses may be prioritized (Jiang et al., 2019;
Kawaguchi and Lu, 2020), which can be done by inverting our metric. We find it significantly
hurt the alignment gain, corroborating Mindermann et al. (2022) that those examples are
often noisy, unlearnable or irrelevant, meaning our curriculum is effective and practical.

* Among our advantage variants (red): We designed variants of our default advantage-based
metric, as in Table 2; the default A} ; remains competitive among its peers. Together, the
advantage-based principle provides a robust guideline for prompt sampling and evolving.

The lesson is that we must be selective about which are the promising to evolve, otherwise unlearnable,
noisy or naive prompts may hinder learning. Our regret-inspired metric represents a solid baseline.
4.2.2 THE EFFECT OF THE SAMPLE-THEN-EVOLVE PROCEDURE

The design of evolve (-) in eva is effective. As in Table 4, we show:

» Removing the evolve(+) step: if we only do subset sampling or ordered selection, we still
have gain, but not as much as w/ evolving (e.g., eva brings 4.8% additional wins on AH).

* Altering the sample(-) step: if we greedily select prompts by the metric instead of using
them as weights for importance sampling, the performance will be weaker as we evolve.

This shows that simply adaptive training within a fixed prompt distribution is unsatisfactory; our open-
ended RLHF with generative prompt exploration gives a substantial headroom for self-improvement.
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Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method () / Metric (—) WR (%) avg. score 1% turn 2" turn - LC-WR (%) WR (%)
6o_1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
0, i [no evolve]-greedy 56.1 8.68 8.98 8.38 54.11 53.66
0, ,;: [no evolve]-sample 55.3 8.69 9.00 8.38 54.22 54.16
0, 1 +eva-greedy (ou i 59.5 8.72 9.06 8.36 54.52 55.22
0, ,;: +eva-sample cuiii € 60.1 890 904 875 5535 5553

Table 4: Effect of evolving. The blue are those training w/ only the informative subset and w/o
evolving); we denote —sample for the default weighted sampling procedure in Algo 1, while using
—-greedy for the variant from the classical active data selection procedure (cf., a recent work (Muldrew
etal., 2024) and a pre-LLM work (Kawaguchi and Lu, 2020)), which selects data by a high-to-low
ranking via the metric greedily. We show evolving brings a remarkable alignment gain (the red v.s.
the blue); and as we evolve, sampling is more robust than being greedy (cf., Russo et al. (2018)).

4.2.3 SCALING POINTWISE AND PAIRWISE REWARD MODELS

os yeeTyrrarait pirrods 5271 Figure 4 presents the length—cor}trol!ed win rate
S SkyworkRM-27B 7 T PairRM.SB // of eva on AlpacaEval using ~p01ntW1se and pair-
¥ 5535 % g . %/; wise re;ward models of varying scgles. The re-
£, P // Eonl 5158 W %/, sults give a clear trend: as the quality of reward
Y s / Q e //f models improve, eva brings higher alignment
// 7 gain. The scaling observation shows the effec-

DPO  DPO-eva DPO-eva SPPO  SPPO-evaSPPO-eva

tiveness of eva in exploiting more accurate re-
ward signals to choose informative prompts for
better alignment. One takeaway is interaction
w/ the external world is essential for intelligence.

Figure 4: eva scales with quality of reward
models, under pointwise RMs w/ DPO (left) and
pairwise RMs w/ SPPO (right). Note SPPO han-

dles general preferences thus requires pairwise
RMs, and DPO relies on the Bradley-Terry as-
sumption, for which pointwise RMs are suitable.

The more accurate reward signals observed, the
better the agent incentivize themself to improve
(cf., Silver et al. (2021)).

4.2.4 Eva IMPROVES BOTH SAMPLE EFFICIENCY AND GENERALIZATION

We then continuously run the default incremental training (i.e., trainining from the last checkpoint
w/ the evolved set in each iteration), as in Fig 5, eva presents monotonic performance gain over
iterations, and surpasses that trained w/ new human prompts, implying the generalization benefit’.

DPO The solutions found by eva cannot be recovered by training
longer w/ a fixed distribution (the dashed), nor by naively sourc-
ing new prompts w/o examining informativeness (the gray dot-

5 ted), thus our generative data schedule is effective.

=N
=)

In Table 5, we ablate eva in scratch training, i.e., training w/ the
full set (the evolved and the original data). eva is competitive in
SPPO incremental training, thus learns more effective with less data —

Arena Hard Win Rate (%)

fif’ﬂ e ompls a nice bonus via minimax regret (Jiang et al., 2021a).
o eva prompts
£
% 58 Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
‘é Method (]) / Metric (—) WR (%) avg. score LC-WR (%)
561 e
% """"""""""" 6y: SFT 41.3 8.57 47.11
<
Iter 1 Iter 2 Iter3 6p_,1: DPO 51.6 8.66 55.01
. . . o e 6,_,i: eva (scratch) 59.8 8.88 54.59
Figure 5: Continual training. 6, i eva (incremental) 60.1 8.90 55.35

eva stays robust w/ more itera-

tions in incremental training. Table 5: Ablation on incremental v.s. scratch training.

3Behaviors of the dashed/dotted lines relate to loss of plasticity (Ash and Adams, 2019; Dohare et al., 2023;
Abbas et al., 2023; Xue et al., 2024). Classical works resolve it by the optimization view (e.g., weight perturbing),
whereas eva provides a fresh data view, potentially mimicing an implicit regularizer for better generalization.
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5 RELATED WORKS

Self-improving algorithms and iterative optimization. This line of work focuses on iteratively
generating samples from the response policy and continuously re-training the policy by selected
self-generated samples. Major works include ReST (Gulcehre et al., 2023; Singh et al., 2023),
STaR (Zelikman et al., 2022), RFT (Yuan et al., 2023), RAFT (Dong et al., 2023), self-improving
LLMs (Huang et al., 2022; Yuan et al., 2024); in the context of preference optimization, iterative
DPO (Xu et al., 2023b; Tajwar et al., 2024; Tran et al., 2023; Xiong et al., 2024; Pang et al., 2024) has
proven effective. Most works focus on self-training by improving in ) | X, while we jointly optimize
both responses and prompts via generative exploration in the (X, ))) space. Among them, we also
distinctly present a game-theoretic framework with the minimax-regret principle as the guidance.

Prompt synthesis for language models. Existing works include Self-Instruct (Wang et al., 2022),
WizardLM (Xu et al., 2023a; Luo et al., 2023), Self-Align (Sun et al., 2024), Glan (Li et al., 2024a),
EvoPrompt (Guo et al., 2023), Magpie (Xu et al., 2024) and others (Long et al., 2024). eva is
an orthogonal contribution since any synthesis method can be plugged in as the evolve(-) for the
creator. Importantly, our work presents a new reward-related metric to endow prompt the notion
of informativeness, with new implications as in § 3.4. We also focus on preference optimization
algorithms, while those existing works primarily use synthesized prompts in an SFT-only way.

Self-play and curriculum RL. Agents trained on a fixed data distribution are often brittle and may
struggle to adapt to the real world (Hughes et al., 2024a). Self-play (Samuel, 1959; Goodfellow et al.,
2014; Silver et al., 2016) addresses this by having the agent learn through self-interaction, thus creating
more diverse experiences and automatic curricula. In asymmetric self-play, the paradigm centers on
“Alice proposing a task, and Bob doing it” (Sukhbaatar et al., 2017; Samvelyan et al., 2023; Beukman
et al., 2024a; Dennis et al., 2020). We revive the classical asymmetric self-play principle (Sutton
et al., 2011) in optimizing language models. Unlike traditional curriculum RL (Parker-Holder et al.,
2022), which usually renders environments from specified levels (Dennis et al., 2020), our approach
is generative by nature, as we directly generate contexts from the auto-regressive language models.

Self-play in RLHF. A growing line of research frames RLHF as a symmetric self-play game, where
both players are response players (Munos et al., 2023; Wu et al., 2024; Choi et al., 2024; Rosset et al.,
2024). However, these methods still rely on a fixed prompt distribution thus is sub-optimal. In contrast,
we solve this by asymmetric self-play, enabling evolving prompt distributions for more generalizable
language agents. During our work, we notice one concurrent paper adopting the asymmetric two-
player setup (Zheng et al., 2024), however (i) it applies to adversarial attack tasks instead of general
alignment benchmarks, (ii) it is incompatible w/ direct preference optimization, and (iii) it relies
on the maxmin principle (which is known to be producing unlearnable environments (Dennis et al.,
2020)) instead of the minimax regret principle (Fan, 1953; Savage, 1951) as we do. We also first
precisely defined the new problem of open-ended RLHF, which generalizes over classical RLHF.

6 CONCLUDING REMARKS

Limitations and future directions. eva defines a new paradigm for alignment, opening up many
new directions, e.g., (i) extending to differentiable creator policies, combining w/ other evolve(-)
methods; (ii) evolving for more iterations w/ on-policy solvers like RLOO (Ahmadian et al., 2024);
(iii) investigating exploration bonuses for distribution diversity and coverage, and the self-consuming
loop (Gerstgrasser et al., 2024); (iv) extending the game with more players for full automation
(e.g., rewarders, critics, rewriters, verifiers, retrievers); (v) extending from alignment to reasoning
(e.g., auto-conjecturing for theorem proving (Poesia et al., 2024) can be cast as an asymmetric game),
or from the bandits to the trajectories w/ process reward models and hierarchical tree search for
creator and solver generations; (vii) further scaling up w/ million-level prompts for post-training.

Conclusions. eva is a new, simple and scalable framework for aligning language models, and can
be plugged into any existing alignment pipeline. The primary takeaway may be that RLHF can be
made open-ended: (i) self-evolving joint data distributions can bring significant gain (as shown across
various optimization algorithms), and (ii) reward advantage acts as an effective metric informing the
collection and creation of future prompts for alignment. eva presents a new view of alignment by
framing it as an asymmetric game between a creator generating new and learnable prompts and a
solver producing preferred responses. eva also incentivizes agents to create problems rather than to
simply solve problems, which is a key feature of intelligence, yet model trainers often neglect.

10
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APPENDIX

The appendix is organized as follows:
* § A - Details On Reproducibility
* § B - Plug-In Loss Functions Used In Main Results
e § C - Extended Results for Experiments in the Main Paper
¢ & D - Additional Experiments

§ G - Illustration on Methodology

§ E and § J - Illustrations on Prompts, Responses and Relevant Distributions
§ H and § I - Additional Literature Review

A DETAILS ON REPRODUCIBILITY

Our code is built based on many open-source packages, and we sincerely thank every developer and
contributor of these projects for their efforts and contributions to the community.

Code release. We hope to open-source all codes, generated data and trained models, upon approval
— before then, we are more than happy to provide any clarification to help re-implement eva and
replicate our results. In general, our code base is made to be simple to use for practitioners, requiring
only a creator module addition within the commonly adopted Alignment Handbook pipeline.

Hyperparameter settings. We follow the original hyperparameter settings as in (Hong et al., 2024;
Meng et al., 2024; Wu et al., 2024), default to be:

Hyperparameter (|)/ Loss (—) DPO ORPO SimPO SPPO

learning rate Se-7 Se-7 8e-7 Se-7
learning rate scheduler cosine  cosine  cosine linear
B 0.05 / 10 0.001
vy / / 5 /

A / 0.5 / /
no. epochs per iter 2 1 1 6
warmup ratio per iter 0.1 0.1 0.1 0.1
effective batch size 8 8 32 8
max length 2048 2048 2048 1024
max prompt length 1024 1024 1024 512
optimizer adamw adamw adamw rmsprop

Iterative Training Settings. By default (Tran et al., 2023; Yuan et al., 2024), we train with equal-
size prompt subset in each iteration. Unless otherwise specified, we use 10K prompts from the
UltraFeedback dataset (Cui et al., 2023) per iteration. The incremental training proceeds as follows:

¢ 0, : Base SFT model.

* 0p_,; : initialize with 8; then train with the prompt split X} by self-generated responses
from the initial model 8.

e 0,_,5 : initialize with 8(_,1; trained with the prompt split X5 via by self-generated responses
from the initial model 6y_,1.

For evolving prompts (e.g., evolving & to A7), with the calculated informativeness metric for
each prompt, we normalize them as the weight to do weighted sampling for a 25% informative
subset to get X{"°. We then iterate over in A" and call EvolInstrut (Xu et al.,, 2023a)
as the plug-in evolving method (with the number of evolutions as 4) using the default mutation
templates for (i) in-depth evolving (constraints, deepening, concretizing, increased reasoning steps)
and (ii) in-breadth evolving (extrapolation) as implemented in tasks/evol_instruct/utils.py
of distilabel==1.3.2. Next we uniformly select 80% prompts from this evolved dataset and
20% from the original dataset (i.e., the buffer) to form X;. We do not seek extensive parameter
search (e.g., the number of evolutions, the evolving ratio) in this stage and encourage future works on
exploring this and other plug-in evolving methods. For solver we generate 6 responses per prompt.

11
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Software environments. All experiments are conducted on 8xNVIDIA H100 SXM GPUs. Our
codebase primarily relies on transformers==4.40.0. For the response generation of GEMMA
models at the training stage, we use v11lm==0.5.4 with flashinfer backend for cuba 12.4 and
torch 2.4. For evolving prompts, we use distilabel==1.3.2, and use LiteLLM to serve Gem-
ini (default to be gemini-1.5-pro) and transformers models (default to be gemma-2-9b-it).
For evaluation on all benchmarks, we use sglang==0.2.10 and openai==1.35.14, with
gpt-4-1106-preview as the judge model and gpt-4-0314-preview as the baseline model.
Specifically for AlpacaEval 2.0, we use alpaca_eval_gpt4_turbo_fn as the annotator config. We
use 42 as the random seed.

B PLUG-IN L0oSSs FUNCTIONS USED IN MAIN RESULTS

With Reference Model
DPO (Rafailov et al,, 2023)  £g(mg) = — log o'(ﬁ . A;emm‘)]
p molyelx) 1)’ roly 1x) |, 1)’
o (;341011;775) +(5»10g +§)

et (y - [%)

SPPO (Wu et al., 2024) lg(mg) = —log

Trer (Y + %)

Without Reference Model

SimPO (Meng et al.,, 2024) £ o(me) = — log [0‘(;3 CAX 0 a)}

o

ORPO (Hong et al.,, 2024)  £y(mg) = —log [‘7()‘ . Az"ddse:l)}

Table 6: Direct preference alignment algorithms used in the main experiments. In parameter tuning,
we include an additional negative log-likelihood loss for chosen responses (i.e., |yi+| log mo (y+|x)).

C ADDITIONAL EXPERIMENTAL RESULTS FOR THE MAIN PAPER

In general, eva maintains the accuracy on downstream tasks and is robust on those reasoning-heavy
tasks, and the scaling with reward models is more prominent on AlpacaEval, possibly due to the
training sources for such reward models.

Method (]) / Dataset (—) MUSR-TA TruthfulQA-Gen WMDP GSM8K GSM-Plus MMLU-Pro

6y: SFT 38.80 34.76 58.62 24.64 18.62 52.08
6y—1: DPO 38.40 34.76 58.45 24.56 18.50 52.63
0, ;: +eva 38.40 34.15 58.40 24.26 17.96 53.03
6o—1: SPPO 40.80 34.15 58.72 24.79 18.42 52.70
0, ;: +eva 41.20 34.64 58.94 25.40 18.88 52.47

Table 7: Performance on Downstream tasks.

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) MT-Bench Arena-Hard AlpacaEval 2.0
Method (}) / Metric (—) avg. score 1% turn 2" turn WR (%) LC (%) WR (%)
6y_1: DPO 8.66 9.01 8.32 51.6 55.01 51.68
0, ,;: +eva-i(ARMO-8B) 8.90 9.04 8.75 60.1 55.35 55.53
6,_;: +eva-i (SKYWORKRM-27B) 8.75 9.07 8.43 60.3 56.12 56.40

Table 8: Effect of (pointwise) reward models.

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) MT-Bench Arena-Hard AlpacaEval 2.0
Method (}) / Metric (—) avg. score 1% turn 2" turn WR (%) LC (%) WR (%)
69_,1: SPPO 8.62 9.03 8.21 55.7 51.58 42.17
0, i +eva-i (PAIRRM-0.4B) 8.78 9.11 8.45 58.9 51.86 43.04
0,_,;: +eva-i (PAIRRM-8B) 8.89 9.08 8.70 60.2 52.71 44.52

Table 9: Effect of (pairwise) reward models.
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D ADDITIONAL EXPERIMENTAL RESULTS (AS EXTENSIONS)

D.1 EXPERIMENTS ON DIFFERENT evolve () METHODS
As an addition to Table 1, we have experimented with three different evolve(-) methods, including:

* SelfInstruct (Wang et al., 2022): Given seed prompts, variations are created based on criteria
such as verb diversity and style blending (mixing interrogative and imperative styles). Unlike
Evollnstruct (Xu et al., 2023a), which generates prompt variations sequentially, this approach
generates independently. We follow the one-shot implementation in sel1f instruct.py of
distilabel==1.4.1 and modified the instruction on conciseness so that newly generated
prompts have similar lengths compared to the seed prompts.

¢ EvolQuality and EvolComplexity (Liu et al., 2023b): The two methods use the same
evolutionary approach (i.e., sequentially generating), but with slightly different meta-
instructions for prompt generation, where EvolQuality asks to improve the quality
(i.e., helpfulness, relevance, etc) of the seed prompt and EvolComplexity asks to im-
prove the complexity (i.e., increased reasoning steps, etc) of the seed prompt. We follow
the implementation in evol quality/utils.py and evol complexity/utils.py of
distilabel==1.4.1.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (]) / Metric (—) WR (%) avg. len
0y: SFT 413 544
6_,1: DPO 51.6 651
6, ,;: +eva(evolve(:)=EvolInstruct) 60.1 733
1-i: t+eva(evolve()=EvolQuality) 58.7 721
6, i: +eva(evolve()=EvolComplexity) 60.6 749
6, ,i: +eva(evolve(-)=Selflnstruct) 57.2 725

Table 10: Results of using different evolving methods.

eva is effective under different evolving methods. As shown in Table 10, our method brings
strong performance gain without training with additional human prompts. Among the experimented
methods, we find EvolComplexity shows better results.

We believe the main strength of such method is its simplicity. Viewing the evolving process as
x' + pg(- | Xx,meta_prompt), one can easily tune the meta prompt in natural language for improved
performance. However, such simplicity comes at a price: (i) the main weakness is that the default
method does not take environmental feedback into account (e.g., rewards received, verbal critique
on responses, etc) and relies on the pre-defined meta prompt, thus the evolving may be less directional;
we encourage practitioners to consider incorporating more richer feedback during evolving (one way
to formulate this is by generative optimization (Yuksekgonul et al., 2024; Cheng et al., 2024; Nie
et al., 2024)); (ii) another weakness is that existing method is single-shot (i.e., we evolve based on
a single x each time), thus the diversity of the generation may be limited — we anticipate future
works improving this with multi-shot evolving by graph-based sampling. In this regard, the evolving
process can be viewed as {x'}¥ | < pg(- | {x}M |, meta_prompt, env_feedback).

D.2 EXPERIMENTS ON NUMBER OF ITERATIONS
As an addition to § 4.2.4, we have experimented with the following settings:

* 10K prompts per iteration with 3 iterations.
* 20K prompts per iteration with 3 iterations (i.e., all seed prompts are used).

* 60K prompts per iteration with 2 iterations (i.e., all seed prompts are used).

Due to time constraints, we did not perform an extensive hyper-parameter search; however, we believe
the results presented below sufficiently demonstrate the performance gains achieved by eva.
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Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method () / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_,1: DPO (10k) 51.6 651
0:_,2: DPO (10k) 59.8 718
05_,3: DPO (10k) 61.2 802
6, .;: +eva(l0k) 60.1 733
0;_5: +eva (10k) 62.0 787
05_,5: +eva (10k) 62.2 774

Table 11: Results of using 10k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (}) / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_,1: DPO (20k) 53.2 625
01_,5: DPO (20k) 47.0 601
05_,3: DPO (20k) 46.8 564
0, ,;: +eva (20k) 59.5 826
0;_5: +eva (20k) 60.0 817
05_,5: +eva (20k) 61.4 791

Table 12: Results of using 20k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (}) / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_,1: DPO (60k) 58.9 717
0,_,;: +eva (60k) 59.6 725
0;_7: +eva (60k) 61.9 792

Table 13: Results of using 60k prompts per iteration (DPO + length-penalized NLL loss).

eva can bring robust gains with multiple iterations. As shown in Table 11, 12, and 13 below, our
method presents persistent performance gain over iterations, and concretely surpasses the performance
by default DPO training with true human prompts.

However, there exist diminishing marginal gains in iterative off-policy training. We ground eva in
the iterative (off-policy) preference alignment paradigm due to its efficiency and ease of integration.
However, such paradigms inherently face diminishing returns, where performance gains decrease
with successive iterations, as previously observed in (Wu et al., 2024; Setlur et al., 2024; Yuan et al.,
2024; Nikishin et al., 2022). While the generative data schedule in eva mitigates these challenges
and extends beyond default training with human prompts (see also §4.2.4), the gains can weaken
over iterations. We summarize potential reasons as: (i) the off-policy signal decay — as the number
of examples increases, signals from the off-policy data become weaker due to distributional shift;
(ii) the loss of plasticity, where the agent’s ability to learn good policies decreases in continuing
training with more iterations (Nikishin et al., 2022); (iii) the ability of the solver — as we evolve more
harder prompts, it is harder for the solver to produce preferred response (thus more explicit reasoning
techniques may be needed); (iv) the ability of the reward model to correctly provide reward signals
to responses and thus informativeness signals to prompts, as there may exists distributional mismatch.

Thus, we envision future work to build on eva by: (i) exploring its integration with on-policy RLHF
(e.g., instead of evolving prompts in iterations, one may evolve in batches); (ii) enhancing solver
capabilities, such as sampling more responses during inference or leveraging meta-instructions to
guide deeper reasoning; (iii) online training of RM to co-evolve with the creator and the solver.
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D.2.1 BoONUS EXPERIMENTS ON rewriter (-) IN THE LooP

Though beyond the current package, we present the basic idea here for practitioners to build upon. The
motivation comes from the hypotheses derived from § D.2: as the prompts gets harder by evolving,
there may be greater demands on the solver’s capabilities compared to earlier iterations. As such, the
solver may not be naively treated the same. One may address this by either inference-time scaling on
responses or introducing meta-instructions to explicitly enhance the solver’s reasoning.

We design a proof-of-concept experiment w.r.t the latter by adding rewriter in eva’s solver step.
Previously, as in Algo. 1 and § 3.3.2, for each prompt x, we generate multiple responses, and choose
the best as y; and the worst as y_ for preference optimization. Now, we add one more rewriting
step that attempts to enhance y to be y’,, by applying a rewriting instruction (Liu et al., 2023b) that
asks the solver to alter y with imporved helpfulness, relevance, reasoning depths, creativity and
details while keeping the similar length. We then train with (x,y’, ,y ) for preference optimization.
Table 14 shows that adding the rewriter yields concrete performance gains over the default training
method, while keeping the training budget and slightly increasing cost for offline data generation.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (]) / Metric (—) WR (%) avg. len
6y: SFT 41.3 544
6y_1: DPO 51.6 651
0, ,;: +eva 60.1 733
6, ,;: +evawith rewriter 61.9 741

Table 14: Results of adding rewriter in the solver step.

E CURRICULUM VISUALIZATION OVER ITERATIONS

We now present initial observations supporting the intuition in § 3.4, where eva brings auto-curricula
and the creator is incentivized to create new prompts that are both learnable and worth-learning.
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Figure 6: Training distributions. The prompt distribution of Table 11 for evolved prompts by zero-
shot classification. eva creates a curriculum that prioritizes math / coding prompts over iterations.
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Humanities Roleplay model
—— gemma-2-9b-it
—— gemma-2-9b-it-dpo
STEM Reasoning gemma-2-9b-it-dpo-eva-iter-1
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—— gemma-2-9b-it-dpo-eva-iter-3

Extraction Math
Coding

Figure 7: Benchmark performance. The radar figure for ratings on MT-Bench (Zheng et al., 2023),
where each category contains ten problems. eva prioritizes and gradually improves on coding, math
and reasoning over iterations, implicitly reflecting a learned curriculum.
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E.1 COMPLEXITY AND QUALITY OF PROMPTS OVER ITERATIONS

Prompt Set (|) / Metric (—) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 15: eva improves prompt quality and complexity.

As in Table 15, there is a gradual improvement of prompt complexity and quality over iterations
with eva. We sample 10K prompts per iteration, and use the below prompts modified from Liu et al.
(2023b) for the complexity and quality evaluation, with gemini-1.5-flash as the scorer:

Rank the following questions according to their quality. Your evaluation should consider the following
< factors: Helpfulness, Relevance, Accuracy, Depth, Creativity, and Level of detail.
Score each response from 1 to 5: 1: Poor quality, 2: Below average, 3: Average, 4: Good, 5: Excellent.

Ranking the following questions according to their difficulty and complexity. Use a fixed scoring system: 1:
< Very simple, 2: Simple, 3: Moderate, 4: Difficult, 5: Very difficult

F VISUALIZATION ON PROMPT SELECTION METRIC

[ reward advantage (max - min) 8 1.01 variance v. advantage (max - min)
reward advantage (max - mean) % 0.8 variance v. advantage (max - mean)
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) o 0.4
o o E

/ 2 0.2
o

0L : : I ] ‘ 0.0 : ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
normalized value reward advantage

Figure 8: The probability density distributions ~ Figure 9: The correlation plot for reward ad-
of informativeness metrics compared in Ta- vantage (ours) and reward variance — they are
ble 3 — they show different patterns. only weakly correlated.

In eva, we assign each prompt an informativeness value, which the creator will use as the weight to
sample from the seed prompts for prompt synthesis. In § 4.2.1, we have shown that traditional methods
like reward mean and reward variance are less effective as our advantage-based informativeness proxy.
The intuition is simple: advantage/regret-based proxy aligns better with the preference optimization
objective. We here further illustrate that they are statistically different from other choices:

* Figure 8: The distribution of informativeness values shows that reward variance is heavily
concentrated at lower values, reward mean is more uniformly scattered, and reward advantage
achieves a better balance, providing a broader yet also focused sampling range.

 Figure 9: The weak correlation between reward variance and reward advantage shows that
variance cannot serve as a substitute for advantage as a proxy for informativeness.

We have discussed the contrastive curriculum hypothesis in § 3.4 to support using reward advantage
in the sense that the induced samples tend to decrease the loss the most in the contrastive optimization.
Furthermore, assuming the optimization algorithm can converge to the more optimal responses,
neither reward mean nor variance directly capture the learning potential of such responses — one may
easily construct cases with identical variance yet differ much in reward range — thus variance fails to
distinguish such scenarios. By contrast, reward advantage estimate inherently captures the relative
improvement towards better response, and is sensitive to differences in reward range; variants of
advantage estimate are commonly used in literature, and we discuss underlying principles in § G.
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G EXTENDED ILLUSTRATION ON THE METHODOLOGY

This is an extended version of § 3. In § G.1, we re-present the open-ended RLHF principle in
Definition 1, and discuss the intuition under the KL regularization. In § G.2, we show heuristic
approaches in open-ended learning to approximate this objective, with a focus on minimax game
formulation. In § G.3, we formalize the regret objective in our RLHF setting, and discuss the regret
minimization for the solver and the regret maximization for the creator.

G.1 THE CONCEPTUAL OPEN-ENDED RLHF FORMULATION
Classical RLHF optimizes over a static prompt set:

Max By p ymo () { r(x,y) }*ExND [5 : DKL{M(Y | %) || 7ser(y | x) H

We propose to drop the static prompt set assumption, and jointly update the prompt distribution via a
creator policy for Open-Ended RLHF, with the ideal objective below:

i By (ymoma(c) | 706Y) | = BB | 7o) - wo(y | ) | per(ce) - wsenly [ x) |.
This generalizes RLHF (Eq. 1). We can rewrite Eq. 7 with modified coefficients for precision:

maxe, g ]EX"*ﬂ'o(‘)[ By (-] {/'\xu\w} — B1 - Dxe [mo(y | %) | wser(y | x)| } — By - ]D)KL[TFO(X) I pm(x)} .

solver creator

The newly proposed prs represents an underspecified, potentially intractable probability distribution
over possible tasks in the open-ended world (instatiated via prompts) — it is not the initial static
training prompt distribution (which is only the seed set for the creator to evolve upon); it can be seen
serve as a conceptual guide to steer the prompt distribution.

To further clarify, there are two types of regularization in open-ended RLHF:

* Dk [mo(y | x) || wsrr(y | x)]: this is the classical regularization on the response policy, en-
suring that no matter how the training distribution over prompts evolves during optimization,
the response policy remained anchored to the supervised fine-tuned (SFT) policy.

— This KL (and preference optimization) is explicitly achieved in plug-in algorithms

(e.g., DPO) in Algo. 1. We later show how it relates to solver’s regret minimization.

* Dkr | 7y (%) || prer(x) |: this probability matching term captures the intuition on optimizing

7y (x) to approach the conceptualized prs(x), in the sense that a language model optimizes

itself by adapting its training distributions with newly generated prompts for self-training to

develop increasingly general capabilities, directing its learning towards informative, new
tasks (Jiang, 2023), instead being constrained in a static, pre-defined set of tasks.

— This conceptual KL is implicitly achieved by the creator step in the current eva setting
by training on a sequence of informative prompt sets. We later show how it relates
to creator’s regret maximization. As illustrated in § 3.3.1, we start from the seed
prompt set, choose those high-regret prompts and generate variations upon them by
EvolInstruct, then mixing with a buffer of the original set to form the new training
distribution at each iteration. This approach resembles classical open-ended learning in
§ G.2, and we hope it can serve as a small step for future works to build upon.

— A common misunderstanding among readers may be to confuse the open-ended ref-
erence prr(x) with the initial seed prompt distribution D, which is static. In contrast,
Dref(X) represents a broader space of tasks (e.g., user prompts in the real wild world),
as a conceptual target derived from the underspecified distribution (Dennis et al., 2020),
i.e., an environment with free parameters that control. Let’s use an illustrative example
with Fig. 6: the prompt distribution may be defined along several dimensions (e.g., the
number or complexity of coding problems); a potential creator can be designed to
modify these dimensions, steering the initial D to new training distributions, by certain
decision rules (e.g., minimax regret, which offers worst-case guarantees) that forms a
sequence of informative prompts for training.
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This joint optimization objective only serves as a general principle. In the next, we discuss how
existing works implicitly achieve the open-ended learning objective through two-player games.

G.2 APPROACHING OPEN-ENDED LEARNING BY UNSUPERVISED ENVIRONMENT DESIGN

G.2.1 THE ASYMMETRIC GAME FORMULATION FOR UNSUPERVISED ENVIRONMENT DESIGN

While we cannot directly train the agent with the intractable py.¢(x) of the open-ended world, it is
possible to curate a curriculum of prompt distributions to improve over the static distribution
and support the continual training of the policy mg(-|x), for it to keep improving and succeed over
the full task space, thus conceptually approaching pr¢(x). This is often framed as an asymmetric
two-player game.

Dennis et al. (2020) first formally define this problem as Unsupervised Environment Design (UED).
The idea is that while the real-world environments are inexhaustible and hard to tract, there may
exist some free parameters (e.g., height and roughness in a maze) which one may control to generate
new environments; UED then concerns about designing a distribution of those free parameters
(i.e., settings) to create new fully specified environments, that can be used to train the agents.

In this setup, one player, the creator, generates new environments based on some specific decision
rules (see the following), while the other player, the solver, optimizes its policy within these training
environments, and the process continues iteratively. Common heuristic strategies include:

* Randomization: environments are generated uniformly and independently of the solver’s
current policy. This method is simple but less effective (Tobin et al., 2017).

* Maximin: the creator generates environments that minimize the solver’s maximum possible
reward, which can often lead to unsolvable scenarios (Khirodkar and Kitani, 2018).

* Minimax regret: The creator targets environments that maximize the solver’s regret, defined
as the difference between the optimal return achievable and that of the solver’s current
policy (Beukman et al., 2024b). The regret is often conceived as the creator’s utility.

Among them*, the minimax regret approach presents a sweet spot where the creator can create
hard yet solvable environments, and is often empirically better. The minimax regret strategy also
implies that the agent’s policy is trained to perform well under all levels/settings, thus enjoys a
worst-case guarantee. However, while it is often straightforward for the solver to minimize the regret
(e.g., through direct policy optimization, as we discuss in § G.3), the optimal policy remains unknown
during the optimization process, thus regret as the decision signal is often intractable to the creator
— which requires approximation (as an amusing side note, this is described as the Achilles’ heel of
those curriculum RL methods by Parker-Holder et al. (2022)).

G.2.2 APPROXIMATING THE REGRET AND GENERATING NEW ENVIRONMENTS

In general, the creator design in this line of research contains two steps:

1. identifying high-regret levels using different (often heuristic) regret approximation;
2. generating new environments by making variations or retrieving from buffers on those
high-regret levels.
We hereby review major works on regret approximation and environment generation as follows:
Dennis et al. (2020) propose joint training for the creator and two competing solvers.
* Regret approximation: here, two solver policies are trained, with the regret approximated

as the difference in their returns. During each optimization step, one solver maximizes
this regret, the other minimizes it, and the creator maximizes it.

¢ Environment generation: the system directly sample the parameter from the creator policy
and use that to specify the environment.

*We have implemented variants of these in § 4.2.1, and show minimax regret is empirically better.
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Jiang et al. (2021b) propose to random sampling on high-regret levels.

» Regret approximation: as a heuristic, the authors use positive value loss, which is a function
of Generalized Advantage Estimate (Schulman et al., 2015) (which itself is a function of the
TD error — the difference between the expected and the actual returns) as the creator’s utility.

* Environment generation: the creator have a rolloing buffer of highest-regret levels by
random searching on relevant configurations.

Jiang et al. (202 1a) further propose a double-creator setting based on (Jiang et al., 2021b), where one
creator is actively generating new environments, and the other is retrieving from the buffer.

Parker-Holder et al. (2022) propose to sample high-regret levels and generate new environments by
making edits on existing ones. The regret approximation is the same as (Jiang et al., 2021b) — the
positive value loss. For the environment generation, the authors suggest a general editing/mutation
mechanism, where the creator chooses from high-regret levels and make small variations within an
edit distance, which by heuristics will lead to the discovery of more high-regret environments. There
is an additional filtering step: they do not directly train on the newly generated levels, but evaluate on
those levels first, then add only the high-regret ones to the training buffer.

Note the solvers are often directly trained with PPO (Schulman et al., 2017) under the environments.

G.3 REGRET FORMULATION FOR OPEN-ENDED RLHF
Next, we discuss the regret minimization and maximization in our setting for alignment. Specifically,

* Regret minimization for the solver: we avoid calculating regret and use direct policy
optimization (e.g., DPO) to equivalently achieve regret minimization.

* Regret maximization for the creator: similarly to (Jiang et al., 2021b; Parker-Holder et al.,
2022), we first find an approximation of regret, then curate new environments for the solver
to train on by (i) sampling from a replay buffer of existing prompts, and (ii) making variations
(through EvolInstruct (Xu et al., 20232a)) on those high-regret prompts. Specifically, we
use advantage-based estimates of the current policy, as summarized in Table 2.

This asymmetric two-player game serves as one potential modeling choice to implicitly achieve the
open-ended RLHF principle that we proposed in Definition 1. We look forward to exploring more
principled solutions in the future.

Preliminaries. Let r(-,-) be an oracle reward model. The (unregularized) optimal policy is:
T = arg max ExnD,y~m(-|x) [ r(x,y) }
We have the optimal advantage / the negated regret as:
A*(Xv y) = T'(X, y) - IEy/rv7'r*(~\x) [ T(Xv yl) ]
= T(Xa Y) -V (Xa Y)
Classical preference-based RL assumes a reward-based preference model, that is:
exp(r (x,y"))
exp(r (x,y+)) +exp(r (x,y7))

P(yt=y )=

As a side note (Hejna et al., 2023), this is equivalent to the advantage/regret-based preference model,
due to the bandit setup in RLHF:

exp(r (x,y") = V*(x,y))
exp(r (x,y) = V*(x,y)) +exp(r (x,y7) = V*(x,¥))
B exp(A4* (x,y1))
N eXp(A* (x, y‘*‘)) + exp(A* (x, y—)) '

P(yt=y")=

In our current setting, we assume there is an oracle preference model for the preference pair labeling.
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KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:

max By, () y~mo () [T(X,Y) 1 ~Ex~p lﬁ : 7T¢(')KL[7T9(Y | %) [ mser(y | x) ”
The optimal policy of the above KL-constrained objective is:
i ( \x)—iw (y | x)ex 1 r(x,y)
kLY - Z(X) SFT(Y p B Y ’

where the partition function is defined as Z(x) = > mer(y | x) exp (%r(x, y))

We can now formally define the regret with regard to 7 (- | x) as:
RegretKL(x, 7T9) = ]Eywﬂ.e(.‘x) [ 7“(X7 y) } - EyNWEL("X) { 7“(X7 y) } . (14)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver mg(- | x) as regret minimization, since the goal is to align the policy mg (- | x) with
the KL-optimal solution 7%, (- | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting g to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret — we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang

et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:
|Reéret(x, 71—9)‘ < inng (X) = T(Xa y+) - T(Xa ybaseline); (15)
where
y+ = argmaxy, r(X,y), (16)
Ybaseline ‘= aI'g minyi r(x, Y) OT Ybaseline ‘= aVEy,, (X, Y)7 (17)

and {y;}i—1 is a set of responses sampled from 7g(- | x) and r(-,-) is the reward oracle. We
use argmin,,, r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optimizes, the proxy should approximate the true regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.

H EXTENDED LITERATURE REVIEW FOR OPEN-ENDED LEARNING

The design of our game-theoretic framework for language model post-training is inspired from many
prior works in open-ended learning. The central idea of open-ended learning is not to optimize for
a specific, static distribution, but to develop an agent that can generalize well across unseen, novel
environments, which are the environments that the agent has not been explicitly trained on. To achieve
this, unsupervised environment design proposes to generate environments that present a curriculum of
increasing complexity for the agent to evolve, which ensures that the agent’s learning is not narrow, but
broad enough to handle the diversity of complexity of future environments. In such curriculum, as the
agent solves simpler environments, it moves on to more difficult ones, thus progressively builds more
sophisticated strategies. Furthermore, by adopting a minimax regret framework, this approach adds a
layer of robustness by minimizing the agent’s performance gap in worst-case (i.e., most adversarial)
environments. In addition to distinctions discussed in § 5, we here list several foundational works in
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this line, and encourage the LLM community to explore with more rigor and depth: Schmidhuber
(1991) presents an initial investigation into open-ended learning via self-supervised curiosity-driven
exploration; Wang et al. (2019) emphasize co-evolution of environments and agent policies by training
a population of agents that adapt to and solve progressively complex challenges; Dennis et al. (2020)
formally introduce the notion of Unsupervised Environment Design (UED), where a protagonist and
antagonist agent pair simulates regret by competing in shared environments, driving the protagonist
(the main learner) to adapt to increasingly challenging scenarios; Jiang et al. (2021b) introduce
Prioritized Level Replay (PLR), which uses a rolling buffer of high-regret levels to dynamically
adjust the training curriculum, and selects levels with the higher learning potential; Parker-Holder
et al. (2022) further propose improvements by editing previously high-regret levels; Hughes et al.
(2024b) present a formal definition for open-ended system with respect to novelty and learnability,
that generalizes various systems, e.g., AlphaGo (Silver et al., 2016), AdA (Team et al., 2021), etc.

I EXTENDED LITERATURE REVIEW IN BI-LEVEL RLHF

Bi-level optimization refers to optimization problems where the cost function is defined w.x.t. the
optimal solution to another optimization problem (Grosse, 2022). There is a recent line of works
applying bi-level optimization to RLHF. While they all rely on a fixed dataset of prompts, eva propose
to dynamically update the prompt set, as in § 1. We present a detailed comparison of eva with Ding
et al. (2024); Shen et al. (2024); Makar-Limanov et al. (2024). We sincerely thank the anonymous
reviewer for the kind references, and welcome suggestions for any other works we may have missed.

Ding et al. (2024) formulate iterative online RLHF as a bi-level optimization problem, where the
upper-level represents the reward learning, and the lower-level represents the policy optimization.
Leveraging reward re-parameterization tricks in Rafailov et al. (2023), Ding et al. (2024) reduces the
problem to a single-level objective with regard to the policy. The differences of this work and our
work lie in the prompt distribution and preference oracle: (i) eva features by dynamic prompt set
generation for Open-Ended RLHF, whereas (Ding et al., 2024) remains using a static prompt set;
(ii) we assume the existence of the preference oracle (as discussed in § 4), while Ding et al. (2024)
consider online training of reward models and ablate on self-rewarding by the current LLM policy.
Our usage of a pre-trained reward model follows from industrial practices (Team et al., 2023; 2024b),
which is also commonly used by prior works in academia (Meng et al., 2024; Wu et al., 2024).

Makar-Limanov et al. (2024) provide an interesting exploration on formulating RLHF as a leader-
follower game, where the language model (LM) policy is the leader and the reward model (RM) policy
is the follower, and the solution is Stackelberg equilibrium (von Stackelberg, 1934; Rajeswaran et al.,
2020), where the leader does not likewise best respond to the follower’s strategy. Here, following
the curriculum RL literature (Dennis et al., 2020; Parker-Holder et al., 2022), we seek the Nash
equilibrium (Nash et al., 1950) between the creator for prompt generation and the solver for response
generation. In the current setting of eva, the goal is to search for an optimal solver policy with a
best supporting prompt distribution, and an optimal prompt distribution with a best supporting solver
policy. Nevertheless, the LM-RM iterative optimization may be added on top of eva’s framework,
and we look forward to future works exploring the leader-follower re-formulation of eva.

Shen et al. (2024) present a rigorous theoretical work (though it does not directly involve practical
post-training of large language models). The authors propose to reduce the bi-level problem to
a single-level problem with a penalty-based reformulation, and apply it in the setting of LM-RM
optimization within a fixed environment, whereas eva focuces on dynamic prompt generation and
practically train large language models with extensive empirical experiments conducted. We believe it
would be interesting to adapt similar first-order optimization techniques to solve Open-Ended RLHF.

In summary, existing bi-level RLHF works focus on online optimization of both the RM and the
LM (as the response policy), all with fixed prompt/state distribution. eva presents an orthogonal
direction on dynamic prompt generation for Open-Ended RLHF, with an empirical algorithm which
attains state-of-the-art performance with large language models on a variety of benchmarks. It is
possible to incorporate the online RM training within eva — we have shown in § 4.2.3 that eva
scales with quality of reward models, thus integrating online RM training may further enhance
performance and mitigate potential distributional mismatch problems as we evolves for more prompts.
This direction may have not been widely adopted in real-world training of language models, due
to concerns about practicality (Team et al., 2023; 2024a;b; Adler et al., 2024). We look forward to
future works exploring efficient variations unifying eva and existing bi-level RM-LM frameworks.
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J EXAMPLES ON PROMPTS AND MODEL GENERATIONS
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Figure 10: The initial prompt distribution of AlpacaEval by bart-large-mnli with O-shot classifi-

cation, which is imbalanced.

For the reward distribution, the category with lowest average reward has

the highest reward gap (i.e., the default informativeness proxy), implying the potential to improve.

initial prompt —

Write me the code for a distributed transaction manager.\nThink
step by step and use pseudo code first.\nThen, define interfaces
for all involved actors and entities.\nUse Rational Unified
approach for this part.\n\nOnly then move on to the actual
implementation, class-by-class, and method-by-method.\nMake the
code be implemented in C# and follow SOLID principles.

evolved #1 —

evolved #2 —

evolved #3 —

evolved #4 —

Craft a suite of syntax for a distributed transaction coordinator.
Start with a sequential breakdown in pseudocode format. Following
that, establish the protocols for communication and interaction
amongst the various participants and components, incorporating

the Rational Unified Process methodology.\n\nProceed thereafter to
the concrete creation, detailing each class and function. Ensure
that the final C# code adheres to the precepts of SOLID and is
annotated for clarification and maintainability purposes.

Devise a comprehensive set of directives and structures for a
distributed transaction coordinator architecture. Initiate by
formulating a step-by-step algorithmic decomposition in pseudocode.
Subsequently, delineate the frameworks for dialog and cooperation
between the numerous entities and elements, utilizing the tenets
of the Rational Unified Process methodology.\n\nContinue to the
actual generation of the code, meticulously detailing every class
and corresponding method. Guarantee that the culminating C# code
is in strict compliance with SOLID principles and is supplemented
with descriptive commentary to enhance future clarity and upkeep,
while also validating the code against a set of unit tests to
ensure robust functionality.

Commence by constructing an algorithm in pseudocode that
meticulously breaks down the sequential stages for a distributed
transaction coordinator system. Progress by outlining the
communication protocols and collaborative mechanisms among the
myriad components, adhering to the Rational Unified Process
approach.\n\nAdvance to crafting the code in C#, ensuring each
class and method is elaborated with precision, aligning with SOLID
design principles. Integrate thorough comments for heightened
maintainability and conduct comprehensive unit testing for assured
operational integrity.

Design a detailed flowchart that represents the intricate

steps of an orchestration engine for managing microservices

in a cloud-native environment. Begin by detailing the service
discovery, load balancing, and fault tolerance strategies, while
incorporating the DevOps philosophy.\n\nProceed by developing the
implementation in Java, focusing on clean, modular code following
object-oriented programming best practices. Accompany your

code with clear documentation for easy understanding and perform
rigorous integration testing to guarantee robustness.

Table 16: Examples of evolved prompts from AlpacaEval. We suggest practitioners to include
generated responses with oracle rewards and self-critique in the context for better prompt evolving,
which is helpful for mitigating the effect of potential self-consuming loops in synthetic data training.
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lst-turn prompt: When a number is divided by 10,

the remainder is 4. What

is the remainder when twice the number is divided by 4°?

Answer from gemma-2-9b-it-dpo
Here’s how to solve this problem:
1. Understand the first statement:
* "When a number is divided by 10,

the remainder is 4" means the number
can be represented as 10xk + 4,
where k is an integer.

2. Double the number:

+ Twice the number is 2% (10xk + 4) =
20k + 8

3. Divide by 4:

* (20xk + 8) divided by 4 is (20xk)/4
+ 8/4 = 5xk + 2

4. Find the remainder:

% Since 5xk is a multiple of 4, the

remainder when twice the number is
divided by 4 is 2.

Let me know if you’d like to try
another example!

Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve this problem:
1. Understand the first statement:

- "When a number is divided by 10,

an
can be represented as 10xk + 4,
where k is an integer.

the remainder is means the number

2. Double the number:

- Twice the number is 2% (10xk + 4) =
20xk + 8

3. Divide by 4:

- When (20+k + 8) is divided by 4,

the 20xk term is perfectly divisible
by 4.

— The remainder will be the same as

the remainder when 8 is divided by 4,
which is 0.

Therefore, the remainder when twice
the number is divided by 4 is 0.

2nd-turn prompt: What about when twice the number is divided by 5?

Answer from gemma-2-9b-it-dpo
Here’s how to solve that:

1. We know: Twice the number

is 20xk + 8 (from the previous
calculation).

2. Divide by 5: (20*«k + 8) divided
by 5 is (20+k)/5 + 8/5 = 4k + 1.6
3. Find the remainder: Since 4xk

is a multiple of 5, the remainder
when twice the number is divided by
5 is 1.

Let me know if you have any more
number theory puzzles!

Answer from gemma-2-9b-it-dpo-eva

Here’s how to solve that:

1. Twice the number: We know twice
the number is 20xk + 8 (from the
previous steps).

2. Divide by 5:

* 20+«k is divisible by 5.

* 8 divided by 5 leaves a remainder
of 3.
Therefore,
the number is divided by 5 is 3.

the remainder when twice

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo

The assistant’s response is
incorrect. The assistant
incorrectly calculated the remainder
when twice the number is divided

by 5. The assistant calculated

the decimal part of the division

operation, not the remainder. The
correct calculation should be (20n +
8) $ 5= (20n $ 5) + (8 % 5) =0+ 3
= 3. Therefore, the remainder when

twice the number is divided by 5 is
3, not 1 as the assistant stated.

The corrected response would be:

1. We know: Twice the number

is 20%xk + 8 (from the previous
calculation) .

2. Divide by 5: (20*«k + 8) divided
by 5 gives us a remainder of (20xk %
5) + (8 $5) =0+ 3 = 3.

3. Find the remainder: The

remainder when twice the number is
divided by 5 is 3.

Rating:
2,

[[3]], "score": 3, "turn":
"tstamp": 1722737011.7768948

Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is correct
and matches the reference answer.
The assistant correctly explains
that twice the number is 20xk + 8
and that when this is divided by 5,
the remainder is 3. The assistant’s
explanation is clear and easy to
understand, making it helpful for

the user. There are no mistakes to
correct.

Rating: [[10]], "score":

10, "turn": 2, "tstamp":

1722846518.5543818

Table 17: Comparison of model generations on examples from MT-Bench.
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1lst-turn prompt:
Develop an outline for the blog post,
compare and contrast the features,

answer in fewer than 200 words.

performance, and user experience of the two models.

Imagine you are writing a blog post comparing two popular smartphone models.

including key points and subheadings to effectively

Please

Answer from gemma-2-9b-it-dpo

## Smartphone Showdown: [Model A] vs.
[Model B]\n\nx+I. Introductionss\ns Briefly
introduce the two smartphone models being
compared, highlighting their popularity and
target audience.\nx State the purpose of the
comparison: to help readers decide which phone
best suits their needs.\n\n*+II. Design and
Display**\n+ Physical dimensions, weight,

and build quality comparison.\n* Screen

size, resolution, and display technology
(e.g., OLED, LCD).\n* Design aesthetics and
user preferences.\n\n+*III. Performance

and Specs**\n+ Processor, RAM, and storage
comparison.\n* Benchmark scores and real-world
performance analysis.\ns Battery life and
charging capabilities.\n\n*+IV. Camera
Capabilities**\n* Rear and front camera

specs (megapixels, aperture, features).\n«
Image quality comparison in various

lighting conditions.\n* Video recording
capabilities.\n\n+*V. Software and User
Experiencex+\n* Operating system and user
interface comparison.\n* App ecosystem

and availability.\nx Software features and
customization options.\n\n*+VI. Price and
Valuex*\n*» Compare the price points of both
models.\n* Analyze the value proposition
based on features and performance.\n\n«*VII.
Conclusion*+\n* Summarize the key differences
and similarities.\n* Recommend the best

phone for specific user profiles (e.g.,
budget-conscious, photography enthusiasts,

gamers) .

Answer from gemma-2-9b-it-dpo-eva
## iPhone 14 Pro vs. Samsung Galaxy S23:
Which Flagship Reigns Supreme?\n\nx«+I.
Introduction**\n* Briefly introduce both
smartphones and their position in the
market.\n* State the purpose of the comparison:
to help readers decide which phone best suits
their needs.\n\n#*II. Design and Display*x\nx
Physical dimensions, weight, and build quality
comparison.\n* Screen size, resolution,
refresh rate, and display technology (OLED
vs. Super AMOLED).\n* Design aesthetics and
(e.g.,
color options).\n\n+**III. Performance and

unique features notch vs. punch-hole,
Camerax*\n* Processor comparison (Apple

Al6 Bionic vs. Snapdragon 8 Gen 2).\nx
RAM and storage options.\n* Camera specs:
megapixels, lens types,

aperture, and special

features (e.g., telephoto, macro).\n* Image
quality comparison based on sample photos
and user reviews.\n\nx*IV. Software and User
Experiencexx\n* Operating systems: 1i0S 16
vs. Android 13.\n* User interface comparison:
intuitiveness, customization options, and
app ecosystems.\n* Special features: Face
ID vs. in-display fingerprint sensor

voice assistants.\n\nxxV. Battery Life and
Charging+*\n* Battery capacity and real-world
usage comparison.\nx Fast charging speeds and
wireless charging capabilities.\n\n**VI. Price
and Valuexx\n* Compare starting prices and
different storage configurations.\nx Assess
the overall value for money based on features
and performance.\n\n**VII. Conclusion*x\nx
Summarize the key differences and strengths
of each phone.\n* Recommend the best phone
(e.g.,

budget-conscious

for specific user types photography

enthusiasts, gamers,

consumers) .

2nd-turn prompt: Take your previous response and

rephrase it as a limerick.

Answer from gemma-2-9b-it-dpo

Two phones, a showdown so grand,\n[Model A]
and [Model B], hand in hand.\nDesign, specs,
and price,\nWe’ll analyze nice,\nTo help you
choose, understand?\n\nLet me know if you’d
like me to try filling in the bracketed parts

with specific model names!

Answer from gemma-2-9b-it-dpo-eva

\nTwo phones, a Pro and a Galaxy,\nFor

flagships, they truly are 5pacy.\nW1th cameras
and screens, \nAnd processors keen, \nWhich one
wins? \nLet me know if

Read on, and be savvy!

you’d like another limerick!

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo

The assistant’s response is creative and
relevant to the user’s request. The user
asked the assistant to rephrase the previous
response, which was a detailed outline for a

blog post, into a limerick. The assistant

successfully did so, maintaining the essence
of the original response in a limerick format.
The assistant also offered to further customize
the limerick by filling in the bracketed
parts with specific model names, showing a
willingness to provide additional detail if
needed. However, the limerick does not fully
capture the depth and detail of the original
response, which is understandable given the
constraints of the limerick format.
Rating: [esi1l,
1722737024.0327556

"score": 8, "turn": 2,

"tstamp":

Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is creative and
relevant to the user’s request. The assistant
successfully rephrased the previous response,
which was a detailed outline for a blog

post comparing two smartphone models, into
a limerick. The limerick is playful and
engaging, and it maintains the essence of
the original response, which is to compare the
two phones and help the reader make an informed
decision. The assistant also offers to create
another limerick if the user wants, showing a
willingness to continue the interaction.
Rating: [ro1i1,

1722846542.9437995

"score": 9, "turn": 2,

"tstamp":

Table 18: (Continued) comparison of model generations on examples from MT-Bench.
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1lst-turn prompt: Each problem consists of three statements.

the third statement may be true, false, or uncertain.\nl.

Oranges cost less than bananas.\n3.

Based on the first two statements,

Oranges cost more than apples.\nZ.

Bananas cost more than apples and bananas cost more than

orange.\nIf the first two statements are true, then the third statement is?

Answer from gemma-2-9b-it-dpo

Here’s how to break down the logic:\n\nx
**Statement l:x% Oranges > Apples (Oranges
cost more than apples)\ns *xStatement
2:xx Oranges < Bananas (Oranges cost less
than bananas)\n\nThis means the price
order is: Bananas > Oranges > Apples\n\nx
**Statement 3:%x Bananas > Apples AND Bananas
> Oranges\n\nStatement 3 is #xpartially
truex.\n\nx The part "Bananas > Apples" is
true based on our price order.\nx The part
"Bananas > Oranges" is also true based on our
price order.\n\n\nLet me know if you’d like to

try another one!

Answer from gemma-2-9b-it-dpo-eva

Here’s how to break down the logic:\n\nw
+*Statement 1l:xx Oranges > Apples (Oranges
cost more than apples)\n* x*Statement 2:xx
Oranges < Bananas (Oranges cost less than
bananas) \n\nThese statements tell us that
bananas are the most expensive, then oranges,
and apples are the least expensive.\n\n*
*xStatement 3:x* Bananas > Apples AND Bananas
> Oranges\n\nSince bananas are indeed more
expensive than both apples and oranges,
statement 3 is *xtruex.\n\n\nLet me know

if you’d like to try another one!

2nd-turn prompt: If the third statement

uncertain? Please explain.

is true.

Is the first statement true, false, or

Answer from gemma-2-9b-it-dpo

If the third statement is true, the first
statement is xxfalsex.\n\nHere’s why:\n\nx
*+xStatement 3:%x States that bananas cost
more than both apples AND oranges.\n\nThis
means the price order is: Bananas > Oranges

> Apples.\n\n* **Statement l:+* States that
oranges cost more than apples.\n\nIf bananas
are the most expensive, and oranges are second,
then oranges cannot be more expensive than
apples.\n\n\nLet me know if you have any other

logic puzzles!

Answer from gemma-2-9b-it-dpo-eva

If the third statement is true, then the first
statement is xxuncertains+.\n\nHere’s why:\n\nx*
«xStatement 3:+x Bananas > Apples AND Bananas >
Oranges\n\nThis tells us bananas are the most
expensive, but it doesn’t explicitly state the
relative prices of apples and oranges.\n\nx
+«xStatement l:x+ Oranges > Apples\n\nThis
statement claims oranges are more expensive
than apples.\n\nStatement 3 doesn’t contradict
statement 1, but it also doesn’t confirm it.
It’s possible that oranges xarex more expensive
than apples, but statement 3 alone doesn’t give

us enough information to be sure.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo

The assistant’s response is incorrect. The
assistant states that if the third statement is
true, the first statement is false. However,
the third statement only establishes that
bananas cost more than both apples and
oranges. It does not provide information
about the relative costs of apples and oranges.
Therefore, the first statement could be true
(if oranges cost more than apples), false (if
oranges cost less than apples), or uncertain
(if oranges and apples cost the same). The
assistant’s explanation is flawed because it
incorrectly assumes that the order of costs
must be Bananas > Oranges > Apples, when

in fact the order could also be Bananas >
Apples = Oranges or Bananas > Apples > Oranges.
\n\nCorrected Assistant’s Answer: If the third
statement is true, then bananas cost more than
apples and bananas cost more than oranges.

This means that oranges could still cost more
than apples, making the first statement true.
However, it’s also possible that oranges and
apples have the same cost, which would make the
first statement false. Therefore, based on the

third statement alone, the first statement is

uncertain.
Rating: [[2]], "score": 2, "turn": 2,
"tstamp": 1722737017.2808955

J for g 2-9b-it-dp

The assistant’s response is correct and helpful.
The assistant explains that the first statement
is uncertain if the third statement is true,
which aligns with the reference answer.

The assistant provides a clear explanation

of why this is the case, stating that the
third statement doesn’t contradict the first
statement, but it also doesn’t confirm it.
Therefore, the assistant’s response is accurate
and informative.\n\nThe assistant’s response:
"If the third statement is true, then the
first statement is sxuncertainxx. Here’s why:
Statement 3: Bananas > Apples AND Bananas >
Oranges. This tells us bananas are the most
expensive, but it doesn’t explicitly state
the relative prices of apples and oranges.
Statement 1: Oranges > Apples. This statement
claims oranges are more expensive than apples.
Statement 3 doesn’t contradict statement 1,

but it also doesn’t confirm it. It’s possible
that oranges #xare* more expensive than apples,
but statement 3 alone doesn’t give us enough

information to be sure.

[rio1l,
1722846527.2339694

Rating: "score": 10, "turn": 2,

"tstamp":

Table 19: (Continued) comparison of model generations on examples from MT-Bench.
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1st-turn prompt: Implement a function to find the median of two sorted arrays of different sizes with O(1) space complexity and O(n)

time complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
\n

Finds the median of two sorted arrays of different sizes.\n\n

python\n\def findmedian sorted.arrays(numsl, nums2):\n ""
python\n\def findmedian-sorted-arrays(numsl, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n
Args:\n numsl: The first sorted array.\n nums2: The second

Args:\n numsl: The first sorted array.\n nums2: The second
sorted array.\n\n Returns:\n The median of the two sorted

sorted array.\n\n Returns:\n The median of the two sorted
arrays.\n """\n\n m, n = len(numsl), len(nums2)\n if m

arrays.\n """\n\n m, n = len(numsl), len(nums2)\n if m

> n:\n numsl, nums2, m, n = nums2, numsl, n, m # Ensure m
> n:\n numsl, nums2, m, n = nums2, numsl, n, m § Ensure m

<= n\n\n imin, imax, half-len = 0, m, (m + n + 1) // 2\n\n

n\n\n imin, imax, halflen = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half.len

while imin <= imax:\n i = (imin + imax) // 2\n 3 = half.len
- i\n if i <m and nums2(j - 1] > numsl(i}:\n imin = i + 1 #

- i\n if i < m and nums2[3 - 1] > nums1[i):\n imin = i + 1 #
i is too small, increase it\n elif i > 0 and numsl[i - 1] >

i is too small, increase it\n elif i > 0 and numsl[i - 1] >

nums2(3):\n imax = i - 1 # i is too big, decrease it\n else:\n

nums2[3]:\n imax - 1 # i is too big, decrease it\n else:\n

# 1 is perfect\n\n if i

0:\n maxleft = nums2[j - 1]1\n

# i is perfect\n\n if i 0:\n max-left = nums2(j - 1]\n

elif j == 0:\n maxleft = numsl(i - 1]\n else:\n max.left

elif j

0:\n maxleft = numsl[i - 1]\n else:\n maxleft
= max(numsl[i - 1], nums2[j - 11)\n\n if (m + n) % 2 == 1:\n

= max(numsl(i - 1], nums2(j - 1)\n\n if (m + n) %2
return maxleft\n\n if i

mi\n minright = nums2(3)\n

1:\n return max.left\n\n if i == m:\n min.right = nums2[j]\n

elif j

n:\n minright = numsl[i]\n else:\n minright =

elif j n:\n minright = numsl(i)\n else:\n min.right
min(nums1(i], nums2[j])\n\n return (max.left + min.right) /

min(numsl[i], nums2[j])\n\n return (max.left + min.right) /
2.0\n\n# Example usage\nnumsl = [1, 3]\nnums2 = [2]\nmedian =

2.0\n\n# Example usage\nnumsl = (1, 3]\nnums2 = [2]\nmedian =
findmedian_sortedarrays (numsl, nums2)\nprint (£"The median of

findmedian_sortedarrays(numsl, nums2)\nprint (£"The median of
{nums1} and {nums2} is: {median}")\n\n\n«+Explanation:+\n\nl.

{nums1} and {nums2} is: {median}")\n\n\n++Explanation:s+\n\nl.
«+Handle Unequal Lengths:++\n - If ‘numsl‘ is longer than

++Handle Unequal Lengths:++\n - If ‘numsl‘ is longer than
‘nums2®, swap them to ensure ‘numsl‘ is always the shorter

‘nums2', swap them to ensure ‘numsl‘ is always the shorter
array. This simplifies the logic.\n\n2. +Binary Search:s+\n

array. This simplifies the logic.\n\n2. «+Binary Search:«+\n
- The core idea is to use binary search on the shorter array

- The core idea is to use binary search on the shorter array
(*nums1').\n - ‘imin' and ‘imax® define the search range for

(‘nums1').\n - ‘imin‘ and ‘imax' define the search range for the
the partition point ‘i' in ‘numsl'.\n - ‘half-len' calculates

partition point ‘i‘ in ‘numsl'.\n - ‘half.len‘ calculates the
the desired total number of elements on the left side of the

desired total number of elements on the left side of the partition
partition (to find the median).\n\n3. ssPartitioning:ss\n - In

(to find the median).\n\n3. =+Partitioning:++\n - In each

each iteration, ‘i’ divides ‘numsl' into two parts: ‘numsl[0:i]®

iteration, divides ‘numsl‘, and divides ‘nums2‘ such that

and ‘numsifi:m].\n - ‘j' is calculated to divide ‘nums2‘ so that
the total number of elements on the left side is ‘half.len‘.\n\n4.

the total number of elements on the left side is ‘half-len'.\n\nd.

«xAdjusting the Search Range:x+\n - If ‘nums2[j - 1] > numsl[i]‘,
«xBdjusting the Partition:+s\n - We compare elements at the

it means ‘i‘ is too small, so we need to move the partition
boundaries of the partitions to see if ‘i is in the correct

point in ‘numsl‘ to the right (‘imin = i + 1').\n - If ‘numsl(i
position:\n - If ‘nums2[j - 1] > numsl[i]', ‘i‘ is too small,

- 11 > nums2(j]%, ‘i‘ is too large, so we move it to the left
so we move ‘imin' to ‘i + 1'.\n - If ‘numsl(i - 1] > nums2(j]",

(‘imax = i - 1%).\n\n5. *«Finding the Median:xx\n - When the

i

is too large, so we move ‘imax® to ‘i - 1%.\n\n5. s+Finding

correct partition is found (‘i‘ is in the right position), we

the Median:s+\n - Once ‘i is in the correct position, we

find:\n - ‘max_.left‘: The maximum element on the left side of

- ‘maxleft': The maximum element in the left partitions

the partition.\n - ‘minright': The minimum element on the right
of both arrays.\n - ‘minright‘: The minimum element in the

side of the partition.\n - If the total number of elements is
right partitions of both arrays.\n - If the total length is odd,

odd, ‘max-left® is the median.\n - If even, the median is the
‘max-left' is the median.\n - If the total length is even, the

average of ‘max_left' and ‘min_right'.\n\ns+Time Complexity:s«
median is the average of ‘max.left® and ‘min_right'.\n\nssTime

O(log(min(m, n))) because we are performing binary search on the
Complexity:#x O(log(min(m, n))) because we perform binary search

shorter array.\n\n«Space Complexity: O(1) as we are only using
on the shorter array.\n\ns«Space Complexity:+* O(1) as we only

a constant amount of extra space for variables.
use a constant amount of extra space for variables.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for g it-dp:

The assistant’s answer is correct and provides a detailed
explanation of the code. The assistant correctly states that the

time complexity is O(log(min(m, n))) and the space complexity is

The assistant’s answer is correct and provides a detailed
0(1), which aligns with the reference answer. The assistant also

explanation of the code. The assistant correctly states that
provides an example usage of the function, which is helpful for

the time complexity is O(log(min(m, n))) and the space complexity
understanding how to use it. The assistant’s code is a different

is 0(1), which aligns with the reference answer. The assistant
implementation than the reference answer, but it achieves the same

also provides a step-by-step explanation of the code, which is
result and meets the same complexity requirements.

very helpful for understanding the logic behind the solution.
However, the assistant’s answer does not address the user’s

The assistant’s code is also correct and will correctly find the
original question about achieving O(n) time complexity. The

median of two sorted arrays of different sizes. Therefore, there
assistant should have clarified that it’s not possible to find the

are no corrections needed for the assistant’s response.
median of two sorted arrays of different sizes with O(1) space

complexity and O(n) time complexity, as stated in the reference
Rating: [[10]], "score": 10, "turn": 1, "tstamp":
answer.

1722846533.772981

Rating: [[8]], "score! 8, "turn"

1, "tstamp":

1722737514.2011044

Table 20: (Continued) comparison of model generations on examples from MT-Bench.
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1st-turn prompt:

You are given two sorted lists of size m and n.

Implement a function to find the kth

smallest element in the union of the two lists with linear complexity.

Answer from gemma-2-9b-it-dpo
*“'python\n\def find-kth.smallest (listl, list2, k):\n
"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n 1listl: The first

sorted list.\n 1list2: The second sorted list.\n

k: The desired kth smallest element.\n\n Returns:\n
The kth smallest element in the union of the two
lists.\n """\n\n m, n = len(listl), len(list2)\n

i, 3 =0, 0\n minheap = [] \n\n # Build a min-heap

with the first elements of both lists\n for x in

range (min(m, n)):\n heapq.heappush(min_-heap, (listl[x],
x, 0)) # (value, list_index, position_in_list)\n
heapq.heappush (min_heap, (list2(x], x, 1))\n\n #
Extract k smallest elements from the heap\n for _ in
range(k - 1):\n ., ., _ = heapq.heappop (min_heap)\n\n #
The top element of the heap is the kth smallest\n
return heapq.heappop (min_heap) [0]\n\n# Example
usage:\nlistl = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,
10]\nk = 5\nkth.smallest = find.kth.smallest (listl,
list2, k)\nprint (£"The {k}th smallest element

is: {kth.smallest}")\n\n\n«+Explanation:s«\n\nl.

«xInitialization:**\n - '‘m' and ‘n‘ store the lengths

of the input lists.\n - ‘i‘ and ‘j‘ are pointers
to track the current position in each list.\n -
‘min.heap' is a min-heap used to efficiently store
and retrieve the smallest elements encountered so

- The code

far.\n\n2. *+Building the Min-Heap:+\n

iterates through the first ‘min(m, n)‘ elements of
both lists.\n - For each element, a tuple *(value,
list_index, position.in.list)‘ is pushed onto the
‘min.heap'. This tuple helps us keep track of
the element’s value, the list it belongs to, and
its original position.\n\n3. ssExtracting k-1

smallest Elements:**\n - The ‘for‘ loop runs ‘k —
1° times, effectively extracting the ‘k-1' smallest
elements from the ‘minheap‘.\n\nd4. «++Finding the kth
Smallest:xx\n - After the loop, the top element of
the ‘minheap' contains the ‘k'th smallest element.\n
- ‘heapg.heappop (min-heap) ' removes and returns this
element.\n\n*+Time Complexity:++\n\n- Building the
Ok *

min-heap: O(m + n)\n- Extracting k-1 elements:

log(k))\n- Overall: =##O(m + n + k * log(k))=*+*, which
is approximately x*O(m + n)** since ‘k‘ is usually much
smaller than ‘m + n‘.\n\n\n\nLet me know if you have

any other questions!

Answer from gemma-2-9b-it-dpo-eva

*“'python\n\def find.kth.smallest (listl, list2, k):\n
"""\n Finds the kth smallest element in the union
listl:

of two sorted lists.\n\n Args:\n The first

sorted list.\n 1list2: The second sorted list.\n

k: The desired rank of the smallest element.\n\n

Returns:\n The kth smallest element in the union of

the lists.\n """\n\n i = 0 # Index for listl\n j =

0 # Index for list2\n merged = [] # Store the merged
elements\n\n while i < len(listl) and j < len(list2):\n
if 1listl[i] <= 1ist2[j]:\n merged.append(list1[i])\n

i += 1\n else:\n merged.append(list2[(jl)\n 3

= 1\n\n # Add any remaining elements from listl\n
while i < len(listl):\n merged.append(listl[i])\n

i += 1\n\n # Add any remaining elements from list2\n
while j < len(list2):\n merged.append(list2[3])\n
j += 1\n\n return merged[k - 1] # Return the kth
element (index k-1)\n\n# Example usage:\nlistl
= (2, 5 8, 12]\nlist2 = [1, 3, 7, 9, 10]\nk

= 5\n\nkth.smallest = find.kth_smallest (listl,

list2, k)\nprint (£"The {k}th smallest element

is: {kth.smallest}")\n\n\ns+Explanation:s*\n\nl.
**xInitialization:+*\n - ‘i‘ and ‘j‘ are index pointers
for ‘listl‘ and ‘list2" respectively, starting at
0.\n - ‘merged‘ is an empty list to store the merged
sorted elements.\n\n2. s+Merging:+s\n - The ‘while‘

loop continues as long as both ‘i‘ and ‘j‘ are within
the bounds of their respective lists.\n - In each
iteration,

it compares the elements at ‘listl[i]®

and ‘1ist2[j]'.\n - The smaller element is appended

to ‘merged', and the corresponding index (‘i or

*j') is incremented.\n\n3. «*Adding Remaining
Elements:+x\n — After one list is exhausted, the
remaining elements from the other list are directly
appended to ‘merged‘.\n\n4. «+Returning the kth
Element:#*\n - Finally, ‘merged(k - 1] is returned,
which represents the kth smallest element in the union
(remember that list indices start from 0).\n\nssLinear
Complexity:++\n\n- The algorithm iterates through each
element in both lists at most once during the merging
process.\n- The time complexity is therefore O(m + n),
which is linear in the total number of elements (m +

n), making it efficient for large lists.

Judgment (by gpt-4)

Judgment for gemma-2-9b—it-dpo

The assistant’s answer is incorrect. The user asked
for a solution with linear complexity, but the
assistant provided a solution with a time complexity
of O(m + n + k x log(k)), which is not linear. The
assistant’s solution uses a min-heap, which is not
necessary and adds unnecessary complexity to the
solution.
Rating: [[2]],
1722737030.6411152

"score": 2, "turn": 1, "tstamp":

for g 2-9b—it—dp

The assistant’s answer is correct and helpful. It
provides a Python function that implements the
two-pointer approach to find the kth smallest element
in the union of two sorted lists. The assistant’s
function is slightly different from the reference, but
it achieves the same goal. The assistant’s function
merges the two lists into a new list and then returns
the kth element from the merged list. The assistant
also provides a detailed explanation of how the
function works and confirms that the time complexity
is linear, which is what the user asked for. However,
the assistant’s function uses extra space to store
the merged list, which is not necessary and not as
efficient as the reference.

Rating: [[81],

1722846543.867601

"score": 8, "turn": 1, "tstamp":

Table 21: (Continued) comparison of model generations on examples from MT-Bench.
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2nd-turn prompt: Does there exist an algorithm with better time

complexity? If so, implement it.

Answer from gemma-2-9b-it-dpo

You are absolutely right! There’s a more efficient algorithm
with a time complexity of +x0(m + n)+» without using a
heap.\n\nHere’s the implementation:\n\npython\n\def
findkth-smallest-optimized(listl, 1ist2, k):\n """\n Finds

the kth smallest element in the union of two sorted lists\n with
O(m + n) time complexity.\n\n Args:\n listl: The first sorted

list.\n list2: The second sorted list.\n k: The desired kth
smallest element.\n\n Returns:\n The kth smallest element in the

union of the two lists.\n """\n m, n = len(listl), len(list2)\n i,

0, 0\n result

3j = [1\n\n # Merge the lists while keeping track

of the kth smallest\n while len(result) < k:\n if i < m and j <

n:\n if listl[i] list2[j]:\n result.append(list1[i])\n
i 4= 1\n else:\n result.append(list2[j])\n J += 1\n
elif i < m:\n result.append(listl[il)\n i += 1\n else:\n

result.append(list2(j])\n j += 1\n\n return result(k - 1]\n\n#

Example usage:\nlistl = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10)\nk = 5\nkth.smallest = findkth.smallest.optimized(listl,

list2, k)\nprint (£"The {k}th smallest element

is: {kth.smallest}")\n\n\ns«Explanation:+#\n\nl.
s+Initialization:+\n - and 'n® store the lengths of the
lists.\n - ‘i and ‘j‘ are pointers for ‘listl‘ and ‘list2‘,

respectively.\n - ‘result' is a list to store the merged and

sorted elements.\n\n2. ssMerging and Tracking:+*\n - The ‘while'

loop continues until ‘k' elements are in the ‘result' list.\n -

In each iteration, it compares the current elements from ‘listl‘

and ‘list2'.\n - The smaller element is appended to ‘result®,

and the corresponding pointer ('i' or ‘j') is incremented.\n

- If one list is exhausted, the remaining elements from the

other list are appended to ‘result‘.\n\n3. +sReturning the

kth Smallest:v+\n - Finally, ‘result(k - 1]' contains the ‘k'th
smallest element.\n\ns+Time Complexity:++\n\n- The algorithm
iterates through both lists once, resulting in a time complexity
of ++0(m + n)*+.\n\n\n\nLet me know if you have any more

questions!

Answer from gemma-2-9b-it-dpo-eva
You are right to ask! While the previous algorithm has linear
time complexity, we can achieve an even better solution with
«0(log (min(m, n)))«+ time complexity using a slightly more
sophisticated approach.\n\nThe key idea is to leverage

the sorted nature of the lists and use a «+binary searchex
strategy.\n\nHere’s the implementation:\n\n\##\npython\n\def

Wy

the kth smallest element in the union of two sorted lists with

findkth-smallest-optimized(listl, list2, k):\n Finds

O(log(min(m, n))) time complexity.\n\n Args:\n listl: The
first sorted list.\n 1list2: The second sorted list.\n k: The
desired rank of the smallest element.\n\n Returns:\n The kth
smallest element in the union of the lists.\n """\n m, n =
len(listl), len(list2)\n if m > n:\n listl, list2, m, n = list2,
listl, n, m # Ensure listl is the shorter one\n\n left, right

0, m\n Vi

2\n

- 1] if partitionX > 0 else float(’-inf’)\n

while left <= right:\n partitionX = (left + right)

partitionY = k - partitionX\n\n maxLeftX = listl[partitionX

minRightx
listl[partitionX] if partitionX < m else float(’/inf’)\n\n

maxLefty

- list2[partitionY - 1] if partitionY > 0 else

float (‘-inf’)\n minRightY = list2[partition¥] if partitionY

< n else float(’inf’)\n\n 1if maxLeftX <= minRightY and maxLeftY

== 0:\n return list2[partitionY

minRightX:\n if partitionX

- 11\n elif partitionY == 0:\n return listl[partitionX - 1]\n

else:\n return max(listl([partitionx - 1], list2[partitionY

- 11)\n elif maxLeftX > minRightY:\n right

partitionX - 1

# Too many elements on the right side of listl\n else:\n

left =

partitionX + 1 # Too many elements on the right side of

1ist2\n\n\n++Explanation:s+\n\nl. xsShorten Lists:sx If ‘listl®

is longer than ‘list2‘, swap them to ensure ‘listl‘ is always

the shorter one. This simplifies the logic.\n\n2. #Binary

Search:sx\n - ‘left® and 'right‘ pointers define the search space

within ‘listl'.\n - ‘partitionX‘ is the middle point in ‘listl‘,

and ‘partitionY' is calculated to divide the remaining elements in

‘list2" such that ‘partitionX + partitiony = k'.\n - ‘maxLeftX',

‘minRightX', ‘maxLeftY', and ‘minRightY' represent the largest

element to the left and smallest element to the right of the

partitions in both lists.\n\n3. «+Comparison and Adjustment:s\n

- If the ‘maxLeftX' is less than or equal to ‘minRightY' and

‘maxLeftY' is less than or equal to ‘minRightX', it means the kth

smallest element lies within the current partitions. We return

the larger of ‘maxLeftX' and ‘maxLefty'.\n - If ‘maxLeftX' is

greater than ‘minRightY', it indicates that we need to search
in the left subarray of ‘listl‘ (i.e., decrease ‘right‘).\n -
Otherwise, we search in the right subarray of ‘listl‘ (i.e.,
increase ‘left‘).\n\n4. =*sTermination:+s The binary search

continues until ‘left' crosses ‘right‘, indicating the correct

partition has been found.\n\ns+Time Complexity:++\n\n- The

binary search divides the search space in half at each step.\n-
Therefore, the time complexity is O(log(min(m, n))), which is
significantly faster than linear time for large lists where one

list is much smaller than the other.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo

The assistant’s first response to the user’s question is

incorrect. The user asked for a function to find the kth smallest

element in the union of two sorted lists with linear complexity.

The assistant provided a function that uses a min-heap, which

has a time complexity of O(m + n + k + log(k)). This is not

linear complexity, as the user requested. The assistant’s second

response to the user’s question is also incorrect. The user

asked if there exists an algorithm with better time complexity

than linear. The assistant provided a function that has a

time complexity of O(m + n), which is linear, not better than

linear. The assistant should have provided a function that uses a

binary search approach, which has a time complexity of O(log(m) +

log(n)), as the reference answer correctly does.

Rating: [[2]], "score": 2, 2, "tstamp":

1722737031.5033472

for g ip

The assistant’s response is correct and helpful. The assistant
provided a Python function that uses a binary search approach to
find the kth smallest element in the union of two sorted lists.
The assistant also provided a detailed explanation of how the

function works, including the time complexity of the function.
The assistant’s answer matches the reference answer in terms of
the algorithm used and the explanation provided. The assistant
also correctly identified that the binary search approach has

a better time complexity than the linear approach. However,
the assistant’s code has a minor issue. The assistant’s code

does not handle the case when ‘k' is greater than the sum of the

lengths of the two lists. 1In such a case, the code will raise

an ‘IndexError‘. This can be fixed by adding a check at the
beginning of the function to return ‘None' if ‘k‘ is greater than
the sum of the lengths of the two lists.

Rating: [[9]], "score": 9, "turn": 2, "tstamp"

1722846556.6828268

Table 22: (Continued) comparison of model generations on examples from MT-Bench.
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REBUTTAL TO REVIEWER AC2P

Summary. We sincerely thank the reviewer for the appreciation of eva and the constructive
feedback. We have made every effort to throughly address the concerns. Specifically, we have:

* added experiments on implementing different evolving methods and discussed relevant
strengths and weaknesses in § D.1;

¢ added visualization on the learning curriculum in § E;

* provided detailed discussion on scaling up eva with million-level data on larger-scale seed
sets and/or inference-time scaling for synthesizing prompts.

Q1 (Choice of the Evolving Method): Could you explain more about the particular choice of
evolution algorithm used in your implementation of eva and different potential strengths and
weaknesses related to this choice?

TL;DR: We use Evollnstruct (Xu et al., 2023a) as it is among the most easy-to-implement methods.
We added new experiments w/ other methods, including SelfInstruct (Wang et al., 2022), EvolQuality
and EvolComplexity (Liu et al., 2023b), and show that eva remains to be effective in § D.1.

Answer: As an addition to Table 1, we have experimented with three different evolve(-) methods:

* SelfInstruct (Wang et al., 2022): Given seed prompts, variations are created based on criteria
such as verb diversity and style blending (mixing interrogative and imperative styles). Unlike
Evollnstruct (Xu et al., 2023a), which generates prompt variations sequentially, this approach
generates independently. We follow the one-shot implementation in se1f_instruct.py of
distilabel==1.4.1 and modified the instruction on conciseness so that newly generated
prompts have similar lengths compared to the seed prompts.

* EvolQuality and EvolComplexity (Liu et al., 2023b): The two methods use the same
evolutionary approach (i.e., sequential generation), but with slightly different meta-
instructions for prompt generation, where EvolQuality asks to improve the quality
(i.e., helpfulness, relevance, etc) of the seed prompt and EvolComplexity asks to im-
prove the complexity (i.e., increased reasoning steps, etc) of the seed prompt. We follow
the implementation in evol quality/utils.py and evol complexity/utils.py of
distilabel==1.4.1.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (|) / Metric (—) WR (%) avg. len
6y: SFT 41.3 544
6o_,1: DPO 51.6 651
6, ,i: +eva(evolve()=EvollInstruct) 60.1 733
6, ,i: +eva(evolve()=EvolQuality) 58.7 721
6, ,;: +eva(evolve(:)=EvolComplexity) 60.6 749
6, ,;: +eva(evolve(:)=SelfInstruct) 57.2 725

Table 23: Results of using different evolving methods.

eva is effective under different evolving methods. As shown in Table 10, our method brings
strong performance gain without training with additional human prompts. Among the experimented
methods, we find EvolComplexity shows better results.

We believe the main strength of such method is its simplicity. Viewing the evolving process
as x’ « pe(- | X,meta_prompt), one can easily tune the meta prompt in natural language for
improved performance. However, such simplicity comes at a price: (i) the main weakness is that
the default method does not take environmental feedback into account (e.g., rewards received,
verbal critique on responses, etc) and relies on the pre-defined meta prompt, thus the evolving may
be less directional; we encourage practitioners to consider incorporating richer feedback during

29


https://github.com/argilla-io/distilabel/blob/844165f25c1674076a8286d54cfe96d52c33a24e/src/distilabel/steps/tasks/self_instruct.py#L106
https://github.com/argilla-io/distilabel/blob/main/src/distilabel/steps/tasks/evol_quality/utils.py
https://github.com/argilla-io/distilabel/blob/main/src/distilabel/steps/tasks/evol_instruct/evol_complexity/utils.py

Under review as a conference paper at ICLR 2025

evolving (one way to formulate this is by generative optimization (Yuksekgonul et al., 2024; Cheng
et al., 2024; Nie et al., 2024)); (ii) another weakness is that existing method is single-shot (i.e., we
evolve based on a single x each time), thus the diversity of the generation may be limited — we
anticipate future works improving this with multi-shot evolving by graph-based sampling or including
diversity-related rewards in generation. In this regard, the evolving process can be viewed as
{x' fil +— pa(- ] {X}i]\il,meta,prompt, env_feedback).

Q2 & Q3 (Empirical Evidence on Learning Progress and Curriculum): Do you see empirical
evidence of your intuition about learning progress discussed in section 3.4? It seems like some of
these claims are directly testable. Could you visualize the curriculum learned in your experiments
with eva? It would be very nice to get an intuition for why performance improves and what the
heuristic prioritizes over time.

Answer: We thank the reviewer for the constructive suggestions on empirically validating the
intuition. We have revised the manuscript with additional visualization on potential curriculum
learned in § E. In general, we observe the creator prioritizes learning in math and coding, which
brings gradual improvement on benchmark performance on relevant categories over iterations. We
have attached the bar plot and radar figure here for the reviewer’s reference:
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Humanities Roleplay model

3000 eva-iter-1 )
— gemma-2-9b-it

B eva-iter-2
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2500 —- gemma-2-9b-it-dpo

gemma-2-9b-it-dpo-eva-iter-1

E 2000 STEM Reasoning
§ 10 & —- gemma-2-9b-it-dpo-eva-iter-2
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Figure 12: Benchmark performance. The radar
figure for ratings on MT-Bench (Zheng et al.,
Figure 11: Training distributions. The prompt  2023), where each category contains ten prob-
distribution of Table 11 for evolved prompts by lems. eva prioritizes and gradually improves
zero-shot classification. eva creates a curricu- on coding, math and reasoning over iterations,
lum that prioritizes math / coding prompts. implicitly reflecting a learned curriculum.

We further evaluate the complexity and quality of the prompt distributions. As in Table 24, there is a
gradual improvement of prompt complexity and quality over iterations with eva.

Prompt Set (|) / Metric (—) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 24: eva improves prompt quality and complexity.

Implementation notes: We sample 10K prompts per iteration, and use the below prompts modified
from Liu et al. (2023b) for the complexity and quality evaluation, with gemini-1.5-flash as the
generative scorer:

Rank the following questions according to their quality. Your evaluation should consider the following
— factors: Helpfulness, Relevance, Accuracy, Depth, Creativity, and Level of detail.
Score each response from 1 to 5: 1: Poor quality, 2: Below average, 3: Average, 4: Good, 5: Excellent.

Ranking the following questions according to their difficulty and complexity. Use a fixed scoring system: 1:
< Very simple, 2: Simple, 3: Moderate, 4: Difficult, 5: Very difficult
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Q4 (Scaling): When discussing future directions, the authors write further scaling up w/ million-
level data. Can you clarify what this means? Seems like some important context is missing?

TL;DR: We consider (i) applying eva when the seed set contains million-level or more prompts; or
(ii) using eva to robustly generate million-level or more prompts when the seed set is limited.

Answer: (i) The current paper uses the UltraFeedback (Cui et al., 2023) as the seed prompt set,
which is a ten-thousands level dataset; in training practically useful large language models (Brown
et al., 2020; Team et al., 2024a; Singh et al., 2023), the seed prompt set is usually much larger
than such a level. We believe it is an interesting direction to explore the data scaling properties
of eva on larger seed prompt sets, in combination with our on-policy variants. (ii) On the other hand,
when the seed prompt set contains only limited data (this issue is particularly concerning in hard
reasoning tasks like math (Yang et al., 2024)), can we still follow the data generating curriculum and
synthesize million-level prompts/problems to help training, and how to robustly verify the generated
prompts/problems? Beyond training-time scaling, there is also a recent trend in inference-time
scaling (Snell et al., 2024), however these works only consider scaling in the ) space, not the X or
the joint (X', )) space. We believe synthetically scaling up the joint (X', ))) space to a much more
larger magnitude under eva’s game-theoretic design presents a new direction worth investigating.

Final remarks. We thank the reviewer once again for spending time providing constructive
feedback that helps improve eva. Please let us know if there is any other concerns or questions,
and we are more than grateful to have the opportunity to learn from and discuss with you.
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REBUTTAL TO REVIEWER ZXTK

Summary. We sincerely thank the reviewer for all the constructive feedback helping improving
the eva method. In response, we have provided:

 experiments on more iterations in § D.2;

« extended discussions on the regret objective and the proxy in § G;

« evidence on distinction of advantage-based metrics and variance-based ones in § F;

* revised illustration of the method in § 3, and evidence on evolving prompt distributions
(to answer it cannot “cheat by selecting easier prompts”) in § E.

We appreciate the chance to address the reviewer’s comments and have made every effort to thoroughly
address the concerns and revise our manuscript accordingly. We hope that these revisions meet the
reviewer’s expectations and would be grateful if the reviewer could kindly consider revise the score.

W1 (Running for More Iterations): The number of iterations in the main results is 2, with only
one EVA step in each experiment, which is a little different from what the demonstration in Figure
3 shows. If the eva step is performed multiple times, would the results be better or worse? What
is performance like when you access all data in UltraFeedback?

TL;DR: We added experimental result on running more iterations with more data, and eva remains
to be effective. We have added § D.2 in the manuscript to incorporate the reviewer’s suggestion.
Rebuttal: As an addition to § 4.2.4, we have experimented with the following settings:

* 10K prompts per iteration with 3 iterations.

* 20K prompts per iteration with 3 iterations (i.e., all seed prompts are used).

* 60K prompts per iteration with 2 iterations (i.e., all seed prompts are used).

Due to time constraints, we did not perform an extensive hyper-parameter search; however, we believe
the results presented below sufficiently demonstrate the performance gains achieved by eva.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method () / Metric (—) WR (%) avg. len
6y: SFT 41.3 544
0y_,1: DPO (10k) 51.6 651
0,_,2: DPO (10k) 59.8 718
05_,3: DPO (10k) 61.2 802
0,_,;: +eva(10k) 60.1 733
0;_5: +eva (10k) 62.0 787
05_,5: +eva (10k) 62.2 774

Table 25: Results of using 10k prompts per iteration.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (}) / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_,1: DPO (20k) 53.2 625
6, _,5: DPO (20k) 47.0 601
05_,3: DPO (20k) 46.8 564
0, ,;: +eva (20k) 59.5 826
0;_5: +eva (20k) 60.0 817
05_ 5. +eva(20k) 61.4 791

Table 26: Results of using 20k prompts per iteration.
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Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method () / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_,1: DPO (60k) 58.9 717
0,_5: +eva(60k) 59.6 725
0;_7: +eva (60k) 61.9 792

Table 27: Results of using 60k prompts per iteration.

eva can bring robust gains with multiple iterations. As shown in Table 25, 26, and 27, our
method presents persistent performance gain over iterations, and concretely surpasses the performance
by default DPO training with true human prompts.

However, there exist diminishing marginal gains in iterative off-policy training. We ground eva in
the iterative (off-policy) preference alignment paradigm due to its efficiency and ease of integration.
However, such paradigms inherently face diminishing returns, where performance gains decrease
with successive iterations, as previously observed in (Wu et al., 2024; Setlur et al., 2024; Yuan et al.,
2024; Nikishin et al., 2022). While the generative data schedule in eva mitigates these challenges
and extends beyond default training with human prompts (see also §4.2.4), the gains can weaken
over iterations. We summarize potential reasons as: (i) the off-policy signal decay — as the number
of examples increases, signals from the off-policy data become weaker due to distributional shift;
(ii) the loss of plasticity, where the agent’s ability to learn good policies decreases in continuing
training with more iterations (Nikishin et al., 2022); (iii) the ability of the solver — as we evolve more
harder prompts, it is harder for the solver to produce preferred response (thus more explicit reasoning
techniques may be needed); (iv) the ability of the reward model to correctly provide reward signals
to responses and thus informativeness signals to prompts, as there may exists distributional mismatch.

Thus, we envision future work to build on eva by: (i) exploring its integration with on-policy RLHF
(e.g., instead of evolving prompts in iterations, one may evolve in batches); (ii) enhancing solver
capabilities, such as sampling more responses during inference or leveraging meta-instructions to
guide deeper reasoning; (iii) online training of RM to co-evolve with the creator and the solver.

Bonus experiments on adding rewriter in the solver step. This is beyond the current paper, and
we present the basic idea here for practitioners to build upon eva. The motivation comes from the
hypotheses derived from § D.2: as the prompts gets harder by evolving, there may be greater demands
on the solver’s capabilities compared to earlier iterations. As such, the solver may not be naively
treated the same. One may address this by either inference-time scaling on responses or introducing
meta-instructions to explicitly enhance the solver’s reasoning.

We hereby design a proof-of-concept experiment w.rt the latter by adding rewriter in eva’s solver
step. Previously, as in Algo. 1 and § 3.3.2, for each prompt x, we generate multiple responses, and
choose the best as y and the worst as y_ for preference optimization. Now, we add one more
rewriting step that attempts to enhance y | to be y’,, by applying a rewriting instruction (Liu et al.,
2023b) that asks the solver to alter y; with imporved helpfulness, relevance, reasoning depths,
creativity and details while keeping the similar length. We then train with (x, y’, , y—) for preference
optimization. Table 14 shows that adding the rewriter yields concrete performance gains over the
default method, while keeping training budgets and only slightly increasing response generation cost.

Model Family (—) GEMMA-2-9B-IT
Benchmark (—) Arena-Hard
Method (|) / Metric (—) WR (%) avg. len
0y: SFT 41.3 544
0y_.1: DPO 51.6 651
0, i +eva 60.1 733
0,_,i: +evawith rewriter 61.9 741

Table 28: Results of adding rewriter in the solver step.
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W2 (Connection in Minimax Regret and The Algorithm): The connection between the minimax
regret objective and the algorithm is a somehow vague. The regret concerns the performance gap
with the optimal policy. It’s not reflected by the informativeness proxy.

TL;DR: We have added § G to address the reviewer’s concern in detail. (i) In the current algorithm,
the solver explicitly minimizes the regret by plug-in preference optimization algorithms (e.g., DPO),
while the creator implicitly maximizes the regret by first finding high-regret prompts and generate
variations as new prompt distributions for training. (ii) The informativeness proxy is an advantage-
based estimate of the regret; similar variants have been used in prior literature like Jiang et al. (2021b);
Parker-Holder et al. (2022); as the policy optimizes, the proxy can approximate the true regret better.

Rebuttal: For the rebuttal to be self-contained, we extract contents from § G.3 here. We feel § G
offers a better overview — it would be great if you could take some time to review § G when feasible.

KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:
max Bxory () y~mo(-1x) [T(X,Y) ] —Ex.p lﬁ ' 7T¢(')KL[7T0(Y | %) || 7ser(y | x) H

The optimal policy of the above KL-constrained objective is:
(v | %) = msen(y [ ) exp (5 (%)
T \Y - Z(X) TSFT\Y Xp B Y )

where the partition function is defined as Z(x) = > mer(y | x) exp (%r(x, y))

We can now formally define the regret with regard to 7§, (- | x) as:
Regrety; (X, 70) = Eyory(.x) [ r(x,y) ] —Eyrs (%) {r(x, y) ] . (18)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver mg (- | x) as regret minimization, since the goal is to align the policy mg(- | x) with
the KL-optimal solution 7%, (- | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting g to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret — we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang
et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:

|Regret(x, mg)| + infog (x) := r(X,y4) — (X, Yoaseline): (19)
where

y+ = argmaxy, r(X,y), (20)

Yhbaseline = arg minyi T(Xv y) OI Ybaseline := aAVEy,, T(X7 Y)a 21

and {y;}i—1 is a set of responses sampled from 7g(- | x) and r(-,-) is the reward oracle. We
use argmin,, r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optmizes, the proxy should approximate the regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.
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Q1 (Advantage v.s. Variance): The informativeness proxy seems to be similar to the variance of
the rewards because they all concern the diversity of the generated responses. However, in lines
393-395, the results show using variance leads to poor performance. How to interpret this?

Rebuttal: To explain, (i) variance does not directly capture the learning potential in preference
optimization, while advantage-based informativeness proxy is better aligned to the learning objective;
(iii) we empirically show that variance and advantage are only weakly correlated thus will likely
result in different sampling. We have added § F to incorporate the reviewer’s suggestion.

[0 reward advantage (max - min) 8 1.0 variance v. advantage (max - min)
reward advantage (max - mean) % 0.8 variance v. advantage (max - mean)
B\ reward variance g
=1 < 0.6
g reward mean >
) T 04
o] o b=
| z 02
g
0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
normalized value reward advantage

Figure 13: The probability density dis- Figure 14: The correlation plot for re-
tributions of informativeness metrics in ~ ward advantage (ours) and reward vari-
Table 3 — they show different patterns. ance — they are only weakly correlated.

In eva, we assign each prompt an informativeness value, which the creator will use as the weight to
sample from the seed prompts for prompt synthesis. In § 4.2.1, we have shown that traditional methods
like reward mean and reward variance are less effective as our advantage-based informativeness proxy.
The intuition is simple: advantage/regret-based proxy aligns better with the preference optimization
objective. We here further illustrate that they are statistically different from other choices:

* Figure 13: The distribution of informativeness values shows that reward variance is heavily
concentrated at lower values, reward mean is more uniformly scattered, and reward advantage
achieves a better balance, providing a broader yet also focused sampling range.

* Figure 14: The weak correlation between reward variance and reward advantage shows that
variance cannot serve as a substitute for advantage as a proxy for informativeness.

We have discussed the contrastive curriculum hypothesis in § 3.4 to support using reward advantage
in the sense that the induced samples tend to decrease the loss the most in the contrastive optimization.
Furthermore, assuming the optimization algorithm can converge to the more optimal responses,
neither reward mean nor variance directly capture the learning potential of such responses — one may
easily construct cases with identical variance yet differ much in reward range — thus variance fails to
distinguish such scenarios. By contrast, reward advantage estimate inherently captures the relative
improvement towards better response, and is sensitive to differences in reward range; variants of
advantage estimate are commonly used in literature, and we discuss underlying principles in § G.

Q2 (Open-Ended Objective): In Line 1399 (authors’ note: should be around Line 880 - 886
in the main OpenReview PDF), why is this objective ideal? Optimizing the prompt distribution
seems like cheating by selecting easier prompts for a higher reward.

TL;DR: No - the whole design (we impose the KL to the open-ended reference in principle, and
its approximation by the creator through regret maximization) is to avoid cheating! We also present
empirical evidence showing eva helps create more complex prompts.

Answer: To start with, we quote the conceptual objective below:
i By ().ymoma(c) | T06¥) | = BB | o) - wo(y | ) | per(ce) - wsrnly [ x) |.

Another way to express the principled objective (with refined coefficients) is:

maxe,.e EXNM(.) By o (%) /'(X.yl} — b1 - Dy h,«ly | x) || wser(y X,‘J } - B 'DKL[W@‘)(X) Hpref(x)]

solver ~ “regret minimization” creator ~ “regret maximization” (implicit)
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Conceptually, the cheating will happen when the reference distribution is narrow or wrongly defined.
It is important that in our case pf(x) represents an underspecified, potentially intractable probability
distribution over possible tasks (instantiated via prompts) in the wild, as a realizable open-ended
reference that covers the full diversity and complexity of tasks agents may encounter, not the initial
static prompt set D. The joint regularization towards (X, y) captures the objective for agents to
generalize on alignment in p..¢(x) with broader open-ended prompts, while being close to the SFT
policy 7spr(y|x). In brief, the definition of the conceptual p.¢(x) and the regularization avoids
collapsing to distributions with easier prompts.

Practically, we do not directly optimize this principle, rather we design a creator-solver game to
implicitly and iteratively achieve this. It is important that we use regret as the objective and its
approximation by the estimate of the optimal reward advantage, which avoids selecting easy prompts
by design as well. See also § 3.4 on auto-curricula and learning potential for prompt selection, and
§ G for more connection between the objective and the algorithm.

For empirical evidence, as in Table 29, there is a gradual improvement of prompt complexity and
quality over iterations with eva. We also observe the creator auto-prioritizes learning in problems
like math and coding in Fig. 15, which are initially hard for it as in Fig. 16. Thus the creator also
practically does not select easier prompts in the eva game. Details can be found in § E.

Prompt Set (|) / Metric (—) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 29: eva improves prompt quality and complexity.

In addition, the whole literature of curriculum RL, open-ended learning and so on are about designing
the right metric for the agents to learn increasingly complex and general capabilities, and we
summarize at § H for the reviewer’s reference.
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Figure 16: Benchmark performance. The radar
figure for ratings on MT-Bench (Zheng et al.,
Figure 15: Training distributions. The prompt  2023), where each category contains ten prob-
distribution of Table 11 for evolved prompts by lems. eva prioritizes and gradually improves
zero-shot classification. eva creates a curricu- on coding, math and reasoning over iterations,
lum that prioritizes math / coding prompts. implicitly reflecting a learned curriculum.

Remarks. We thank Reviewer zxTK for the constructive feedback. We have made careful
efforts to address all the weaknesses and questions raised. We would be grateful if the reviewer
may kindly consider again the rating for eva, also with regard to its strong performance gain,
theeasy-to-implement method, as well as the new principle and the tractable algorithm. If there
are additional concerns, we are more than happy to discuss and revise our manuscript further.
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REBUTTAL TO REVIEWER 19KX

Summary. We thank the reviewer for the thoughtful and detailed feedback. In response, we have:

* provided a point-by-point rebuttal fully addressing each suggested weakness and question;
* revised definitions for the regret and the informativeness proxy in § 3;
* added a detailed review on Bi-Level RLHF and open-ended learning in § I and § H;

* added detailed illustration on the method, from the principle to the asymmetric game setting,
then to the regret minimization by the solver and maximization by the creator in § G;

* added new experiments on empirical gains and prompt evaluation of eva in § D and § E.

To avoid repetition, we reorganize the questions and group related answers into a single response.

QS5 (Intuition on Open-Ended RLHF): Can you provide intuitions behind equation 7, on the KL
divergence between the joint policy for both prompt and response? Is it even tractable to estimate
or approximate this KL?

W2 (Regret and KL): The optimization is over 7 in Eq. 9 for solving the minimax regret.
However, its not absolutely clear how the KL divergence plays a role here and how it is ensured
that the response and prompt distributions are close to reference. Without that, the alignment
problem is ill-defined. Please provide concrete justifications in theory and empirical results.

W1 (Proxy Tractability): How is Eq. 10 tractable and being solved? Any heuristic of sampling
and approximating should result in sub-optimality which is not clear where its accounted.

TL;DR: We have added § G to fully address related concerns. Regarding specific concerns:

* Q5 - Intuition. The joint regularization towards 7.r(X,y) captures the objective for agents
to generalize on alignment in p.r(x) with broader open-ended prompts, while being close to
7ser(y|x). Note that pr(x) is the underspecified open-ended reference, not the initial static
prompt set D. We can reformulate the principle to Eq. 8, while the KL on SFT response
policy is tractable, we need to approximate the KL on the open-ended reference prr(x). One
way to achieve this heuristically is by iteratively creating a sequence of prompt distributions.

* Q2 - KL. We have revised Eq. 9 so that the regret is the difference in the reward of the
current policy and the KL-optimal policy (thanks for catching this). For the solver, by design,
preference optimization would be equivalent to regret minimization, thus the alignment
problem remains to be correctly defined. For the creator, the distribution matching to the
open-ended reference is implicitly achieved by prompt curriculum construction, and we
present empirical evidence in § E to justify that prompts are evolving towards broader tasks
with higher complexity.

* W1 - Proxy. We have revised Definition 2 for better readability. It is estimated by sampling
multiple responses from the stochastic policy and calculating the reward range (or other
advantage-based proxy). This approximation will result in sub-optimality for creator’s regret
maximization process, and we present more discussion in § G.2.

Rebuttal: For the rebuttal to be self-contained, we extract contents from § G here.

First, we re-present the open-ended RLHF principle, and discuss the intuition under the KL regular-
ization. Next, we show heuristic approaches in open-ended learning to approximate this objective,
with a focus on minimax game formulation. Finally, we formalize the regret objective in our RLHF
setting, and discuss the regret minimization for the solver and the regret maximization for the creator.

J.1 THE CONCEPTUAL OPEN-ENDED RLHF FORMULATION

Classical RLHF optimizes over a static prompt set:

02X By gy ()| 706 Y) | B [8 Drc [ 7oy %) | 7y [ %) ]
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We propose to drop the static prompt set assumption, and jointly update the prompt distribution via a
creator policy for Open-Ended RLHF, with the ideal objective below:

i By (.ymma(c) | T06Y) | = BB | o) - wo(y | ) | per(ce) - wsenly %) |.

This generalizes RLHF (Eq. 1). We can rewrite Eq. 7 with modified coefficients for precision:

maxe, g IEXNM(A)[ By (-|x {/‘lX,.V\} — By - Dy :rmy | x) || wser(y | ‘() } — By - DKL[WO(X) I pm-(x)} .

solver creator

The newly proposed prs represents an underspecified, potentially intractable probability distribution
over possible tasks in the open-ended world (instatiated via prompts) — it is not the initial static
training prompt distribution (which is only the seed set for the creator to evolve upon); it can be seen
serve as a conceptual guide to steer the prompt distribution.

To further clarify, there are two types of regularization in open-ended RLHF:

* Dk [mo(y | x) || wsrr(y | x)]: this is the classical regularization on the response policy, en-
suring that no matter how the training distribution over prompts evolves during optimization,
the response policy remained anchored to the supervised fine-tuned (SFT) policy.

— This KL (and preference optimization) is explicitly achieved in plug-in algorithms
(e.g., DPO) in Algo. 1. We later show how it relates to solver’s regret minimization.

* Dgr [ 74 (x) || pres(x) |: this probability matching term captures the intuition on optimizing
mg(x) to approach the conceptualized prf(x), in the sense that a language model optimizes
itself by adapting its training distributions with newly generated prompts for self-training to
develop increasingly general capabilities, directing its learning towards informative, new
tasks (Jiang, 2023), instead being constrained in a static, pre-defined set of tasks.

— This conceptual KL is implicitly achieved by the creator step in the current eva setting
by training on a sequence of informative prompt sets. We later show how it relates
to creator’s regret maximization. As illustrated in § 3.3.1, we start from the seed
prompt set, choose those high-regret prompts and generate variations upon them by
EvolInstruct, then mixing with a buffer of the original set to form the new training
distribution at each iteration. This approach resembles classical open-ended learning in
§ G.2, and we hope it can serve as a small step for future works to build upon.

— A common misunderstanding among readers may be to confuse the open-ended ref-
erence prr(x) with the initial seed prompt distribution D, which is static. In contrast,
Dref(X) Tepresents a broader space of tasks (e.g., user prompts in the real wild world),
as a conceptual target derived from the underspecified distribution (Dennis et al., 2020),
i.e., an environment with free parameters that control. Let’s use an illustrative example
with Fig. 6: the prompt distribution may be defined along several dimensions (e.g., the
number or complexity of coding problems); a potential creator can be designed to
modify these dimensions, steering the initial D to new training distributions, by certain
decision rules (e.g., minimax regret, which offers worst-case guarantees) that forms a
sequence of informative prompts for training.

This joint optimization objective only serves as a general principle. In the next, we discuss how
existing works implicitly achieve the open-ended learning objective through two-player games.

J.2 APPROACHING OPEN-ENDED LEARNING BY UNSUPERVISED ENVIRONMENT DESIGN

J.2.1 THE ASYMMETRIC GAME FORMULATION FOR UNSUPERVISED ENVIRONMENT DESIGN

While we cannot directly train the agent with the intractable p.¢(x) of the open-ended world, it is
possible to curate a curriculum of prompt distributions to improve over the static distribution
and support the continual training of the policy mg(-|x), for it to keep improving and succeed over
the full task space, thus conceptually approaching pyr(x). This is often framed as an asymmetric
two-player game.
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Dennis et al. (2020) first formally define this problem as Unsupervised Environment Design (UED).
The idea is that while the real-world environments are inexhaustible and hard to tract, there may
exist some free parameters (e.g., height and roughness in a maze) which one may control to generate
new environments; UED then concerns about designing a distribution of those free parameters
(i.e., settings) to create new fully specified environments, that can be used to train the agents.

In this setup, one player, the creator, generates new environments based on some specific decision
rules (see the following), while the other player, the solver, optimizes its policy within these training
environments, and the process continues iteratively. Common heuristic strategies include:

* Randomization: environments are generated uniformly and independently of the solver’s
current policy. This method is simple but less effective (Tobin et al., 2017).

* Maximin: the creator generates environments that minimize the solver’s maximum possible
reward, which can often lead to unsolvable scenarios (Khirodkar and Kitani, 2018).

* Minimax regret: The creator targets environments that maximize the solver’s regret, defined
as the difference between the optimal return achievable and that of the solver’s current
policy (Beukman et al., 2024b). The regret is often conceived as the creator’s utility.

Among them’, the minimax regret approach presents a sweet spot where the creator can create
hard yet solvable environments, and is often empirically better. The minimax regret strategy also
implies that the agent’s policy is trained to perform well under all levels/settings, thus enjoys a
worst-case guarantee. However, while it is often straightforward for the solver to minimize the regret
(e.g., through direct policy optimization, as we discuss in § G.3), the optimal policy remains unknown
during the optimization process, thus regret as the decision signal is often intractable to the creator
— which requires approximation (as an amusing side note, this is described as the Achilles’ heel of
those curriculum RL methods by Parker-Holder et al. (2022)).

J.2.2 APPROXIMATING THE REGRET AND GENERATING NEW ENVIRONMENTS

In general, the creator design in this line of research contains two steps:

1. identifying high-regret levels using different (often heuristic) regret approximation;

2. generating new environments by making variations or retrieving from buffers on those
high-regret levels.

We hereby review major works on regret approximation and environment generation as follows:

Dennis et al. (2020) propose joint training for the creator and two competing solvers.

* Regret approximation: here, two solver policies are trained, with the regret approximated
as the difference in their returns. During each optimization step, one solver maximizes
this regret, the other minimizes it, and the creator maximizes it.

* Environment generation: the system directly sample the parameter from the creator policy
and use that to specify the environment.

Jiang et al. (2021b) propose to random sampling on high-regret levels.

» Regret approximation: as a heuristic, the authors use positive value loss, which is a function
of Generalized Advantage Estimate (Schulman et al., 2015) (which itself is a function of the
TD error — the difference between the expected and the actual returns) as the creator’s utility.

* Environment generation: the creator have a rolloing buffer of highest-regret levels by
random searching on relevant configurations.

Jiang et al. (2021a) further propose a double-creator setting based on (Jiang et al., 2021b), where one
creator is actively generating new environments, and the other is retrieving from the buffer.

Parker-Holder et al. (2022) propose to sample high-regret levels and generate new environments by
making edits on existing ones. The regret approximation is the same as (Jiang et al., 2021b) — the

>We have implemented variants of these in § 4.2.1, and show minimax regret is empirically better.
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positive value loss. For the environment generation, the authors suggest a general editing/mutation
mechanism, where the creator chooses from high-regret levels and make small variations within an
edit distance, which by heuristics will lead to the discovery of more high-regret environments. There
is an additional filtering step: they do not directly train on the newly generated levels, but evaluate on
those levels first, then add only the high-regret ones to the training buffer.

Note the solvers are often directly trained with PPO (Schulman et al., 2017) under the environments.

J.3 REGRET FORMULATION FOR OPEN-ENDED RLHF
Next, we discuss the regret minimization and maximization in our setting for alignment. Specifically,

* Regret minimization for the solver: we avoid calculating regret and use direct policy
optimization (e.g., DPO) to equivalently achieve regret minimization.

* Regret maximization for the creator: similarly to (Jiang et al., 2021b; Parker-Holder et al.,
2022), we first find an approximation of regret, then curate new environments for the solver
to train on by (i) sampling from a replay buffer of existing prompts, and (ii) making variations
(through EvolInstruct (Xu et al., 20232a)) on those high-regret prompts. Specifically, we
use advantage-based estimates of the current policy, as summarized in Table 2.

This asymmetric two-player game serves as one potential modeling choice to implicitly achieve the
open-ended RLHF principle that we proposed in Definition 1. We look forward to exploring more
principled solutions in the future.

KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:

max Buory () y~mo(-1x) [T(XJ) ] —Ex~p [ﬁ : 7T¢>(')KL[7T0(Y | x) || 7ser(y | %) H -
The optimal policy of the above KL-constrained objective is:
. 1 1
iy 1%) = g msaly | e ( 560y ).

In our current setting, we assume there is an oracle preference model for the preference pair labeling.

We can now formally define the regret with regard to 7 (- | x) as:
RegretKL(x, 7T9) = ]Eywﬂ.e(.‘x) [ 7“(X7 y) } - EyNWEL("X) { 7“(X7 y) } . (22)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver mg(- | x) as regret minimization, since the goal is to align the policy mg(- | x) with
the KL-optimal solution 7%, (- | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting g to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret — we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang
et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:

|Reéret(x, mg)| < infog(x) := (X, ¥+) — 7(X, Ybaseline ) (23)
where

y+ 1= argmaxy, r(X,y), (24)

Ybaseline -= arg minyi T(X, Y) OF Ybaseline ‘= aVEy,, T(X, Y)a (25)
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and {y;}:=1 is a set of responses sampled from mg(- | x) and r(-,-) is the reward oracle. We
use argmin,, r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optimizes, the proxy should approximate the true regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.

W3 (Understanding the Iterative Algorithm): As described in Algorithm 1, informativeness is
evaluated and a prompt subset is created based on current policy estimate and then the policy is
updated based on the prompt subset. However, this causes an inter-dependence between the two
which leads to nested structure, which is not clearly explained. Specifically, while computing the
informativeness score for the prompts, it depends on 6*(xy_1) , i.e., optimal parameter for the
previous distribution. Provide clear explaination on the same.

TL;DR: (i) We revised Algo. 1 with updated subscripts to reflect the training process — please take a
look in our main paper. Given a current model checkpoint, we evaluate the prompt informativeness
based on it, and evolve a new prompt set more informative to the current checkpoint, and use the
new prompt set for continual training. (ii) We intend to use an iterative best-response framework to
approximate equilibrium in expectation, balancing computational efficiency and practicality.

Rebuttal: The iterative updates in eva, as described in Algo. 1, are based on a best-response-to-best-
response framework. Specifically, the creator updates the prompt distribution based on the solver’s
current policy, and the solver then optimizes its policy over the updated prompts, and the process
repeats. This sequential structure approximates a Nash equilibrium in expectation over iterations,
inspired by works such as Freund and Schapire (1999); Wu et al. (2024), which establish convergence
to optimal policies on average through iterative optimization.

We intentionally avoid simultaneous joint optimization as it would significantly increase computa-
tional and memory overhead, making it less practical for integration into current RLHF pipelines.

W4 (Understanding Reward Models): While iterating, every new prompt distribution will
require generating new response, how is the evaluation coming from which reward model? Is the
ground reward available, if not please explain how the preference is obtained and how does it
affect suboptimality? Also: Q3 (RM Availability): What’s the reward model availability? Is the
true reward model available?

TL;DR: We assume a preference oracle provided by an external, pre-trained reward model, which
is practically used in many real-world LLM training scenarios (Team et al., 2023).

Rebuttal: As discussed in the beginning of the experimental setting in § 4, we assume the availability
of a pre-trained, fixed reward model. This approach is practically adopted in industry (Team et al.,
2023; 2024a;b) and is also commonly used in academia works (Xu et al., 2023b; Meng et al., 2024;
Wau et al., 2024). The reason is more on efficiency concerns. For example, in GEMMA-2 training, the
reward model is an order of magnitude larger than the policy (Team et al., 2024b); it would thus be
impractical or the gain may only be marginal if we update the reward model on-the-fly.

Nevertheless, it is possible to incorporate the online RM training within eva — we have shown in
§ 4.2.3 (ablation studies) that eva scales with quality of reward models, thus integrating online RM
training may further enhance performance and address the potential distribution mismatch problem.
We believe this is an interesting direction to pursue, and have listed it in § 6 (future works) on adding
more players including rewarders in the self-play loop.

WS (Improvement of Sub-Optimality): Overall, which expression/Theorem guides us in under-
standing the improvement of prior suboptimality is not clear? Can you please point out/highlight
how the current method improves upon the prior suboptimality due to static prompt distribution?
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TL;DR: The improvement of sub-optimality is guided by the minimax regret objective (Remark 1)
through its iterative implementation. While this work does not explicitly derive suboptimality bounds,
our approach has demonstrated strong empirical gains over the training by static distributions, as
shown in § 4 (main experiments), § E (benchmark performance), and § D.2 (alignment gains over
iterations).

Rebuttal: In general, the improvement of prior suboptimality due to static prompt distributions is
guided by the minimax game outlined in Remark 1. This expression forms the basic foundation
for our iterative algorithm, where the creator updates prompts to maximize informativeness (proxy
for regret), and the solver minimizes regret (through direct preference optimization). This iterative
process ensures the solver and creator adapt to each other, implicitly forming a curriculum and
addressing sub-optimality in static prompts. We also added § G to help illustrate the intuition behind.

In general, the empirical results in § 4 (main results), § E (curriculum effect and benchmark improve-
ment), and § D.2 (alignment gains over iterations) demonstrate that the dynamic prompt distribution
improves solver performance and alignment metrics, thereby mitigating suboptimality. While the
current package does not explicitly derive sub-optimality bounds (as would be typical in formal
RL/bandit theory papers) and emphasizes practicality and usability as a methodology paper, we
would love to learn if the reviewer has any suggestions for this as the future work.

W6 (Prompt Distribution): It is extremely crucial to show the prompt distribution and demon-
strate its perplexity to ensure its not generating some meaningless or irrelevant prompts, since its
not very evident on the KL divergence in the prompt space and its relation with the informative
measure. Please provide detailed explanation to clarify that.

TL;DR: We have (i) added experimental results in § E (prompt distribution visualization) and § J
(prompt examples) to verify that eva evolves meaningful and relevant prompts with improved
complexity and quality; (ii) added explanation in § G (detailed illustration of method) on the KL
regularization in the prompt space and the implicit approximation by the creator.

Rebuttal: (This rebuttal also addresses Reviewer ac2p’s concerns on curriculum.)

We have revised the manuscript with additional visualization on potential curriculum learned in § E.
In general, we observe the creator prioritizes learning in math and coding for the generated prompt
distribution, which brings gradual improvement on benchmark performance on relevant categories
over iterations. In other words, eva effectively shifts focus towards harder yet learnable categories.
We have attached the bar plot and radar figure here for the reviewer’s reference:
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We have added Table 16 providing qualitative examples for evolved prompts. Also, as noted in § G,
the solver maintains KL regularization during optimization, ensuring that the response distribution
remain close to the reference policy; in the this work, we do not explicitly add KL regularization in
the prompt distribution since we do not directly conduct parameter update for the creator (which we
empirically find to bring training instability); rather, we use meta instructions and buffer sampling
to constrain the prompt generations (as described in § 3.3, § A and § D.1), which is empirically very
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effective, and introduces only minimal changes to existing pipeline thus can be easily applied. As
noted in § 6, we look forward to future works on making the creator policy differentiable.

Regarding the relation with the informativeness measure, our current proxy is an efficient proxy
among many possibilities. We have provided detailed discussions in § G to help interpret it. There
could be other proxies — one interesting direction is to completely remove the dependence on the
reward model and directly use model likelihoods to make the prompt selection.

We note that perplexity is not commonly used or not the most preferred measure for data quality
in practical training of large language models (Team et al., 2023; Fang et al., 2024), and can be
computationally heavy to measure. We have added experiments in § E.1 which we follow Liu et al.
(2023b) to generatively measure the complexity and quality of prompt distributions. As in Table 30,
there is a gradual improvement of prompt complexity and quality over iterations with eva. We hope
this would address the reviewer’s concerns.

Prompt Set (|) / Metric (—) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 30: eva improves prompt quality and complexity.

Q1 and Q2 (KL in the Solver Loop): Since equation 7, can’t be directly solved, and is solved in
an asymmetric fashion, then in the solver loop the KL should be over the response distribution
and not joint right? How is the KL divergence w.r.t reference policy for the algorithm? Please
provide detailed ablation.

Answer: (i) Yes, in the solver loop, the KL regularization is applied over the response distribution,
not the joint distribution, as shown in Line 5 of Algo. 1. (ii) The KL divergence w.r.t. reference policy
is determined by the plug-in solver (e.g., DPO, SimPO, ...), which is orthogonal to our framework.
We have added detailed explanation in § G to illustrate the whole process.

Q4 (Literature): There is a recent line of works on Stacklberg and Bilevel RLHF which deals
with the entanglement in a leader-follower setting. Although not specific to updating prompt dist,
but can be trivially applied. Provide a detailed comparison with the literature around that [1,2,3].

TL;DR: We thank the reviewer for this nice suggestion. Please see below for a detailed review on the
relevant literature, highlighting the unique contribution of eva. We have added § I in the manuscript.

Rebuttal: Bi-level optimization refers to optimization problems where the cost function is defined
w.r.t. the optimal solution to another optimization problem (Grosse, 2022). There is a recent line
of works applying bi-level optimization to RLHF. While they all rely on a fixed dataset of prompts,
eva propose to dynamically update the prompt set, as in § 1. We present a detailed comparison
of eva with Ding et al. (2024); Shen et al. (2024); Makar-Limanov et al. (2024). We thank the
anonymous reviewer for the kind references, and welcome suggestions for any other works we may
have missed.

Ding et al. (2024) formulate iterative online RLHF as a bi-level optimization problem, where the
upper-level represents the reward learning, and the lower-level represents the policy optimization.
Leveraging reward re-parameterization tricks in Rafailov et al. (2023), Ding et al. (2024) reduces the
problem to a single-level objective with regard to the policy. The differences of this work and our
work lie in the prompt distribution and preference oracle: (i) eva features by dynamic prompt set
generation for Open-Ended RLHF, whereas (Ding et al., 2024) remains using a static prompt set;
(ii) we assume the existence of the preference oracle (as discussed in § 4), while Ding et al. (2024)
consider online training of reward models and ablate on self-rewarding by the current LLM policy.
Our usage of a pre-trained reward model follows from industrial practices (Team et al., 2023; 2024b),
which is also commonly used by prior works in academia (Meng et al., 2024; Wu et al., 2024).
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Makar-Limanov et al. (2024) provide an interesting exploration on formulating RLHF as a leader-
follower game, where the language model (LM) policy is the leader and the reward model (RM) policy
is the follower, and the solution is Stackelberg equilibrium (von Stackelberg, 1934; Rajeswaran et al.,
2020), where the leader does not likewise best respond to the follower’s strategy. Here, following
the curriculum RL literature (Dennis et al., 2020; Parker-Holder et al., 2022), we seek the Nash
equilibrium (Nash et al., 1950) between the creator for prompt generation and the solver for response
generation. In the current setting of eva, the goal is to search for an optimal solver policy with a
best supporting prompt distribution, and an optimal prompt distribution with a best supporting solver
policy. Nevertheless, the LM-RM iterative optimization may be added on top of eva’s framework,
and we look forward to future works exploring the leader-follower re-formulation of eva.

Shen et al. (2024) present a rigorous theoretical work (though it does not directly involve practical
post-training of large language models). The authors propose to reduce the bi-level problem to
a single-level problem with a penalty-based reformulation, and apply it in the setting of LM-RM
optimization within a fixed environment, whereas eva focuces on dynamic prompt generation and
practically train large language models with extensive empirical experiments conducted. We believe it
would be interesting to adapt similar first-order optimization techniques to solve Open-Ended RLHF.

In summary, existing bi-level RLHF works focus on online optimization of both the RM and the
LM (as the response policy), all with fixed prompt/state distribution. eva presents an orthogonal
direction on dynamic prompt generation for Open-Ended RLHF, with an empirical algorithm which
attains state-of-the-art performance with large language models on a variety of benchmarks. It is
possible to incorporate the online RM training within eva — we have shown in § 4.2.3 that eva
scales with quality of reward models, thus integrating online RM training may further enhance
performance and mitigate potential distributional mismatch problems as we evolves for more prompts.
This direction may have not been widely adopted in real-world training of language models, due
to concerns about practicality (Team et al., 2023; 2024a;b; Adler et al., 2024). We look forward to
future works exploring efficient variations unifying eva and existing bi-level RM-LM frameworks.

Final Remarks. We thank the reviewer for the precious time and efforts on the eva method. We
value all those opinions, and have made every effort to thoroughly address the concerns raised
and revise our manuscript accordingly. Regarding the rejection, we hope the reviewer may kindly
consider the points that we have summarized at the beginning of this rebuttal, on the strong
empirical alignment gain brought by the simple design of eva, also on judging the merit of
a work (cf,, (Castro, 2021)) w.r.t. the practicality and how the community may easily build on
top of the principle and the method we proposed (cf., (Hamming, 1986)), which we are confident
are valuable to the broader alignment community. We look forward to any future discussion, and
would be grateful if the reviewer may consider revising the score if the revision is satisfactory.
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