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Abstract

We propose a method for obtaining statistically
guaranteed prediction sets for functional machine
learning methods: surrogate models which map
between function spaces, motivated by the need
to build reliable PDE emulators. The method con-
structs nested prediction sets on a low-dimensional
representation (an SVD) of the surrogate model’s
error, and then maps these sets to the prediction
space using set-propagation techniques. The re-
sult is conformal prediction coverage guaranteed
prediction sets for functional surrogate models.
We use zonotopes as basis of the set construc-
tion, which allow an exact linear propagation and
are closed under Cartesian products, making them
well-suited to this high-dimensional problem. The
method is model agnostic and can thus be applied
to complex Sci-ML models, including Neural Op-
erators, but also in simpler settings. We also intro-
duce a technique to capture the truncation error of
the SVD, preserving the guarantees of the method.

1 INTRODUCTION

One struggles to find an engineering or scientific discipline
which has remained untouched from the rapid progression
in machine learning (ML) and artificial intelligence (AI).
Scientific machine learning (Sci-ML), with tailored architec-
tures for physics-based problems, have in particular driven
major advancements. Neural Operators (NOs) [Li et al.,
2020], neural networks which can learn between function
spaces, have received attention due to their efficient surro-
gacy of partial differential equation (PDE) solvers [Aziz-
zadenesheli et al., 2024], and have seen application in com-
plex problems including weather modelling [Kurth et al.,
2023] and plasma physics [Gopakumar et al., 2024b].

However, the wide application of AI methods continues

despite widely-shared concerns, as adumbrated by Brundage
et al. [2020], Dalrymple et al. [2024], and many others,
about the reliability and soundness of these methods. This is
an opinion that we share: that methods for AI reliability are
underdeveloped in comparison to its progression and wide
application.

Although multiple methods exist for uncertainty analysis in
AI, little R&D effort has gone into approaches which can
provide quantitative safety guarantees on the predictions of
AI systems. Probabilistic machine learning methods, such
as Bayesian neural networks, Gaussian processes, Monte
Carlo drop-out, and deep ensembles, are powerful methods
which can equip predictions with distributional uncertainties.
These include many notable works in neural PDE surrogates
and operator learning, including [Yang et al., 2022, Yang
and Perdikaris, 2019, Beltran et al., 2024]

However, they do not attempt to provide statistical guaran-
tees. By statistical guarantee we refer to a provable property
of the model’s uncertainty, given some quite weak assump-
tions about the randomness of the data. In this paper, we
pursue a method based on conformal prediction [Vovk et al.,
2005, Shafer and Vovk, 2008], which is less committal than
purely probabilistic approaches, but can yield such guaran-
tees. Rather than producing a full predictive distribution, the
method gives a set-valued prediction Cα equipped with a
confidence level 1− α. This prediction set can be guaran-
teed to contain the next unobserved true label Yn+1, with at
least probability 1− α:

P(Yn+1 ∈ Cα) ≥ 1− α.

The prediction set Cα is constructed using previously
observed data (Xi, Yi), and the guarantee holds if
the sequence (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) is ex-
changeable, e.g., if the new data point is drawn from the
same joint distribution.

This paper’s goal is to extend this framework to models
with function-valued outputs. That is, given an input X , we
want to predict not a single scalar, but a full function F



(large vector or tensor e.g., a time series, a spatial field, or
a parameterized curve). Our goal is to construct a set of
functions that is guaranteed, with a user-defined probability,
to contain the true function associated with a new input.
Our primary motivation for this is to develop reliable uncer-
tainty quantification for PDE surrogate models, where the
functional data represents solutions from numerical PDE
solvers. However, the method could be faithfully applied
to non-physics cases. Unlike scalar predictions, functional
data can exhibit complex dependencies across their domain
(e.g., neighboring time points or spatial locations), which
our method must capture to produce meaningful predictions.
Finally, we want this guarantee to hold using only a held-
out calibration dataset. The following formal setup further
describes this problem.

Problem statement Given a pre-trained model f̂ : X 7→
F , which maps to a space of functions F ∈ F , and
some additional (calibration) data unseen by the model
Z = (Z1, . . . , Zn) where Zi = (Xi, Fi), construct a predic-
tion set Cα ⊂ F (a set of functions) guaranteed to enclose
a next unseen observation Fn+1 with a user prescribed con-
fidence level: P(Fn+1 ∈ Cα) ≥ 1 − α. The space F has
been discretised F1 = [F1(y1), . . . , F1(yl)] ∈ Rl, but rather
finely l ≫ 1.

1.1 SUMMARY OF THE METHOD

We briefly outline our strategy.

1. Compute f̂ ’s error with respect to the calibration data
ei = Fi − f̂(Xi),

2. Perform a dimension reduction (e.g. an SVD) of e, and
project it to a lower dimensional space,

3. Find an enclosing set Z of the dimension reduced error,
Ui ∈ Z for all i, and a point pZ which is close to the
error’s mode. In this work we use zonotopes for Z ,

4. Construct nested prediction regions Zα using Z and
pZ , such that P(Un+1 ∈ Zα) ≥ 1− α,

5. Bound truncation error by taking the Cartesian product
of the prediction regions Zα and a bounding box E of
the data of the truncated dimension, Rα = Zα × E,

6. Project Rα back, and add to the result of the model’s
prediction Cα = f̂(Xn+1) +Rα.

1.2 RELATED WORK

While we review several prior methods, our coverage may
not be exhaustive due to the rapidly evolving literature,
since uncertainty quantification in Sci-ML is quite a timely
problem.

Copula-based conformal prediction: Messoudi et al.
[2021] suggest a method to combine univariate prediction
sets obtained from conformal prediction using copulas, pow-
erful aggregation functions used to decompose multivariate
distributions into their marginals and dependencies. This
work was further extended by Sun and Yu [2023] to time
series. We note however that using copulas to model depen-
dence in high dimensions is challenging, and their propo-
sition may require advanced copula methods, such as vine-
copulas, to be applicable to functional surrogates.

Supremum-based conformal prediction: a quite
straightforward way to combine univariate conformal
predictors is by taking the supremum over a collection of
non-conformity scores. Diquigiovanni et al. [2022] take this
idea forward by proposing that the scores of each dimension
can be normalised or modulated by some function σ(t):

s(x, y) = sup
i∈1,...,N

(
sup
t∈T

∣∣∣yi(t)− µ(t)

σ(t)

∣∣∣) ,

in some prediction region T of interest, with µ(t) being the
estimated data mean. They suggest that

σ(t) =

√∑N
i=1(yi(t)− µ(t))2

N − 1

is taken to be the estimated data standard deviation. Their
method is quite easily adapted to surrogate modelling, by
replacing the µ(t) with a trained predictor f̂(xi)(t) in both
of above expressions, with σ(t) now giving the standard
deviation of f̂ ’s prediction error. Although this method is
simple to apply, we find it can at times give quite wide
prediction sets.

Quantile-functional conformal prediction: Ma et al.
[2024] propose a quantile neural operator, which they cali-
brate to give a PAC-style bound on the percentage of points
in the function domain that falls within a predicted func-
tional uncertainty set. Our methods diverge as we aim to
guarantee the entire function P(Fn+1 ∈ Cα) ≥ 1 − α for
all values of Fn+1 simultaneously. While they control the
proportion of the function domain covered (with respect
to a uniform sampling of Fn+1’s domain), we aim for full-
function coverage. Our method also differs as it does not
require a quantile function (an additional neural operator,
with additional training data) to be trained (but we do require
SVDs).

Elliptical-set conformal prediction: Messoudi et al.
[2022] propose a multi-target (multivariate) non-conformity
score

s(x, y) =

√
(y − f̂(x))⊤Σ̂−1(y − f̂(x)),

where Σ̂ is sample covariance of the surrogate’s prediction
error. This non-conformity score has a known analytical



sublevel-set

Cα = {y ∈ Rn | s(x, y) ≤ q(α)},

which is an ellipsoid centred at f̂(x), and eccentricity re-
lated to Σ̂. They further show their method extends to ‘nor-
malised’ conformal prediction, where the ellipsoid changes
depending on input x.

1.3 CONTRIBUTIONS

Our contribution is most similar to the last of the above meth-
ods, where we predict a multivariate set equipped with a
guaranteed α-level frequentist performance. Our method di-
verges as we do not rely on a non-conformity score; instead,
we directly construct prediction sets directly on a processed
calibration data set. We summarise our contributions:

• A conformal prediction method based on zonotopes

• An application of this technique to functional surrogate
models, giving multivariate prediction sets for func-
tional data,

• A method to account for the dimension reduction trun-
cation error, ensuring the guarantees.

2 CONFORMAL PREDICTION AND
CONSONANT BELIEF FUNCTIONS

In this section we briefly describe inductive conformal pre-
diction, for calibrating guaranteed prediction sets, partic-
ularly used for ML models (but not exclusively), and the
related idea of belief functions, which we find to be a useful
theory for performing computation using the calibrated sets.

Inductive conformal prediction (ICP) is a computation-
ally efficient version of conformal prediction [Papadopoulos
et al., 2002] for computing a set of possible predictions
Cα : X 7→ {subsets of Y } of an underlying machine learn-
ing model f̂ : X 7→ Y . The prediction set is equipped with
the following probabilistic inequality

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α. (1)

That is, the probability that the next unobserved prediction
Yn+1 is in computed set Cα(Xn+1) is bounded by 1 − α,
where α ∈ [0, 1] is a user-defined error rate. Additionally,
Equation 1 can be guaranteed if the data is exchangeable,
i.e. the data used to build Cα can be replaced with the
future unobserved samples Yn+1 without changing their
underlying distributions.

Most relevant for this paper is how Cα is constructed, and
how inequality 1 is guaranteed. In ICP, one compares the
predictions of a pre-trained model f̂ to a calibration dataset
Z = (Z1, Z2, . . . , Zn) where Zi = (Xi, Yi), which is yet

unseen by f̂ . A non-conformity score s : X × Y 7→ R is
used to compare f̂ ’s predictions to Zi, with large values of
s indicating a large disagreement between the prediction
and the ground truth. A common score used in regression
is s(x, y) = |f̂(x) − y|. When applied to the calibration
data, this yields non-conformity scores αi = s(Xi, Yi) for
i = 1, . . . , n.

The key insight is that these scores form an empirical distri-
bution, and for a new test point, we can compute a p-value
based on this empirical distribution. For a candidate predic-
tion y at test input x, the p-value is defined as the proportion
of calibration scores that are at least as large as the test
score:

p(x, y) =
1

n

n∑
i=1

I[s(x, y) ≤ αi], (2)

where I is the indicator function. Under exchangeability, this
p-value has the property that P(p(Xn+1, Yn+1) ≤ ϵ) ≤ ϵ
for any ϵ ∈ [0, 1].

The prediction set is then constructed by collecting all can-
didate values y whose p-values exceed the significance level
α:

Cα(x) = {y ∈ Y | p(x, y) > α}.
Equivalently, this can be expressed using a quantile of
the empirical distribution of non-conformity scores: taking
q = α⌈(1−α)(n+1)⌉ (the (1 − α)-quantile of the empirical
distribution), we have Cα(x) = {y ∈ Y | s(x, y) ≤ q}.
Note that the prediction regions form a nested family of sets
w.r.t α: Cα1 ⊇ Cα2 for 0 ≤ α1 ≤ α2 ≤ 1.

Our framework Computing the level-set of a compli-
cated s(x, y) function may be challenging, so often we opt
for quite simple non-conformity scores with known level-
sets, e.g., the level-set of |y − f̂(x)| is simply [f̂(x) ± q]..
A challenge which is exacerbated for multivariate prob-
lems, somewhat limiting application. We therefore take a
different approach, and directly construct Cα sets using a
parametric nested family of sets from the calibration data,
a method originally suggested by Gupta et al. [2022]. This
allows us to design prediction sets tailored to our particular
data, and well-suited for multivariate problems. Using an
interpretation of Cα as belief functions, we can perform
additional computations (for example linear and non-linear
transformations) on Cα, while still maintaining the guaran-
tee 1. This framework however comes with its own chal-
lenges. In some sense we are doing the reverse of confor-
mal prediction, where our challenge is not to compute the
level-set Cα = {y ∈ Y | s(x, y) ≤ q(α)}, rather we
begin with Cα and need to find the membership values
αi = sup{α ∈ [0, 1] | Zi ∈ Cα} of the calibration data.
Depending on what set-representation is used, computing
the membership values can be a costly operation.

Belief functions Cella and Martin [2022] make a useful
connection between conformal prediction and belief func-



tions [Shafer, 1976], a generalisation of the Bayesian theory
of probability where one can make set-valued probabilistic
statements, such as inequality 1 given by conformal predic-
tion.

Belief functions, also called random-sets or Dempster-
Shafer structures, are set-valued random variables whose
statistical properties (such their cdf, moments, sample re-
alisations, and probability measure) are set-valued. Belief
functions form a bound on a collection of partially unknown
random variables, often used in robust risk analysis. In par-
ticular, the conformal nested prediction sets Cα can be re-
lated a consonant belief function [Dubois and Prade, 1990],
and under this framework transformations f : X 7→ Y of
the imprecise random variable are quite simply:

Cα
Y = f(Cα

X),

that is, for each α-level, a single set-propagation of Cα
X

through f is required to determine Cα
Y , maintaining the

same α-confidence level. This is comparatively simpler than
other representations, which we use to transform fitted Cα

X

through computations (SVDs in particular).

3 ZONOTOPE PREDICTION SETS

Before proceeding to functional data, we must describe how
we will construct our multivariate prediction sets Cα. We
will use zonotopes—a class of convex sets offering advan-
tageous properties for high-dimensional settings, including
closure under linear transformations and Minkowski sums.
Zonotopes generalise intervals, boxes, hyper-rectangles, and
all their rotations, and may be represented on the computer
in a compact manner. An n-dimensional zonotope is com-
pletely characterised by a vector in Rn (centre), and a col-
lection of p ∈ N vectors in Rn (generators).

Definition 1 (Zonotope) Given a centre cZ ∈ Rn and
p ∈ N generator vectors in a generator matrix GZ =
[g1, . . . , gp] ∈ Rn×p, a zonotope is defined as

Z =

{
x ∈ Rn

∣∣∣ x = cZ +

p∑
i=1

ξigi, ξi ∈ [−1, 1]

}

We will use the shorthand notation Z = ⟨cZ , GZ⟩.

Zonotopes can equally be characterised as the image of the
box [−1, 1]p by an affine transformation T (X) = cZ +
GZX . Some example of 2D zonotopes and their generators
are shown below (centre is omitted as it corresponds to a
translation).

We will use zonotopes as a basis to construct nested predic-
tion regions, giving the probabilistic guarantee 1, calibrated
with respect to a particular dataset. For this, we specify a
parametric family of nested zonotopes, parameterised by a

(
3 0
0 1

) (
3 1
−1 1

) (
3 1 −2
−1 1 2

)
Figure 1: Example zonotopes in blue, and their associated
generator matrices immediately below them.

value α ∈ [0, 1]. We find that the following parameterisation
is simple, and yields nested sets.

Proposition 1 (nested zonotopic sets) Given a zonotope
Z = ⟨cZ , GZ⟩, a point pz ∈ Z , the following collection of
zonotopes are nested

Zα
pZ

= ⟨ cZ(1− α) + pZα, GZ(1− α) ⟩,

with α ∈ [0, 1]. Zα
pZ

are nested in the sense that Zα1
pZ

⊇
Zα2

pZ
for any α1 ≤ α2.

A detailed proof that Zα
pZ

forms a nested collection of sets
in found in appendix A.2. A quick sketch of the proof is
that we show that the half-spaces H = {x ∈ Rp|a⊤x ≤ b}
composing the box [−1, 1]p are nested Hα1 ⊇ Hα2 for
α1 ≤ α2 under the transformation cZ(1 − α) + pZα +
GZ(1 − α)X . We also note that Zα=0

pZ
= Z , (the largest

set in the family), and Zα=1
pZ

= {pZ} Several examples of
parametric nested zonotopes are shown in Figure 2.

pZ =

(
0
0

)
pZ =

(
−2
1

)
pZ =

(
2
2

)
Figure 2: Examples of nested zonotopes families, with Z
from Figure 1 and indicated cores pZ .

Why zonotopes Although Proposition 1 is simple (and
its proof not technically deep), the choice of zonotopes is
motivated by two key properties:

• Closure under Cartesian products. The Cartesian
product of zonotopes (or with boxes) yields another
zonotope. We use this property in step 5 above (sec-
tion 1.1) when bounding the truncation error of an
SVD.

• Efficiency under linear transformations. Zonotopes
can be projected exactly through linear maps via a



matrix multiplication. This makes step 6 above very
efficient, where we map uncertainty sets back to the
prediction space of the surrogate.

Together, these properties make zonotopes a scalable and
tractable choice for constructing prediction sets in high-
dimensional and function-valued cases.

Note that the zonotopes Zα
pZ

are not yet calibrated to any-
thing, so the desired property P(X ∈ Zα

pZ
) ≥ 1 − α does

not yet hold. The α is so far just a parameter, and needs to
be related to a random variable X of interest. In Section 3.2
we explore a method to probabilistically calibrate Zα

pZ
using

conformal prediction. This essentially boils down to finding
a monotonic function s : [0, 1] 7→ [0, 1] for α such that
the inequality 1 is guaranteed. Indeed, the Zα

pZ
shown in

Figure 2 show a uniformly evaluated α. If one replaces this
with a monotonic function s(α), quite dramatically differ-
ent nested structures are obtained. Examples are shown in
Figure 3. One may interpret s(α) as the cumulative proba-
bility distribution (cdf) of α, which when sampled yields a
random zonotope.

Zs(α)
pZ marginal X1 s(α)

Figure 3: Three examples of the same nested zonotope fam-
ily Zα

pZ
, but with different s(α) functions. The central col-

umn shows the projection of the sets onto the X1 dimension.

We note that inequality 1 can be guaranteed irrespective of
the chosen Z and pZ , however the ‘quality’ of the prediction
sets (their size relative to their α confidence-level) depends
on how well Zα

pZ
captures X’s distribution shape. We there-

fore require the shape of the Zα
pZ

sets be fitted with respect
to the dataset. That is given, some data {X1, . . . , XN} sam-
pled from an unknown distribution Xi ∼ FX , we would
like to find an enclosing zonotope such that all Xi ∈ Z .
We also require the core pZ to be fitted, which plays the
role of defining the region of the highest confidence, the
‘central’ point of the dataset in some sense. That is, all the
prediction sets will contract towards this point, and so it is
desirable for the region around this point to occupy a high

density of samples. This point can be determined in terms
of data depth, how deep a point is in a dataset with respect
to some metric. This point is somewhat analogous to the
Bayesian posterior mode. Methods to fit Zα

pZ
are described

in Section 3.1.

A potentially interesting corollary of proposition 1 are a
simpler family of nested hyperrectangles Bα

pB
, in terms of a

centre vector cB ∈ Rn, radius vector rB ∈ Rn, core pB ∈ B,
and α ∈ [0, 1].

Corollary 1 The following family of hyperrectangles are
nested

Bα
p =

{
x ∈ Rn

∣∣∣ |xi − (1− α)ci − αpi| ≤ (1− α)ri

}
,

for all i = 1, . . . , n, and with p ∈ B and α ∈ [0, 1].

Some analysis is simpler in terms of hyperrectangles, and
so one could opt to use this family rather than Zα

pZ
.

3.1 FITTING ZONOTOPE PREDICTION SETS

In this section we discuss various methods to fit Zα
pZ

to a
dataset Xi ∼ FX , that is to find a data-enclosing zonotope
Xi ∈ Z for all samples, and an estimated point pZ with a
high data-depth.

Fitting a rotated hyperrectangle for Z A simple but
effective method is to enclose Xi is using rotated hyperrect-
angle, with generators GZ along the principal components
of the data.

SVD
&

bounding box

Project
&

find pZ

Calibrate

Figure 4: Illustration of fitting a zonotope using the principal
component analysis. The data is rotated into the PCA basis,
a bounding hyperrectangle is fit in this space, then mapped
back to the original coordinates. The resulting zonotope has
generators aligned with the principal components, capturing
the dominant directions of variation.

A singular value decomposition (SVD) of the data X =
UΣV ⊤ yields a diagonal matrix Σ of (decreasing) singular



values and V ⊤ matrix of singular (or eigen-) vectors. The
singular values provide a natural ranking of each eigenvec-
tor’s contribution to the variance of X . An enclosing hyper-
rectangle can be easily found by computing the data min
and max over each dimension of U . Upon converting this
hyperrectangle (more details appendix B.1) to a zonotope
representation, the zonotope ZU = ⟨cU , GU ⟩ can be pro-
jected back to the original space by ZX = ⟨V ΣcU , V ΣGU ⟩.
This yields a zonotope whose generators are aligned with
the eigenvectors of the dataset. Figure 4 illustrates this on
a half-moon dataset. Although simple, quick to compute,
and scalable, an obvious downside to this method is that it
only yields zonotopes with generators as the same number
of dimensions of X .

Overapproximating a convex hull for Z A second
method to fit Z is by first computing the convex hull CH

of Xi, giving a bounding polytope of the data. An enclos-
ing zonotope Z ⊇ CH can then be computed (detailed in
appendix B.2). This yields a zonotope with half the number
of generators as there are bounding half-spaces of CH . We
note that the overapproximation of a convex hull with a
zonotope requires a conversion between the vertex represen-
tation (v-rep) of polytope to the half-space representation
(h-rep), where the v-rep corresponds to a vector of extreme
points, and the h-rep is a vector of bounding half-spaces.
The conversion from v-rep to h-rep (and vice-versa) can be
an expensive operation. Figure 5 illustrates this method on
a correlated Gaussian distribution.

Calibrate

Figure 5: Illustration of fitting using the convex hull.

Additionally, computing CH can be expensive for higher
dimensions or for large quantities of data. For these situa-
tions, we recommend the first method, which scales very
favorably.

Euclidean data-depth for pZ A fast, but potentially in-
accurate, method is to take pZ to be the data point Xi with
the greatest Euclidean depth w.r.t the sample mean µ

pZ = argmax
Xi

(1 + dE(Xi))
−1

where dE is the Euclidean distance of x to µ

dE(x) =
√
(x− µ)⊤(x− µ).

Mahalanobis data-depth for pZ A straightforward im-
provement is to include the data covariance Σ in the depth

estimation, using the Mahalanobis distance

dM(x) =
√
(x− µ)⊤Σ−1(x− µ),

with again pZ being taken to be the sample Xi with the
greatest depth

pZ = argmax
Xi

(1 + dM(Xi))
−1.

We find this method also fast, scalable, and more accurate
than the Euclidean depth when the data covariance can be
inverted. Messoudi et al. [2022] use a metric similar to dM as
a non-conformity score, the level-sets of which are elliptical.

Approximate Tukey’s depth for pZ A popular measure
of depth is Tukey’s depth (also known as half-space depth),
which for a particular point Xi is defined as the smallest
number of points from the dataset that can be contained in
any half-spaces passing through Xi. I.e. what is the smallest
data partition that can be obtained

dT (x) = inf
v∈Rd

1

n

n∑
j=1

I{v⊤(Xj − x) ≥ 0},

where I is the indicator function that the sample Xi is in the
half-space defined by vector v and point x. We then pick pZ
to be the point with the greatest depth

pZ = argmax
Xi

dT (Xi).

Although Tukey’s depth is robust, it is highly expensive to
compute (requiring 2 loops over the data), we therefore find
this approximate Tukey’s depth performs quite well up to
moderate dimensions

d̃T (x) = inf
v∈V

1

n

n∑
j=1

I{v⊤(Xj − x) ≥ 0},

where are V are the normal vectors of the data enclosing
set. That is, one only checks the half-spaces composing the
enclosing zonotope Z .

3.2 CALIBRATING ZONOTOPE PREDICTION
SETS

Calibration with a known distribution For mostly il-
lustrative purposes, we begin by showing how Zα

pZ
can be

calibrated from a known multivariate distribution, whose
cdf FX or density fX are available. This could perhaps be
useful for some applications, but the next method (calibrat-
ing from sample data) is likely to find wider use. Given a
zonotope Z (ideally containing the range of fX or other-
wise some large probability region (PX(Z) ≈ 1 if X is
unbounded) and a pZ ideally near the mode, the structure



Figure 6: Effect of grid size in membership computation
(equation 4). The example computes the prediction sets
of a 2-dimensional standard normal gaussian. A large 2M
calibration points and 200M points for empirical coverage
P(Zα) are used to isolate the effect of the discretisation.

can be calibrated by integrating the density fX in the sets
Zα

pZ
:

s(α) = 1−
∫
Zα

pZ

fX(x)dx.

The condition

P(X ∈ Zs(α)
pZ

) ≥ 1− α

holds straightaway.

Calibration from sample data Our method is simi-
lar to conformal prediction, as described in section 2,
however without a trained regressor f̂ and our data
{X1, X2, . . . , Xn} is multidimensional. We also have a
parametric set family Zα

pZ
in contrast to a non-conformity

scoring function. However, the set-membership of the data
αi = sup{α ∈ [0, 1] | Xi ∈ Zα

pZ
} can be used to rank

or score the data. Under the assumption of exchangeability,
the probability of another Xn+1 having a membership score
as extreme as the αi’s is equation 2. This directly leads
to the (conservative) quantile s(ϵ) = α⌈ϵn⌉ with sorted α
producing a set with the property

P(Xn+1 ∈ Zs(ϵ)
pZ

) ≥ 1− ϵ, (3)

where ϵ ∈ [0, 1] is a user defined confidence value.

We note that computing the exact membership score αi =
sup{α ∈ [0, 1] | Xi ∈ Zα

pZ
} may be challenging, as the

set must be varied with α until Xi /∈ Zα
pZ

, which could be
relatively well performed using mathematical optimisation
for certain set representations. We however suggest a simple
method, where α is uniformly discretised in a grid in A =
{0, 0.111, . . . , 0.999, 1}, and computing

αi = max{α ∈ A | Xi ∈ Zα
pZ

}. (4)

Although the exact supremum isn’t found, this still gives
conservative results, as two collection of scores αi ≤ αj

will yield a lower bound on probabilistic bound on 3. I.e.

larger prediction set Zαi
pZ

⊇ Zαj
pZ . This claim is evidenced

with a numerical experiment in Figure 6, where one can
observe that irrespective of the discretisation a guarantee
can be obtained, however the “resolution” of the sets is ef-
fected: the more grid points used, the tighter the bounds are.
We suggested that the discretisation of the α values is as
least a large as the data set, to avoid multiple repetitions of
the same αi values as much as possible. Also note that like
in conformal prediction, the maximum number of unique
prediction sets that can be obtained is the number of cali-
bration data points provided. Figure 7 gives three examples
of calibrating Zα

pZ
using this method with different data

lengths.

Figure 7: Shows three examples of calibration using confor-
mal prediction. The top row shows a correlated Gaussian
of 2000 points, and the middle a 200 samples of a skewed
half-moon, and bottom 25 samples of a sin function. The
final column shows the empirically tested coverage.

Some potential alternative frameworks exist for reliably
calibrating Zα

pZ
, including inferential models [Martin and

Liu, 2015], confidence-structures [Balch, 2012], frequency-
calibrated belief functions [Denœux and Li, 2018], and sce-
nario theory [De Angelis et al., 2021]. There are likely
strong links between these methods and what is proposed
here.

4 FUNCTIONAL PREDICTION SETS

Given a pre-trained model f̂ : X 7→ F , which maps
from Euclidean space X ∈ Rm (space of PDE inputs)
to a space of functions F ∈ F (PDE solutions), discre-
tised on a fine grid F1 = [F1(y1), . . . , F1(yl)] ∈ Rl, we
can compute the error of f̂ ’s error on some unseen data
{(X1, F1), . . . , (Xn, Fn)} with ei = Fi − f̂(Xi). We may
then reduce the dimension of ei using an SVD: e = UΣV ⊤,
where the singular values indicate the variance contribution
of each eigenvector to the variance of ei. We may truncate
the dimensions of the data, capturing some high (often 99%)
of the overall variance, and projecting the data ei onto these



remaining dimensions, a low dimension representation of
f̂ ’s error: Ui. Depending on the size of these dimensions,
one of the above fitting methods may be applied to find
Zα

pZ
. We find the ‘rotated hyperrectangle’ method and the

Mahalanobis depth scale well to high dimensions, with the
convex hull method being tighter for smaller dimensions.
Zα

pZ
may then be calibrated, giving P(Un+1 ∈ Zα) ≥ 1−α.

Mapping Zα
pZ

through the linear transformation back to Rl

is straightforward for the underlying zonotope. The proba-
bilistic component α is also straightforward: each zonotope
level-set may be propagated independently g(Zα

pZ
) for any

function g, i.e. perform one transformation for each predic-
tion set, with the α-guaranteed being retained by the set.
Note we may perform this since we compute a multivariate
prediction set, this would not be the case had each dimension
been fit independently.

These nested sets can be added to the prediction of f̂ , yield-
ing a functional prediction set

Cα = f̂(Xn+1) + UΣZα
pZ

.

However, the resulting confidence regions are not strictly
a guaranteed bound on (Xn+1, Fn+1), since we have trun-
cated some data variance during the fitting. Although these
dimensions weakly effect the variance of Fi, we cannot
strictly claim a guaranteed bound. We therefore propose a
quite simple method to account for the uncertainty in these
dimensions, without including them in the expensive set
calibration.

4.1 BOUNDING TRUNCATION ERROR

To maintain rigorous coverage guarantees, we bound the
uncertainty in the truncated dimensions by constructing a
hyperrectangle E that encloses the projection of all calibra-
tion errors onto the discarded SVD modes. Specifically, we
compute the element-wise minimum and maximum of the
projected errors in the truncated space, forming a bounding
box. Upon taking the Cartesian product Rα = Zα

pZ
× E,

one obtains a zonotope in high dimensions which contracts
in the important directions as α varies, but remains constant
in the truncated dimensions. The α-guarantee remains un-
changed due to this operation because: 1) the number of data
points remains unchanged (only their dimension), and 2)
the data is totally bounded (and remains so as α changes) in
the extra dimensions. Slightly more formally, the indicator
function for a Cartesian product is

IZ×E(x1, x2) = IZ(x1)IE(x2),

and since E is a bounding box for the calibration data, IE
always returns ‘true’ during calibration, and thus would not
change the scoring in equation 4 had it been included. The
truncated dimensions may thus be ignored during calibra-
tion. Of course, when empirically testing the coverage of a

prediction set constructed this way, both the zonotope mem-
bership IZ and the bounding box membership IE must be
considered.

Indeed, there is a slight performance-loss due to this (our
probabilistic bound becomes looser), however this can be
expected to be quite minor, as these truncated modes con-
tribute minimally to the overall variance of Fi. Our final
prediction set becomes

Cα = f̂(Xn+1) +Rα,

where Rα = UΣ(Zα
pZ

× E) has been projected back.

Cartesian product of zonotopes The Cartesian product
between two zonotopes ZX ⊂ Rn and ZY ⊂ Rm is a
zonotope ZX×Y ⊂ Rn×m, whose centre and generator are
a simple concatenation of the centres and generators of ZX

and ZY : cX×Y = [cX cY ] and GX×Y = [GX GY ].

4.2 PDE SURROGATE EXAMPLES

We use LazySets.jl [Forets and Schilling, 2021] for
the set construction, and NeuralOperators.jl [Pal,
2023] and some prior models from literature Gopakumar
et al. [2024a] were used for the base Sci-ML models.

To demonstrate the methodology, we construct functional
prediction sets on a Fourier neural operator (FNO) for the
Burger’s equation, trained on data supplementary data pro-
vided from Li et al. [2020], which was built by sampling
a numerical PDE solver. After taking an FNO model from
literature 1025 points we used to train the SVD, leaving 500
for calibrating the prediction sets, and 503 for validation.
Additional information about the training setup and the un-
derlying PDEs are provided in appendix D. The predictions
from the FNO are discretise onto a grid of 1024 points. A
32-dimensional rotated hyperrectangle was fitted on the im-
portant directions the error’s SVD, with pZ found using the
Mahalanobis depth. The entire calibration process took 75s
on a modern laptop, with most of the computation spent on
computing the membership 4 of the calibration data. Once
calibrated, computing a prediction is timed at 0.02s. Four
realisations of the training dataset are shown in Figure 8,
with the ground truth shown in yellow.

We also note that a 1024 dimensional nested zonotopic set
is predicted for the output of the FNO, what’s shown in
Figure 8 is the axis projection of this set. If we inspect the
individual axis, the dependence of the field can also be seen
captured.

Table 1 gives a more in depth comparison of our method
to the supremum-based method (labelled modulation)
from Diquigiovanni et al. [2022], for various PDEs and mod-
els. We note that our method performs favorably in terms
of the tightness of the predicted multivariate set (labelled
efficiency). Standard metrics for efficiency for multivariate



Figure 8: Examples of constructed prediction sets of the FNO for Burger’s equation, predicted on test data set. The method
predicts nested zonotopes in the high-dimensional space of the surrogate model’s prediction. This plot shows the axis-
projection of these zonotopes. The ground truth is shown in yellow.

Table 1: Comparison of empirical coverage and efficiency
for various PDEs. Coverage is the empirical frequency with
which the true function lies within the predicted set (em-
pirical validation of Eq. 1). Efficiency is a measured as
the volume of the prediction set — smaller values indicate
tighter predictions for the same coverage level.

α = 0.1 Modulation Rotated Zonotope
α = 0.2 Box (ours) (ours)

PDE (model) Coverages

Burgers (FNO) 89.36 91.41 88.57
78.32 83.98 79

Burgers (DeepO) 87.79 86.8 90.22
76.46 79.15 82.24

Wave (FNO) 86 89.2 90
78 78.4 81.6

Navier Stokes 86.83 89.17 87.33
(FNO) 75.83 78.67 79.67

Efficiency

Burgers (FNO) 3.956 2.927−1 1.910−1

1.634 2.562−1 1.867−1

Burgers (DeepO) 2.7422 3.79 5.787
1.0492 2.735 5.386

Wave (FNO) 3.5884 5.656−3 5.258−3

3.5594 4.569−3 4.744−3

Navier Stokes 9.2514 3.4231 3.5291

(FNO) 7.0404 2.4411 3.2821

XY denotes X × 10Y

conformal prediction are to use the set’s volume [Messoudi
et al., 2022]. However, since computing the volume of a high
dimensional zonotope is challenging, we elect to use the
average 2-dimensional projections. Further details of these
benchmarks can be found in appendix C and D, including
a comparison with lower dimensional data sets from the
Mulan and the UCI repository, using more standard MLPs.
We note that several other multivariate conformal prediction
method are unable to produce results for these models, as
they do not scale to the required dimensions. A compari-
son with these methods is found the appendix in Table 3
for MLPs. We note that for lower dimensional examples,
elliptical set conformal prediction performs best, however

our method is still competitive.

5 DISCUSSION

The proposed method is similar to the usual score-based con-
formal prediction, but where we directly solve for a valid pre-
diction set, instead of taking a level-set of a non-conformity
scoring function. Indeed, the membership function of Zα

pZ

is the non-conformity score in conformal prediction Gupta
et al. [2022]. If one could find an efficient (perhaps analyti-
cal) expression for this membership function, in terms of α
and the underlying set-representation, then the calibration
procedure would be made much more efficient (correspond-
ing to a simple function evaluation), without the need to
check the set-membership of Zα

pZ
in 4, which is a costly

part of the proposition. This would also additionally greatly
simplify the implementation.

We therefore share many of the (dis-)advantages of con-
formal prediction, including finite-sample guarantees and
being model agnostic. Although we show example of re-
gression problems, we believe our method (perhaps with
a different set-representation) could apply to multivariate
classification problems.

Limitations Since method requires the same assumption
as conformal prediction, namely exchangeability, we there-
fore suffer similar limitations. The guarantee is lost if the
dataset is not exchangeable (for example if it changes over
time). We also give provide marginal coverage, rather than
the stronger conditional coverage, which is more desirable
for surrogate modelling. However, methods for improving
conditional coverage estimates [Plassier et al., 2025] could
be applicable. Other than the usual limitations from confor-
mal prediction, we additionally require an SVD to be trained,
which can require a substantial amount of extra training data,
in addition to the extra calibration data required for split
conformal prediction.

Finally, we mention that our method would greatly benefit
for refined methods for fitting zonotopes to data, to improve
the tightness of the fitted set.
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A FURTHER DETAIL ABOUT PROPOSITION 1.

Here we provide additional detail about the proposed nested zonotope family Zα
pZ

, and a proof that the family is a nested.

A.1 INTUITION BEHIND THE NESTED FAMILY

Figure 9 gives a visual description of how the nested sets Zα
pZ

are constructed. Given a zonotope Z and a point pZ ∈ Z , the
centres of the parametric zonotopes move along the line defined by cZ(1− α) + pZα, and additionally the generators are
contracted by (1− α). Thus, the zonotopes are translated toward pZ as α increases, and their size reduces. Figure 9 shows
an example of a parametric zonotope being constructed for α = 0.5. Note that all the sets in Zα

pZ
have the same shape, and

only differ by a translation and a contraction. This is partially because all generators are scaled by the same magnitude. Note:
cZ does not need to be inside all zonotopes, however the point pZ is inside all zonotopes. Indeed, it is the only point that is
in all zonotopes (given Zα=1

pZ
= {pZ}).

Figure 9: (Left) Shows the outline of an example Z , with generators plotted. Zonotope centre cZ is in cyan and core pZ in
red, and shows the parametric line defined by cZ(1− α) + pZα. (Right) Same outline of Z , additionally with the zonotope
defined at α = 0.5 in grey, which has its centre halfway in between cZ and pZ , and its generators scaled by 0.5.



A.2 PROOF OF PROPOSITION 1.

Here we provide a detailed proof of proposition 1. (nested zonotopic sets), that Zα1
pZ

⊇ Zα2
pZ

for any 0 ≤ α1 ≤ α2 ≤ 1. We
remind you that Zα

pZ
is defined as

Zα
pZ

=

{
x ∈ Rn

∣∣∣ x = cZ(1− α) + pZα+

p∑
i=1

ξigi(1− α), ξi ∈ [−1, 1]

}
,

for some point pZ ∈ Z and α ∈ [0, 1]. The proof is based on the following rational:

1. Take two sets L and K composed as the intersection of n sets L =
⋂n

i=1 Ai and K =
⋂n

i=1 Bi, if each Bi ⊆ Ai, then
K ⊆ L.

2. Since a zonotope can be considered as an intersection of half-spaces (H-representation), it suffices to study the
subset-hood of the individual half-spaces composing Zα1

pZ
and Zα2

pZ
.

3. A zonotope Z = ⟨cZ , GZ⟩ can be characterised as the image of the box×n

1
[−1, 1] in Rn, where n is the number

generators, by an affine transformation defined by the rotation and stretching with matrix GZ and translation with
vector cZ .

4. Equivalently it can be defined as the intersection of the same affine transformation of the half-spaces defining the box
×n

1
[−1, 1].

5. A half-space H1 = {x ∈ Rn|a⊤1 x ≤ b1} is a subset of another half-space H2 = {x ∈ Rn|a⊤2 x ≤ b2}, H1 ⊆ H2 if:

(a) a1 and a2 are positively aligned, i.e., they are parallel and have the same direction: a1 ≤ λa2 for λ ≥ 0.
(b) b1 ≤ λb2, where λ the same as (a).

Condition (a) is straightforward to prove: Zα1
pZ

transforms any half-space normal vectors a as

(GZ(1− α1))
−⊤a = (1− α1)

−1G−⊤
Z a = (1− α1)

−1a′,

and Zα2
pZ

as
(GZ(1− α2))

−⊤a = (1− α2)
−1G−⊤

Z a = (1− α2)
−1a′.

Therefore, since α1 ≤ α2:
(1− α1)

−1a′ ≤ (1− α2)
−1a′,

holds, and therefore half-spaces transformed by Zα1
pZ

and Zα2
pZ

are parallel and have the same direction. We additionally know
that the normal vector a′ is contracted by λ = (1− α2)/(1− α1) and that λ ∈ [0, 1]. For condition (b), Zα1

pZ
transforms any

half-space offset b as

b1 = b+ a⊤(GZ(1− α1))
−1(cZ(1− α1) + pzα1)

= b+ (1− α1)
−1a⊤(G−1

Z cZ(1− α1) +G−1
Z pzα1).

Setting JZ = G−1
Z cZ and KZ = G−1

Z pZ :

b1 = b+ (1− α1)
−1a⊤(JZ(1− α1) +KZα1)

= b+ a⊤(JZ + α1(1− α1)
−1KZ)

= b+ a⊤JZ + α1(1− α1)
−1a⊤KZ .

By symmetry, we also know that for Zα2
pZ

:

b2 = b+ a⊤JZ + α2(1− α2)
−1a⊤KZ .

Inserting these two expressions into our inequality b1 ≤ (1−α2)/(1−α1)b2 and simplifying (noting that a⊤JZ and a⊤KZ
are scalar):

α1(1− α1)
−1 ≤ (1− α2)/(1− α1)α2(1− α2)

−1

α1 ≤ α2.

Thus, any half-space H transformed by Zα
pz

has the property Hα1 ⊇ Hα2 for any α1 ≤ α2, and Zα1
pz

⊇ Zα2
pz

for any
α1 ≤ α2, concluding the proof.



B RELATIONSHIPS BETWEEN SET-REPRESENTATIONS USED IN THE PAPER

We find the LazySets.jl1 [Forets and Schilling, 2021] manual, and software docstrings, quite thorough resources for set-
representations and their respective overapproximations. Here we summarise some set isomorphisms and overapproximations
used the main paper.

B.1 CONVERTING HYPERRECTANGLES TO ZONOTOPES

Hyperrectangles are exactly representable as zonotopes. A hyperrectangle B ⊂ Rn with centre vector CB ∈ Rn and radius
vector RB ∈ Rn, has the same centre in zonotopic representation CZ = CB, and a diagonal generator matrix GZ ∈ Rn×n

with the radius vector along the diagonals GZ = InRB, where In is the identity matrix in n dimensions.

B.2 OVERAPPROXIMATING A POLYTOPE WITH A ZONOTOPE

With the algorithm initially proposed by Guibas et al. [2003] (section 4.2), here we summarise the version implemented in
LazySets.jl [Forets and Schilling, 2021]. Further detail can be found therein.

Given a polytope CH in vertex representation (for example the result of a convex hull of a dataset) with vertices vk, and
some user-selected directions dk (to which the constructed zonotope’s generators will be parallel to), the overapproximation
Z ⊇ CH can be performed by solving the following linear program:

min

l∑
k=1

αk

s.t.

vj = c+

l∑
k=1

bkjdk ∀j

−αk ≤ bkj ≤ αk ∀k, j
αk ≥ 0 ∀k.

The resulting zonotope has center c and generators αkdk. In this work, we take the directions dk to be the normal vectors of
the enclosing half-spaces the initial polytope.

C EXTENDED EXPERIMENT RESULTS

Table 2 gives further information about the data sets, models, and output dimensions for the experiments in this paper. We
note that the MLP benchmarks (Bias to Crime) were originally found in Messoudi et al. [2022] for their comparison of
multivariate conformal prediction. Table 3 gives an extended presentation of experimental results, including those for lower
dimensional MLPs. Note that for the non-PDE benchmarks, the prediction sets’ volume was used as an efficiency metric,
while for the high dimensional problem we used average 2D areas, as detailed in the main text.

D PHYSICS, SURROGATE MODELS, AND TRAINING

Here we provide extra details about the PDEs, the functional surrogate models, and their training configurations, used in
the main paper. The numerical solvers, data and functional surrogates models used for PDE modelling is borrowed from
[Gopakumar et al., 2024a].

1https://github.com/JuliaReach/LazySets.jl



Table 2: Information about multivariate and PDE datasets

Name model Calibration data dimensions Source

Bias MPL 7750 2 Cho et al. [2020]
Music MPL 350 2 Zhou et al. [2014]
Indoor MPL 6946 2 Torres-Sospedra et al. [2014]

SGMM MPL 79728 4 Nugteren and Codreanu [2015]
Crime MPL 628 18 Redmond and Baveja [2009]

Burgers FNO 2048 1024 Gopakumar et al. [2024a]
Burgers DeepONet 2048 1024 Gopakumar et al. [2024a]

Wave FNO 7000 4096 Gopakumar et al. [2024a]
Navier Stokes FNO 7000 4096 Gopakumar et al. [2024a]

Table 3: Results of coverage and efficiency comparison on multivariate and PDE data sets.

α = 0.1 Coverages Efficiency
α = 0.2 Modulation Copula Ellipse Rotated Zonotope Modulation Copula Ellipse Rotated Zonotope

dataset / PDE (model) Box (ours) (ours) Box (ours) (ours)

Bias 89.46 89.06 91.13 88.18 91.29 5.186−2 5.478−2 5.418−2 5.460−2 6.280−2

78.99 79.95 81.15 79.15 82.59 3.346−2 3.508−2 3.357−2 3.525−2 3.913−2

Music 89.71 94.86 96.57 90.86 90.29 4.927−1 5.504−1 7.467−1 6.905−1 6.125−1

81.71 86.29 86.29 86.29 82.29 3.235−1 3.460−1 4.104−1 5.512−1 4.425−1

Indoor 90.64 90.96 90.18 88.80 91.22 8.105−2 8.655−2 7.377−2 1.217−1 1.377−1

80.33 81.11 81.03 78.72 81.20 4.494−2 4.580−2 4.523−2 7.108−2 7.473−2

SGMM 89.98 90.71 89.48 89.88 89.85 2.541−5 2.950−5 1.176−9 2.224−6 2.632−6

80.01 80.93 79.37 79.74 80.28 4.142−6 4.868−6 2.331−10 1.444−6 1.715−6

Crime 92.04 89.17 90.45 87.58 91.08 4.125−10 8.923−7 1.583−22 6.705−18 7.739−15

85.35 79.30 80.89 78.66 80.89 1.387−12 1.889−9 4.171−25 8.472−19 2.793−15

Burgers (FNO) 89.36 — — 91.41 88.57 3.956 — — 2.927−1 1.910−1

78.32 — — 83.98 79 1.634 — — 2.562−1 1.867−1

Burgers (DeepO) 90.92 — — 92.77 89.65 2.5133 — — 5.868 8.330
80.96 — — 83.01 79.69 9.8992 — — 4.052 7.580

Wave (FNO) 86 — — 89.2 90 3.5884 — — 5.656−3 5.258−3

78 — — 78.4 81.6 3.5594 — — 4.569−3 4.744−3

Navier Stokes 86.83 — — 89.17 87.33 9.2514 — — 3.4231 3.5291

(FNO) 75.83 — — 78.67 79.67 7.0404 — — 2.4411 3.2821

XY denotes X × 10Y and "—" denotes no result

D.1 BURGERS’ EQUATION

The Burgers’ equation is a partial differential equation often used to model the convection-diffusion of a fluid, gas, or
non-linear acoustics. The one-dimensional equation is

∂u

∂t
+ u

∂u

∂y
= ν

∂2u

∂2y
,

where u defines the field variables, ν the kinematic viscosity, and with y and t being the spatial and temporal coordinates
respectively. We define a family of initial conditions as follows:

u(y, t = 0) = sin(απy) + cos(−βπy) +
1

cosh(γπy)
,

parameterised by α ∈ [−3, 3], β ∈ [−3, 3], and γ ∈ [−3, 3].

Data set generation A dataset of 2048 (training) + 1000 (calibration) + 1048 (validation) PDE solutions is generated by
Latin Hypercube sampling (uniform) the α, β, and γ parameters (thus generating random initial conditions for the PDE),
and then solving Burgers’ equation using a spectral solver [Canuto, 2007]. Each simulation is run for 500-time iterations
with a ∆t = 0.0025 time step and a spatial domain spanning [0, 1], uniformly discretised into 1024 spatial units. The field at
the last time point is then saved as the output, and the surrogate’s task is to learn the mapping from the initial condition to
the fields final state u(y, 0) → u(y, tend).



D.2 WAVE EQUATION

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
,

where u defines the field variable, c the wave velocity, with x, y and t being the spatial and temporal coordinates respectively.
The initial conditions are defined as:

u(x, y, t = 0) = exp
(
−α((x− β)2 + (y − γ)2)

)
,

parameterised by α ∈ [10, 50], β ∈ [0.1, 0.5], and γ ∈ [0.1, 0.5], with an additional constraint ∂u
∂t (x, y, t = 0) = 0.

Data set generation A dataset of 500 (training) + 1000 (calibration) + 1000 (validation) PDE solutions is generated by
Latin Hypercube sampling the α, β, and γ parameters. The wave equation is solved using a spectral solver with leapfrog time
discretization and Chebyshev spectral method on tensor product grid [Gopakumar et al., 2023]. Each simulation runs for
150 time iterations with ∆t = 0.00667 across a spatial domain of [−1, 1]2, discretized into 33 spatial units per dimension.
The first 80 time instances of each simulation are used for training.

D.3 NAVIER-STOKES EQUATIONS

The Navier-Stokes scenario that we are interested in modelling is taken from the exact formulation in Li et al. [2020], where
the viscosity of the incompressible fluid in 2D is expressed as:

∂w

∂t
+ u∇w = ν∇2w + f, x ∈ (0, 1), y ∈ (0, 1), t ∈ (0, T ) (5)

∇u = 0, x ∈ (0, 1), y ∈ (0, 1), t ∈ (0, T ) (6)
w = w0, x ∈ (0, 1), y ∈ (0, 1), t = 0, (7)

where u is the velocity field and vorticity is the curl of the velocity field w = ∇× u. The domain is split across the spatial
domain characterised by x, y and the temporal domain t. The initial vorticity is given by the field w0. The forcing function
is given by f and is a function of the spatial domain in x, y. We utilise two datasets from Li et al. [2020] that are built by
solving the above equations with viscosities ν = 1e− 3 and ν = 1e− 4 under different initial vorticity distributions. For
further information on the physics and the data generation, refer Li et al. [2020].

D.4 MULTILAYER PERCEPTRONS

Multilayer Perceptrons (MLPs), a fundamental class of neural networks, are composed of sequential layers of neurons
that transform input features through learned weight matrices and non-linear activations [Haykin, 1994]. For a given input
x ∈ Rdin , an MLP with L layers computes:

hi+1 = σ(Wihi + bi), i = 0, . . . , L− 1

hL = WLhL + bL (8)

where h0 = x, Wi ∈ Rdi+1×di and bi ∈ Rdi+1 are learnable parameters, and σ is a non-linear activation function (in this
case, hyperbolic tangent).

D.5 FOURIER NEURAL OPERATORS

Fourier Neural Operators (FNOs), introduced by Li et al. [2020], are specific instance of the Neural Operator (NO) class
of ML models, which have shown efficacy in mapping between function spaces. Following a description by Gopakumar
et al. [2024b], a NO can be written as a parameterised mapping between function spaces Gθ : A 7→ U , where Gθ is a neural
network parameterised by θ, with three specific architecture elements, which are sequential:

1. Lifting: A fully local, point-wise operation that projects the input domain to a higher dimensional latent representation
a ∈ Rda → ν0 ∈ Rdν0 ,



2. Iterative Kernel Integration: Expressed as a sum of a local linear operator, and a non-local integral kernel operator,
that iterates νi → νi+1 for several layers:

νi+1 = σ(Wνi(x) + κ(a;ϕ)νi(x)),

where W is the learnable linear components and σ is a non-linear activation (as in traditional networks). The kernel κ
(with learnable parameters ϕ) characterises a neural network’s layer as a convolution, as the following integral with the
prior layer’s output νi:

(κ(a;ϕ)νi)(x) =

∫
D

κ(x, y, a(x), a(y);ϕ)νi(y)dy.

3. Projection Similar to lifting, but with reversed dimensions νn ∈ Rdνn → u ∈ Rdu , where n is the total number of
layers.

A Fourier Neural Operator is a specific class of the above, which defines κ with Fourier convolutions:

(κ(a;ϕ)νi)(x) = F−1(F(Rϕ) · F(νi)),

where F and F−1 are the Fourier and inverse Fourier transform, and Rϕ is a learnable complex-valued tensor comprising of
truncated Fourier modes. In practical application, the network is discretised to a finite number of modes and the discrete
FFT is used for F . FNOs are learnable using gradient-based optimisation using automatic differentiation.

D.6 MLP TRAINING

The trained MLP model consists of:

1. Input layer: Rdin → R256

2. Hidden layers: 3 layers of R256 → R256 transformations with tanh activation

3. Output layer: R256 → Rdout

The network was trained using the Adam optimizer with an initial learning rate of 5× 10−3, which was reduced by a factor
of 0.5 every 50 epochs. Training proceeded for 500 epochs using mini-batches of size 50 and mean squared error loss. Input
features were normalized using a min-max scaling strategy applied per variable. The total parameter count for a single
input/output dimension is 256(din + 1) + 2562(L− 1) + 256 + dout(256 + 1).

D.7 FNO TRAINING

The trained FNO model consists of

1. Lifting layer: a full connected layer R2 → R64 (192 parameters)

2. Fourier layers: 4 Fourier layers (69696 parameters each), each consisting of:

(a) a full connected later R64 → R64 (4160 parameters)
(b) Fourier operator kernel R64 → R64, truncated to 16 modes (65536 parameters)

3. Projection layer: two layer fully connected network R64 → R125 → R1, with Gelu (Gaussian Error Linear Unit)
activation (8449 paramaters).

The FNO was trained for 500 epochs using the Adams optimiser with stepsize of 10−3 and a weight decay of 10−4, on an
L2 loss, and is timed at around 8 minutes on an NVIDIA A100 GPU.
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