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Abstract

Despite the clear performance benefits of data
augmentations, little is known about why they
are so effective. In this paper, we disentangle
several key mechanisms through which data aug-
mentations operate. Establishing an exchange
rate between augmented and additional real data,
we find that augmentations can provide nearly
the same performance gains as additional data
samples for in-domain generalization and even
greater performance gains for out-of-distribution
test sets. We also find that neural networks with
hard-coded invariances underperform those with
invariances learned via data augmentations. Our
experiments suggest that these benefits to gener-
alization arise from the additional stochasticity
conferred by randomized augmentations, leading
to flatter minima.

1. Introduction
Even with the proliferation of large-scale image datasets,
deep neural networks for computer vision parameterize
highly flexible model families and often contain orders of
magnitude more parameters than the size of their train-
ing sets. As a result, large models trained on limited
datasets still have the capacity for improvement (LeCun
et al., 1998a). The importance of data augmentation for
boosting performance leads us to wonder whether it benefits
training through more complex mechanisms than simply
adding more data.

In addition to adding extra samples, augmentation may
regularize models by promoting invariance. Just as clas-
sifiers learn to make the same prediction across samples
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in each class, data augmentations (DA) encourage mod-
els to make consistent predictions across augmented views
of each sample. Data augmentations thus promote invari-
ance by imposing implicit model constraints that can assist
in the underdetermined model regime. We can use our a-
priori beliefs about which invariances are present in the data
to design augmentations. The need to incorporate invari-
ances in neural networks has motivated the development
of architectures that are instead explicitly constrained to
be equivariant to transformations (Weiler and Cesa, 2019;
Finzi et al., 2020). If the downstream effects of data aug-
mentations were attributable solely to invariance, then we
could replace DA with explicit model constraints. However,
data augmentations may affect training dynamics beyond
imposing constraints.

In addition to promoting invariance, augmentation serves as
an extra source of stochasticity. Under DA, randomization
during training comes not only from randomly selecting
samples from the dataset to form batches but also from
sampling transformations with which to augment data (Fort
et al., 2022). Stochastic optimization is associated with
benefits in non-convex problems wherein the optimizer can
bias parameters towards flatter minima (Jastrzębski et al.,
2017; Geiping et al., 2021; Liu et al., 2021).

In this paper, we revisit the role of data augmentation, as it
may be more multi-faceted than the classical view of extra
data:

• We quantify the relationship between augmented views
of training samples and extra data. We find that aug-
mentations can confer comparable benefits to indepen-
dently drawn samples on in-domain test sets and even
stronger benefits on slightly out-of-distribution testing.

• We observe that models which learn invariances via
data augmentation consistently outperform architec-
tures that are instead constrained with equivariance to
the same transformations, suggesting that DA regular-
izes models beyond invariance. Moreover, the standard
model of data augmentation dictates that one should
choose transforms under which the distribution is in-
variant, and yet we show that invariances which are
uncharacteristic of the data distribution still benefit
performance.
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(a) Evaluated on CINIC-10 (in-domain)
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(b) Evaluated on CIFAR-10 (slightly out-of-domain)

Figure 1. Power laws f(x) = ax−c + b for select augmentations applied randomly and the gain in terms of effective extra samples. Fitted
curves marked in solid colors, with extrapolated regions dashed. Figure 1a shows performance on CINIC-10, Figure 1b on CIFAR-10.
Left for each: Number of base samples (from CINIC-10) on the logarithmic horizontal axis compared to validation accuracy. The scaling
behavior of each augmentation is closely matched by these power laws. Right for each: Number of base samples compared to effective
extra data, showing how the benefits of each data augmentation scale as the model is trained on more and more data. Even the minor shift
from CINIC-10 to CIFAR-10 completely changes the dynamics of effective samples.

• We consider a sampling strategy for augmentation that
reduces randomness during training by averaging each
batch over all transformed views of an image at once
and find that DA exhibits flatness-seeking behavior and
greater stochasticity during late stages of training.

2. Augmentations as Additional Data
A central role of data augmentation is to serve as extra data
and expand limited datasets used for training large models.
In this section, we quantify this property, conducting
a series of experiments to quantify the exchange rates,
which indicate how much data an augmentation is worth
– a number of additional samples which yields the same
performance boost as the augmentation policy.

We conduct these experiments on the CINIC-10 dataset
(Darlow et al., 2018), a drop-in replacement for CIFAR-
10 (Krizhevsky, 2009) which contains numerous additional
samples. This allows us to train models with augmented
data on dataset sizes similar to CIFAR-10, but compare to
reference models trained without augmentations on larger
datasets. We further use this replacement to illustrate a
behavior of augmentations that is often underappreciated:
We evaluate the accuracy of the same models trained on
CINIC-10 not only on a CINIC-10 validation set, but also
the CIFAR-10 validation set. Both datasets are nearly in-
distinguishable using simple summary statistics (Darlow
et al., 2018), yet there is a minor distribution shift caused by
different image processing protocols during dataset curation.
We argue that this is a reasonable test case for practical
scenarios in which there could be even a minor uncertainty
about the distribution of test data.

How much extra data is gained through data augmentations
and how does this number change as the number of base
samples increase, or the data distribution shifts? Figure 1
shows that the validation accuracy for this model is well
modeled by power laws of the form f(x) = ax−c + b for

both validation sets. We then evaluate the relative difference
between these power laws in terms of absolute number of
extra samples gained through augmentation and extrapolate
to larger sample sizes.

Under this view, we see that data augmentations are tran-
sient. Investigating Figure 1a, we find that for some amount
of base samples from the original dataset, the effectiveness
of each augmentation peaks and the augmentation effec-
tively generates the most extra data; then with more base
samples, the benefits of all augmentations diminish up to
a point where we extrapolate that they would not be ben-
eficial any more and may in fact hurt performance. Here,
we also see a reversal of the trends from our previous study
on diversity. The diverse augmentations such as TrivialAug
peak early. Yet, the consistent, and least diverse, augmenta-
tions of horizontal flips falls off slowest, showing that with
enough real samples, diverse, but inconsistent policies make
poorer augmentations.

Yet, this behavior is highly contingent on the evaluation on
in-domain data. Even, the shift to evaluation on CIFAR-
10 in Figure 1b reveals that while the transient behavior
described in the previous paragraph is still present, the actual
extra data gained is much more significant.

3. Augmentations are Worth More Than
Invariance

A different angle on data augmentations is that they encour-
age invariance to image transformations by enforcing the
assignment of identical labels across transformations of each
training sample. If the success of data augmentations can
be attributed solely to invariance, then we can build exactly
invariant models which achieve comparable accuracy when
trained without data augmentation. Several works propose
mechanisms for constraining neural network layers to be
invariant, and we will leverage these in our study. In this
section, we find that the benefits of data augmentation can
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(a) Data augmentations outperform invariant
networks for normal training on CIFAR-10.
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(c) The accuracy for different augm. for
rotated samples from CIFAR-10 where the
train and the test data are different images.

Figure 2. Figure 2a shows data augmentations vs invariant models for experiments performed on CIFAR-10 with a ResNet-18. LieConvNet
and E2CNN are invariant w.r.t. horizontal flips, and the right-most bar corresponds to random horizontal flips. Section 2: Test error
(log-scale) as a function of training samples when test images are rotations of training images. Figure 2c Test accuracy on rotated samples
from CIFAR-10 other than those used for training.

only partially be recovered by building invariant models.
Moreover, we discover that augmentations which reflect
invariances not present in the data distribution can still offer
performance boosts, indicating that the benefits of data aug-
mentation are not limited to invariances which exist in the
data distribution.

One might think that the ability to remain only approxi-
mately invariant to transformations is a valuable feature of
data augmentations, since a particular invariance might be
inconsistent with the data distribution (Finzi et al., 2021).
However, a notable property of training on augmented
data is that the loss function does not distinguish between
raw and augmented images, and so the model is not
able to overcome invariances which are inconsistent with
the training labels. Therefore, when models are trained
with data augmentations, instead of determining whether
invariances are consistent with the distribution, they learn
only approximate invariances since they may not perfectly
fit the augmented training data, and their invariance might
not generalize to test data. This fact makes it all the more
mysterious that exactly invariant networks underperform
those trained with augmentation.

3.1. Invariant Neural Networks Without Augmentation

In order to probe the benefits of invariance without aug-
mentations, we adopt the following three methods for con-
structing invariant networks. Prediction averaging: In-
sert augmented views of a sample into the network and
average the corresponding predictions (Shanmugam et al.,
2021; Gandikota et al., 2021). We use this procedure dur-
ing both training and inference. Note that this method still
involves passing augmented data into the model. E2CNN:
General E(2)-Equivariant Steerable CNN (E2CNN) (Weiler
and Cesa, 2019) constrains convolutional kernels to reflect
a group equivariance. LieConv: LieConv (Finzi et al.,
2020) is a convolutional layer which is equivariant to a

user-specified Lie group, yielding entire models which pos-
sess this equivariance property. We use LieConv layers in a
ResNet-18 model, which we will refer to as LieConvNet.

We employ the above methods to train ResNet-18 models
on CIFAR-10 which are exactly invariant to horizontal flips.
Figure 2a compares their performance.E2CNN, LieCon-
vNet, and prediction averaging models all improve perfor-
mance over non-invariant models trained on non-augmented
data, there remains a considerable accuracy gap between
invariant neural networks and the same architecture trained
instead with horizontal flip data augmentation.

3.2. Out-Of-Distribution Augmentations Still Improve
Performance

Previously, we observed the performance benefits of data
augmentations which promote invariances consistent with
the data distribution, or approximately so, even over exis-
tent invariant neural networks. But can it still be useful to
augment our data with a transformation that generates sam-
ples completely outside the support of the data distribution
and which are inconsistent with any label? To answer this
question, we construct a synthetic dataset in which the exact
invariances are known.

We begin by randomly sampling a single base image from
each CIFAR-10 class. We then construct 10 classes by
rotating each of the base images, so that all samples in
a class correspond to rotations of a single image. Thus,
the classification task at hand is to determine which base
image was rotated to form the test sample. We randomly
sample rotations from each of these classes to serve as
training data and another disjoint set of rotations to serve
as test data. We then use horizontal flip and random crop
data augmentations to generate out-of-distribution samples,
since horizontally flipped or cropped image views cannot
be formed merely via rotation. Note that this experiment
is distinct from typical covariate shift setups where the
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Table 1. End-of-training stochasticity correlates strongly with
flatness. Gradient standard deviation across batches at the end of
training and flatness measurements with various augmentations
and strategies for sampling augmented views.

Augmentation Fixed Views Same Batch Grad. Std. Flatness
- - - 13.201 11.4192

Flips&Crops

✗ ✗ 24.7397 16.3284
✓ ✗ 13.612 10.1113
✗ ✓ 15.676 11.914
✓ ✓ 10.263 8.2033

TrivialAug
&Flips&Crops

✗ ✗ 31.339 20.1336
✓ ✗ 22.689 16.3189
✗ ✓ 25.53 16.1076
✓ ✓ 14.105 10.4287

RandAug
&Flips&Crops

✗ ✗ 29.912 18.6886
✓ ✗ 16.585 11.5707
✗ ✓ 22.0127 13.3998
✓ ✓ 10.865 8.1097

distribution of data domains differs, but the support is far
from disjoint and may even be identical.

In Figure 2, we see that these out-of-distribution augmen-
tations are beneficial nonetheless. Notably, random crops,
which can generate significantly more unique views than
horizontal flips, yield massive performance boosts for
identifying rotated images, even though we know that the
cropped samples are out-of-distribution. We also see in
this figure that random crops are especially useful if we
instead use as our test set rotations of other samples from
CIFAR-10 than those used from training. Specifically, we
assign a base test image and its rotations the same label
as the base image from the training set with the same
CIFAR-10 label. This experiment supports the observations
from Section 2 that augmentations can be particularly
beneficial for OOD generalization.

4. Data Augmentation As a Source of
Stochasticity During Training

Typical neural network loss functions contain individual
terms for each training sample. During optimization,
randomly sampling batches of data points (i.e. terms in the
loss) and computing gradients on batches rather than the full
loss gives rise to stochasticity. Augmentations increase the
number of terms in the loss function, often to such an extent
that we never sample the same term twice during training.

Since data augmentations expand and diversify the body
of samples, and equivalently terms of the loss function,
available for sampling, they may serve as additional sources
of stochasticity during optimization. As neural networks
are typically trained with first-order optimizers, this
boost in stochasticity can be examined by measuring the
variety of gradients across batches during training. If data
augmentations do in fact increase the variety of gradients,
then they could as a result cause us to find qualitatively
different minima. Stochastic optimization is thought to be
associated with flat minima of the loss landscape which are

in turn associated with superior generalization (Jastrzębski
et al., 2017; Huang et al., 2020; Liu et al., 2021). Moreover,
this flatness-seeking behavior may be the effect not only
of the augmented loss function but also how we sample it.

In this section, we put this hypothesis to the test. We mea-
sure the standard deviation of gradients during optimization
for models trained with and without data augmentations, and
we quantify the flatness of the minima these variants find.
We describe how we measure both stochasticity and flatness
in the appendix. We construct experiments that disentangle
the augmented loss function from the additional stochas-
ticity produced by randomly sampling augmented views.
We consider a “same batch" strategy in which gradient up-
dates are averaged over multiple views of a single image,
resulting in lower stochasticity. We also consider “fixed
views" experiments in which we pre-compute a frozen set
of augmented views per element of the training set, which
can then be sampled during training.

In Table 1, we see that for each augmentation policy, ap-
plying augmentations randomly results in the most stochas-
ticity at the end of training, while including multiple ran-
dom views in the same batch (Hoffer et al., 2020) results
in less. Sampling augmentations from a fixed set of four
views per sample (denoted “fixed views”) results in even
less stochasticity, and including each of the four views in
every batch results in the least stochasticity (denoted “fixed
vews”, “same batch”). This ordering, which holds across
all data augmentations we try, is consistent with the intu-
ition that more randomness in augmentation leads to more
stochasticity in training. Including each of the four views
for each member of the batch entirely removes the random-
ization of data augmentations but still preserves the same
exact possible combinations of base images available for
sampling under all other training setups we consider, al-
lowing us to train on the same augmented loss function but
without the extra randomization from sampling augmented
views. In this case, we have 4 views per base image and 128
base images, making a total of 4 × 128 = 512 samples in
the batch including augmentations.

We further observe that flatness correlates strongly
with late-training stochasticity. Models trained without
augmentation or with non-random augmentation, where all
views are seen in each batch, exhibit less stochasticity at the
end of training and find sharper minima. While previous
works have associated SGD with flatness-seeking behavior
(Jastrzębski et al., 2017; Geiping et al., 2021), the findings
here indicate that data augmentations can also contribute
to this phenomenon. Simply put, training with randomized
data augmentations finds flatter minima, and models trained
with strong data augmentations such as RandAugment and
TrivialAugment lie at especially flat minima.
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5. Discussion
This work promotes an all-encompassing understanding of
neural network training which incorporates the underappre-
ciated factor that is data augmentation, covering the effective
extra data, invariance and stochasticity provided by aug-
mentations. Data augmentation has had a profound impact
on the performance of neural networks, but their precise
role has not been well understood; for example, if augmen-
tations are simply a heuristic for learning certain symmetries,
should we not prefer to directly encode these symmetries
through advances in group equivariant networks?

We first establish a new lens through which to view the effi-
cacy of specific augmentations, when we discuss exchange
rates and their power laws, and we then probe the underly-
ing phenomena that contribute to their success. We uncover
that the effective extra data gained from augmentations is
not simply a matter of learned invariance, as out-of-domain
transformations still improve performance, and we measure
the close correlation between the stochasticity gained from
augmentations and the flatness of landscapes. This work
promotes an all-encompassing understanding of neural net-
work training which incorporates the often ignored factor
that is data augmentation.
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A. Background and Related Work
Data Augmentations in Computer Vision. Data augmentations have been a staple of deep learning, used to deform
handwritten digits as early as Yaeger et al. (1996); LeCun et al. (1998a) or to improve oversampling on class-imbalanced
datasets (Chawla et al., 2002). These early works hypothesize that data augmentations are necessary to prevent overfitting
when training neural networks since they typically contain many more parameters than training data points (LeCun et al.,
1998a).

We restrict our study to augmentations which act on a single sample and do not modify labels. Namely, we study
augmentations which can be written as (T (x), y), where (x, y) denotes an input-label pair, and T ∼ T is a random
transformation sampled from a distribution of such transformations. For a broad and thorough discussion on image
augmentations, their categorization, and applications to computer vision, see (Shorten and Khoshgoftaar, 2019; Xu et al.,
2022). We consider basic geometric (random crops, flips, perspective) and photometric (jitter, blur, contrast) transformations,
and common augmentation policies, such as AutoAug (Cubuk et al., 2019a), RandAug (Cubuk et al., 2019b), AugMix
(Hendrycks et al., 2020) and TrivialAug (Müller and Hutter, 2021) which combine basic augmentations.

Understanding the Role of Augmentation and Invariance. A number of works, such as Hernández-García and
König (2018), propose that data augmentations (DA) induce implicit regularization. Empirical evaluations describe useful
augmentations as “label preserving”, namely they do not significantly change the conditional probability over labels (Taylor
and Nitschke, 2018). Gontijo-Lopes et al. (2020b;a) investigate empirical notions of consistency and diversity. They measure
consistency (referred to as affinity) evaluating models trained without augmentation on augmented validation accuracy
yielded. They also measure diversity as the ratio of training loss of a model trained with augmentations and a model trained
without them and conclude that strong data augmentations should be both consistent and diverse. A trade-off between
diversity and consistency is also seen in NLP applications (Kim et al., 2021). In contrast to Gontijo-Lopes et al. (2020b),
Marcu and Prügel-Bennett (2021) find that the value of data augmentations cannot be measured by how much they deform
the data distribution. Other work proposes to learn invariances parameterized as augmentations from the data (Benton et al.,
2020), investigates the number of samples required to learn an invariance (Balestriero et al., 2022b), uncovers the tendency
of augmentations to sacrifice performance on some classes in exchange for gains on others (Balestriero et al., 2022a), or
argues that data augmentations cause models to misrepresent uncertainty (Kapoor et al., 2022).

Theoretical investigations in Chen et al. (2020) formalize data augmentations as label-preserving group actions and discuss
an inherent invariance-variance trade-off. Variance regularization also arises when modeling augmentations for kernel
classifiers (Dao et al., 2019). For a binary classifier with finite VC dimension, the bound on expected risk can be reduced
through additional data generated via augmentations until inconsistency between augmented and real data distributions
overwhelms would-be gains (He et al., 2019b). The regularizing effect of data augmentations is investigated in LeJeune et al.
(2019) who propose a model under which continuous augmentations increase the smoothness of neural network decision
boundaries. Rajput et al. (2019) similarly find that linear classifiers trained with sufficient augmentations can approximate
the maximum margin solution. Hanin and Sun (2021) relate data augmentations to stochastic optimization. A different
angle towards understanding invariances through data augmentations is presented in Zhu et al. (2021), where the effect of
DA in increasing the theoretical sample cover of the distribution is investigated, and augmentations can reduce the amount
of data required, if they “cover” the real distribution.

In language applications, the efficacy of augmentations have been probed with counterfactual examples Kaushik et al. (2020);
Zmigrod et al. (2019); Hall Maudslay et al. (2019). Human-generated counterfactual augmentations of a given example
towards a target label have been shown to be effective augmentations. These examples interestingly flip the previously
discussed roles in the invariance-variance trade-off, generating examples that only differ in causal features, but are otherwise
near-invariant in other features.

Stochastic Optimization and Neural Network Training. The implicit regularization of SGD is regarded as an essential
component for neural network generalization (An, 1996; Neyshabur et al., 2017). Stochastic training which randomizes
gradients can drive parameters into flatter minima, associated with superior generalization (Jastrzębski et al., 2017; Huang
et al., 2020; Liu et al., 2021). In fact, Geiping et al. (2021) find that neural networks trained with non-stochastic full
batch gradient descent require explicit flatness-seeking regularizers in order to achieve comparable test accuracy. Data
augmentations provide an additional source of stochasticity during training on top of batch sampling, which we will
investigate in this work.

A window into the effect of data augmentations on stochasticity is “batch augmentation” (Hoffer et al., 2020; Fong and
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Figure 3. Randomly applied augmentations significantly increase stochasticity late in training but decrease stochasticity early.
Standard deviation of gradient across epochs for different augmentations and different mini-batch sampling strategies. Each dot indicates
the mean over 10 runs, and shaded regions represent confidence intervals of width one standard error.

Vedaldi, 2019), also termed “repeated augmentations” (Berman et al., 2019; Touvron et al., 2021; Wightman et al., 2021).
Batch augmentation strategies average over multiple augmentations of each sample in the batch, resulting in gradients
with less randomness that if a single augmentation is chosen per sample. Although this strategy is not well understood,
it is employed in several modern training recipes. Fort et al. (2022) find that batch augmentation via decreasing the number
of independent samples in a batch and including multiple augmentations of each, which decreases the stochasticity from
augmentation while increasing the stochasticity from batch sampling, can boost accuracy. They conclude that the additional
stochasticity from data augmentation is harmful rather than helpful, although they do not compare to cases where training
data is augmented but the additional stochasticity is eliminated entirely. We ablate away the stochasticity introduced by
DA entirely, and we instead find that this stochasticity has the positive benefit of discovering flatter minima.

We fuse together the above three topics and explore the role of data augmentations play in learning invariance and in
increasing stochasticity during late stages of training. In doing so, we fill in several gaps in the literature discussed in this
section. Unlike other works which measure the effectiveness of data augmentations in terms of accuracy boosts, we compare
the benefits of augmentations to those achieved by instead collecting more data. While other works have studied the role of
data augmentations in learning invariance, we find that even invariances which have no relationship to invariances in the
training data distribution are still effective. Finally, we develop an understanding of batch augmentation by showing that
stochastically applied augmentations increase gradient noise during training, leading to qualitatively distinct minima.

B. Experimental Setup
For all sections if not otherwise mentioned, we run the following protocol. We train the model (in the main body a
ResNet-18), with stochastic gradient descent for 60000 steps with a batch size of 128. This corresponds to 160 epochs for a
dataset of size 48000. For experiments with 8× or larger enlarged datasets, we set a minimum number of 40 epochs, e.g.
corresponding to 120000 steps for the 8× experiments, but otherwise do not modify the number of gradient steps when
increasing or decreasing the dataset size. We linearly warm up the learning rate for the first 2000 steps (about 5 epochs) up
to peak rate of 0.2 and then decay to zero by a half-cycle of cosine annealing. For all experiments, we include a standard
weight decay of 5e− 4 and train with Nesterov momentum of 0.9. The data is shuffled randomly after every epoch and we
record validation accuracy every 10000 steps. All training runs are non-deterministic based on stochasticity due to random
shuffling and cudnn non-determinism. We run at least five trials for each experiment in the main body and three trials for
each in the supplementary material. In each plot, the standard deviation is shaded. For five trials this corresponds close to a
97.5% confidence interval.

We use CIFAR-10 in its default configuration. For CINIC-10, we clean and resample the train and test sets. We first remove
all CIFAR-10 train and test images from the dataset, we then further remove all exactly duplicated images and missing
images, merge all remaining images and sample a new validation set of 10000 images. We provide code to replicate the
creation of this cleaned dataset with the supplementary material. Overall we recover a new training set of size 193523. For
CIFAR-10-C experiments in the supp. material, we report average accuracy over all transformations in CIFAR-10-C with
a severity of 3. For all experiments where we consider only a subset of the existing data (e.g. each experiment with less
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than 193523 samples for CINIC-10), we sample a new subset of the training set for each experiment separately, to rule out
confounding effects of good or bad splits of the training data, especially for smaller subset sizes.

For experiments in the main body where data augmentations are randomly sampled a finite number of times, we store all
augmentations in a database (lmdb) that is recreated in each run. As a result, each experiment contains a fixed set of finite
views of each original datapoint, but these views are randomized across experiments. Due to random shuffling, samples
from this enlarged dataset are drawn randomly and multiple views of the image are only guaranteed to occur in the same
batch in the batch augmentation experiments in Section 5.

To create the table of exchange rates, we first compute the mean validation accuracy CINIC-
10 for each experiment. We then train the reference models for CINIC-10 subset sizes of
1000, 2000, 3000, 6000, 12000, 24000, 48000, 96000, 128000, 144000, 168000, 180000, 192000. To cross-reference
the average validation accuracy of these reference models with our data augmentation experiments, we assert that validation
accuracies are monotonically increasing as subset sizes increase and fit a linear spline fref for interpolation. We then
compute the exchange ratios of Table 1 via f−1

ref (x)/b, for the base dataset size b which is 48000 in Table 1 and input mean
validation accuracy x for each experiment. For values outside the interval spanned by the minimal and maximal validation
accuracies of the reference data, we reuse the power laws of the form fp(x) = ax−c + b described in Sec. 3.3 and again
compute f−1

p (x)/b. We mark these extrapolated values by a ∗ in the table.

To estimate parameters a, b, c for fp(x) = ax−c + b in the exchange rate table and Sec. 3.3 we use a non-linear least-
squares algorithm, initialized from starting parameters that describe the curve for no augmentations. For this we use the
Levenberg-Marquardt implementation of MINPACK, as wrapped in scipy.

Measuring stochasticity. We measure stochasticity during training as follows: We train a model on a given training set and
augmentation strategy, and we freeze the model every 10 epochs to estimate the standard deviation (formally the norm of
parameter-wise standard deviations) of its gradients over randomly sampled batches comprising 128 base images, the same
batch size used during training. That is, we measure the square root of the average squared distance between a randomly
sampled batch gradient and the mean gradient. We adopt a filter-normalized distance function (Li et al., 2018; Huang et al.,
2020) to account for invariances in neural networks whereby shrinking the parameters in convolutional filters may not effect
the network’s output but may make the model more sensitive to parameter perturbations of a fixed size.

Measuring flatness. We adopt the flatness measurements from Huang et al. (2020) as these measurements are non-local,
do not require Hessian computations which are dubious for non-smooth ReLU networks, and they are consistent with
our filter-normalized gradient standard deviation measurements. Specifically, we measure the average filter-normalized
distance in random directions from the trained model parameters before we reach a loss function value of 1.0, where loss is
evaluated on the non-augmented dataset. Under this metric, larger values correspond to flatter minima where parameters
can be perturbed further without greatly increasing loss. We use the same ResNet-18 models trained in the stochasticity
experiments above with the same exact augmentation setups.

The ResNet-18 model employed in the model is a modern variant (He et al., 2015; 2019a) and contains the usual CIFAR-10
stem consisting of a single 3× 3 convolutional layer without pooling, instead of the ImageNet stem (of two convolutional
layers with stride and max-pooling). For experiments in the supplementary material, we further consider a ResNet-8
(i.e. three stages and a single block per stage) (He et al., 2015), a VGG-11 (Simonyan and Zisserman, 2014) with batch
normalization, and a ConvMixer architecture (Trockman and Kolter, 2022) of depth 8 with hidden dimension 128 and spatial
kernel size of 7.

We implement and run all experiments in PyTorch and make use of torchvision implementations for a range of data
augmentations investigated in this work. We provide code to replicate all experiments with the supplementary material.

B.1. Hyperparameters for Augmentations

For each augmentation we broadly follow established defaults. For completion we record these, and additional details here.

Horiz. Flips: A data point is flipped horizontally with probability 0.5.

Det. Horiz. Flips: Deterministic horizontal flips. For 1×, this corresponds to flipping every data point. 2× corresponds to
both flips being contained in the dataset.

Vert. Flips: A data point is flipped vertically with probability 0.5.
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Det. Vert. Flips: Deterministic vertical flips. For 1×, this corresponds to flipping every data point. 2× corresponds to both
flips being contained in the dataset.

Random Crops: The image is padded by with zero-padding by 4 pixels in each direction and then a image of size 32× 32
is cropped (This is classical random cropping for CIFAR-10).

Flips&Crops: Both random crops and horizontal flips are employed, as described above.

Perspectives: Performs a random perspective transform with probability 0.5 with bilinear resampling.

Jitter: Color jitter, randomly transforming contrast, hue and brightness of the image. For each distortion, sample a new
scale uniformly from [0.5, 1.5].

Blur: Blurs the image with a Gaussian blur with σ = 3.

AutoAug: Employ the augmentation policy of Cubuk et al. (2019a), with the CIFAR-10 policy.

AugMix: The augmentation policy of Hendrycks et al. (2020).

RandAug: The augmentation policy of Cubuk et al. (2019b), again with the CIFAR-10 policy.

TrivialAug: The augmentation policy of Müller and Hutter (2021) in its “wide" configuration.

AutoAug&Flips&Crops: The AutoAug policy followed by random horizontal flips and random crops as described above.

AugMix&Flips&Crops: The Augmix policy followed by random horizontal flips and random crops as described above.

RandAug&Flips&Crops: The RandAug policy followed by random horizontal flips and random crops as described above.

TrivialAug&Flips&Crops: The TrivialAug policy followed by random horizontal flips and random crops as described
above.

B.2. Data Licensing

We investigate MNIST (LeCun et al., 1998b), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), EMNIST (Cohen et al.,
2017), CIFAR10-C (Hendrycks and Dietterich, 2018) and CINIC-10 (Darlow et al., 2018) and refer to these publications for
additional details. We remove duplicates and missing data from CINIC-10 as described above.

B.3. Computational Setup and Costs

We use an academic cluster with NVIDIA RTXA4000 cards and NVIDIA GTX2080ti cards. Each job is scheduled
on a single GPU and the default setting of 60000 gradient steps takes roughly an hour to train and evaluate. Including all
preliminary experiments we estimate a total usage of about 400 GPU days for this project. To replicate all experiments in
the main body without repeated trials, we estimate a requirement of about 15 GPU days.

C. Broader Impact
We foresee no direct negative societal consequences from this work. We do think that data augmentations are a beneficial
tool, especially in applications with only limited data, or where data curation is expensive. We argue that knowing how to
exchange a smaller (but verified and curated) dataset for a larger dataset that is not augmented, but also due to its size less
curated, is helpful to the community.

D. Additional Results
Under our experimental setup, we can contrast the accuracy of augmented datasets in Figure 4 with reference models
trained on larger unaugmented datasets from the true data distribution (black horizontal bars). We see that, for example,
TrivialAug&Flips&Crops can generate enlarged datasets that match the performance of reference models trained on the
entire, unaugmented 192000 sample dataset. We formalize this notion in Table 2. This table contains scaling factors that
quantify how much the dataset size effectively increases when training with augmentations. We compute this quantity by
matching each augmented model with the reference model that achieves the same val. accuracy and computing the ratio of
reference dataset size to base size. We include additional information about augmentations and hyperparameters for each
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Figure 4. Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and selected
data augmentations. ResNet-18 models are trained on fixed datasets generated via augmentation from 48000 base samples from the
CINIC-10 train set and evaluated on the CINIC-10 val. set (left) and the CIFAR-10 val. set (right), std. error over 5 runs shaded. The
accuracy of reference models trained without augmentations is marked with horizontal lines. Augmentations such as horizontal flips
that are consistent with the data always improve on the baseline but saturate quickly. Diverse augmentation policies such as TrivialAug
(Müller and Hutter, 2021) are inconsistent but ultimately stronger when training on larger generated datasets. These trends persist when
evaluating on CIFAR-10, but augmentations are much more beneficial even under only small distribution shifts.

experiment in the appendix.

We show these exchange rates again for both CINIC-10 and CIFAR-10 val. data. At a glance, this table reveals consistency
(as measured e.g. in Gontijo-Lopes et al. (2020b)) in the 1× row, then shows diversity of each augmentation in the trend
in each row, and examines robustness by cross-reference to the CIFAR-10 evaluations. This reference to out-of-domain
data is especially relevant to practical use, and we find, for example for AugMix(Hendrycks et al., 2020) that behavior
on in-domain data is not indicative of robust performance. AugMix, which was designed for robustness, does not improve
in performance on in-domain data as more views are sampled. However, for out-of-domain data AugMix views do improve
performance, and combined with flips and crops actually generate the largest amount of effective data. We also include
“negative” augmentations, such as vertical flips and blur that are especially inconsistent. In the case of vertical flips, an
augmentation strategy which is neither diverse nor consistent, applying the augmentation enough still yields performance
benefits and tangible extra data, indicating that diversity and inconsistency alone paint an incomplete picture of the benefits
of augmentation. We further probe the idea that ”out-of-domain" augmentations can improve performance later on.

We include additional material for section 3 in a series of figures and tables. Table 3 is an extended version of table 1 in
the main body, including repetitions up to 32× and ablating the number of steps. Behavior is consistent over additional
repetitions, so we chose not to include these additional rows in the main body. Table 4 and Table 5 are then variants of this
table where validation accuracy is evaluated on CIFAR-10 and CIFAR-10-C, respectively. CIFAR-10-C is a significant
distribution shift that cannot be mitigated by additional CINIC-10 data, only training on, e.g. blurred samples, provides
robustness to this distortion. We further find that training with horizontal flips in our experimental setup is quickly
disadvantageous.

E. Additional Datasets and Models
We further verify that the findings discussed in the main body are not limited to the choice of dataset and model therein. We
repeat Fig.1 and Table 1 for a range of models. We include a tiny ResNet-8 in Figure 7 and Table 6, a VGG-11 in Figure 8
and Table 7 and a ConvMixer (as representative of modern ConvNet/Transformer variations) in Figure 9 and Table 8.

We then further repeat these experiments with models trained on the MNIST training set in Figure 10 and Table 9, CIFAR-100
in Figure 11 and Table 10, as well as EMNIST in Figure 12 and Table 11.

We further include repeated experiments for Sec. 5 on CIFAR-100 in Figure 13 and Table 12.
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Table 2. Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared to reference models
trained without augmentations on up to 192000 samples. Each entry is the factor by which the dataset size is effectively multiplied when
replacing base samples with the augmented views, e.g. training with 8 copies of each original datapoint generated through random crops
reaches the same validation accuracy as training on a 2.54× larger dataset of 2.54 × 48000 = 121920 non-augmented samples. We
measure the exchange rate w.r.t. accuracy on the in-domain CINIC-10 val. set and also the slightly out-of-domain CIFAR-10 val. set.
Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power laws. These exchange rates are a direct
measure of the extra data provided by each augmentation, and the trends in each row characterize the impact of augmentation consistency,
diversity and robustness.

CINIC-10 (in-domain) CIFAR-10 (minor domain shift)
Augmentation 1x 2x 4x 8x rand 1x 2x 4x 8x rand
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.99 1.55 1.79 1.84 1.88 0.95 1.34 1.58 1.37 1.62
Det. Horiz. Flips 0.96 1.89 - - - 0.95 1.46 - - -
Vert. Flips 0.68 0.94 1.09 1.23 1.24 0.47 0.56 0.62 0.64 0.68
Det. Vert. Flips 0.05 1.30 - - - 0.02* 0.71 - - -
Random Crops 0.98 1.90 2.36 2.54 2.60 0.94 1.82 1.93 1.91 1.91
Flips&Crops 0.99 1.93 2.94 3.72 3.82 0.96 1.78 2.15 2.58 2.03
Perspectives 0.88 1.53 1.89 2.29 2.52 0.95 2.06 3.29 4.02* 4.38*
Jitter 0.91 0.91 0.90 0.87 0.93 0.96 0.99 1.18 0.95 1.07
Blur 0.75 0.76 0.75 0.70 0.76 1.46 1.42 1.39 1.23 1.41
AutoAug 0.76 0.95 1.01 1.18 1.64 0.99 1.57 2.06 2.37 4.00*
AugMix 0.87 0.96 0.99 0.99 1.14 1.78 2.35 2.60 3.11 3.32
RandAug 0.89 1.50 1.90 2.19 2.52 1.11 2.19 3.45 4.00* 4.26*
TrivialAug 0.71 0.96 1.23 1.50 2.16 0.89 1.78 2.29 3.12 4.77*
AutoAug&Flips&Crops 0.75 1.43 2.22 3.21 4.00* 0.96 2.53 4.46* 6.30* 7.14*
AugMix&Flips&Crops 0.86 1.60 2.48 3.04 3.72 1.81 4.45* 6.88* 8.55* 9.09*
RandAug&Flips&Crops 0.84 1.71 2.65 3.78 4.00* 0.96 2.32 4.00* 5.10* 5.14*
TrivialAug&Flips&Crops 0.70 1.31 1.98 2.86 4.00* 0.93 2.43 4.30* 6.10* 7.74*

Table 3. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared to
reference models trained without augmentations on up to 192000 samples. We measure the exchange rate w.r.t. accuracy on the in-domain
CINIC-10 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power laws. For a select
augmentations we also include experiments with 240000 steps, i.e. 640 passes through the data to verify the utility of our chosen schedule
of 60000 steps.

CINIC-10 (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.99 1.55 1.79 1.84 1.85 1.79 1.88 -
Det. Horiz. Flips 0.96 1.89 - - - - - -
Vert. Flips 0.68 0.94 1.09 1.23 1.17 1.14 1.25 1.20
Det. Vert. Flips 0.05 1.30 - - - - - -
Random Crops 0.98 1.90 2.36 2.54 2.61 2.74 2.59 2.74
Flips&Crops 0.99 1.93 2.94 3.72 4.00* 4.00* 3.79 -
Perspectives 0.88 1.53 1.89 2.29 2.54 2.68 2.50 -
Jitter 0.91 0.92 0.90 0.87 0.82 0.81 0.93 0.88
Blur 0.76 0.76 0.75 0.70 0.66 0.62 0.76 0.69
AutoAug 0.78 0.95 1.02 1.20 1.39 1.52 1.63 1.77
AugMix 0.87 0.95 0.98 1.00 1.02 1.00 1.14 1.13
RandAug 0.88 1.49 1.91 2.20 2.51 2.67 2.49 -
TrivialAug 0.72 0.96 1.23 1.50 1.70 1.87 2.12 -
AutoAug&Flips&Crops 0.75 1.43 2.22 3.21 4.00* 4.00* 4.00* 4.08*
Augmix&Flips&Crops 0.86 1.62 2.50 3.09 3.82 3.84 3.74 3.74
RandAug&Flips&Crops 0.84 1.71 2.65 3.78 4.00* 4.00* 4.00* -
TrivialAug&Flips&Crops 0.70 1.31 1.98 2.86 3.71 4.00* 4.00* -
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Table 4. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared
to reference models trained without augmentations on up to 192000 samples. We measure the exchange rate w.r.t. accuracy on the
CIFAR-10 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power laws.

CIFAR-10 (slightly out-of-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.95 1.34 1.58 1.37 1.42 1.35 1.66
Det. Horiz. Flips 0.95 1.46 - - - - -
Vert. Flips 0.47 0.56 0.62 0.64 0.64 0.66 0.68
Det. Vert. Flips 0.02* 0.71 - - - - -
Random Crops 0.94 1.82 1.93 1.91 1.75 1.92 1.91
Flips&Crops 0.96 1.78 2.15 2.58 2.26 3.05 1.94
Perspectives 0.95 2.06 3.29 4.02* 4.73* 4.96* 4.34*
Jitter 0.97 1.04 1.09 0.95 0.89 0.86 1.08
Blur 1.52 1.44 1.35 1.20 1.03 0.97 1.40
AutoAug 0.99 1.60 2.00 2.39 3.14 3.46 4.00*
AugMix 1.77 2.38 2.61 3.10 3.18 3.20 3.31
RandAug 1.15 2.29 3.42 4.00* 4.56* 5.19* 4.02*
TrivialAug 0.89 1.81 2.30 3.17 4.00* 4.02* 4.78*
AutoAug&Flips&Crops 0.96 2.53 4.46* 6.30* 6.93* 7.27* 7.18*
AugMix&Flips&Crops 1.74 4.41* 6.86* 8.66* 8.92* 9.45* 9.01*
RandAug&Flips&Crops 0.96 2.32 4.00* 5.10* 6.24* 6.80* 5.12*
TrivialAug&Flips&Crops 0.93 2.43 4.30* 6.10* 6.84* 7.34* 7.60*

Table 5. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared
to reference models trained without augmentations on up to 192000 samples. We measure the exchange rate w.r.t. accuracy on the
CIFAR-10-C val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power laws. Note that
especially values > 10 are an extensive extrapolation far outside the measured range. Values marked with ✓ are outside the range of the
estimated power law, meaning that (at least according to the behavior predicted by it), no amount of additional real data with be sufficient
to match the accuracy achieved with this augmentation - there is no exchange rate.

CIFAR-10-C (out-of-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.84 0.67 0.66 0.55 0.53 0.52 0.63
Det. Horiz. Flips 0.93 0.55 - - - - -
Vert. Flips 0.15 0.11 0.11 0.11 0.11 0.12 0.11
Det. Vert. Flips 0.02* 0.12 - - - - -
Random Crops 0.82 0.86 0.70 0.66 0.60 0.69 0.67
Flips&Crops 0.86 0.66 0.63 0.78 0.64 0.71 0.25
Perspectives 34.16* ✓ ✓ ✓ ✓ ✓ ✓
Jitter 16.81* 190.76* ✓ 16.99* 7.26* 3.08 163.08*
Blur ✓ ✓ ✓ ✓ ✓ ✓ ✓
AutoAug ✓ ✓ ✓ ✓ ✓ ✓ ✓
AugMix ✓ ✓ ✓ ✓ ✓ ✓ ✓
RandAug ✓ ✓ ✓ ✓ ✓ ✓ ✓
TrivialAug ✓ ✓ ✓ ✓ ✓ ✓ ✓
AutoAug&Flips&Crops ✓ ✓ ✓ ✓ ✓ ✓ ✓
AugMix&Flips&Crops ✓ ✓ ✓ ✓ ✓ ✓ ✓
RandAug&Flips&Crops 91.64* ✓ ✓ ✓ ✓ ✓ ✓
TrivialAug&Flips&Crops ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 5. Variant of the Power laws f(x) = ax−c + b for select augmentations applied randomly and the gain in terms of effective extra
samples, for validation accuracy measured on CIFAR-10. Fitted curves marked in solid colors, with extrapolated regions dashed. Left:
Number of base samples (from CINIC-10) on the logarithmic horizontal axis compared to validation accuracy. Right: Number of base
samples compared to effective extra data.
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Figure 6. Variant of the Power laws f(x) = ax−c + b for select augmentations applied randomly and the gain in terms of effective extra
samples, for validation accuracy measured on CIFAR-10-C. Fitted curves marked in solid colors, with extrapolated regions dashed. Left:
Number of base samples (from CINIC-10) on the logarithmic horizontal axis compared to validation accuracy. Right: Number of base
samples compared to effective extra data. Only augmentation with finite exchange rate are included in the right plot.
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Table 6. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared
to reference models trained without augmentations on up to 192000 samples for ResNet-8 models. We measure the exchange rate w.r.t.
accuracy on the CINIC-10 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power
laws.

CINIC-10 (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 1.02 1.50 1.74 1.78 1.69 1.67 1.91 1.69
Det. Horiz. Flips 1.05 2.03 - - - - - -
Vert. Flips 0.68 0.92 1.10 1.03 1.02 1.00 1.22 1.09
Det. Vert. Flips 0.09 1.31 - - - - - -
Random Crops 0.98 1.82 2.40 2.44 2.51 2.62 - 2.62
Flips&Crops 0.96 1.89 2.69 2.99 3.33 4.00* 1.07 3.83
Perspectives 0.90 1.57 1.95 2.13 2.29 2.18 2.39 2.35
Jitter 1.00 1.15 1.18 1.05 1.06 1.04 1.24 1.21
Blur 0.77 0.90 0.98 0.96 0.96 0.93 1.05 0.97
AutoAug 0.93 1.32 1.64 1.64 1.69 1.68 1.91 1.80
AugMix 1.03 1.31 1.52 1.54 1.54 1.48 1.75 1.67
RandAug 0.97 1.66 2.06 2.26 2.42 2.45 2.67 2.68
TrivialAug 0.82 1.39 1.84 1.96 2.07 1.99 2.19 2.24
AutoAug&Flips&Crops 0.85 1.62 2.15 2.65 2.89 3.14 2.62 3.00
AugMix&Flips&Crops 0.92 1.75 2.44 2.79 3.08 3.45 2.82 3.22
RandAug&Flips&Crops 0.93 1.78 2.47 2.84 3.28 4.00* 2.84 3.92
TrivialAug&Flips&Crops 0.75 1.62 2.03 2.51 2.75 2.91 2.52 2.93
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Figure 7. Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and selected
data augmentations. ResNet-8 models are trained on fixed datasets generated via augmentation from 48000 base samples from the
CINIC-10 train set and evaluated on the CINIC-10 val. set (left) and the CIFAR-10 val. set (right), std. error over 3 runs shaded. The
accuracy of reference models trained without augmentations is marked with horizontal lines.
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Table 7. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared
to reference models trained without augmentations on up to 192000 samples for VGG-11 models. We measure the exchange rate w.r.t.
accuracy on the CINIC-10 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power
laws.

CINIC-10 (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 1.00 1.54 1.77 1.78 1.77 1.78 1.89 1.86
Det. Horiz. Flips 0.98 1.97 - - - - - -
Vert. Flips 0.54 0.83 0.93 0.95 0.93 0.92 1.00 0.97
Det. Vert. Flips 0.02 1.08 - - - - - -
Random Crops 0.98 1.70 2.11 2.12 2.22 2.11 - 2.24
Flips&Crops 0.98 1.86 2.56 2.99 3.08 3.11 1.01 3.15
Perspectives 0.79 1.20 1.54 1.56 1.51 1.46 1.76 1.51
Jitter 0.89 0.86 0.86 0.84 0.79 0.81 0.86 0.82
Blur 0.60 0.59 0.58 0.54 0.56 0.51 0.62 0.55
AutoAug 0.72 0.91 1.05 1.10 1.26 1.24 1.59 1.51
AugMix 0.91 0.97 0.97 0.96 0.95 0.97 1.02 1.00
RandAug 0.83 1.37 1.79 1.92 2.00 1.98 2.14 2.19
TrivialAug 0.64 0.94 1.14 1.37 1.55 1.65 1.94 2.00
AutoAug&Flips&Crops 0.67 1.28 2.09 2.68 3.13 3.21 4.00* 4.00*
AugMix&Flips&Crops 0.83 1.55 2.31 2.79 3.06 2.81 3.22 3.12
RandAug&Flips&Crops 0.79 1.57 2.27 3.09 3.32 3.33 3.97 3.92
TrivialAug&Flips&Crops 0.54 1.13 1.83 2.46 2.93 3.35 4.00* 4.00*
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Figure 8. Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and selected
data augmentations. VGG-11 models are trained on fixed datasets generated via augmentation from 48000 base samples from the
CINIC-10 train set and evaluated on the CINIC-10 val. set (left) and the CIFAR-10 val. set (right), std. error over 3 runs shaded. The
accuracy of reference models trained without augmentations is marked with horizontal lines.
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Table 8. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CINIC-10 training set, compared
to reference models trained without augmentations on up to 192000 samples for ConvMixer models. We measure the exchange rate w.r.t.
accuracy on the CINIC-10 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power
laws.

CINIC-10 (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.95 1.37 1.39 1.59 1.50 1.69 1.41 1.66
Det. Horiz. Flips 1.04 1.50 - - - - - -
Vert. Flips 0.37 0.45 0.45 0.48 0.55 0.50 0.48 0.49
Det. Vert. Flips 0.04 0.43 - - - - - -
Random Crops 0.78 0.93 0.97 1.18 1.36 1.30 1.00 1.26
Flips&Crops 0.87 1.05 1.40 1.71 1.59 1.63 1.00 1.72
Perspectives 0.71 0.97 1.26 1.85 2.24 2.03 2.04 2.33
Jitter 0.78 0.91 0.90 1.04 1.11 1.34 0.87 1.26
Blur 0.34 0.46 0.51 0.49 0.56 0.61 0.54 0.65
AutoAug 0.59 0.89 1.42 1.77 1.96 2.30 1.57 2.07
AugMix 0.77 0.91 0.89 1.31 1.60 1.77 1.40 1.70
RandAug 0.80 1.28 1.71 1.76 2.05 2.59 2.21 2.28
TrivialAug 0.48 1.11 1.72 2.31 2.84 2.91 2.28 2.66
AutoAug&Flips&Crops 0.49 1.04 1.85 2.19 2.67 2.80 2.49 2.91
AugMix&Flips&Crops 0.65 1.22 1.58 1.91 2.10 2.12 1.92 2.20
RandAug&Flips&Crops 0.57 1.19 1.82 2.40 2.65 2.69 2.89 2.89
TrivialAug&Flips&Crops 0.41 1.07 1.83 2.21 2.92 3.55 2.67 3.08
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Figure 9. Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and selected
data augmentations. ConvMixer models are trained on fixed datasets generated via augmentation from 48000 base samples from the
CINIC-10 train set and evaluated on the CINIC-10 val. set (left) and the CIFAR-10 val. set (right), std. error over 3 runs shaded. The
accuracy of reference models trained without augmentations is marked with horizontal lines.
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Table 9. Extended table of Exchange rates for augmentations applied to 48000 base samples from the MNIST training set, compared to
reference models trained without augmentations on up to 60000 samples for ResNet-18 models. We measure the exchange rate w.r.t.
accuracy on the MNIST val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power laws.
Values marked with ✓ are outside the range of the estimated power law, meaning that (at least according to the behavior predicted by it),
no amount of additional real data with be sufficient to match the accuracy achieved with this augmentation - there is no exchange rate.

MNIST (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.24 0.24 0.34 0.27 0.26 0.29 0.40 0.25
Det. Horiz. Flips 0.02* - - - - - - -
Vert. Flips 0.20 0.22 0.22 0.22 0.22 0.24 0.23 0.22
Det. Vert. Flips 0.02* - - - - - - -
Random Crops 1.11 1.16 ✓ 1.17 ✓ ✓ - 37.32*
Flips&Crops 0.17 0.23 0.21 0.22 0.24 0.25 0.88 0.23
Perspectives 1.16 1.14 7.84* 1.17 1.17 ✓ 1.15 37.32*
Jitter 1.08 0.81 1.17 1.08 1.11 1.15 0.81 1.10
Blur 1.08 1.10 1.12 0.77 1.15 7.84* 1.17 1.14
AutoAug 0.72 1.16 1.08 1.16 4.38* 7.84* 7.84* ✓
AugMix 1.11 1.14 1.16 1.16 1.17 1.17 1.12 1.15
RandAug 1.10 1.15 4.38* ✓ ✓ ✓ 1.16 ✓
TrivialAug 0.54 4.38* 1.12 1.12 4.38* ✓ 1.16 ✓
AutoAug&Flips&Crops 0.14 0.17 0.20 0.24 0.26 0.24 0.24 0.26
AugMix&Flips&Crops 0.15 0.21 0.21 0.24 0.23 0.24 0.24 0.24
RandAug&Flips&Crops 0.17 0.21 0.21 0.23 0.24 - 0.23 0.23
TrivialAug&Flips&Crops 0.12 0.15 0.16 0.21 0.22 0.23 0.21 0.24
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Figure 10. Left: Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and
selected data augmentations. ResNet-18 models are trained on fixed datasets generated via augmentation from 48000 base samples from
the MNIST train set and evaluated on the MNIST val. set. Right: Extrapolated scaling behavior of reference models for MNIST.
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Table 10. Extended table of Exchange rates for augmentations applied to 48000 base samples from the CIFAR-100 training set, compared
to reference models trained without augmentations on up to 50000 samples for ResNet-18 models. We measure the exchange rate w.r.t.
accuracy on the CIFAR-100 val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power
laws.

CIFAR-100 (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.95 1.39* 1.57* 1.59* 1.56* 1.52* 1.61* 1.55*
Det. Horiz. Flips 0.89 1.64* - - - - - -
Vert. Flips 0.62 0.94 1.13* 1.14* 1.11* 1.02 1.18* 1.14*
Det. Vert. Flips 0.18 1.19* - - - - - -
Random Crops 0.90 1.58* 1.88* 2.00* 1.99* 1.99* - 2.04*
Flips&Crops 0.87 1.60* 2.08* 2.30* 2.35* 2.28* 0.99 2.35*
Perspectives 0.78 1.33* 1.66* 1.90* 1.97* 1.94* 1.87* 1.96*
Jitter 0.88 0.90 0.94 0.88 0.82 0.80 0.90 0.82
Blur 0.77 0.75 0.74 0.70 0.67 0.67 0.73 0.69
AutoAug 0.71 0.92 0.99 1.01 1.10* 1.14* 1.40* 1.37*
AugMix 0.86 0.97 1.00 1.02 1.03 1.02 1.15* 1.14*
RandAug 0.79 1.30* 1.58* 1.80* 1.86* 1.88* 1.81* 1.87*
TrivialAug 0.59 0.91 1.12* 1.21* 1.32* 1.48* 1.78* 1.86*
AutoAug&Flips&Crops 0.60 1.22* 1.73* 2.04* 2.20* 2.23* 2.29* 2.37*
AugMix&Flips&Crops 0.75 1.47* 1.94* 2.23* 2.26* 2.30* 2.15* 2.20*
RandAug&Flips&Crops 0.67 1.39* 1.94* 2.23* 2.26* 2.31* 2.24* 2.24*
TrivialAug&Flips&Crops 0.51 1.03 1.58* 1.92* 2.10* 2.22* 2.37* 2.55*
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Figure 11. Left: Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and
selected data augmentations. ResNet18 models are trained on fixed datasets generated via augmentation from 48000 base samples
from the CIFAR-100 train set and evaluated on the CIFAR-100 val. set. Right: Extrapolated scaling behavior of reference models for
CIFAR-100.
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Table 11. Extended table of Exchange rates for augmentations applied to 48000 base samples from the EMNIST training set, compared
to reference models trained without augmentations on up to 124800 samples for ResNet-18 models. We measure the exchange rate w.r.t.
accuracy on the EMNIST val. set. Values marked with ∗ fall outside the range of reference datasets and are extrapolated using power
laws. Values marked with ✓ are outside the range of the estimated power law, meaning that (at least according to the behavior predicted by
it), no amount of additional real data with be sufficient to match the accuracy achieved with this augmentation - there is no exchange rate.

EMNIST (in-domain)
Augmentation 1x 2x 4x 8x 16x 32x rand (160) rand (640)
- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Horiz. Flips 0.12 0.15 0.15 0.16 0.15 0.15 0.16 0.16
Det. Horiz. Flips 0.02* - - - - - - -
Vert. Flips 0.12 0.16 0.17 0.18 0.16 0.17 0.17 0.17
Det. Vert. Flips 0.02* - - - - - - -
Random Crops 0.61 0.93 1.90 2.10 5.90* ✓ - ✓
Flips&Crops 0.10 0.12 0.15 0.18 0.19 0.23 1.12 0.20
Perspectives 0.95 2.04 1.99 2.11 2.06 ✓ ✓ 2.18
Jitter 0.72 1.45 0.90 0.91 1.36 0.98 1.03 1.24
Blur 0.82 0.81 0.75 0.88 0.94 0.93 0.92 1.16
AutoAug 1.24 1.26 0.99 0.92 2.12 2.07 13.79* 2.03
AugMix 1.60 0.90 1.04 2.10 2.04 2.02 1.56 1.99
RandAug 1.24 2.14 2.05 2.07 ✓ ✓ ✓ ✓
TrivialAug 0.86 0.79 0.96 1.91 1.57 1.84 ✓ ✓
AutoAug&Flips&Crops 0.10 0.12 0.12 0.14 0.21 0.21 0.30 0.25
AugMix&Flips&Crops 0.10 0.12 0.12 0.17 0.17 0.19 0.21 0.16
RandAug&Flips&Crops 0.10 0.13 0.15 0.18 0.20 0.20 0.24 0.21
TrivialAug&Flips&Crops 0.06 0.10 0.11 0.15 0.20 0.22 0.28 0.23
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Figure 12. Left: Validation accuracy versus dataset size as larger datasets are generated from a fixed number of base samples and
selected data augmentations. ResNet-18 models are trained on fixed datasets generated via augmentation from 48000 base samples from
the EMNIST train set and evaluated on the EMNIST val. set. Right: Extrapolated scaling behavior of reference models for EMNIST.

Table 12. Gradient standard deviation across batches at the end of training and flatness measurements for Mobilenet V2 models trained on
CIFAR-100 with various augmentations and strategies for sampling augmented views. Averaged over 3 runs

Augmentation Fixed Views Same Batch Grad. Std. Flatness
No Augmentation - - 46.39 7.78

Horiz. Flip & Rand. Crop No No 46.37 7.79
Yes No 42.62 3.41
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Figure 13. Standard deviation of gradient across epochs for different augmentations and different mini-batch sampling strategies. Each
dot indicates the mean over 3 runs, and shaded regions represent confidence intervals of width one standard error.


