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Oğuz Kaan Yüksel
EPFL

oguz.yuksel@epfl.ch

Aiday Marlen Kyzy
EPFL

aiday.marlenkyzy@epfl.ch

Reproducibility Summary

Scope of Reproducibility

The original paper proposes partially Huberised losses, which possess label noise robustness. The authors claim that
there exist label noise scenarios that defeat Huberised but not partially Huberised losses, and that partially Huberised
versions of existing losses perform well on real-world datasets subject to symmetric label noise.

Methodology

All the experiments described in the paper were fully re-implemented using NumPy, SciPy and PyTorch. The
experiments on synthetic data were run on a CPU, while the deep learning experiments were run using a Nvidia RTX
2080 Ti GPU. Running the experimentation necessary to gain some insight on some of the network architectures used
and reproducing the real-world experiments required over 550 GPU hours.

Results

Overall, our results mostly support the claims of the original paper. For the synthetic experiments, our results differ
when using the exact values described in the paper, although they still support the main claim. After slightly modifying
some of the experiment settings, our reproduced figures are nearly identical to the figures from the original paper.
For the deep learning experiments, our results differ, with some of the baselines reaching a much higher accuracy on
MNIST, CIFAR-10 and CIFAR-100. Nonetheless, with the help of an additional experiment, our results support the
authors’ claim that partially Huberised losses perform well on real-world datasets subject to label noise.

What was easy

The original paper is well written and insightful, which made it fairly easy to implement the partially Huberised version
of standard losses based on the information given. In addition, recreating the synthetic datasets used in two of the
original paper’s experiments was relatively straightforward.

What was difficult

Even though the authors were very detailed in their feedback, finding the exact hyperparameters used in the real-world
experiments required many iterations of inquiry and experimentation. In addition, the CIFAR-10 and CIFAR-100
experiments can be difficult to reproduce due to the high number of experiment configurations, resulting in many
training runs and a relatively high computational cost of over 550 GPU hours.

Communication with original authors

We contacted the authors on multiple occasions regarding some of the hyperparameters used in their experiments, to
which they promptly replied with very detailed explanations.

ML Reproducibility Challenge 2020.



1 Introduction

Gradient clipping is a well-established technique in machine learning, usually motivated by its benefits in optimization.
For example, clipping is used extensively to remedy the well-known problem of exploding gradients (Bengio et al.,
1994), commonly faced when training recurrent neural networks. Intuitively, it ensures that the norm of the gradient
behaves well under iterates of optimization. Indeed, Zhang et al. (2019a) provide a theoretical explanation of the
improved convergence speed of gradient clipping over standard gradient descent.

In this work, however, we reproduce the paper "Can gradient clipping mitigate label noise?" (referenced as "the paper"
or "the original paper") by Menon et al. (2020) (referenced as "the authors") which focuses on robustness properties of
gradient clipping. Informally, clipping caps the influence of any descent direction, which might help in the presence of
label noise. Starting with this intuition, the authors study whether clipping can alleviate the problem of label noise
studied in Ekholm and Palmgren (1982); Menon et al. (2015); Zhang and Sabuncu (2018). More specifically, they
analyze the problem under symmetric label noise with the following simple linear setting: stochastic gradient descent
with a linear model in a binary classification task.

Before turning our attention to the paper’s experiments, which are the main focus of this reproducibility work, we state
two main theoretical findings in this linear setup and the resulting novel extension of the cross-entropy loss function:

• Gradient clipping does not provide label noise robustness even in this simple linear setup. Specifically, clipping is
linked to using a Huberised loss, which preserves classification-calibration but is not robust to symmetric label
noise.

• A new clipping variant for composite losses is proposed, where only the contribution from the base loss is
considered for clipping. The equivalent partially Huberised loss preserves classification-calibration and is robust
to symmetric label noise.

• The resulting multi-class generalization of the partially Huberised cross-entropy loss is given in Equation 1.
Suppose we have softmax probability estimates pθ(x, y), then the partially Huberised softmax cross-entropy loss
(PHuber-CE) is defined for τ > 1 as:

`θ(x, y) =

{
−τ · pθ(x, y) + log τ + 1, if pθ(x, y) ≤ 1

τ

− log pθ(x, y), otherwise.
(1)

Then, the authors evaluate their partially Huberised loss in experiments on synthetic data (referenced as "synthetic
experiments") to demonstrate its behavior under symmetric label noise. They show symmetric label noise scenarios that
defeat the logistic loss and the Huberised logistic loss, but not the partially Huberised logistic loss. Moreover, they
assess the effectiveness of partial Huberisation on real-world datasets subject to symmetric label noise (referenced as
"real-world experiments"). They empirically verify that partially Huberised versions of existing losses behave well in
the presence of symmetric label noise, through deep-learning experiments on the MNIST, CIFAR-10 and CIFAR-100
datasets.

We thoroughly reproduce the synthetic and real-world experiments in section 3 and section 4 respectively. Then, we
evaluate the experimental results in section 5 and conclude with the assessment of empirical claims in section 6.

2 Background

Gradient clipping. Consider a supervised learning task with samples (x, y) ∈ (X × Y) ∼ D, and a loss function
lθ : X × Y → R. For this setting the gradient g(θ) and the clipped gradient ḡτ (θ) are defined as follows:

g(θ) =
1

N

N∑
n=1

∇lθ(xn, yn) ḡτ (θ) =

{
τ g(θ)
‖g(θ)‖2 if ‖g(θ)‖2 ≥ τ

g(θ) otherwise.

Label noise. In classification under label noise, one has samples from a noisy distribution PD̄(x, y) instead of a clean
distribution PD(x, y). For example, under symmetric label noise, all instances have a constant probability of their labels
being flipped uniformly to any of the other classes. The task remains to minimize risk over the clean distribution D.
Some recent loss-based proposals for learning under symmetric label noise are the linear or unhinged loss (van Rooyen
et al., 2015) and the generalized cross-entropy loss (Zhang and Sabuncu, 2018).

Huberised losses. Huberised and partially Huberised losses, as defined in the paper, are closely related to the Huber
loss (Huber, 1964), which is widely employed in robust regression. In the binary classification setting, for a predictor
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f : X → R and labels y ∈ {±1}, these losses are derived from the logistic loss φ(f(x) · y) = φ(z) = log(1 + e−z),
which can also be written as φ(z) = ϕ(F (z)), with the base loss ϕ(u) = − log u and the link function F (z) = σ(z).
The Huberised logistic loss φ̄τ (Equation 2) linearises the entire logistic loss beyond a certain threshold, while the
partially Huberised logistic loss φ̃τ (Equation 3) linearises only the base loss but leaves the link function intact.

φ̄τ (z) =

{
−τ · z − log(1− τ)− τ · σ−1(τ) if z ≤ −σ−1(τ)
log (1 + e−z) otherwise. (2)

φ̃τ (z) =

{
−τ · σ(z) + log τ + 1 if z ≤ σ−1

(
1
τ

)
log (1 + e−z) otherwise. (3)

The partially Huberised softmax cross-entropy loss (Equation 1) is obtained by applying that same partial Huberisation
to the softmax cross-entropy loss, in which the link function is a softmax instead of a sigmoid. For more information on
Huberised losses, we kindly refer to the original paper (Menon et al., 2020).

3 Synthetic experiments

We now study two synthetic experiments proposed by the authors to show the existence of label noise scenarios
that defeat Huberised but not partially Huberised losses. We will start by discussing the 2D setting proposed in
Long and Servedio (2010) and then discuss the 1D outliers setting given in Ding (2013). These experiments are
fully re-implemented with NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020). Experimental setups
including methods and hyperparameters are fully verified according to the original paper and in necessary cases,
according to the additional details obtained from the authors. Our experiments are configurable through the Hydra
framework (Yadan, 2019). Our code re-implementing both the synthetic and real-world experiments is available at:
https://github.com/dmizr/phuber

3.1 Long and Servedio dataset

Long and Servedio (2010) consider a set of four positive labeled points: one large margin example (1, 0), one puller
example (γ, 5γ) and two penalizer examples (γ,−γ) where 0 < γ < 1

6 , in a binary classification task with a linear
model without a bias term. The halfspace x1 > 0 correctly classifies all the samples. However, one can show that
under symmetric label noise, minimizing over a wide range of convex losses with a suitable γ will result in a predictor
equivalent to a random predictor.

The authors build on Long and Servedio (2010), and consider a mixture of six isotropic Gaussians N (µi, σ
2I2), with

σ = 0.01 and µi ∈ {±(1, 0),±(γ, 5γ),±(γ,−γ)} ⊂ R2, with γ = 1
24 . Mixing weights are 1

4 for the two Gaussians
centered around ±(γ,−γ) and 1

8 for the rest. An instance (x1, x2) is labeled positive if x1 ≥ 0 and negative otherwise.
N = 1000 random samples are drawn from this distribution, and the label of each sample is flipped with corruption
probability ρ < 0.5. Then, a linear classifier is trained using Scipy’s SLSQP (Sequential Least Squares Programming)
optimizer for a maximum of 100 iterations with each of the following losses:

• the logistic loss
• the Huberised version of the logistic loss, with τ = σ(−1) ≈ 0.26

• the partially Huberised version of the logistic loss, with τ = 1 + e−1 ≈ 1.36

After contacting the authors, we found that the above τ values were used instead of the values provided in the original
paper, which were τ = 1.0 and τ = 2.0 for the Huberised and the partially Huberised loss respectively.

Once trained, the classifier is evaluated on 500 clean test samples.

Figure 1a and Figure 1b show our results over 500 independent runs for ρ = 0.45 and ρ = 0.2 respectively. When
using ρ = 0.45, as stated in the original paper, we fail to reproduce a figure that exactly matches the authors’ results.
However, through experimentation, we found that for a lower level of noise corruption such as ρ = 0.2, we get results
that are very similar to the original paper, with the partially Huberised loss always achieving perfect classification,
while the logistic and Huberised losses succumb to label noise and perform no better than chance.

3.2 Outliers dataset

The 1D setting from Ding (2013) is composed of 10,000 linearly separable inliers: 5000 samples from the unit variance
Gaussian N (1, 1) with positive label, and 5000 samples from the mirror image N (−1, 1) with negative label. In
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addition, 50 outliers are added: 25 samples from N (−200, 1) with positive label, and 25 samples from N (200, 1) with
negative label. Assuming a linear model characterized by a scalar θ ∈ R, we comparatively evaluate the empirical
risk with and without outliers. We use the same three losses as in subsection 3.1 but with τ = 0.1 and τ = 1.1 for the
Huberised and partially Huberised loss respectively. 1

Figure 1c shows our results where dashed and solid curves represent the cases with and without outliers respectively.
As in the original paper, the optimal solutions for the logistic and Huberised loss are changed from θ∗ = +∞ to θ∗ = 0
with the introduction of outliers, whereas the partially Huberised loss remains intact.
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(b) Long and Servedio (ρ = 0.2)
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Figure 1: Reproduction of Long and Servedio (2010) and Ding (2013) experiments. In the Ding experiment (c), the
solid curve denotes empirical risk without outliers, while the dashed curve denotes empirical risk with outliers.

4 Real-world experiments

We now consider the deep learning experiments performed on three image classification datasets: MNIST, CIFAR-10
and CIFAR-100. These experiments were fully re-implemented with PyTorch (Paszke et al., 2019), according to the
description from the paper and implementation details obtained from the authors after contacting them. Configuration
management for these experiments was done with the help of the Hydra framework (Yadan, 2019).

4.1 MNIST

4.1.1 Methodology

MNIST is a dataset of handwritten digits, consisting of a training set of 60,000 examples and a test set of 10,000
examples. Each example is a 28x28 grayscale image associated with a label from 10 distinct classes. The dataset is
normalized using the mean and standard deviation from the training set, and no data augmentation is applied. The
training labels are then corrupted with symmetric noise at flip probability ρ ∈ {0.0, 0.2, 0.4, 0.6}. As in the original
paper, the same random seed is used to corrupt the training labels across all trials.

We use a LeNet-5 (Lecun et al., 1998), with a few modifications in order to reproduce the authors’ settings as accurately
as possible. Most notably, the tanh activation layers from the original LeNet are changed to ReLU , and the weights
are initialized according to a truncated normal distribution with standard deviation σ = 0.1.

This model is trained for 20 epochs using Adam (Kingma and Ba, 2017) with batch size N = 32, and weight decay
of 10−3. The initial learning rate is set to 0.001, and is lowered following an exponential decay schedule with decay
rate 0.1 and decay steps of 10,000. That is, the learning rate at iteration n is set to: ηn = η0 · rn/s, with η0 = 0.001,
r = 0.1 and s = 104. According to the authors, these hyperparameter values were chosen to obtain a good baseline
performance in a setting with no label noise.

For each level of label noise corruption, the test set accuracy of 6 different loss functions is compared:

• the cross-entropy loss (CE)
• the linear or unhinged loss (van Rooyen et al., 2015)
• the generalized cross-entropy loss (GCE), with α = 0.7 (Zhang and Sabuncu, 2018)
• the cross-entropy loss, with global gradient clipping applied using a max norm threshold of τ = 0.1

1In the original paper, the τ values mistakenly reported as 1.0 and 2.0, along with the values in subsection 3.1. These updated
values are obtained from the authors, after informing them τ = 1.0 for Huberisation is equivalent to keeping base loss intact.
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• the partially Huberised version of the cross-entropy loss (PHuber-CE), with τ = 10
• the partially Huberised version of the generalized cross-entropy loss (PHuber-GCE), with α = 0.7 and τ = 10.

The CE loss serves as a baseline, while the linear and GCE losses serve as representative noise-robust losses. The
model and hyperparameters used are identical for all losses at all levels of label noise. For each of the real-world
experiments and for each of the partially Huberised losses, the authors selected τ ∈ {2, 10} so as to maximize accuracy
on a validation set, in a setting with flip probability ρ = 0.6.

4.1.2 Computational requirements

This LeNet model was trained with a Nvidia RTX 2080 Ti GPU. Each run took roughly 2 minutes. Fully reproducing
the authors’ experiments required training this model 72 times, in order to do 3 trials for each combination of loss
function and level of label noise. This resulted in a total training time of around 2 hours.

4.1.3 Results

Our results are reported in Table 1, and a comparison with the original paper’s results can be found in Figure 2. Our
reproduction matches the results from the original paper for both the PHuber-CE and PHuber-GCE losses, although the
CE, CE with gradient clipping and linear losses perform considerably better at high levels of label noise than what was
reported. As a consequence, the partially Huberised version of these losses do not outperform the base losses at high
levels of label noise, contrary to the original paper’s results. It is of note that in our reproduction, all losses, except for
the CE loss with gradient clipping, perform comparably, with a test accuracy higher than 97.5% at all levels of label
noise.

Dataset Loss function ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6

MNIST

CE 99.1 ± 0.1 98.8 ± 0.0 98.6 ± 0.0 98.0 ± 0.1
CE + clipping 97.0 ± 0.0 96.5 ± 0.0 95.7 ± 0.1 94.7 ± 0.1
Linear 95.0 ± 3.5 98.5 ± 0.1 98.2 ± 0.0 97.6 ± 0.0
GCE 98.8 ± 0.0 98.7 ± 0.0 98.5 ± 0.0 98.1 ± 0.0
PHuber-CE τ = 10 99.0 ± 0.0 98.8 ± 0.1 98.5 ± 0.1 97.6 ± 0.0
PHuber-GCE τ = 10 98.9 ± 0.0 98.7 ± 0.0 98.4 ± 0.0 98.0 ± 0.0

Table 1: Reproduction of the MNIST experiments. The mean and standard error of the test accuracy over 3 trials is
reported. The highlighted cells correspond to the best performing loss at a given ρ.
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Figure 2: Test accuracy of LeNet-5 on MNIST

4.2 CIFAR-10 and CIFAR-100

4.2.1 Methodology

The CIFAR-10 and CIFAR-100 datasets (Krizhevsky and Hinton, 2009) both consist of a training set of 50,000 examples
and a test set of 10,000 examples. Each example is a 32×32 color image, associated with a label from 10 distinct classes
for CIFAR-10, and 100 distinct classes for CIFAR-100. Both datasets are normalized using per-channel mean and
standard deviation, and the standard data augmentation for these datasets is applied, akin to Zagoruyko and Komodakis
(2016). That is, images are zero-padded with 4 pixels on each side to obtain a 40×40 image, and then a random 32×32
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crop is extracted and mirrored horizontally with 50% probability. As in the MNIST experiment, the training labels are
corrupted with symmetric noise at flip probability ρ ∈ {0.0, 0.2, 0.4, 0.6}, with identical noise seed across trials.

For both of these experiments, we use a ResNet-50 (He et al., 2015), as implemented in Liu (2017). This implementation
of the ResNet-50 differs from the one described by He et al. (2015) to make it more appropriate for classification on
small images. The number of filters per layer is identical, but the first layer, originally a 7x7 convolutional layer with
stride 2 and padding 3, is changed to a 3x3 convolutional layer with stride 1 and padding 1, and the max-pooling layer
that follows is removed. By removing these early downsampling layers, this architecture performs better on CIFAR-10
and CIFAR-100 than the original ResNet-50 2, which was designed for classification on ImageNet (Deng et al., 2009).
We decided to use such an implementation for several reasons: First, it is used in many popular papers performing
classification on CIFAR with ResNets, such as DeVries and Taylor (2017); Zhang et al. (2018); Li et al. (2020); Zhang
et al. (2019b). Second, using the original ResNet-50 yielded poor results, especially on partially Huberised losses.
Third, after contacting the authors about their implementation, they confirmed using a ResNet-50 with some of the
early downsampling layers removed, but could not provide more details as to which layers were specifically changed or
removed.

For CIFAR-10, this ResNet is trained for 400 epochs using SGD with Nesterov momentum 0.1 (Nesterov, 1983;
Sutskever et al., 2013), batch size N = 64, and weight decay of 5× 10−4. 3 The initial learning rate is set to 0.1 and is
divided by 10 at the 160th, 300th and 360th epoch. For CIFAR-100, this ResNet is trained for 200 epochs using SGD
with Nesterov momentum 0.1, batch size N = 128, and weight decay of 5× 10−4. 4 The initial learning rate is set
to 0.1 and is divided by 5 at the 60th, 120th and 160th epoch. According to the authors, these hyperparameters were
partially based on the setting from DeVries and Taylor (2017), and were chosen to obtain a good performance with CE
in a setting with no label noise.

As in the MNIST experiment, the test set accuracy of the CE, CE with gradient clipping, linear, GCE, PHuber-CE and
PHuber-GCE losses are compared. The tunable parameters for these losses are identical to the ones used in the MNIST
experiment, except for PHuber-CE for CIFAR-10, where τ = 2. The model and hyperparameters used are identical for
all losses at all levels of label noise.

We also report an additional experiment, where we train a model on CIFAR-100 using the PHuber-CE loss with τ = 50.
This corresponds to linearizing the base loss at probability threshold 0.02.

4.2.2 Computational requirements

We use a Nvidia RTX 2080 Ti GPU to train these models. With full precision training, a run on CIFAR-10 takes
approximately 11 hours, while a run on CIFAR-100 takes approximately 4 hours, due to the lower amount of epochs
and higher batch size. In order to accelerate the training process, we implement mixed precision training (Micikevicius
et al., 2017), which results in a 2x speed-up with no decrease in accuracy compared to full precision training.

Fully reproducing the authors’ experiments required training each model 72 times, resulting in a total training time of
around 400 hours for the CIFAR-10 experiments, and around 150 hours for the CIFAR-100 experiments.

4.2.3 Results

Our results are reported in Table 2, and a comparison with the original paper’s results can be found in Figure 3 and
Figure 4.

On CIFAR-10, our reproduction achieves comparable or better results than the original paper for nearly all configurations,
except for the Linear, GCE and PHuber-GCE losses which perform worse for ρ = 0.6. Surprisingly, the CE loss with
gradient clipping performs considerably better than what was reported in the presence of label noise, achieving the
second-highest accuracy for ρ = 0.6, behind PHuber-CE. Similar to the original paper’s results, PHuber-CE with τ = 2
is competitive with CE in the absence of label noise, and achieves very good results under label noise, outperforming
all the other losses. Notably, in our reproduction, PHuber-CE outperforms the linear loss for ρ = 0.4, which was not
the case in the original paper.

2In the ResNet paper, He et al. also propose ResNet architectures suited for CIFAR-10 classification, such as the ResNet-44 and
ResNet-56, which have fewer filters per layer compared to the implementations from Liu (2017), resulting in faster training at the
cost of lower accuracy. These ResNet architectures were not used in our reproduction as the authors specifically mentioned using a
ResNet-50.

3In the original paper, the weight decay is mistakenly reported as 5× 10−3, and it was not specified that the type of momentum
used was Nesterov momentum. These updated hyperparameters were obtained from the authors, after informing them of our difficulty
reproducing their experiments with the values from the paper.

4See previous footnote.
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On CIFAR-100, our reproduction achieves better results than the original paper for nearly all configurations. Most
notably, the accuracy of the CE, GCE and PHuber-GCE losses are noticeably better at all levels of noise corruption. As
in the original paper, PHuber-GCE with τ = 10 achieves the best accuracy out of all losses for ρ = 0.4 and ρ = 0.6, and
performs comparably to GCE for ρ = 0.0 and ρ = 0.2. Unlike the paper’s results, PHuber-CE with τ = 10 performs
quite poorly compared to CE, even in settings with high levels of label noise where it should supposedly perform well.
However, with our additional experiment using PHuber-CE with τ = 50, we show that there exist values of τ for which
PHuber-CE performs comparably to CE in the noise-free case, and outperforms CE at high levels of label noise.

Dataset Loss function ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6

CIFAR-10

CE 95.8 ± 0.1 84.0 ± 0.3 67.8 ± 0.3 44.0 ± 0.2
CE + clipping 89.3 ± 0.0 82.6 ± 1.6 78.7 ± 0.2 67.6 ± 0.1
Linear 94.1 ± 0.1 91.4 ± 0.5 86.0 ± 2.4 58.6 ± 5.2
GCE 95.3 ± 0.0 92.5 ± 0.1 82.4 ± 0.1 53.3 ± 0.3
PHuber-CE τ = 2 94.8 ± 0.0 92.8 ± 0.2 87.8 ± 0.2 73.2 ± 0.2
PHuber-GCE τ = 10 95.4 ± 0.1 92.2 ± 0.2 81.5 ± 0.2 54.3 ± 0.5

CIFAR-100

CE 75.4 ± 0.3 62.2 ± 0.4 45.8 ± 0.9 26.7 ± 0.1
CE + clipping 23.5 ± 0.2 20.4 ± 0.4 16.2 ± 0.5 12.9 ± 0.1
Linear 13.7 ± 0.7 8.2 ± 0.3 5.9 ± 0.7 3.9 ± 0.3
GCE 73.3 ± 0.2 68.5 ± 0.3 59.5 ± 0.5 40.3 ± 0.4
PHuber-CE τ = 10 60.6 ± 1.1 54.8 ± 1.2 43.1 ± 1.1 24.3 ± 0.8
PHuber-GCE τ = 10 72.7 ± 0.1 68.4 ± 0.1 60.2 ± 0.2 42.2 ± 0.4
PHuber-CE τ = 50 75.4 ± 0.2 65.9 ± 0.2 49.1 ± 0.2 26.9 ± 0.0

Table 2: Reproduction of the CIFAR-10 and CIFAR-100 experiments. The mean and standard error of the test accuracy
over 3 trials is reported. The highlighted cells correspond to the best performing loss at a given ρ. CIFAR-100
PHuber-CE with τ = 50 is an additional experiment that was not performed in the original paper.
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Figure 3: Test accuracy of ResNet-50 on CIFAR-10
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Figure 4: Test accuracy of ResNet-50 on CIFAR-100
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5 Discussion

We now discuss whether our experimental results support the claims of the paper.

For the Long and Servedio experiment, when reusing exactly the parameters described in the paper and in the authors’
clarifications, our results do not perfectly match those from the original paper. After experimenting with some of
the parameters, we did find values that produce results nearly identical to those shown in the paper. Nonetheless,
these results still support the claim the authors made for the synthetic experiments, namely, that there exist label noise
scenarios for both the Long and Servedio (2010) setting and the Ding (2013) setting which defeat a Huberised but not a
partially Huberised loss. While we made a considerable effort to ensure that our implementation matches the paper’s
description, the difference in results could be due to some minor differences in our implementations, or to a difference
in the random seeds used to sample from the mixture model and flip the labels.

For the MNIST experiment, all losses, except for CE with clipping, perform comparably, achieving very high accuracy
for all levels of label noise. This differs from the results of the original paper, where CE and linear losses were affected
by label noise. As a result, it is difficult to support or reject any claim made regarding these losses with this experiment.

For both the CIFAR-10 and CIFAR-100 experiments, our results differ even after fixing the hyperparameters which
were accidentally misreported in the original paper, with our implementation yielding a noticeably higher test accuracy
for the CE loss with clipping on CIFAR-10, and the CE, GCE and PHuber-GCE losses on CIFAR-100. This is likely
due to the ResNet-50 architecture used, as the generally higher accuracy could be explained if our model happens to
have a higher number of parameters than theirs. The deep learning framework used could also lead to different results,
as the authors mentioned using TensorFlow while we used PyTorch. Finally, this could also be caused by the random
seed used to add label noise, although we did not notice any significant difference in results when changing this seed.

For the CIFAR-10 experiment, our reproduction supports the claim that for these specific hyperparameters, partially
Huberised losses are competitive with the base loss in the noise-free case and can outperform it under label noise. In
addition, this experiment also shows that PHuber-CE can be very effective at mitigating symmetric label noise, as it
performs considerably better than the representative noise-robust losses at high levels of label noise.

For the CIFAR-100 experiment, our reproduction shows that PHuber-GCE loss with τ = 10 is competitive with the base
loss (GCE) in the noise-free case and can outperform it at high levels of label noise, which supports the aforementioned
claim. However, this claim does not hold for the PHuber-CE loss with τ = 10, which performs worse than CE in all
cases. Despite that, we show with our additional experiment that there exists a value of τ for which the PHuber-CE loss
performs comparably to CE in the noise-free case, and improves upon it under label noise.

Our additional experiment shows that the value of τ plays a crucial role in the performance of partially Huberised losses.
Both the PHuber-CE and GCE losses interpolate between the linear and the CE loss. PHuber-CE and GCE mimic the
linear loss for τ → 1 and α = 1 respectively, while for τ → +∞ and α→ 0, they mimic the CE loss. As the linear
loss fails to train properly in our CIFAR-100 experiment, it is expected to obtain poor results for these losses if the
tunable parameter used makes them too similar to the linear loss. As PHuber-GCE combines both of these losses, it can
also perform poorly in such a scenario. Furthermore, the CE loss with gradient clipping also has a tunable parameter
which strongly affects performance, as our reproduction shows that for a max norm τ = 0.1, CE with clipping can
perform significantly better than CE on CIFAR-10, and significantly worse on CIFAR-100.

In order to properly compare these losses, it would therefore be of interest to find, for each level of label noise, the
tunable parameter values for which they perform best, by using random search or a hyperparameter tuning framework
such as Optuna (Akiba et al., 2019) on a validation set. While such a hyper-parameter search has a high computational
cost, it would offer some valuable insights on how well each of these losses performs, and how sensitive they are to
changes to their tunable parameters. We leave such exploration for future work.

6 Conclusion

In this work, we fully re-implement the experiments performed in Menon et al. (2020). For the synthetic experiments,
our results differ when using the exact values described in the paper, although they still support the main claim, and
by slightly modifying some experiment settings, we obtain results almost identical to those of the original paper. Our
results also differ for the deep learning experiments, with some of the baselines performing better than described.
Nonetheless, these experiments still support the claim that partially Huberised losses perform well on real-world datasets
subject to label noise. Our additional experiment also provides further insight on the performance of partially Huberised
losses, as it empirically shows that the value of τ can play an important role in the performance of models trained with
these losses. We thus believe it would be of interest to perform further experiments focused on tuning these losses for
different levels of label noise, although this would incur a relatively high computational cost.
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A Decision boundaries in the Long and Servedio experiment

(a) Logistic (b) Huberised (c) Partially Huberised

Figure 5: Decision boundaries in the reproduced Long and Servedio (2010) experiment, with label noise flip probability
ρ = 0.2. The logistic and Huberised logistic loss misclassify samples generated from the two penalizer Gaussians
centered around ±(γ,−γ), resulting in 50% test accuracy. The partially Huberised logistic loss does not succumb to
label noise, achieving near-perfect discrimination.

B Effect of the label noise seed on the real-world experiments

In the original paper (Menon et al., 2020), all trials use the same corrupted dataset for each flip probability ρ. Table 3
shows the results obtained on a subset of our experiments when varying the random seed used to generate label noise.

Label
noise

Dataset Loss function Seed 0 Seed 1 Seed 2 Seed 3 Original
paper

ρ = 0.6

MNIST CE 98.0 ± 0.1 97.9 ± 0.0 97.9 ± 0.0 97.9 ± 0.1 91.1 ± 0.6
PHuber-GCE 98.0 ± 0.0 97.8 ± 0.1 98.0 ± 0.0 98.0 ± 0.0 97.8 ± 0.0

CIFAR-10 CE 44.0 ± 0.2 43.8 ± 0.5 44.1 ± 0.2 43.2 ± 0.3 40.6 ± 0.3
PHuber-GCE 54.3 ± 0.5 54.0 ± 0.7 53.7 ± 0.5 54.3 ± 0.2 62.6 ± 0.2

CIFAR-100 CE 26.7 ± 0.1 27.1 ± 0.1 27.0 ± 0.5 26.9 ± 0.1 11.4 ± 0.2
PHuber-GCE 42.2 ± 0.4 43.0 ± 0.2 42.1 ± 0.6 41.9 ± 0.1 31.5 ± 0.8

Table 3: Impact of the random seed used to generate label noise. The mean and standard error of the test accuracy over 3
trials is reported. This subset of experiments was chosen to include both a baseline and a partially Huberised loss, at the
highest level of label noise. The results obtained are consistent across seeds, and differ from the original paper’s results.
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