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ABSTRACT

There is a growing concern about applying batch normalization (BN) in adversarial
training (AT), especially when the model is trained on both adversarial samples
and clean samples (termed Hybrid-AT). With the assumption that adversarial
and clean samples are from two different domains, a common practice in prior
works is to adopt dual BN, where BNadv and BNclean are used for adversarial
and clean branches, respectively. A popular belief for motivating dual BN is that
estimating normalization statistics of this mixture distribution is challenging and
thus disentangling it for normalization achieves stronger robustness. In contrast
to this belief, we reveal that what makes dual BN effective mainly lies in its two
sets of affine parameters. Moreover, we demonstrate that the domain gap between
adversarial and clean samples is actually not very large, which is counter-intuitive
considering the significant influence of adversarial perturbation on the model.
Overall, our work sheds new light on understanding the mechanism of dual BN
in Hybrid-AT as well as its underlying two-domain hypothesis. Recommended
practices are summarized as takeaway insights for future practitioners.

1 INTRODUCTION

Adversarial training (AT) (Madry et al., 2018) that optimizes the model on adversarial examples is
a time-tested and effective technique for improving robustness against adversarial attack. Beyond
classical AT (also termed Madry-AT) (Madry et al., 2018), a common AT setup is to train the model
on both adversarial samples and clean samples (termed Hybrid-AT) (Goodfellow et al., 2015; Kannan
et al., 2018; Xie et al., 2020a). Batch normalization (BN) (Ioffe & Szegedy, 2015) has become a de
facto standard component in modern deep neural networks (DNNs) (He et al., 2016; Huang et al.,
2017; Zhang et al., 2019a; 2021), however, there is a notable concern regarding how to use BN in
the Hybrid-AT setup. The concern mainly stems from a two-domain hypothesis: “clean images and
adversarial images are drawn from two different domains" (Xie & Yuille, 2020). Guided by this
hypothesis, a technique has been proposed to disentangle the mixture distribution of the two domains
by applying a separate BN for each domain (Xie & Yuille, 2020).

The above technique has been adopted in multiple works with different names, such as auxiliary
BN (Xie et al., 2020a), mixture BN (Xie & Yuille, 2020), Dual BN (Jiang et al., 2020; Wang et al.,
2020; 2021). Despite different names, they refer to the same practice of adopting BNadv and BNclean

for adversarial and clean samples, respectively. To avoid confusion, we stick to using Dual BN for
the remainder of this work. Despite its increasing popularity, the mechanism of how dual BN helps
Hybrid-AT remains not fully clear. Towards a better understanding of the underlying mechanism,
we first revisit a long-held belief motivated by the two-domain hypothesis (Xie & Yuille, 2020).
Specifically, (Xie & Yuille, 2020) justifies the necessity of dual BN in hybrid AT with the following
claim (quoted from the abstract of (Xie & Yuille, 2020)):

“Estimating normalization statistics of the mixture distribution is challenging" and “disentangling the
mixture distribution for normalization, i.e., applying separate BNs to clean and adversarial images
for statistics estimation, achieves much stronger robustness."

The underlying motivation for the above claim is that BN statistics calculated on clean domain are
incompatible with training the model on adversarial domain, and vice versa. Therefore, Hybrid-AT
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with single BN suffers from such incompatibility with the mixed distribution for calculating the
normalization statistics. Meanwhile, it is claimed in (Xie & Yuille, 2020) that this incompatibility
can be avoided by Dual BN through training the clean branch on BNclean and the adversarial
branch on BNadv. As a preliminary investigation of this incompatibility, our work experiments
with a new variant of AT with cross-domain BN, namely training the adversarial branch with
BNclean. Interestingly, we find that using BN from another domain only has limited influence on the
performance. This observation inspires us to have closer look at what component in dual BN makes
it more effective than single BN in Hybrid-AT. Through untwining normalization statistics (NS) and
affine parameters (AP) in dual BN to include one effect while excluding the other, we demonstrate that
disentangled AP instead of NS plays the main role in the merit of dual BN in Hybrid-AT. Moreover,
we find that different APs in dual BN also well explain the performance discrepancy caused by the
BN choice (either BNadv or BNclean) at test time, which refutes prior claim which mainly attributes
it to the role of NS (Xie & Yuille, 2020).

The motivation for introducing Dual BN is inspired by a two-domain hypothesis that “clean images
and adversarial images are drawn from two different domains" (Xie & Yuille, 2020). After showing
their motivation does not hold, we further revisit this two-domain hypothesis itself. We reveal that
the domain gap between adversarial and clean samples is not as large as claimed in prior work (Xie
& Yuille, 2020). We point out a hidden flaw when prior work visualizes the NS from two domains
for highlighting a large adversarial-clean domain gap. Specifically, their visualization ignores the
influence of different AP. After fixing this hidden flaw, we demonstrate that this domain gap is small.
Interestingly, under the same perturbation/noise magnitude, we show that there is no significant
difference between adversarial-clean domain gap and noisy-clean counterpart. Therefore, we propose
a two-task hypothesis to replace the two-domain hypothesis in (Xie & Yuille, 2020; Xie et al.,
2020a) for theoretical justification on the necessity of dual BN in Hybrid AT. We design a dual linear
classifier experiment to verify this two-domain hypothesis which also motivates us to apply dual AP
to architectures with other normalization modules. Beyond vanilla Hybrid-AT, we further experiment
with Trades-AT (another variant of Hybrid-AT) (Zhang et al., 2019b) which by default adopts single
BN. We point out an NS inconsistency issue in their original implementation and demonstrate that
fixing it can significantly improve performance. Moreover, we find that the KL regularization loss in
Trades-AT can also be introduced to improve vanilla Hybrid-AT in the single BN setting.

The model robustness under PGD-10 attack (PGD attack with 10 steps) and AutoAttack (AA) (Croce
& Hein, 2020) are evaluated in our analysis as the basic experimental settings, with more details
reported in Section A of the appendix and a more specific setup discussed in the context. Overall,
considering the increasing interest in adopting dual BN in Hybrid-AT, our work comes timely by
taking a closer look at dual BN in Hybrid-AT as well as its underlying hypothesis for theoretical
justification. The main findings of our investigation are summarized as follows:

• In contrast to prior work that attributes the merit of dual BN in Hybrid-AT to disentangling
NS, we demonstrate that what plays the major role lies in its two sets of AP.

• The claimed large domain gap in prior work is caused by a hidden flaw of ignoring the
impact of AP, which motivates a two-task hypothesis for interpreting the task of Hybrid-AT.

• As takeaways, we recommend NOT disentangling NS in Hybrid-AT, since disentangling
NS has little influence on performance with dual AP and actually harms performance in the
single AP setting. Moreover, with a careful choice of training details, a single BN might be
sufficient for achieving competitive performance.

2 PROBLEM OVERVIEW AND RELATED WORK

2.1 DEVELOPMENT OF ADVERSARIAL TRAINING

Adversarial training. Adversarial training (AT) has been the most powerful defense method against
adversarial attacks, among which Madry-AT (Madry et al., 2018) is a typical method detailed as
follows. Let’s assume D is a data distribution with (x, y) pairs and f(·, θ) is a model parametrized by
θ. l indicates cross-entropy loss in classification. Instead of directly feeding clean samples from D to
minimize the risk of E(x,y)∼D[l(f(x, θ), y)], (Madry et al., 2018) formulates a saddle problem for
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finding model parameter θ by optimizing the following adversarial risk:

argmin
θ

E(x,y)∼D

[
max
δ∈S

l(f(x+ δ; θ), y)

]
(1)

where S denotes the allowed perturbation budget which is a typically lp norm-bounded ϵ. We term the
above adversarial training framework as Classical-AT. It adopts a two-step training procedures(inner
maximization + outer minimization), and trains the robust model with only adversarial samples.
Following the same procedure, (Xie & Yuille, 2020) proposes to train the robust model with both
clean and adversarial samples, termed as Hybrid-AT. The loss of Hybrid-AT is defined as follows:

LHybrid = αl(f(x; θ), y) + (1− α)l(f(x+ δ; θ), y) (2)

where x and x+ δ indicate clean and adversarial samples, respectively. α is a hyper-parameter for
balancing the clean and adversarial branches, is set to 0.5 in this work following (Goodfellow et al.,
2015; Xie & Yuille, 2020).

Development of AT. Since the advent of Mardy-AT and Hybrid-AT, numerous works have attempted
to improve AT from various perspectives. From the data perspective, (Uesato et al., 2019; Carmon
et al., 2019; Zhang et al., 2019c) have independently shown that unlabeled data can be used to
improve the robustness. From the model perspective, AT often benefits from the increased model
capacity of models (Uesato et al., 2019; Xie & Yuille, 2020). (Xie et al., 2020b; Pang et al., 2020;
Gowal et al., 2020) have investigated the influence and suggested that a smooth activation function,
like parametric softplus, is often but not always (Gowal et al., 2020) helpful for AT. It has been shown
in (Pang et al., 2020) that the basic training settings in AT can have a significant influence on the
model performance, and suggested a set of parameters for fair comparison of AT methods. If not
specified, we follow their suggested parameter settings.

2.2 BATCH NORMALIZATION IN AT

Batch normalization (BN). We briefly summarize how BN works in modern networks. For a certain
layer in the DNN, we denote the feature layers of a mini-batch in the DNN as B = {x1, ..., xm}. The
feature layers are normalized by mean µ and standard deviation σ as:

x̂i =
xi − µ

σ
· γ + β (3)

where γ and β indicates the weight and bias in BN, respectively. To be clear, we refer µ and σ as
normalization statistics (NS), γ and β as affine parameters (AP). During training, NS is calculated on
the current mini-batch statistics for the update of model weights. Meanwhile, a running average of
NS is recorded in the whole training process, which is applied for inference after training ends.

Dual BN in AT. There is an increasing interest in investigating BN in the context of adversarial
robustness (Awais et al., 2020; Cheng et al., 2020; Nandy et al., 2021; Sitawarin et al.; Gong et al.,
2022). This work focuses on Hybrid-AT with dual BN (Xie & Yuille, 2020; Xie et al., 2020a) which
applies BNclean and BNadv to clean branch and adversarial branch, respectively. Prior work (Xie
et al., 2020a) shows that AEs can be used to improve recognition (accuracy) by adversarial training
where AEs are normalized by an independent BNadv . Moreover, (Xie & Yuille, 2020) has shown that
adding clean images in adversarial training (AT) can significantly decrease robustness performance,
where such negative effects can be alleviated to a large extent by simply normalizing CEs with an
independent BNclean. Inspired by their finding, (Jiang et al., 2020) also adopts Dual BN in adversarial
contrastive learning, showing that single BN performs significantly worse than Dual BN. Beyond
Dual BN, triple BN has been attempted in (Fan et al., 2021) for incorporating another adversarial
branch. Recently, (Wang et al., 2021) has also combined Dual BN with Instance Normalization to
form Dual batch-and-Instance Normalization for improving robustness. A drawback of applying dual
BN in Hybrid-AT lies in the unknown source of samples during inference, which makes it difficult to
choose the test BN. Prior work (Xie & Yuille, 2020) interprets the necessity of dual BN from the
perspective of an inherent large adversarial-clean domain gap, which implicitly suggests disentangling
NS (via dual BN) might be the only solution. Our work revisits how dual BN works in Hybrid-AT
and finally proposes a new interpretation from a new two-task perspective, which encourages new
directions of overcoming the two-task conflict in Hybrid-AT with appropriate regularization instead
of dual BN.
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3 EXISTING MOTIVATION AND PRELIMINARY INVESTIGATION

Existing motivation for dual BN. It is hypothesized in (Xie & Yuille, 2020) that clean and adversarial
samples are from two domains, thus Dual BN should be introduced to disentangle the mixed
distributions in Hybrid-AT. The basic assumption in (Xie & Yuille, 2020) is that there is a clean-
adversarial domain gap so that a separate BN is required for each branch. Compared with single
BN to handle the mixed distribution, dual BN allows the two branches to be normalized by their
corresponding BN only. In other words, the underlying motivation is that the BN statistics from a
different domain has a negative influence on the training which can be avoided with Dual BN by
only using statistics calculated on its own domain, i.e. BNclean for the clean branch and BNadv for
the adversarial branch. It is reported in (Jiang et al., 2020) that the model robustness with BNclean

adopted at test time is close to zero, which is also confirmed in our work (see Table 1).

Can BNclean be compatible with the adversarial branch to yield a robust model during inference?

Figure 1: Cross-AT: Replacing BNadv with
BNclean in the adversarial branch of Hyrbid-AT.

Cross-AT. We are interested in the answer to the
above question because it has significant impli-
cations on whether domain-specific BN statis-
tics is better than the mixed one for Hybrid-AT.
There is a possibility that this incompatibility
is caused by the fact that the adversarial branch
of Hybrid-AT is trained with BNadv instead of
BNclean. To test the above possibility, we per-
form a cross-AT by replacing classical BN with
the module in Figure 1 where the adversarial
branch is normalized by BNclean. Specifically, the cross-AT still keeps its clean branch in the
Hybrid-AT for the forward propagation to get BNclean but the model weights are updated only by
the adversarial branch (as shown in Figure 1). Such a setup guarantees that BNclean is used and
only used for the adversarial branch. An interpretable meaning of swapping the BN statistics from
adversarial to clean is as follows: it constitutes using full cross-domain BN statistics. If the merit of
dual BN over single BN lies in replacing mixed BN statistics with domain-specific one, i.e. totally
avoiding cross-domain statistics, Cross-AT with full cross-domain BN statistics might be expected
to yield very low robustness. Interestingly, the results in Figure 2 show that Cross-AT achieves
comparable performance as Hybrid-AT with BNadv adopted during inference.

(a) Clean Accuracy (b) Robustness (PGD10 Accuracy)

Figure 2: Clean and robust accuracy of Cross-AT during training. Hybird-AT is trained with dual BN,
while the results of BNadv are reported for comparison since we are mainly interested in whether
BNclean can be compatible with the adversarial branch to achieve robustness.

Remark on the preliminary investigation results. Such a compatibility of BNclean with the
adversarial branch in the above preliminary Cross-AT investigation inspires us to suspect that the
merit of dual BN over single BN in Hybrid-AT might not lie in disentangling the mixed distribution
for normalization so that each branch is normalized by the statistics calculated on its own domain.

4 A CLOSER LOOKER AT DUAL BN IN HYBRID-AT

Introducing an auxiliary BN component, Dual BN causes two changes: (i) disentangling the mixture
distribution for normalization statistics (NS) and (ii) introducing two sets of affine parameters (AP).
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Prior works (Xie & Yuille, 2020; Xie et al., 2020a) mainly highlight the effect of disentangled NS but
pay little attention to that of two sets of AP.

Model NS AP Clean PGD-10 AA
Hybrid-AT NSadv APadv 61.84 31.67 22.51

NSclean APclean 94.18 0.00 0.00
Cross Hybrid-AT NSclean APadv 59.56 31.25 22.40

NSadv APclean 93.86 0.00 0.00

Table 1: Cross Hybrid-AT (ϵ = 16/255).

Cross-Hybrid-AT. Inspired by the compatibility of
BNclean with the adversarial branch in Cross-AT,
we perform a Hybrid-AT with cross BN statistics.
Different from the setup in Section. 3 that only uses
a single BN, dual BN has two sets of APs. Therefore,
we let each branch use its own AP but train the two
branches with NS from another branch. In other words, the clean branch is trained (and tested)
with NSadv and the adversarial branch is trained (and tested) with NSclean. We term this setup
Cross-Hybrid-AT and its results are reported in Table 1. Table 1 shows that swapping NS has little
influence on the performance on the two branches, e.g. NSclean in Cross Hybrid-AT achieves similar
performance with NSadv in Hybrid-AT. Comparing standard Hybrid-AT and Cross-Hybrid-AT, we
highlight that they achieve comparable performance for both adversarial branch and clean branch.
The original motivation of disentangling NS is to avoid the influence of NS calculated on partial
(half) samples from a different domain, however, we show that NS calculated on full samples from a
different domain distribution actually has no significant influence on the performance. Motivated
by this observation, in contrast to prior works that attribute the merit of dual BN over single BN in
Hybrid-AT to disentangled NS, we establish the following hypothesis:

Conjecture 1. We conjecture that what makes Dual BN more effective than single BN in Hybrid-AT
is mainly caused by two sets of AP instead of disentangled NS.

4.1 UNTWINING NS AND AP IN DUAL BN

Figure 3: Illustration of different BN setups.

Training setup design. As discussed above,
compared with the default Hybrid-AT baseline,
Dual BN brings two effects: disentangled NSs
and two sets of APs. To determine the influence
of each effect on the model performance, we de-
sign two setups of experiments to include only
one effect while excluding the other. In Setup1,
we only include the effect of two sets of APs, by
applying two different sets of APs (βadv/γadv
and βclean/γclean) in the adversarial and clean
branches while using the default mixture distri-
bution for normalization. In Setup2, we only
include the effect of two sets of NSs by only
disentangling this mixture distribution with two
different sets of NSs while making BNclean and BNadv share the same set of APs. The above setups
of BNs are summarized in Figure 3.

Setups NS AP ϵ = 8/255 ϵ = 16/255
Clean PGD-10 AA Clean PGD-10 AA

Single BN 1 1 88.06 49.75 7.03 93.70 29.86 0.48
Dual BN (BNadv) 2 2 82.77 51.33 46.19 61.84 31.67 23.14

Dual BN (BNclean) 2 2 94.91 0.32 0.10 94.18 0.00 0.00
Setup1 (APadv) 1 2 81.86 50.99 44.63 60.02 30.89 23.43

Setup1 (APclean) 1 2 94.74 0.10 0.04 94.30 0.00 0.00
Setup2 (NSadv) 2 1 85.49 49.39 42.96 55.91 21.92 10.64

Setup2 (NSclean) 2 1 89.22 49.48 42.96 86.35 1.08 0.00

Table 2: Test accuracy (%) . For NSs, 1 indicates mixture distribution and 2 indicates disentangled
distribution for normalziaiton. For APs, 1 indicates single set and 2 indicates double sets of APs. The
subscripts of APadv and APclean indicate the input data type used during training.

Results. As shown in Table 2, Dual BN (with BNadv during inference) brings significant robustness
improvement over the Single BN baseline, which is consistent with findings in (Xie & Yuille, 2020).
Interestingly, under the attack of PGD-10, their robustness gap is not significant, however, under
AA, the Single BN achieves very low robustness (7.03% and 0.48% for ϵ = 8/255 and ϵ = 16/255,
respectively). Moreover, Setup1 (APadv) achieves comparable robustness as that of Dual BN (BNadv)
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for ϵ = 8/255 and ϵ = 16/255, suggesting two sets of APs alone achieve similar performance as
dual BN for yielding higher robustness (APadv) than single BN setting. The results collaborate our
conjecture that two sets of APs are a key factor in improving Hybrid-AT. The effect of two sets of
NSs is more nuanced: for a small perturbation ϵ = 8/255, disentangling mixture distribution is
beneficial for boosting the robustness under strong AA; for a large perturbation ϵ = 16/255 this
benefit is less significant. This can be explained by the fact the domain distribution mismatch is much
smaller for ϵ = 8/255 than that for ϵ = 16/255. Note that Setup2 (NSadv) and Setup2 (NSclean)
achieve comparable robustness for ϵ = 8/255, while their gap is significant for ϵ = 16/255. Overall,
we conclude two sets of APs are sufficient for avoiding the issue of low robustness against AA in
Default Hybrid-AT, and achieve comparable robustness as Dual BN. Moreover, we experiment with
using two sets of AP in either first half or second half of the model, which achieves slightly inferior
robustness performance (see Table 11 in appendix).

4.2 DOES BN NORMALIZATION STATISTICS CHARACTERIZE DIFFERENT MODEL
PERFORMANCE DURING INFERENCE?

Even though dual BN is adopted during training, only one branch of BN parameters can be adopted
during inference, and prior works (Xie & Yuille, 2020; Jiang et al., 2020) have reported a large
performance gap between BNclean and BNadv during inference. Regarding this phenomenon, prior
work claims that “BN normalization statistics (NS) characterizes different model performance" (Xie
& Yuille, 2020). In the following, we will refute this claim and show that APs play a major role.

Setups NS AP ϵ = 8/255 ϵ = 16/255
PGD10 AA PGD10 AA

Dual BN NSadv APadv 51.33 46.19 31.67 22.51
NSclean APclean 0.32 0.10 0.00 0.00

Swap NSclean APadv 17.1 9.16 10.02 9.80
NSadv APclean 0.00 0.00 0.45 0.00

Table 3: Swap NSclean and NSadv in
Hybrid-AT during inference.

AP plays a main role in robustness evaluation. As dis-
cussed above, Dual BN not only introduces two sets of NS
but also two sets of affine parameters (AP). To investigate
the individual role of NS and AP during inference, we
conduct a swap experiment during inference as shown in
Table 3. The model with original Dual BN achieves a
robustness of 51.33% and 0.10 % with BNadv (NSadv and
APadv) and BNclean (NSclean and APclean), respectively. If we keep NSclean fixed and swap AP, the
robustness increases from 0.32% to 17.1% with the APclean replaced by APadv . However, when we
keep APclean fixed, both NSclean and NSadv achieve almost zero robustness. These phenomena are
strong evidence demonstrating that the APs play a larger part in robustness evaluation. However, the
results seem to suggest that NS is also important. For example, the robustness with the configuration
of NSclean and APadv is still much lower than that of NSadv and APadv, for which our analysis in
the following section provides an explanation (See Table 4).

5 A CLOSER LOOKER AT THE TWO-DOMAIN HYPOTHESIS

A model trained on a source domain performs poorly on a new target domain when there is a domain
shift (Daumé III, 2007; Sun et al., 2017). With BN as the target, it is common in the literature (Li
et al., 2017; Benz et al., 2021; Schneider et al., 2020; Xie & Yuille, 2020; Xie et al., 2020a) to indicate
the domain gap by the difference of NS between two domains. For example, an early work (Li
et al., 2017) has shown that adapting NS from the target domain during inference can improve the
performance on a new target domain without retraining the model. This test-time BN adaptation has
also been adopted in (Benz et al., 2021; Schneider et al., 2020) for improving the model robustness
against common corruptions by perceiving them (random noise for instance) as a new domain. With
such an understanding, it is straightforward for prior works (Xie & Yuille, 2020; Xie et al., 2020a;
Jiang et al., 2020) to also perceive adversarial domain as a new domain.

5.1 A HIDDEN FLAW OF VISUALIZING NS IN PRIOR WORK

To highlight the two-domain gap, prior work (Xie & Yuille, 2020) visualizes the difference of NS in
BNadv and BNclean (see Figure 5 of (Xie & Yuille, 2020)). We quote the following sentence from
(Xie & Yuille, 2020): “We observe that clean images and adversarial images induce significantly
different running statistics, though these images share the same set of convolutional filters for feature
extraction". With our analysis in Section. 4, we know that the AP in BNclean and BNadv is different.
The clean branch and adversarial branch still have different weights, i.e. AP, even though the same
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set of convolutional filters are shared. In other words, the significant difference between NSclean

and NSadv is induced by not only the difference between image inputs (clean images v.s. adversarial
images) but also different model (AP) weights. To summarize, the NS difference between BNclean

and BNadv is characterized by two factors: (a) AP inconsistency and (b) different domain inputs.

Figure 4: µ and σ visualization. Randomly choose 20 channels and display the NS calculated with
different APs.

In the default setup of dual BN, NSclean is calculated on clean samples with APclean, while NSadv is
calculated on adversarial samples with APadv. We additionally calculate the NS on clean samples
with APadv (denoted as NSadv

clean) and calculate the NS on adversarial samples with APclean (denoted
as NSclean

adv ). Following NSclean
adv and NSadv

clean to indicate AP choice with the superscript and indicate
sample choice with the subscript, we can also denote NSclean as NSclean

clean and denote NSadv as NSadv
adv .

To exclude the influence of AP inconsistency, we intend to compare NS between clean and adversarial
samples with the same AP. In other words, the domain gap is characterized by the difference between
NSclean

clean and NSadv
clean or that between NSadv

adv and NSclean
adv . Following the procedures in (Xie &

Yuille, 2020), we plot different types of NS in Figure 4 by randomly sampling 20 channels of the
second BN layer in the first residual block. Fig. 4 shows that there exists a gap between NSclean

clean

and NSadv
adv, which is consistent with the findings in (Xie & Yuille, 2020). Moreover, there are two

other observations from Figure 4. First, if we fix the input samples and calculate NS with different
AP, there exists a large gap, i.e. the gap between NSadv

clean and NSclean
clean, as well as the gap between

NSadv
adv and NSclean

adv . Second, those NSs with the same APs are very close to each other, e.g., NSadv
adv

and NSadv
clean are very similar to each other, and the same applies for NSclean

adv and NSclean
clean. The

visualization results highlight the significance of AP in Dual BN, and is consistent with the finding
in Section 4. Without considering the influence of AP, the visualization and conclusions in (Xie
& Yuille, 2020) might convey a misleading message. We report the visualization results of AP in
Figure 7, which shows a significant gap between APclean and APadv . For a quantitative comparison,
we measure the Wasserstein distance between clean and adversarial branches in different layers in the
appendix (see Figure 6 in the appendix), which corroborates our above finding.

Setups NS AP PGD10 AA PGD10 AA
ϵ = 8/255 ϵ = 16/255

Default NSadv
adv APadv 51.33 46.19 31.67 22.51

NSclean
clean APclean 0.32 0.10 0.00 0.00

Cross-domain NSadv
clean APadv 51.75 46.55 32.73 24.40

NSclean
adv APclean 0.00 0.00 0.00 0.00

Table 4: Cross-domain but re-calibrated
NS achieves comparable performance.

An interesting phenomenon in Table 3 is that the robust-
ness with NSclean and APadv achieves much lower ro-
bustness(17.1%) than the original BNadv (51.33%). This
is caused by the fact that the NSclean is calculated on
APclean and thus there is a mismatch between NSclean

and APadv . Following the notations in Fig. 4, we evaluate
a pretrained Hybrid-AT model by replacing its original
NSclean and NSadv with different NS, as shown in Table 4.
Table 4 shows that given APadv, NSadv

clean achieves a robustness of 51.75%, which is comparable
to 51.33% with NSadv

adv. Moreover, given APclean, both NSclean
adv and NSclean

clean yield almost zero
robustness. We conclude that AP characterizes the large robustness gap between BNclean and BNadv

during inference, instead of NS claimed in (Xie & Yuille, 2020). When AP is fixed, the robustness
gap between the NS calculated on clean or adversarial samples is quite subtle.

5.2 COMPARING ADVERSARIAL-CLEAN AND NOISY-CLEAN DOMAIN GAP

As suggested in (Benz et al., 2021; Schneider et al., 2020), noisy samples (im-
ages corrupted by random noise) can be seen as a domain different from clean sam-
ples. Adversarial perturbation is a worst-case noise for attacking the model. Tak-
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ing a ResNet18 model trained on clean samples for example, we report the performance
under adversarial perturbation and random noise (with the same magnitude) in Table 5.

Noise/perturbation Size 0 8/255 16/255

Random noise 94.0 92.7 86.6
Adversarial perturbation 94.0 0.00 0.00

Table 5: Accuracy (%) under random
noise and adversarial perturbation.

As expected, the model accuracy drops to zero with adversar-
ial perturbation. Under random noise of the same magnitude,
we find that the model performance only drops by a small
margin. Given that the influence of adversarial perturbation
on the model performance is significantly larger than that
of random noise, it might be tempting to believe that the
adversarial-clean domain gap is much larger than noisy-clean domain gap.

Figure 5: Comparison of adversarial-
clean and noisy-clean domain gap.

With Wasserstein distance of NS between different domains
as the metric, we compare the adversarial-clean domain
gap with noisy-clean counterpart on the above ResNet18
model trained on clean samples, as shown in Figure 5. The
perturbation and noise magnitude are set to 16/255 (see
Figure 9 for the results of 8/255). Interestingly, we observe
that there is no significant difference between adversarial-
clean domain gap and noisy-clean counterpart. In other
words, the adversarial-clean domain gap is not as large as
many might believe considering the strong performance drop
caused by adversarial perturbation.

5.3 INTERPRETING HYRBID-AT FROM A TWO-TASK PERSPECTIVE

Setups Branch Clean PGD10 AA

Dual BN BNadv 61.84 31.67 22.51
BNclean 94.18 0.00 0.00

Dual Linear Linearadv 60.72 28.84 16.50
Linearclean 91.43 2.21 1.30

Table 6: Dual linear model, ϵ = 16/255.

From two-domain to two-task hypothesis. Considering
the adversarial-clean domain gap is similar to noisy-clean
domain gap as well as a strict constraint on allowable
perturbation budget, future works investigating Hybrid
AT are suggested to discard the two-domain hypothesis.
Akin to prior work justifying the role of disentangling NSs
with the two-domain hypothesis, we provide a two-task hypothesis for justifying the importance of
disentangled APs. Intuitively, with the two branches in Hybrid-AT, the model weights are trained
for two tasks: one for clean accuracy and the other for robustness. Intuitively, it is difficult for a
single same set of parameters to realize two tasks. A common approach for handling two tasks with
a shared backbone is to make the top layers unshared. Here, we experiment with a shared encoder
of single BN but with dual linear classifiers. The results in Table 6 show that this setup results in
similar behavior as dual BN. Such a phenomenon corroborates that disentangling APs is equivalent
to making partial learnable network weights not shared between the two tasks.

Model Norm Setups Branch Clean PGD10 AA
ResNet LN Single AP AP 75.12 18.81 11.80

Dual AP APadv 62.56 26.98 16.90
Dual AP APclean 88.41 0.00 0.00

ViT LN Single AP AP 92.21 33.60 1.84
Dual AP APadv 58.02 30.08 12.44
Dual AP APclean 91.60 0.00 0.00

Table 7: Model with Layer Normalization (LN),
ϵ = 16/255.

Beyond BN. In contrast to the two-domain hy-
pothesis, our two-task hypothesis highlights the
necessity of disentangling AP instead of NS.
This motivates us to apply dual AP into mod-
els with other normalization modules when dis-
entangling NS is not applicable. For example,
layer normalization (LN) adopts sample-wise
NS, and therefore it is not applicable to disen-
tangle distribution-wise NS between two domains. We experiment with dual AP on ResNet and ViT
with LN and the results are reported in Table 7 (more results on other normalization are reported in
Table 10.) We observe that LN with dual AP results in similar behavior as BN with dual AP, either (b)
or (c) in Figure 3, (see Table2). This further corroborates our two-task hypothesis which interprets
the main role of dual BN as providing unshared parameters for two tasks. In Section 6, we will show
that such a two-task conflict might alternatively be mitigated with an appropriate regularization.

6 BEYOND VANILLA HYBRID-AT AND TAKE-AWAY INSIGHT

During inference, whether the test sample is clean or adversarial is unknown and therefore only a
single BN can be adopted. Prioritizing the robustness, prior work (Xie & Yuille, 2020) adopts BNadv

at test time at the cost of clean accuracy drop. However, with a single BN, it is shown in (Zhang et al.,
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2019b) that another variant of Hybrid-AT yields competitive robustness as well as accuracy. Different
from the basic loss in Eq 2, the adversarial branch in (Zhang et al., 2019b) is trained by a KL loss
and this variant of Hybrid-AT is termed Trades-AT for differentiation. Under the perturbation of
ϵ = 16/255 (l∞), unlike vanilla Hybrid AT, the performance of Trade-AT with the default single BN
maintains reasonably high robustness but still falls behind its counterpart adopting Dual BN (BNadv

during inference). Interestingly, this robustness gap can be significantly mitigated by fixing a small
easily-overlooked training detail, which is pointed out and discussed in the following.

Trades-AT Clean PGD10 AA
Single BN (Algorithm 1) 69.97 26.8 18.04
Single BN (Algorithm 2) 75.14 29.41 21.32
Dual BN (BNadv) 62.15 33.16 25.67
Dual BN (BNclean) 78.03 16.17 2.21

Table 8: A closer look at Trades-AT with
different BN settings, ϵ = 16/255.

A closer look at Trades-AT. With the original imple-
mentation of Trades-AT (see Algorithm 1 in Appendix
D), clean and adversarial samples are fed to the model
independently, which results in NSadv and NSclean being
disentangled during training. During inference, however,
the moving-average NS can be seen as a mixture of NSadv

and NSclean. This mixed NS is termed NSmix. This
causes a unintended inconsistency among NSadv , NSclean and NSmix. Even though the gap between
NSadv and NSclean is not as large as suggested in prior works, their gap still exists especially when
the perturbation size is relatively large (16/255). The unintended inconsistency caused by their gap
might have a negative effect on the performance. To this end, we experiment with sending clean
and adversarial samples together to train the model for removing the NS disentangling effect (see
Algorithm 2 in Appendix D), thus NSmix is used for training both branches as well as test. Somewhat
surprisingly, the performance is improved by a large margin after fixing this inconsistency problem
(see the performance gap between Single BN (Algorithm 1) and Single BN (Algorithm 2)). For more
discussion, see Appendix D. For completeness, we also report the results of Trades-AT with dual BN
in Table 8.

Hybrid-AT Clean PGD10 AA
Single BN (Default) 93.70 29.86 0.48
Single BN (KL loss) 68.86 33.61 23.60
Dual BN (BNadv) 61.84 31.67 22.51
Dual BN (BNclean) 94.18 0.00 0.00

Table 9: Vanilla Hybrid-AT (Single BN)
with KL loss, ϵ = 16/255.

After being fixed, Trades-AT (with single BN) adopts the
same structure as Hybrid-AT with single BN (see Figure 3
(a)). Their difference lies in whether a KL regularization
is adopted to train the adversarial branch. Therefore, we
conjecture that a KL regularization in Trades-AT might be
a key component for AT on the hybrid samples under the
single BN setting. We introduce the KL loss to the Eq 2
and the results in Table 9 show that vanilla Hybrid-AT (Single BN) with KL loss indeed achieves
competitive performance for both robustness as well as accuracy to the Dual BN setting.

Takeaway insight on disentangling NS and solutions for addressing two-task conflict. Our work
reveals that the gap is not as large as previously visualized (Xie & Yuille, 2020) but it does exist
and can cause unintended inconsistency if overlooked by practitioners. As for the recommended
practice, the two-domain hypothesis (Xie & Yuille, 2020; Xie et al., 2020a) advocates the practice
of disentangling NS. By contrast, we find that disentangling NS has little influence on performance
when two sets of AP are used (see Table 2). In the case of a single AP, disentangling NS actually
harms the performance. As a takeaway, we recommend the practice of NOT disentangling NS for
simplicity. In addition, We show that, with a careful choice of training details, a single BN might be
sufficient for achieving competitive performance in the setup of AT with hybrid samples (see Table 8
and Table 9). This suggests promising directions for solving the two-task conflict beyond dual BN.

7 CONCLUSION

We experiment with Cross-AT and demonstrate the compatibility of BN statistics of clean samples
with the adversarial branch, which inspires to doubt the motivation in prior work for justifying the
necessity of dual BN in Hybrid AT. We take a closer look at dual BN and its underlying theoretical
hypothesis, which yields two intriguing findings. First, what makes dual BN effective lies in two sets
of affine parameters instead of disentangled normalization statistics. Second, the adversarial-clean
domain gap is not as large as many might expect and it is similar to its noisy-counterpart under the
same perturbation/noise magnitude. In addition, we propose a new interpretation of Hybrid-AT with
dual BN from the two task perspective which is shown to generalize to architectures (like ViT) using
other variants of normalization modules. Finally, we investigate Hybrid-AT beyond its vanilla version
and summarize recommended practices as takeaway insight for future practitioners.
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A EXPERIMENTAL SETUPS

In this work, we perform experiments on CIFAR10 with ResNet18 and follow the suggested training
setups in (Pang et al., 2020) unless specified. Specifically, we train the model for 110 epochs. The
learning rate is set to 0.1 and decays by a factor of 0.1 at the epoch 100 and 105. We adopt an SGD
optimizer with weight decay 5 × 10−4. For generating adversarial examples during training, we
use ℓ∞ PGD attack with 10 iterations and step size α = 2/255. For the perturbation constraint, ϵ is
set to ℓ∞ 8/255 (Pang et al., 2020) or 16/255 (Xie & Yuille, 2020). Following (Pang et al., 2020),
we evaluate the model robustness under PGD-10 attack (PGD attack with 10 steps) and AutoAttack
(AA) (Croce & Hein, 2020).

B VISUALIZATION OF NORMALIZATION STATISTICS AND AFFINE PARAMETERS

B.1 VISUALIZATION OF AFFINE PARAMETERS

Figure 6: Layer-wise discrep-
ancy visualization.

As a counterpart of the NS visualization (Figure 4) in Section 5.1 , we
visualize APclean and APadv in Figure 7, which shows a significant
difference between them. For a quantitative comparison, we measure
the Wasserstein distance in different layers, as shown in Figure 6.
It shows a large distance between APclean and APadv in all layers.
However, with the same APadv , the gap between NSadv

adv and NSadv
clean

stays almost zero in all layers.
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Figure 7: γ and β. Randomly chosen 20 channels for visualizing APclean and APadv .

B.2 VISUALIZATION OF NS WHEN AFFINE PARAMETERS ARE DISABLED

Figure 8 visualizes the distribution discrepancy between NSclean and NSadv when affine parameters
are disabled during training and inference. The difference between NSclean and NSadv is not as large
as visualized in (Xie & Yuille, 2020), which is consistent with the discussions in Section 5.1.

Figure 8: µ and σ when AP is disabled during training and inference. Randomly chosen 20 channels
for visualizing NSclean and NSadv .

B.3 COMPARISON WITH NOISY-CLEAN DOMAIN GAP

Figure 9 shows the adversarial-clean domain gap with noisy-clean counterpart when perturba-
tion/noise magnitude is 8/255, which shows the same trend with Figure 5 when perturbation/noise
magnitude is 16/255.

Figure 9: Visualization of adversarial-clean domain gap and noisy-clean domain gap (perturba-
tion/noise magnitude is set to 8/255.
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C OTHER RESULTS

C.1 DUAL AP EXPERIMENTS WITH DIFFERENT NORMALIZATION

In addition to the Layer Normalization (LN) results in Table 7, we report the Dual AP results with
Group Normalization (GN) and Instance Normalization (IN) in Table 10. The results in Table 10
show consistent trend with that of BN and LN.

Model Norm Setups Branch Clean PGD10 AA
ResNet GN Single AP AP 81.85 21.94 14.50

Dual AP APadv 70.27 29.36 18.30
Dual AP APclean 91.82 0.00 0.00

IN Single AP AP 92.55 23.06 1.20
Dual AP APadv 52.29 25.27 16.10
Dual AP APclean 92.35 0.00 0.00

Table 10: Dual AP with Group Normalization (GN) and Instance Normalization (IN), ϵ = 16/255.

C.2 FURTHER DISENTANGLING AFFINE PARAMETERS

We report the results of using two sets of AP in either first half or second half of the model in Table 11,
which achieves slightly inferior robustness performance than Setup1 in Figure 3.

Setups AP (first half) AP (second half) Clean PGD-10 AA
Setup1 (APadv) 2 2 60.02 30.89 23.43

Setup1 (APclean) 2 2 94.30 0.00 0.00
Setup3 (APadv) 1 2 58.14 29.45 19.80

Setup3 (APclean) 1 2 93.66 0.00 0.00
Setup4 (APadv) 2 1 59.91 30.62 22.10

Setup4 (APclean) 2 1 94.05 0.00 0.00

Table 11: Test accuracy (%) with ϵ = 16/255. With 1 set of NS, different sets of AP in the first and
second half of the model. The subscripts of APadv and APclean indicate the input data type used
during training.

C.3 EVALUATE HYBRID-AT AND CROSS HYBRID-AT WITH DIFFERENT NS DURING
INFERENCE

We evaluate Hybrid-AT and Cross Hybrid-AT with different NS during inference, as in Table 12.
Table 12 shows that the effect of more data to estimate BN by mixing NSadv and NSclean (noted
as NSmix) is limited. Under the APclean, the robustness with NSmix stays zero, which is expected.
Under the APadv, the robustness with NSmix is slightly lower than the corresponding NS used in
training. Note that the gap between NSadv and NSclean is not as large as suggested in prior work but
still exists, which explains the performance drop of mixed NS during inference (when disentangled
NS is applied during training).

Model NS AP Clean PGD-10 AA
Hybrid-AT NSadv APadv 61.84 31.67 22.51

NSclean APclean 94.18 0.00 0.00
NSmix APadv 61.45 29.97 18.80
NSmix APclean 92.00 0.00 0.00

Cross Hybrid-AT NSclean APadv 59.56 31.25 22.40
NSadv APclean 93.86 0.00 0.00
NSmix APadv 60.09 26.41 18.36
NSmix APclean 90.60 0.00 0.00

Table 12: Evaluate Hybrid-AT and Cross Hybrid-AT with different NS (ϵ = 16/255).

D ON THE IMPLEMENTATION DETAILS OF TRADES-AT
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Trades-AT Clean PGD10 AA
Default (Algorithm 1) 69.97 26.8 18.04
Single BN (Algorithm 2) 75.14 29.41 21.32
Single BN (Algorithm 3) 68.03 27.31 19.10

Table 13: A closer look at Trades-AT
with different BN settings, ϵ = 16/255.

In the original implementation of Trades-AT, As shown in
Algorithm 1, the clean samples and adversarial samples are
sent to the model independently, which results in NSclean

and NSadv being disentangled during training. Moreover,
the NS during inference is a moving average of NSclean

and NSclean, and we term it NSmix for simplicity. As
pointed out in the main manuscript, the discrepancy among NSadv, NSclean, and NSmix causes
unintended NS consistency. To this end, we experiment with mixing the two types of inputs before
feeding them to the model, which is shown in Algorithm 2. To further verify this improvement
comes from feeding the clean and adversarial samples together to the model, we slightly modify
Algorithm 2 to its disentangled version (shown in Algorithm 3). We observe that Algorithm 3
achieves significantly worse performance than that of Algorithm 2. Algorithm 3 performs similarly
as Algorithm 1, which is expected because both algorithms feed clean and adversarial samples
independently to the model.

Algorithm 1 Original implementation of Trades-AT

# model: model (e.g., ResNet)
# generate_adv_func: function of generating adversarial samples according to certain

parameters (e.g., perturbation size)
# cross_entropy_func: function of calculating cross-entropy loss
# kl_func: function of calculating the KL loss.

for (x_clean, label) in loader: # load a minibatch (x_clean, label) with n samples

x_adv = generate_adv_func(x_clean, model, args)) # generate the adversarial samples

# calculate cross-entropy loss on clean samples
logits_clean = model(x_clean) #
loss_clean = cross_entropy_func(logits_clean, label)

# calculate KL loss on both clean samples and adversarial samples
loss_kl = kl_func(log_softmax(model(x_adv)), softmax(model(x_clean)))
loss = loss_clean + beta * loss_kl

loss.backward() # back-propagate
update(model) # update model weight

Algorithm 2 Our implementation of Trades-AT by feeding the clean and adversarial samples together
to the model

# model: model (e.g., ResNet)
# generate_adv_func: function of generating adversarial samples according to certain

parameters (e.g., perturbation size)
# cross_entropy_func: function of calculating cross-entropy loss
# kl_func: function of calculating the KL loss.

for (x_clean, label) in loader: # load a minibatch (x_clean, label) with batch_size
samples

x_adv = generate_adv_func(x_clean, model, args)) # generate the adversarial samples

# mix x_clean and x_adv before calculating their logits (model output)
x_mix = concat(x_clean, x_adv)
# feed the clean and adversarial samples together to the model
logits_mix = model(x_mix)
# split the logit output for clean branch and adversarial branch
logits_clean = logits_mix[:batch_size]
logits_adv = logits_mix[batch_size:]

# calculate cross-entropy loss on clean samples
loss_clean = cross_entropy_func(logits_clean, label)

# calculate KL loss on both clean samples and adversarial samples
loss_kl = kl_func(log_softmax(logits_adv), softmax(logits_clean))
loss = loss_clean + beta * loss_kl

loss.backward() # back-propagate
update(model) # update model weight
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Algorithm 3 Our implementation of Trades-AT by feeding the clean and adversarial samples inde-
pendently to the model

# model: model (e.g., ResNet)
# generate_adv_func: function of generating adversarial samples according to certain

parameters (e.g., perturbation size)
# cross_entropy_func: function of calculating cross-entropy loss
# kl_func: function of calculating the KL loss.

for (x_clean, label) in loader: # load a minibatch (x_clean, label) with batch_size
samples

x_adv = generate_adv_func(x_clean, model, args)) # generate the adversarial samples

# feed the clean and adversarial samples independently to the model
logits_clean = model(x_clean)
logits_adv = model(x_adv)

# calculate cross-entropy loss on clean samples
loss_clean = cross_entropy_func(logits_clean, label)

# calculate KL loss on both clean samples and adversarial samples
loss_kl = kl_func(log_softmax(logits_adv), softmax(logits_clean))
loss = loss_clean + beta * loss_kl

loss.backward() # back-propagate
update(model) # update model weight
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