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ABSTRACT

We propose a meta-learning method for learning from multiple noisy annotators.
In many applications such as crowdsourcing services, labels for supervised learn-
ing are given by multiple annotators. Since the annotators have different skills or
biases, given labels can be noisy. To learn accurate classifiers from such data, ex-
isting methods require many noisy annotated data. However, sufficient data might
be unavailable in practice. To overcome the lack of data, the proposed method uses
labeled data obtained in different but related tasks. The proposed method embeds
each example in tasks to a latent space by using a neural network and constructs a
probabilistic model for learning a task-specific classifier while estimating annota-
tors’ abilities on the latent space. This neural network is meta-learned to improve
the expected test classification performance when the classifier is adapted to a
given small amount of annotated data. This classifier adaptation is performed by
maximizing the posterior probability via the expectation-maximization (EM) al-
gorithm. Since each step in the EM algorithm is easily computed as a closed-form
and is differentiable, the proposed method can efficiently backpropagate the loss
through the EM algorithm to meta-learn the neural network. We demonstrate the
effectiveness of the proposed method with real-world datasets with synthetic noise
and real-world crowdsourcing datasets.

1 INTRODUCTION

Supervised learning requires labeled data for learning classifiers. In real-word applications, the
labels are often given from multiple annotators. For example, in crowdsourcing services, we can
obtain the labels by outsourcing annotation tasks to multiple workers (Zhang et al., 2016; Sheng &
Zhang, 2019). In medical care or cyber security, multiple experts often perform annotation because
annotation is quite time-consuming and difficult (Mimori et al., 2021; Salem et al., 2021).

In such situations, an essential challenge is that the obtained labels are generally noisy. This is be-
cause the performance of different annotators can vary widely. For example, in a crowdsourcing
service, some workers are simply spammers that provide random labels to easily earn money (Kazai
et al., 2011). In medical care or cyber security, even experts have much variability in annotation
performance (Raykar et al., 2010; Mimori et al., 2021). When such noisy labels are used, standard
supervised learning methods cannot perform well (Song et al., 2022). Thus, many methods have
been proposed for learning classifiers from noisy labeled data obtained from multiple annotators
without knowing ground truth labels (Raykar et al., 2010; Kajino et al., 2012; Rodrigues & Pereira,
2018; Chu et al., 2021). These methods usually require a large amount of annotated data to deal
with noisy labels. However, such data might be difficult to collect in some applications. For exam-
ple, since the crowdsourcing services usually charge a fee on the basis of the number of data and
annotators, enough annotated data are difficult to collect when budgets are constrained. In medical
care or cyber security, due to the scarcity of data and expertise requirements, it is difficult to collect
both sufficient data to be labeled and experts who can annotate.

Even if a large amount of data is difficult to collect on a task of interest, called a target task 1,
sufficient data with ground truth labels might be available in different but related tasks, called

1Although “task” is often used in the sense of “example” to be annotated in crowdsourcing literature, our
paper uses the “task” for a set of examples.
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source tasks. For example, if we want to build medical imaging diagnosis systems in a target
task, in which only a limited number of noisy annotated training images are available, we can use
clean labeled data in other image classification problems (e.g., ImageNet (Deng et al., 2009).) 2
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Figure 1: Our problem setting. In the (meta-
)training phase, our model is meta-learned with
multiple source tasks. In the testing phase of
the meta-learned model, a classifier is obtained
using the meta-learned model adapted to noisy
labeled data in a target task.

In this paper, we propose a meta-learning method
for learning classifiers from a limited number of
noisy labeled data from multiple annotators on
target tasks by using clean labeled data in source
tasks. Figure 1 illustrates the overview of our
problem setting. Meta-learning aims to learn how
to learn from a few data and has recently been
successfully used for various small data problems
such as few-shot classification (Hospedales et al.,
2020). Meta-learning is usually formulated as a
bi-level optimization problem. In the inner prob-
lem, task-specific parameters of the model are
adapted to a given small amount of task-specific
examples in a source task. In the outer problem,
common parameters shared across all tasks are
meta-learned to improve the expected test perfor-
mance when the adapted model is used.

In the inner problem of the proposed method, we first embed the given task-specific examples to a
latent space by a neural network and build a probabilistic latent variable model for learning clas-
sifiers from multiple annotators on the latent space. By using the high expressive capability of
neural networks, we aim to meta-learn embeddings suitable for our problem. Since source tasks
contain only clean labeled data, we artificially introduce label noises to the task-specific examples at
every meta-training iteration to simulate the test environment. We will demonstrate that this pseudo-
annotation strategy is critical to improve performance in our experiments. With our probabilistic
model, a ground truth label for each given example is treated as a latent variable, and the embed-
ded task-specific examples are modeled by the Gaussian mixture model (GMM) on the latent space.
Each component of GMM corresponds to a ground truth class label (latent variable). Further, each
annotator’s ability is modeled as an annotator-specific confusion matrix, whose entries are the prob-
ability of the observed noisy label given a ground truth label. This modeling allows the GMM to
be fitted to the embedded data while accounting for each annotator quality. The GMM parameters
and annotator-specific confusion matrices are task-specific parameters and are obtained by maxi-
mizing the posterior probability given the pseudo-annotated task-specific data and the priors with
the expectation-maximization (EM) algorithm. By using the adapted GMM parameters, the task-
specific classifier is obtained as the posterior probability of the ground truth label given an example
in a principled manner.

In the outer problem, we meta-learn the parameters of the neural network such that the expected test
classification performance, which is directly calculated with clean labeled data, is improved when
the adapted classifier is used. Since each step in the EM algorithm is easily obtained as a closed-
form and is differentiable, we can efficiently solve the bi-level optimization with a standard gradient
descent method. By meta-learning the neural network on various tasks, we can obtain example
representations suitable for learning from multiple noisy annotators on unseen tasks.

2 RELATED WORK

Many methods have been proposed for learning from multiple noisy annotators (Sheng & Zhang,
2019; Zhang et al., 2022). Early methods focused on estimating ground truth labels for given train-
ing data (Dawid & Skene, 1979; Whitehill et al., 2009; Venanzi et al., 2014; Welinder et al., 2010).
Majority voting (MV) is the simplest method. However, it often does not work well because it ig-

2For convenience, throughout this paper, we assume that all labels in the source tasks are correct. However,
it may be difficult to collect entirely clean data in real-world applications. Thus, in practice, we use datasets
that are expected to have relatively low levels of noise as the source tasks. We discuss how to apply our method
while explicitly treating noisy labeled data in source tasks in Section J.

2
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nores per-annotator characteristics (Raykar et al., 2010). The Dawid and Skene (DS) model (Dawid
& Skene, 1979) is a famous probabilistic model that explicitly models the annotator’s ability as
a class-dependent and input example-independent confusion matrix. It estimates the ground truth
labels via the EM algorithm. Due to its effectiveness, the DS model has been the basis for subse-
quent studies (Whitehill et al., 2009; Venanzi et al., 2014; Welinder et al., 2010; Li & Yu, 2014).
Later studies focused on directly learning classifiers from noisy labeled data given by multiple an-
notators (Raykar et al., 2010; Kajino et al., 2012; Rodrigues et al., 2013). Among them, neural
network-based methods have gained attention for their high expressive capability (Albarqouni et al.,
2016; Rodrigues & Pereira, 2018; Chu et al., 2021; Chu & Wang, 2021; Wei et al., 2022; Li et al.,
2020; Gao et al., 2022; Guo et al., 2023; Li et al., 2024). Although these methods are promising,
when there are insufficient data, they do not work well since overfitting easily occurs. Although our
method also uses neural networks, they are shared across all tasks and are learned with all data in
source tasks. Therefore, our method can learn from a few data without overfitting.

Meta-learning aims to learn how to learn from a few data by using data in related tasks (Hospedales
et al., 2020; Vanschoren, 2018). Although most works focus on few-shot classification with clean
labeled data, a few methods use the meta-leaning for learning from multiple noisy annotators (Zhang
et al., 2023; Xu & Zhang, 2022; Han et al., 2021b;a). Zhang et al. (2023) and Han et al. (2021a) use
a model pre-trained by ordinary meta-learning or transfer learning for estimating ground truth labels
of only given examples in target tasks. Unlike the proposed method, these methods cannot directly
learn classifiers on target tasks. One method requires additional annotators for testing examples in
target tasks (Han et al., 2021b). Most importantly, all these methods use pre-trained models without
noisy annotations as feature extractors and simply apply learning methods from noisy annotators to
only target tasks. In contrast, the proposed method incorporates the classifier learning from noisy
annotators during the meta-learning phase to mimic the test environment. By constructing appropri-
ate probabilistic models in the inner optimization, the proposed method can adapt to data given from
noisy annotators via the closed-form EM steps, which leads to effective and fast meta-learning. We
demonstrate that this learning strategy dramatically improve performance in our experiments.

In the meta-learning methods, gradient-based methods such as model-agnostic meta-learning
(MAML) (Finn et al., 2017) are a representative approach, which solves the inner problems by
using gradient descent methods. They require second-order derivatives of the parameters of neu-
ral networks to solve the bi-level optimization and thus impose high computation cost (Rajeswaran
et al., 2019; Bertinetto et al., 2018). The proposed method can solve the inner problem via the EM
algorithm, where each EM step is easily obtained as a closed-form. Thus, the proposed method
is more efficient than MAML. In addition, unlike MAML, the EM algorithm does not require the
step size of gradient descents to be determined, which greatly affects meta-learning performance.
Another representative approach is the embedding-based methods that meta-learns neural networks
for embeddings, such as prototypical network (Snell et al., 2017). It calculates the prototype of each
class as the average of the embedded training data in the same class and classifies a new example on
the basis of the distance between each prototype and the embedded example. The proposed method
can be regarded as a natural extension of the prototypical network. Specifically, in our probabilistic
model, each prototype is obtained as the weighted average of the training data, where the weights are
estimated from noisy labeled data in a principled manner. A few studies formulate the inner prob-
lem as probabilistic modeling for topic modeling or clustering (Iwata, 2021a;b; Lee et al., 2020).
Our method also incorporates the probabilistic model for learning from multiple annotators in the
meta-learning.

3 PROPOSED METHOD

In Section 3.1, we formulate our problem setting. In Section 3.2, we present our model to learn a
classifier from noisy labeled data given by multiple annotators. In Section 3.3, we explain our meta-
learning procedure to train our model. Figure 2 shows the overview of our meta-learning procedure.

3.1 PROBLEM FORMULATION

In the (meta-)training phase, we are given D source tasks D = {{(xdn, tdn)}Nd
n=1}Dd=1, where D

is the number of tasks, Nd is the number of data in the d-th task, xdn ∈ X is the feature vector of

3
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Figure 2: Overview of our meta-learning procedure. (1) For each training iteration, we randomly
sample a few labeled data, called support set, and labeled data, called query set, from a randomly
selected source task. (2) We generate pseudo-labels on the basis of a support set to simulate data
obtained from multiple noisy annotators. (3) All examples are embedded to a latent space by a
neural network, and (4) the task-specific classifier is obtained by the EM algorithm on the latent
space with the support set (Section 3.2). (5) The classification loss is calculated with the classifier
on the query set and (6) is backpropagated to update the neural network.

the n-th example of the d-th task, tdn ∈ {cd1, . . . , cdKd
} is its ground truth label, cdk is the k-th

class of the d-th task, and Kd is the number of classes of the d-th task. In the testing phase, we are
given a small number of noisy labeled data from R annotators S = {(xn, {yrn}r∈In)}NS

n=1 (support
set) in an unseen target task, where yrn ∈ {c1, . . . , cK} is an annotation for the n-th example by the
r-th annotator, K is the number of classes, and In ⊆ {1, . . . , R} is the index set of annotators that
give labels for the n-th example. We assume that In 6= ∅, i.e., each example is assigned at least one
or more labels. We make the standard assumption used in meta-learning studies (Hospedales et al.,
2020): the classes {c1, . . . , cK} in the target task do not overlap with those in the source tasks, and
feature space X is the same across all tasks. Our goal is to learn an accurate target task-specific
classifier from noisy labeled data S.

3.2 MODEL

We explain how to learn a classifier given noisy labeled data from the annotators S. In the following,
class ck is denoted as class k for simplicity. We first non-linearly embed each example x ∈ X to
an M -dimensional latent space by using a neural network f , u = f(x; θ) ∈ RM , where θ is the
parameters of the neural network that is common across all tasks. We aim to meta-learn parameters
θ to improve the expected test classification performance. The meta-learning procedure will be
described in next section.

To obtain classifiers, we consider a probabilistic latent variable model on the latent space, where
a ground truth label for the n-th example tn ∈ {1, . . . ,K} is treated as a latent variable. We use
probabilistic models because they are successfully used for learning from multiple annotators in
the previous studies (Dawid & Skene, 1979; Raykar et al., 2010; Tanno et al., 2019; Kim et al.,
2022). With our model, ground truth label t is generated from the categorical distribution with
parameters π = (πk)Kk=1: p(t = k|π) = πk where πk ≥ 0 and

∑K
k=1 πk = 1. We assume

that embedded example u ∈ RM is generated depending on its ground truth label t as follows,
p(u|t = k,M) = N (u|µk, I), where N (·|µ,Σ) is the Gaussian distribution with mean µ ∈ RM
and covariance Σ ∈ RM×M , I is M -dimensional identity matrix, µk ∈ RM is a prototype for
the k-th class, and M = (µk)Kk=1. Although we assume the isotropic variance I for simplicity,
we can use other covariance matrices such as full covariance matrices. For the r-th annotator, we
assume confusion matrix Ar ∈ [0, 1]K×K , where its (l, k)-th element αrlk represents the probability
that the r-th annotator returns label l when ground truth label is k: p(yr = l|t = k,A) = αrlk,
where αrlk ≥ 0,

∑K
l=1 α

r
lk = 1, and A = (Ar)

R
r=1. Such an input example-independent confusion

matrix has been commonly and successfully used for modeling the annotator’s ability in the previous
crowdsourcing studies (Chu et al., 2021; Rodrigues & Pereira, 2018; Raykar et al., 2010; Tanno et al.,
2019; Kim et al., 2022).
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By using the above components, the likelihood of the embedded support examples U = {un}NS
n=1

and their noisy labels Y = {{yrn}r∈In}
NS
n=1 is given by

p(U,Y|M,π,A) =

NS∏
n=1

∑
tn

[
p(un|tn,M)p(tn|π)

∏
r∈In

p(yrn|tn,A)

]
. (1)

Note that this model is equivalent to the GMM on the latent space when excluding annotator term∏
r∈In p(y

r
n|tn,A). In Eq. (1), M,π, and A are task-specific parameters to be estimated from

support set S. We estimate M,π, and A by maximizing the posterior probability as follows,

M∗,π∗,A∗ = arg max
M,π,A

ln p(M,π,A|U,Y) = arg max
M,π,A

ln p(U,Y|M,π,A) + ln p(M,π,A),

(2)

where we assume the conjugate prior distribution for each component of the likelihood 3:

p(M,π,A) = p(π)

K∏
k=1

p(µk)

R∏
r=1

p(Ar), (3)

p(µk)=N (µk|0, τ−1I), p(π)=
Γ(K(b+ 1))

Γ(b+ 1)K

K∏
k=1

πbk, p(Ar)=

K∏
k=1

[
Γ(K(c+ 1))

Γ(c+ 1)K

K∏
l=1

(αrlk)c

]
,

(4)

where τ > 0 is a precision parameter, p(π) is the Dirichlet distribution with the Dirichlet parameter
b > 0, and Γ(·) is the gamma function. p(Ar) is the product of the Dirichlet distribution with
parameter c > 0. By using such conjugate priors, we can stabilize the EM algorithm and derive a
closed-form EM step as described later. In this paper, we treat τ , b, and c as hyperparameters.

We find a local optimum solution for Eq. (2) by using the EM algorithm, where the task-specific
parameters are updated by maximizing the following lower bound Q of the objective function in
Eq. (2):

ln p(U,Y|M,π,A) + ln p(M,π,A) ≥
NS ,K∑
n,k=1

λnk ln
p(un|tn=k,M)p(tn=k|π)

∏
r p(y

r
n|tn=k,A)

λnk
+ ln p(M,π,A) ≡ Q, (5)

where we used Eq. (1) and Jensen’s inequality to derive Q, λnk is the responsibility that represents
the probability that the label of the n-th example is k-th class, λnk ≥ 0, and

∑K
k=1 λnk = 1. This

inequality becomes tighter as λnk approaches true posterior p(tn = k|un,Y,M,π,A), and the
equality holds if and only if λnk matches the true posterior (Bishop, 2006). The EM algorithm
alternates between the E step and M step to maximize the lower bound. Specifically, in the E step,
the responsibility is calculated by analytically maximizing lower bound Q w.r.t. λnk,

λnk = p(tn = k|un,Y,M,π,A)

=
p(un|tn = k,M)p(tn = k|π)p(Y|tn = k,A)

p(un,Y,M,π,A)
=

N (un|µk, I)πkank∑K
l=1N (un|µl, I)πlanl

, (6)

where ank := p(Y|tn = k,A) =
∏
r∈In

∏K
l=1(αrlk)δ(y

r
n,l) and δ(X,Y ) is the delta function, i.e.,

δ(X,Y ) = 1 if X = Y , and δ(X,Y ) = 0 otherwise.

In the M step, task-specific parameters M, π, and A are calculated as follows,

µk =

∑NS
n=1 λnkun

τ +
∑NS
n=1 λnk

, πk =

∑NS
n=1 λnk + b

Kb+NS
, αrlk =

∑
n∈Ir λnkδ(y

r
n, l) + c∑

n∈Ir λnk +Kc
, (7)

3A conjugate prior is a prior distribution that produces a posterior in the same family as the prior when
combined with a specific likelihood (Bishop, 2006). Since the conjugate priors make the inference simpler,
they are commonly used in probabilistic modeling. In our model, since the likelihood p(un|tn,M) is a Gaus-
sian, we used the Gaussian prior (conjugate prior) p(µk). Since the likelihoods p(tn|π) and p(yr

n|tn,A) are
multinomial distributions, we used the Dirichlet priors (conjugate priors) p(π) and p(Ar), respectively.

5
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which are obtained analytically by maximizing the lower bound Q with respect to µk, πk, and αrlk,
respectively. Ir ⊆ {1, . . . , N} is the index set of the examples that are labeled by the r-th annotator.
The EM algorithm is guaranteed to monotonically increase the posterior probability at each step
until it reaches a local maximum. We repeat the EM steps J times for the adaptation and obtain
estimated task-specific parameters M∗, π∗, and A∗. As a result, the class label probability given a
new example u = f(x) is calculated by

ln p(t = k|u;S) ∝ ln p(u|t = k,M∗) + ln p(t = k|π∗) = −1

2
‖ u− µ∗k ‖2 +ln π∗k. (8)

The class label of u can be predicted by argmaxk[− 1
2‖|u−µ

∗
k‖|2 + ln π∗k]. Our generative model-

based formulation can naturally treat tasks with different numbers of classes. This property would
be preferable in practice, e.g., when the number of classes in the target task is different from that in
the source tasks. We note that when each class has the uniform prior, i.e., πk = 1

K , τ = 0, and each
example has clean label; λnk = 1 for truth class k, the adapted classifier in Eq. (8) is equivalent to
that of the prototypical network (Snell et al., 2017), which is a well-known embedding-based meta-
learning method. Therefore, our model can be regarded as a natural extension of the prototypical
network for learning from multiple annotators.

3.3 META-TRAINING

We explain the meta-training procedure for our model. In this section, notation S is used as a
support set with pseudo noisy labels in source tasks. In the outer optimization, meta-parameters to
be optimized are parameters of the neural network θ. We maximize the expected test classification
performance when the classifier obtained in the inner optimization is used:

min
θ

Ed∼{1,...,D}E(S̄,Q)∼Dd
E{Br}∼p(B)ES∼p(S̄,{Br}) [−ln p(θ,Q;S)] , (9)

where Q = {(xn, tn)}NQ
n=1 and S̄ = {(xm, tm)}NS

m=1 are testing data, called a query set, and a
support set drawn from the same source task without overlapping, respectively. Since source tasks
have only clean labeled data, S̄ are also clean. Therefore, to mimic the test environment, we ar-
tificially create noisy labels of R pseudo-annotator on the basis of S̄. Specifically, we first draw
R annotators’ confusion matrices {Br}Rr=1 from a predefined confusion matrix distribution p(B),
where the (l, k)-th element of Br is βrlk that represents the probability that the r-th pseudo-annotator
returns label l when the ground truth label is k. The specific form of the confusion matrix distri-
bution will be described in Section 4.1. By using {Br}Rr=1 and S̄, support set with noisy labels
S = {(xm, {yrm}Rr=1)}NS

m=1 are generated, where yrm is a label for the m-the example annotated
from the r-th pseudo-annotator and is generated by using the r-th confusion matrix Br on truth
label of the m-th example tm. In Eq. (9), log-likelihood ln p(θ,Q;S) is described as

ln p(θ,Q;S) =

NQ∑
n=1

ln p(tn|un;S) =

NQ∑
n=1

−1

2
‖ un(θ)−µ∗tn(θ) ‖2 +ln π∗tn(θ)− ln

(
K∑
k=1

exp(−1

2
‖ un(θ)− µ∗k(θ) ‖2)π∗k(θ)

)
, (10)

where we explicitly describe the dependency of neural network parameter θ for clarity. M∗(θ) and
π∗(θ) are task-specific parameters adapted to support set S . Since M∗(θ) and π∗(θ) are easily
obtained by the EM algorithm, the outer problem in Eq. (9) is efficiently constructed. In addition,
the outer problem is differentiable since M∗(θ) and π∗(θ) are differentiable w.r.t. θ. Thus, we can
solve it by a stochastic gradient descent method. Algorithm 1 shows the pseudocode for our meta-
training procedure. For each iteration, we randomly sample task d from source tasks (Line 2). From
the d-th task, we randomly sample support set S̄ (Line 3). From Dd \ S̄, we randomly sample query
set Q (Line 4). We generate a support set with pseudo-noisy labels S from S̄ (Lines 5–6). Since
source tasks contain only clean labeled data, we artificially created noisy labeled data. When source
tasks have labeled data obtained from multiple annotators, we can directly use them. We initialize
the responsibilities λnk (Line 7). In our experiments, we initialized λnk = 1

R

∑R
r=1 δ(y

r
n, k). By

repeating the EM steps J times, we can obtain the classifier adapted to support set S (Lines 8–
11). Lastly, we calculate the negative log-likelihood (loss) on a query set Q (Line 12) and update

6
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Algorithm 1 Meta-training procedure of our model.

Require: Source tasks D, support set size NS , query set size NQ, the number of the EM steps J ,
the number of pseudo-annotators R, and the confusion matrix distribution p(B)

Ensure: Common parameters of neural network θ
1: repeat
2: Randomly sample task d from {1, . . . , D}
3: Randomly sample support set S̄ with size NS from d-th task Dd
4: Randomly sample query set Q with size NQ from Dd \ S̄
5: Randomly sample R pseudo-annotators’ confusion matrices {Br}Rr=1 from p(B)
6: Generate support set with noisy labels S from both S̄ and {Br}Rr=1

7: Initialize the responsibilities for S, (λnk)NS ,K
n=1,k=1

8: for j := 1 to J do
9: Update task-specific parameters M, π, and A by Eq. (7)

10: Update (λnk)NS ,K
n=1,k=1 for S by Eq. (6)

11: end for
12: Calculate the negative log-likelihood on Q, −ln p(θ,Q;S), with Eq. (10)
13: Update common parameters θ with the gradients of the negative log-likelihood
14: until End condition is satisfied;

common parameters θ with the gradient of the loss (Line 13). After meta-learning θ, given a support
set from multiple annotators S on unseen target tasks, we can obtain the target task-specific classifier
by executing Lines 7 to 11 with S on Algorithm 1. The time complexity of the EM algorithm (Eqs.
(6) and (7)) is O(JNSK(KR + M)). In our setting, the numbers of support data NS , classes K,
and annotatorsR are small, and we can freely control the embedding dimensionM . Additionally, as
shown in our experiments, the EM algorithm works well with small J . Thus, the proposed method
can perform fast adaptation via the EM algorithm during the meta-learning phase.

4 EXPERIMENTS

4.1 DATA

In the main paper, we used three real-world datasets: Omniglot, Miniimagenet, and LabelMe. Om-
niglot and Miniimagenet are commonly used in meta-learning studies (Snell et al., 2017; Finn et al.,
2017; Rajeswaran et al., 2019; Zhang et al., 2023), and LabelMe is a real-world crowdsourcing
dataset that is commonly used in crowdsourcing studies (Rodrigues & Pereira, 2018; Chu et al.,
2021; Chu & Wang, 2021). Omniglot consists of hand-written images of 964 characters (classes)
from 50 alphabets (Lake et al., 2015). Miniimagenet consists of images of 100 classes obtained
from the ILSVRC12-dataset (ImageNet) (Vinyals et al., 2016). Omniglot and Miniimagenet con-
sist of only clean labeled data. Since meta-learning requires many tasks (classes), we used these
datasets. LabelMe consists of 2,688 images of 8 classes. One-thousand of them were annotated
from 59 workers in Amazon Mechanical Turk (Rodrigues et al., 2017). Each image was labeled by
an average of 2.5 workers. The details of these datasets are described in Section F. We additionally
evaluated the proposed method with the CIFAR-10H dataset (Peterson et al., 2019) in Section I.9.

For Omniglot, we randomly used 764 classes for meta-training, 100 classes for validation, and 100
classes for testing. For Miniimagenet, we randomly used 70 classes for meta-training, 10 classes for
validation, and 20 classes for testing. For both datasets, we generated 50 tasks for both validation
and testing data. For each task, we first randomly select four classes. Then, for each class of a task,
we randomly used a few examples (one, three or, five examples per class) for support data and 10
examples for query data. For LabelMe, we used all eight classes for testing and created 10 tasks. We
used the same number of support and query data as for Omniglot and Miniimagenet. Since LabelMe
does not have many classes, we used Miniimagenet for meta-training and validation. Since LabelMe
consists of classes not included in Miniimagenet and has a small number of annotators per example
(2.5), this dataset is suitable for our problem setting. Thus, we used this dataset. Note that using
different datasets for source and target tasks is important since such a situation would be common
in practice. For each dataset, we created five different meta-training/validation/testing splits.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Since Omniglot and Miniimagenet do not have data annotated by multiple annotators, we artifi-
cially create them. Such simulated annotation is commonly used in previous studies (Han et al.,
2021a; Tu et al., 2020; Tanno et al., 2019; Chu et al., 2021; Li et al., 2020; Cao et al., 2019)
since it enables us to investigate the methods in controlled environments. For simulated annota-
tions for target tasks, we considered three types of annotators: expert, hammer, and spammer. The
expert returns ground truth labels with probability q (0.8 < q ≤ 1) or otherwise chooses wrong
labels uniformly at random. The hammer also returns labels on the basis of the same mechanism
as the experts with a low probability for returning ground truth labels q (0.5 < q ≤ 0.8). The
spammer returns labels uniformly randomly from all classes. These types of annotators are typ-
ical worker types in the real crowdsourcing service and thus are commonly used in experiments
of previous studies (Kazai et al., 2011; Han et al., 2021a; Tu et al., 2020). For the support set in
each target task, we randomly draw R annotators from a predefined annotator’s distribution p(A),
where A takes expert (E), hammer (H), or spammer (S). Specifically, we considered four cases
(p(E), p(H), p(S)) = (0.1, 0.8, 0.1), (0.1, 0.7, 0.2), (0.1, 0.6, 0.3), (0.1, 0.5, 0.4). After selecting
the annotator type, we uniformly randomly select accuracy rate q in each range when the type is
expert or normal. All support data were annotated from all R annotators. For our method, pseudo-
annotators are generated at each meta-training iteration from only the single annotator’s distribution
(p(E), p(H), p(S))=(0.1, 0.7, 0.2) 4. The confusion matrix distribution for pseudo-annotators p(B)
was constructed from the (p(E), p(H), p(S)) = (0.1, 0.7, 0.2) and accuracy rate q.

For Omniglot and Miniimagenet, we evaluated mean test accuracy on target tasks over four differ-
ent target annotator distributions mentioned above with different numbers of support data per class
within {1, 3, 5} and annotators R within {3, 5, 7}. For LabelMe, we evaluated mean test accuracy
on target tasks with different numbers of support data per class within {1, 3, 5}. In Section I.4, we
evaluated the proposed method with other annotator’s types on target tasks such as pair-wise flippers
or class-wise spammers (Tanno et al., 2019; Khetan et al., 2018) when the same annotator distribu-
tion (p(E), p(H), p(S)) = (0.1, 0.7, 0.2) was used for meta-learning. Even when the annotator’s
type is different between target and source tasks, our method worked well.

4.2 COMPARISON METHODS

We compared the proposed method (Ours) with 13 methods for learning from noisy annotators: two
types of logistic regression (LRMV and LRDS), two types of random forest (RFMV and RFDS),
two types of prototypical networks (PrMV and PrDS), two types of MAML (MaMV and MaDS),
the crowd layer (Rodrigues & Pereira, 2018) (CL), a meta-learning variant of CL (MCL), a learning
method from crowds with common noise adaptation layers (Chu et al., 2021) (CNAL), its meta-
learning variant (MCNAL), and the proposed method without pseudo-annotators (w/o PA). We also
evaluated other recent methods (Liang et al., 2022; Gao et al., 2022) in Sections I.7 and I.8.

Here, methods with the symbol ‘MV’ used majority voting for determining the label of each support
example. Methods with the symbol ‘DS’ used the DS model for estimating labels of support data
(Dawid & Skene, 1979). Although the DS model is simple, it has been reported to perform better
than many existing methods (Zheng et al., 2017). Thus, we chose it as a comparison method. Al-
though the original DS model does not consider the priors, we used them as in the proposed method
because it improved the performance. In the DS methods, the initial value of responsibility λnk in
the EM algorithm was set to λnk = 1

R

∑R
r=1 δ(y

r
n, k), whereR is the number of annotators in a task,

as in the proposed method. When the number of the EM step J is one, the initial values (soft la-
bels) are directly used for classifier learning. CL is a famous neural network-based learning method
from multiple annotators, which have annotator-specific layers. CNAL is a recently proposed neural
network-based learning method from multiple annotators, which models both an annotator-invariant
confusion matrix and annotator-specific confusion matrices. CL and CNAL learn the whole neural
networks with gradient decent methods. LRMV, LRDS, RFMV, RFDS, CL, and CNAL used only
target support data obtained from multiple annotators for learning classifiers. We included these
methods to investigate the effectiveness of using data in source tasks. If these methods outperform
the proposed method, there is no need to perform meta-learning in the first place. Thus, it is impor-
tant to include them in comparison for extensive experiments.

4Although this simple distribution worked well in our experiments, other distributions may be more optimal.
Determining a better distribution will be a future challenge.
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Table 1: Average test accuracies over four target annotator distributions with different numbers of
support data NS and annotators R on Omniglot and Miniimagenet. The number of classes is four,
and the number of support data per class (shot) is one, three, and five. Boldface denotes the best and
comparable methods according to the paired t-test (p = 0.05).

NS R Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
4 3 0.692 0.410 0.422 0.347 0.358 0.569 0.425 0.666 0.687 0.655 0.678 0.661 0.511 0.433
4 5 0.814 0.456 0.458 0.382 0.384 0.641 0.483 0.769 0.775 0.758 0.764 0.754 0.593 0.458
4 7 0.855 0.480 0.485 0.404 0.410 0.678 0.485 0.820 0.834 0.811 0.823 0.810 0.606 0.484

12 3 0.885 0.498 0.516 0.438 0.463 0.700 0.656 0.825 0.816 0.698 0.721 0.778 0.752 0.794
12 5 0.938 0.552 0.568 0.491 0.511 0.776 0.719 0.893 0.891 0.777 0.799 0.855 0.819 0.871
12 7 0.967 0.608 0.620 0.539 0.557 0.836 0.752 0.943 0.944 0.847 0.864 0.912 0.860 0.924
20 3 0.930 0.544 0.562 0.503 0.535 0.762 0.732 0.885 0.871 0.735 0.760 0.831 0.805 0.914
20 5 0.964 0.606 0.640 0.566 0.599 0.837 0.796 0.936 0.935 0.817 0.844 0.900 0.873 0.959
20 7 0.982 0.662 0.688 0.620 0.644 0.886 0.826 0.969 0.971 0.882 0.900 0.943 0.903 0.981

Avg. 0.892 0.535 0.551 0.476 0.496 0.743 0.653 0.856 0.858 0.776 0.795 0.827 0.747 0.758

(a) Omniglot

NS R Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
4 3 0.387 0.245 0.248 0.256 0.258 0.287 0.276 0.374 0.380 0.365 0.367 0.331 0.294 0.316
4 5 0.436 0.246 0.245 0.258 0.259 0.293 0.282 0.405 0.405 0.394 0.392 0.353 0.308 0.349
4 7 0.432 0.243 0.243 0.262 0.261 0.301 0.280 0.432 0.429 0.409 0.407 0.369 0.305 0.372

12 3 0.534 0.286 0.286 0.272 0.277 0.355 0.331 0.443 0.464 0.425 0.428 0.426 0.390 0.403
12 5 0.571 0.297 0.298 0.285 0.288 0.381 0.349 0.494 0.510 0.457 0.467 0.466 0.425 0.442
12 7 0.621 0.304 0.304 0.292 0.294 0.398 0.356 0.540 0.556 0.498 0.506 0.496 0.434 0.490
20 3 0.595 0.311 0.312 0.304 0.312 0.397 0.369 0.485 0.516 0.437 0.454 0.490 0.451 0.500
20 5 0.628 0.320 0.327 0.319 0.329 0.426 0.392 0.553 0.579 0.490 0.512 0.535 0.495 0.561
20 7 0.674 0.332 0.333 0.336 0.340 0.448 0.403 0.600 0.616 0.536 0.553 0.564 0.508 0.606

Avg. 0.542 0.286 0.288 0.287 0.291 0.365 0.338 0.481 0.495 0.446 0.454 0.448 0.401 0.449

(b) Miniimagenet

Since existing meta-learning studies for multiple annotators cannot be directly used for our setting
as described in Section 2, we created various neural network-based meta-learning methods: PrMV,
PrDS, MaMV, MaDS, MCL, MCNAL, and w/o PA. Specifically, as in previous studies (Zhang et al.,
2023; Han et al., 2021b), they meta-learn their models with clean data in source tasks without the
pseudo-annotation: they maximize the expected test classification performance, which is calculated
with clean labeled data (query set), when using the model adapted to a few clean labeled data (sup-
port set) in source tasks. Then, they fine-tune the meta-learned models to target tasks with noisy
support data by applying methods for multiple annotators such as MV, DS, CL, and CNAL. PrMV,
PrDS, MCL, and MCNAL used the prototypical networks for meta-learning. MaMV and MaDS
used MAML for meta-learning. For the proposed method, we selected the hyperparameters on the
basis of mean validation accuracy. For all the comparison methods, the best test results were reported
from their hyperparameter candidates. The details of network architectures and hyperparameters are
described in Sections G and H.

4.3 RESULTS

Tables 1 show the average accuracy on target tasks with different numbers of target support data
and annotators with Omniglot and Miniimagenet, respectively. We did not include the standard
errors of the results due to the lack of space. The full results including the standard errors are
described in Section I.12. The proposed method outperformed the other methods for all cases.
As the number of annotators R increased, all methods tended to improve performance. This is
because ground truth labels of given support data become easy to estimate when R is large. Non-
meta-learning methods (LRMV, LRDS, RFMV, RFDS, CL, and CNAL) tended to perform worse
than other meta-learning methods (PrMV, PrDS, MaMV, MaDS, MCL, MCNAL, and w/o PA),
which indicates the effectiveness of using source tasks. The proposed method outperformed these
meta-learning methods. Especially, the proposed method performed better than w/o PA by a large
margin. Since the difference between both methods is whether or not the pseudo-annotation was
performed during the meta-learning phase, this result shows that the pseudo-annotation is essential
in our framework to learn how to learn from multiple noisy annotators.

Figure 3 shows the average test accuracies over different numbers of support data and annotators
by changing the ratio of the spammers in annotators on target tasks. As the ratio of the spammer
increased, the performance of all methods tended to decrease since ground truth labels became
difficult to estimate. Nevertheless, the proposed method consistently performed better than other
methods across all the ratios. The result suggests that the proposed method can robustly learn
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Table 2: Average test accuracies with different numbers of support data NS on LabelMe. The
number of classes in each task is eight, and the number of support data per class is one, three, and
five. Boldface denotes the best and comparable methods according to the paired t-test (p = 0.05).

NS Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
8 0.414 0.202 0.208 0.165 0.173 0.247 0.240 0.381 0.375 0.297 0.287 0.329 0.314 0.276

24 0.542 0.261 0.255 0.243 0.251 0.359 0.361 0.514 0.508 0.404 0.411 0.509 0.488 0.412
40 0.605 0.278 0.271 0.280 0.276 0.422 0.426 0.576 0.571 0.460 0.464 0.592 0.593 0.515

Avg. 0.520 0.247 0.245 0.229 0.233 0.343 0.342 0.490 0.484 0.387 0.387 0.477 0.465 0.401

classifiers for various annotator types even when the annotator’s distribution is different between
target and source tasks.
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Figure 3: Average and standard errors of accuracies when
changing the ratio of spammers on target tasks.

Table 2 shows the average accuracy
on target tasks with different num-
bers of target support data with La-
belMe. The proposed method outper-
formed the other methods for all cases
by effectively transferring knowledge
on source tasks. This result indicates
that the proposed method can improve
performance on the real crowdsourc-
ing datasets by meta-learning with
other datasets, which is preferable since
datasets used for source and target tasks
can be different in practice.
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Figure 4: Average and standard errors of accuracies
when changing the numbers of EM steps J .

Figure 4 shows average and standard errors
of test accuracies when changing the numbers
of EM steps J . Our method consistently per-
formed better than w/o PA over all J with all
datasets. Our method showed the best results
when J = 2 or 3, which was able to select us-
ing validation data on our experiments. The
result of LabelMe is shown in Section I.1.

We investigate the computation time for the
proposed method on Omniglot. We used a
Linux server with A100 GPU and 2.20Hz
CPU and set the number of the EM steps to
two for the proposed method, which was se-
lected using validation data. Meta-training time of the proposed method, PrMV, and MaMV were
1361.118, 1280.697, and 3499.138 seconds, respectively. We omitted PrDS, MaDS, MCL, and
MCLAL since their meta-learning processes were the same as PrMV or MaMV. Meta-testing time
of the proposed method, PrMV, and MaMV were 0.960, 0.928, and 2.185 seconds, respectively.
Since MaMV requires the second-order derivative of the whole parameters of the neural network
for meta-learning, it took longer than other methods. The proposed method took slightly longer for
meta-learning than PrMV due to the EM algorithm, but it was still fast. A more detailed discussion
of the computation cost is described in Section I.11.

5 CONCLUSION

We proposed a meta-learning method for learning classifiers with a limited number of labeled data
given from multiple annotators. Our experiments showed that our method outperformed various
existing methods on real-world datasets. Although the proposed method assumes input example-
independent confusion matrices for modeling annotators, it is interesting to extend our framework
to handle input example-dependent confusion matrices as in (Gao et al., 2022; Guo et al., 2023;
Li et al., 2024). In addition, it is also interesting to extend our framework to other crowdsourcing
problems such as active learning from multiple annotators. We also plan to use variational Bayesian
inference, which is also differentiable, instead of the EM algorithm in our framework.
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Since the proposed method uses data from multiple tasks for meta-learning, biased data might be
included. This might result in biased results. We encourage researchers to develop methods to detect
such biases automatically. In addition, although the proposed method showed good performance,
there is a possibility of misclassification in practice. Therefore, this method should be used as a
support tool for human decision-making. For example, in the medical image diagnosis given in
Section 1, the results obtained from the proposed method are not to be used as is but as a reference
(support) for a physician to make a final decision.

REPRODUCIBILITY STATEMENT

For reproducibility, we described the details of the datasets in Sections 4.1 and F, the neural network
architectures in Section G, and the hyperparameters in Section H. In addition, we described the
pseudo-code of our meta-learning procedure in Algorithm 1 and the detailed derivations of lower
bound Q of Eq. 5 and the EM algorithm (Eqs. 6 and 7) in Section C.
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Figure 5: Graphical model representation of the proposed model in the latent space of a task. The
gray and non-gray nodes represent observe and unobserved variables, respectively. Embedded ex-
ample un depends on neural network parameter θ since un := f(xn; θ).
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A OUR GRAPHICAL MODEL

Figure 5 shows the graphical model representation of our model in the latent space of a task.

B EXTENDED RELATED WORK

There are some meta-learning methods for learning from a few noisy labeled data without consid-
ering multiple annotators (Liang et al., 2022; Mazumder et al., 2021; Chen et al., 2022; Killamsetty
et al., 2022). Unlike the proposed method, these methods do not use information of the annotator’s
id for training. When the annotators’ ids are available, learning methods that model multiple an-
notators tend to perform better than methods that do not consider annotators (Tanno et al., 2019;
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Gao et al., 2022). Therefore, this paper considers modeling multiple annotators. We experimentally
compared the proposed method with this approach in Section I.7.

Transfer learning is related to our work (Pan & Yang, 2009). Meta-learning is a type of fine-tuning
method in transfer learning, particularly effective in very small data regimes (Hospedales et al.,
2020). Since our aim is to learn from a small amount of noisy data, we focused on meta-learning.
Although the standard fine-tuning methods pre-train models with clean labeled source data, we
showed that it is insufficient to our setting. The proposed method performed well with pseudo-
annotation during the meta-learning. Domain adaptation is a well-known transfer learning approach
(Pan & Yang, 2009; Ganin & Lempitsky, 2015; Long et al., 2018). Since it simultaneously uses
source and target data for training, it requires time-consuming training as new target tasks appear.
In contrast, meta-learning methods do not because the meta-learned model with source data can
perform rapid and efficient adaptation with only target data.

C DERIVATIONS OF LOWER BOUND Q AND THE EM STEPS

In this section, we describe the detailed derivations of lower bound Q in Eq. (5) and the EM steps
in Eqs. (6) and (7).

Lemma C.1. Q :=
∑NS ,K
n,k=1 λnk ln

p(un|tn=k,M)p(tn=k|π)
∏

r p(y
r
n|tn=k,A)

λnk
+ln p(M,π,A) is a lower

bound of ln p(U,Y|M,π,A) + ln p(M,π,A).

Proof. Since the second terms of both equations are the same, we prove that the first term of Q is a
lower bound of ln p(U,Y|M,π,A).

ln p(U,Y|M,π,A) =
∑
n

ln
∑
k

p(un|tn = k,M)p(tn = k|π)
∏
r

p(yrn|tn = k,A)

=
∑
n

ln
∑
k

λnk
p(un|tn = k,M)p(tn = k|π)

∏
r p(y

r
n|tn = k,A)

λnk

≥
∑
n,k

λnk ln
p(un|tn = k,M)p(tn = k|π)

∏
r p(y

r
n|tn = k,A)

λnk
, (11)

where we used the definition of our probabilistic model (Eq. (1)) in the first equal sign, and
ln(
∑
k λkzk) ≥

∑
k λkln(zk) for any zk > 0,

∑
k λk = 1, and λk ≥ 0 (the Jensen’s inequal-

ity) to derive the inequality.

Lemma C.2. The E step of lower bound Q is given by

λnk =
N (un|µk, I)πkank∑K
l=1N (un|µl, I)πlanl

, (12)

where ank := p(Y|tn = k,A) =
∏
r∈In

∏K
l=1(αrlk)δ(y

r
n,l) and δ(X,Y ) is the delta function, i.e.,

δ(X,Y ) = 1 if X = Y , and δ(X,Y ) = 0 otherwise. The M step of lower bound Q is given by

µk =

∑NS
n=1 λnkun

τ +
∑NS
n=1 λnk

, πk =

∑NS
n=1 λnk + b

Kb+NS
, αrlk =

∑
n∈Ir λnkδ(y

r
n, l) + c∑

n∈Ir λnk +Kc
. (13)

Proof. We first derive the E step for variable λnk. Since the second term of lower bound Q in Eq.
(5) does not depend on λnk, we consider the first term of it (we denote this as Q1). Then, we use the
following general property of the lower bound (Bishop, 2006):

ln p(U,Y|M,π,A)−Q1 = −
∑
n

∑
k

λnkln
p(tn = k|un,Y,M,π,A)

λnk
. (14)

The r.h.s. of Eq. (14) is equivalent to the KL divergence. Since ln p(U,Y|M,π,A) does not
depend on λnk, maximizing Q1 w.r.t. λnk is equivalent to minimizing the KL divergence w.r.t. λnk.
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Since the KL divergence takes the minimum value (zero) when two probability distributions are the
same, we can maximize Q1 with

λnk = p(tn = k|un,Y,M,π,A). (15)

By using the Bayes’ theorem, we can derive

λnk = p(tn = k|un,Y,M,π,A)

=
p(un|tn = k,M)p(tn = k|π)p(Y|tn = k,A)

p(un,Y,M,π,A)
=

N (un|µk, I)πkank∑K
l=1N (un|µl, I)πlanl

, (16)

where ank := p(Y|tn = k,A) =
∏
r∈In

∏K
l=1(αrlk)δ(y

r
n,l) and δ(X,Y ) is the delta function.

Next, we derive the M step for µk by maximizing Q w.r.t. µk. The derivative of Q w.r.t. µk is

∂Q

∂µk
=
∂(
∑
n λnkln p(un|tn = k,M) + ln p(µk))

∂µk

=
∑
n

λnk(un − µk)− τµk. (17)

Thus, from the condition of ∂Q
∂µk

= 0, we can derive

µk =

∑NS
n=1 λnkun

τ +
∑NS
n=1 λnk

. (18)

Next, we derive the M step for πk by maximizing Q w.r.t. πk by using the Lagrange multiplier
method. Specifically, we consider Lagrange function L(π, ν) := Q + ν(

∑
l πl − 1), where ν is

a Lagrange multiplier. The second term of L(π, ν) represents the constraint condition of πk. The
derivative of L(π, ν) w.r.t. πk is

∂L(π, ν)

∂πk
=
∂(
∑
n λnkln p(tn = k|π) + ln p(π))

∂πk
+ ν

=
∑
n

λnk
πk

+
b

πk
+ ν. (19)

From the condition of ∂L(π,ν)
∂πk

= 0, we can obtain

πk = −
∑
n λnk + b

ν
. (20)

By using the condition of ∂L(π,ν)
∂ν =

∑
l πl − 1 = 0 and Eq. (20), we can obtain

ν = −(bK +
∑
n,l

λnl) = −(bK +NS), (21)

where we used
∑
l λnl = 1. By substituting Eq. (21) for Eq. (20), we can obtain

πk =

∑NS
n=1 λnk + b

Kb+NS
. (22)

Similarly, we can derive the M step for αrlk by using the Lagrange multiplier method for αrlk. Specif-
ically, we consider Lagrange function L(A, ν) := Q +

∑
r,k ν

r
k(
∑
l α

r
lk − 1), where ν := {νrk}r,k

are Lagrange multipliers. The derivative of L(A, ν) w.r.t. αrlk is

∂L(A, ν)

∂αrlk
=
∂(
∑
n∈Ir λnkln p(yrn|tn = k,A) + ln p(A))

∂αrlk
+ νrk

=
∑
n∈Ir

λnk
αrlk

δ(yrn, l) +
c

αrlk
+ νrk. (23)
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From the condition of ∂L(A,ν)
∂αr

lk
= 0, we can obtain

αrlk = −
∑
n∈Ir λnkδ(y

r
n, l) + c

νrk
. (24)

By using the condition of ∂L(A,ν)
∂νr

k
=
∑
l α

r
lk − 1 = 0 and Eq. (24), we can obtain

νrk = −(cK +
∑
n∈Ir

∑
l

λnkδ(y
r
n, l)) = −(cK +

∑
n∈Ir

λnk). (25)

By substituting Eq. (25) for Eq. (24), we can obtain

αrlk =

∑
n∈Ir λnkδ(y

r
n, l) + c∑

n∈Ir λnk +Kc
. (26)

D INTUITIVE EXPLANATION OF HOW EM ALGORITHMS CAN COPE WITH
NOISY LABELS

This section explains how our EM algorithm described in Section 3.2 contributes to the robustness.

Suppose we know the ground truth labels of data. In that case, we can easily estimate annotators’
confusion matrices (i.e., the probability that the r-th annotator returns label l when the ground truth
label is k; αrlk) using the ground truth and annotators’ labels. Conversely, if we know true annota-
tors’ confusion matrices, we can estimate the ground truth labels from the confusion matrices and
annotators’ labels. That is, ground truth labels and confusion matrices are interdependent. Thus,
if we initialize the labels of data, we can alternately estimate the labels and confusion matrices.
Here, we can make the label estimation more robust by considering multiple annotators’ confusion
matrices. If the initialization is not far from ground truth labels, we can expect to perform accurate
estimation.

The EM algorithm is a systematical way to perform this procedure from a given probabilistic model.
Specifically, in our setting, it iteratively estimates the label probabilities of the data (λnk) using the
current estimate of annotators’ confusion matrices (αrlk) and classifier parameters (µk and πk) in Eq.
(6), then uses the estimated labels to further refine the estimation of the annotator confusion matrices
and classifier parameters in Eq. (7). In our experiments, simple and commonly used initialization
λnk = 1

R

∑R
r=1 δ(y

r
n, k), where R is the number of annotators that labeled example, worked well

as described in Section 3.3. This is the intuitive reason why the EM algorithm can obtain accurate
parameters from multiple noisy annotators.

However, this is still a challenging estimation problem since no true labels exist. The proposed
method meta-learns example embeddings that make this problem easier to solve by explicitly maxi-
mizing the performance of the estimated classifier in source tasks.

E DISCUSSION OF THE SITUATION WHERE THERE ARE MANY SPARSE
ANNOTATORS

In some real-world applications, there are many annotators and each of them only labels a few
support data. Here, we discuss this situation in two cases.

When each annotator labels ’the same’ support data in a target task, accurate labels of the data
can be estimated since each instance has many annotations. Thus, in such cases, the proposed
method and conventional meta-learning methods that simply use support data with the estimated
labels (e.g., PrMV, PrDS, MaMV, and MaDS in our experiments) would perform well. In contrast,
since the number of support data is small, ordinary methods for learning from multiple annotators
(crowdsourcing methods) that do not use source data cannot learn accurate classifiers even if they
can estimate accurate labels of support data.
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When each annotator labels (generally) ’different’ support data in a target task, the number of whole
support data becomes large since there are many annotators. Since we focus on a small data regime,
this situation is out of the scope of our work. Ordinary crowdsourcing methods such as (Zhang et al.,
2024) are more appropriate for these situations.

F DATA DETAILS

In the main paper, we used three real-world datasets: Omniglot, Miniimagenet, and LabelMe. Om-
niglot and Miniimagenet are commonly used in meta-learning studies (Snell et al., 2017; Finn et al.,
2017; Rajeswaran et al., 2019; Hospedales et al., 2020), and LabelMe is a real-world crowdsourcing
dataset that is commonly used in crowdsourcing studies (Rodrigues & Pereira, 2018; Chu et al.,
2021; Chu & Wang, 2021). Omniglot consists of hand-written images of 964 characters from 50
alphabets (Lake et al., 2015). There were 20 images in each character class, and each image was
represented by gray scale with 28×28 pixels. The numbers of examples and classes were 19,280 and
964, respectively. Miniimagenet consists of images of 100 classes obtained from the ILSVRC12-
dataset (ImageNet) (Vinyals et al., 2016). Each image was represented by RGB with 84× 84 pixels.
The numbers of examples and classes were 60,000 and 100, respectively. Omniglot and Miniima-
genet consist of only clean labeled data. LabelMe consists of 2,688 images of 8 classes: “highway”,
“inside city”, “tall building”, “street”, “forest”, “coast”, “mountain”, and “open country”. One-
thousand of them were annotated from 59 workers in Amazon Mechanical Turk (Rodrigues et al.,
2017)5. Each image was represented by RGB with 256× 256 pixels and was labeled by an average
of 2.5 workers. Since the proposed method (and most meta-learning methods) requires the same
input feature space across tasks, we resized images of LabelMe to images with 84 × 84 pixels to
match the image size between Miniimagenet and LabelMe.

G NEURAL NETWORK ARCHITECTURES

For embedding neural networks of the proposed method, PrMV, PrDS, and w/o PA, we used the
convolutional neural network (CNN) architecture that was composed of four convolutional blocks
by following (Snell et al., 2017). Each block comprised a 64-filter 3 × 3 convolution, batch nor-
malization layer (Ioffe & Szegedy, 2015), a ReLU activation and a 2 × 2 max-pooling layer. As a
result, the dimensionality of embedding M were 64, 1,600, and 1,600 for Omniglot, Miniimagenet,
and LabelMe, respectively. MCL and MCNAL used the meta-learned model with the prototypical
network for feature extraction on target tasks. For CL, CNAL, MCL, MCNAL, and MAML-based
methods (MaMV and MaDS), a linear output layer was added to the CNN architecture for classi-
fiers. All methods were implemented using Pytorch (Paszke et al., 2019). For the proposed method,
we selected the hyperparameters on the basis of mean validation accuracy. For all the comparison
methods, the best test results were reported from their hyperparameter candidates.

H HYPERPARAMETERS

For LRMV and LRDS, regularization parameter C was chosen from {10−4, 10−3, . . . 1}. For
RFMV and RFDS, the number of trees was chosen from {10, 50, 100, 200}. For MaMV and MaDS,
the iteration number for the inner problems was set to three, and the step size was selected from
{10−2, 10−1, 1}. For the proposed method, LRDS, RFDS, PrDS, MaDS, w/o PA, the number of
EM steps was chosen from {1, 2, 3, 4, 5, 10}. For the proposed method, we set precision parameter
τ = 1.0, Dirichlet parameter for confusion matrices c = 1.0, and selected the Dirichlet parameter
for class-priors b from {1, 10, 100}. For CL, CNAL, MCL and MCNAL, the number of fine-tuning
iterations on target tasks was chosen from {10, 100, 300}. For CNAL and MCNAL, the regulariza-
tion parameter λ and embedded dimension for the probability of the annotator-invariant confusion
matrix being chosen were set to 10−5 and 20, respectively, as in the original paper. For all meth-
ods except for the proposed method, the best test results were reported from their hyperparameter
candidates. For the proposed method, we selected the hyperparameters on the basis of mean valida-
tion accuracy. For all neural network-based methods, we used the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 10−3. The mean validation accuracy was also used for early stopping to

5http://fprodrigues.com/publications/deep-crowds/
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Figure 6: Average and standard errors of accuracies with the proposed method when changing the
numbers of EM steps J .

avoid overfitting, where the maximum number of meta-training iterations were 30, 000 and 60, 000
for Omniglot and Miniimagenet, respectively. We used a Linux server with A100 GPU and 2.20Hz
CPU.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 IMPACT OF NUMBERS OF EM STEPS J

Figure 6 shows average and standard errors of test accuracies when changing the numbers of EM
steps J on all datasets. The proposed method consistently performed better than w/o PA, which is
the proposed method without pseudo-annotators, over all J with all datasets. The proposed method
showed the best results when J = 2 or 3 on all datasets, which was able to select using validation
data on our experiments. We note that since LabelMe has fewer target tasks for testing than other
datasets, the standard errors in LabelMe were larger than the others.

I.2 VISUALIZATION OF DATA REPRESENTATIONS

Figure 7 shows the two-dimensional visualization of the embedded data from the proposed method
on Omniglot. We used three support examples per class with five annotators. Although w/o PA,
which is the proposed method without pseudo-annotation, did not accurately estimate the prototype
for a class (green) due to the harmful effect of noisy support data, the proposed method was able to
accurately estimate the prototype of each class.

I.3 ESTIMATED ANNOTATOR’S CONFUSION MATRICES

Figure 8 shows the estimated confusion matrices for annotators on a target task by the proposed
method on Omniglot. The proposed method successfully estimated the confusion matrix for each
annotator from a small amount of support data (three samples per class) by using knowledge on
meta-training tasks.

I.4 EXPERIMENTS WITH OTHER ANNOTATOR’S TYPES

We evaluated the proposed method with different annotator’s types from those in the main paper.
Specifically, for simulated annotations for target tasks, we considered hammers, pair-wise flippers,
and class-wise spammers (Tanno et al., 2019; Khetan et al., 2018). Pair-wise flippers return correct
labels with probability q (0.5 < q ≤ 0.8) and flip the label of each class to another label with proba-
bility 1−q (the flipping target was chosen uniformly at random at each class). Class-wise spammers
can be experts with accuracy rate q = 1 for some subset of classes and spammers for the others. For
each target task, we randomly selected two of four classes as the classes for the spammers. For the
support set in each target task, we randomly draw R annotators from a predefined annotator’s distri-
bution p(A), where A takes hammer (H), pair-wise flipper (P), or class-wise spammer (C). Specif-
ically, we considered four cases (p(H), p(P), p(C)) = (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0),
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Figure 7: t-SNE (Van der Maaten & Hinton, 2008) visualization of embedded support and query
examples obtained by the proposed method (Ours) and w/o PA in Omniglot. Each color represents a
true class label. Darker and lighter colors represent support and query examples, respectively. Orig-
inal represents original examples before performing embeddings. Although we visualized support
data with truth class information, neither method uses these truth class information for training. The
triangle represents the prototype for each class obtained from each method.

(a) Expert (0.88) (b) Spammer (c) Normal (0.64) (d) Normal (0.79) (e) Spammer

Figure 8: Estimated confusion matrices for annotators on a target task by the proposed method on
Omniglot. We used four-class classification problem: three support examples per class and five an-
notators. Vertical and horizontal axes represent estimated and true class indexes, respectively. Each
caption represents a true annotator type and a numerical value in the bracket represents accuracy
rate q. Darker colors indicate higher values.

and (0.33, 0.33, 0.33). After selecting the annotator type, we uniformly randomly selected the ac-
curacy rate q in the each range when the type was hammers or pair-wise flippers. All support data
were annotated from all R annotators. For the proposed method, pseudo-annotators were generated
at each meta-training iteration from the annotator’s distribution (p(E), p(H), p(S)) = (0.1, 0.7, 0.2),
where E, H, S represent experts, hammers, and spammers, respectively. Tables 3 and 4 show the
average test accuracy with different numbers of support data and annotators on Omniglot and Mini-
imagenet, respectively. The proposed method outperformed the other methods even when the target
annotators’ distributions were quite different from those in the meta-training phase.

I.5 IMPACT OF THE DIRICHLET PARAMETER b

In the prior distributions of our model in Eq. (3), (b, c, τ) are treated as hyperparameters. As for
c and τ , we set c = 1 and τ = 1 for all experiments, which performed well. By tuning these
parameters, the performance of the proposed method might be further improved. As for b, we
evaluated the proposed method by changing b. Table 5 shows the average test accuracy on each
dataset. We found that large b slightly performed well. This is because b controls the class prior of
the support set. Specifically, as b increases, the class priors π = (πk)Kk=1 become uniform. Since
the true class prior of the support set was uniform in our experiments, which is a standard setting in
meta-learning studies (Snell et al., 2017; Finn et al., 2017; Rajeswaran et al., 2019; Bertinetto et al.,
2018; Iwata & Kumagai, 2020), large b worked well. We note that even small b = 1 outperformed
other comparison methods (see Tables 1 and 2 in the main paper).

In addition, we explain that the proposed method can be robust against class-imbalance in target
tasks when b is sufficiently large. As explained before, the class prior π = (πk)Kk=1 becomes uni-
form (i.e., πk = 1/K) when b is sufficiently large. Since πk represents the importance (weight)
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Table 3: Average test accuracy with different numbers of support data and annotators on Omniglot
with normal, pair-wise flippers, and class-wise spammers on target tasks. The number of classes in
each task is four, and the number of support data per class (shot) was one, three, and five. Boldface
denotes the best and comparable methods according to the paired t-test (p = 0.05).

NS R Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
4 3 0.788 0.449 0.460 0.368 0.380 0.630 0.465 0.752 0.779 0.742 0.769 0.734 0.567 0.467
4 5 0.893 0.488 0.487 0.408 0.410 0.684 0.523 0.851 0.847 0.839 0.835 0.825 0.665 0.502
4 7 0.923 0.511 0.514 0.432 0.434 0.731 0.525 0.904 0.908 0.890 0.894 0.877 0.676 0.529

12 3 0.945 0.544 0.572 0.472 0.508 0.758 0.697 0.893 0.901 0.773 0.796 0.840 0.798 0.840
12 5 0.982 0.613 0.629 0.542 0.560 0.847 0.767 0.952 0.960 0.856 0.881 0.925 0.877 0.923
12 7 0.990 0.657 0.669 0.582 0.600 0.884 0.792 0.979 0.984 0.913 0.926 0.957 0.905 0.957
20 3 0.971 0.594 0.628 0.546 0.588 0.814 0.765 0.938 0.946 0.793 0.836 0.881 0.843 0.949
20 5 0.989 0.667 0.702 0.617 0.656 0.893 0.830 0.978 0.985 0.883 0.916 0.949 0.914 0.983
20 7 0.993 0.718 0.746 0.666 0.696 0.928 0.857 0.991 0.995 0.934 0.957 0.975 0.940 0.990

Avg. 0.942 0.582 0.601 0.515 0.537 0.797 0.691 0.916 0.923 0.847 0.868 0.885 0.798 0.793

Table 4: Average test accuracy with different numbers of support data and annotators on Miniim-
agenet with normal, pair-wise flippers, and class-wise spammers on target tasks. The number of
classes in each task is four, and the number of support data per class (shot) was one, three, and five.
Boldface denotes the best and comparable methods according to the paired t-test (p = 0.05).

NS R Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
4 3 0.413 0.243 0.248 0.256 0.260 0.297 0.271 0.394 0.405 0.388 0.392 0.346 0.304 0.329
4 5 0.460 0.241 0.245 0.263 0.263 0.295 0.284 0.429 0.427 0.414 0.312 0.364 0.317 0.354
4 7 0.454 0.243 0.243 0.264 0.264 0.308 0.285 0.455 0.458 0.431 0.432 0.385 0.314 0.390

12 3 0.576 0.291 0.296 0.277 0.283 0.373 0.342 0.473 0.499 0.452 0.460 0.452 0.401 0.416
12 5 0.606 0.301 0.303 0.285 0.290 0.389 0.356 0.534 0.554 0.496 0.504 0.488 0.436 0.468
12 7 0.647 0.309 0.310 0.298 0.301 0.412 0.367 0.580 0.593 0.536 0.542 0.522 0.450 0.514
20 3 0.640 0.318 0.324 0.316 0.330 0.418 0.382 0.532 0.568 0.477 0.501 0.516 0.464 0.525
20 5 0.662 0.331 0.336 0.334 0.340 0.451 0.403 0.598 0.624 0.533 0.559 0.562 0.510 0.591
20 7 0.697 0.339 0.346 0.343 0.355 0.470 0.413 0.631 0.657 0.570 0.598 0.593 0.519 0.632

Avg. 0.573 0.291 0.295 0.293 0.298 0.379 0.346 0.514 0.532 0.477 0.489 0.470 0.413 0.469

Table 5: The proposed method with different Dirichlet parameters b. Average test accuracy over
different numbers of support data and annotators on each dataset.

Data Ours (b = 1) Ours (b = 10) Ours (b = 100)
Omniglot 0.884 0.890 0.892
Miniimagenet 0.534 0.540 0.542
LabelMe 0.503 0.512 0.520

of class k during adaptation, πk = 1/K ensures that each class equally influences the adaptation,
preventing the minority class from being ignored during adaptation (In contrast, since standard clas-
sification losses such as the cross-entropy loss minimize the average loss of all data, they can ignore
the minority class’s data). Overall, setting large b would be preferable for the proposed method.

I.6 COMPARISON WITH META-LEARNING METHODS WITH THE PSEUDO-ANNOTATION

In the main paper, we compared the proposed method with the meta-learning methods without the
pseudo-annotation because there are no existing methods that use the pseudo annotation during
meta-learning for learning multiple annotators. However, we also investigated comparisons with
meta-learning methods that use the pseudo-annotation during meta-training phase. Table 6 shows the
average test accuracy on each dataset. The symbol “w/ PA” indicates that the pseudo-annotation was
used. MCL and MCNAL used the meta-learned embedding networks by the prototypical network
with the pseudo-annotation. The proposed method outperformed the other methods on all datasets.
These results suggest the effectiveness of our model design for learning how to learn from a few
noisy labeled data obtained from multiple annotators.

I.7 COMPARISON WITH META-LEARNING METHODS FOR LEARNING FROM NOISY LABELS

We compared the proposed method with a meta-learning method for learning from a few noisy data
without modeling multiple annotators (Liang et al., 2022). Table 7 shows the average test accuracy
on each dataset. LNL is the prototypical network-based meta-learning method and estimates class’s
prototypes by weighting each support example. The weight of each example is determined on the
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Table 6: Average test accuracy over different numbers of support data and annotators on each dataset.
Boldface denotes the best and comparable methods according to the paired t-test (p = 0.05).

PrMV PrDS MaMV MaDS MCL MCNAL
Data Ours w/ PA w/ PA w/ PA w/ PA w/ PA w/ PA
Omniglot 0.892 0.853 0.856 0.809 0.808 0.827 0.751
Miniimagenet 0.542 0.484 0.504 0.419 0.424 0.447 0.404
LabelMe 0.520 0.475 0.472 0.375 0.347 0.474 0.470

Table 7: Comparison with learning from noisy labels. Average test accuracy over different numbers
of support data and annotators on each dataset. Boldface denotes the best and comparable methods
according to the paired t-test (p = 0.05).

Data Ours LNL (Liang et al., 2022)
Omniglot 0.892 0.899
Miniimagenet 0.542 0.512
LabelMe 0.520 0.484

Table 8: Comparison with example-dependent confusion matrix-based methods. Average test accu-
racy over different numbers of support data and annotators on each dataset. Boldface denotes the
best and comparable methods according to the paired t-test (p = 0.05).

Data Ours LF (Gao et al., 2022) MLF
Omniglot 0.892 0.573 0.662
Miniimagenet 0.542 0.313 0.364
LabelMe 0.520 0.320 0.457

basis of the squared Euclidean distance between the example and other examples in the same (noisy)
class to alleviate the harmful effect of the noisy examples. LNL uses the pseudo-annotation during
the meta-learning phase like the proposed method. The proposed method outperformed LNL on
Miniimagenet and LableMe by modeling multiple annotators. For Omniglot, the proposed method
performed worse than LNL. Since Omniglot is relatively simple data, LNL may have worked well
without modeling annotators.

I.8 COMPARISON WITH EXAMPLE-DEPENDENT CONFUSION MATRIX-BASED METHODS

The proposed model assumes example-independent confusion matrix p(yr = l|t = k,A) = αrlk,
which is a standard assumption used in previous studies (Chu et al., 2021; Rodrigues & Pereira,
2018; Raykar et al., 2010; Tanno et al., 2019; Kim et al., 2022). However, some recent studies
assume the example-dependent confusion matrix. Here, we compared the proposed method with
Label Fusion (LF), a recent neural network-based method for multiple annotators using the example-
dependent confusion matrix (Gao et al., 2022). We also created a meta-learning variant of LF (MLF),
which used the pre-trained embedding networks with the prototypical networks for target tasks.
For both methods (LF and MLF), we changed the number of basis matrices within {5, 10, 20} and
reported the best test results. Table 8 shows the average test accuracy on each dataset. The proposed
method outperformed these methods by a large margin. This is because complex example-dependent
confusion matrices are too difficult to estimate with limited data. This result suggests that our
probabilistic modeling is well-suited for small data problems.

I.9 EVALUATION ON CIFAR-10H

We additionally evaluated the proposed method on CIFAR-10H, which is a widely used real-world
crowdsourcing dataset (Peterson et al., 2019). CIFAR-10H is image data, which consists of 10, 000
images of 10 classes. There are 2, 571 annotators and each annotator labels 200 images. Since such
large-scale annotations are expensive and rare in practice, we selected a subset of low-quality anno-
tators as in (Chu & Wang, 2021). Specifically, we selected 25 annotators from the annotators with
the lowest annotation accuracy. Similar to the experiment with LabelMe, we used Miniimagenet for
source tasks and CIFAR-10H for target tasks since CIFAR-10H does not have many classes. We
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Table 9: Average test accuracies with different numbers of support data NS on CIFAR-10H. The
number of classes in each task is ten, and the number of support data per class is one, three, and five.
Boldface denotes the best and comparable methods according to the paired t-test (p = 0.05).

NS Ours LRMV LRDS RFMV RFDS CL CNAL PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
10 0.147 0.128 0.129 0.117 0.117 0.137 0.137 0.150 0.148 0.131 0.129 0.139 0.146 0.111
30 0.184 0.147 0.144 0.139 0.137 0.160 0.160 0.183 0.182 0.152 0.153 0.175 0.176 0.127
50 0.223 0.154 0.150 0.148 0.142 0.171 0.173 0.207 0.204 0.158 0.159 0.205 0.207 0.143

Table 10: Results of the proposed method with a large number of support data. Average test accura-
cies over different annotator types when changing the number of target support data NS with R = 7
on Miniimagenet.

NS 20 40 80 120 160
Our 0.674 0.747 0.766 0.775 0.774

resized the images of CIFAR-10H to images with 84 × 84 pixels to match the image size. Table
9 shows the average accuracy on target tasks with different numbers of target support data with
CIFAR-10H. The proposed method showed the best or comparable results in all cases.

I.10 RESULTS WITH LARGE NUMBERS OF SUPPORT DATA AND ANNOTATORS

Although this paper focuses on learning from a few noisy data given multiple annotators, we in-
vestigated the performance of the proposed method with large numbers of support data NS and
annotators R. In this experiment, we used Miniimagenet since it has many data per class (100). We
set NS = 20 and R = 7 during the meta-learning phase. First, we evaluated the proposed method
by changing NS values with R = 7 in target tasks. Figure 10 shows the results. The performance
increased as NS increased, and it seemed to converge when NS = 120 or NS = 160. Next, we
evaluated the proposed method by changingR values withNS = 40 in target tasks. Figure 11 shows
the results. Even if the number of support data is not so large (NS = 40), the proposed method per-
formed well with the large number of annotators R. This is because many annotators can improve
label estimation performance.

I.11 DETAILED COMPUTATION COST

Although the computation (meta-training and testing) time of the proposed method was already
investigated in the main paper, we report more detailed results in Tables 12 and 13. Here, each
method used the hyperparameter that was selected using validation data.

First, we compare the proposed method with non-meta-learning methods (LRMV, LRDS, RFMV,
RFDS, CL, and CNAL) in Table 12. Although non-meta-learning methods do not require meta-
learning computation, their accuracy is greatly inferior to ours. The testing times of all methods
except CL and CNAL were fast. Since CL and CNAL are neural network-based methods, their
testing times, which consist of both training time from support data and prediction time for test
data in target tasks, were long. In summary, although the proposed method requires additional
meta-learning time, it can significantly increase classification performance, and its adaptation and
prediction on new target tasks are fast.

Next, in Table 13, we compare the proposed method with meta-learning methods (PrMV, PrDS,
MaMV, MaDS, MCL, MCNAL, and w/o PA). MAML-based methods (MaMV and MaDS) took
longer meta-learning time than the others. This is because MAML requires costly second-order
derivatives of whole parameters of the neural network to solve the bi-level optimization as described
in Section 2. Note that MAML is the most representative meta-learning method. Embedding-based
methods (Ours, PrMV, PrDS, MCL, MCNAL, and w/o PA) had similar meta-learning times. Al-
though our method’s computational process is more complex than other embedding-based methods
due to considering noisy annotators in the meta-learning phase, its meta-learning time is comparable
to that of other efficient embedding methods because it performs fast adaptation with closed-form
EM steps. Since PrMV, PrDS, MCL, MCNAL, and w/o PA (MaMV and MaDS) used the same
meta-learning procedure, their meta-learning time are the same. After the meta-learning, the testing
time of meta-learning methods, except for MCL and MCNAL, was fast. Since MCL and MCNAL

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Results of the proposed method with a large number of annotators. Average test accura-
cies over different annotator types when changing the number of annotators R with NS = 40 on
Miniimagenet.

R 7 10 20 30
Our 0.747 0.760 0.772 0.775

Table 12: Comparison of the proposed method and non-meta-learning methods on Omniglot dataset
with NS = 4 and R = 5. Testing time consists of training time from support data and prediction
time for test data on target tasks.

Ours LRMV LRDS RFMV RFDS CL CNAL
Meta-train time [sec] 1361.12 - - - - - -
Testing time [sec] 0.960 0.679 0.734 3.995 4.520 112.19 166.21
Accuracy 0.814 0.456 0.458 0.382 0.384 0.641 0.483

Table 13: Comparison of the proposed method and meta-learning methods on Omniglot dataset with
NS = 4 and R = 5. Testing time consists of training time from support data and prediction time for
test data on target tasks.

Ours PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
Meta-train time [sec] 1361.12 1280.70 1280.70 3499.14 3499.14 1280.70 1280.70 1280.70
Testing time [sec] 0.960 0.928 0.947 2.185 2.192 113.59 166.25 0.948
Accuracy 0.814 0.769 0.775 0.758 0.764 0.754 0.593 0.458

required many fine-tuning iterations, their testing time was long. The accuracy of the proposed
method is the best. In summary, the proposed method is superior in accuracy and efficiency.

I.12 FULL RESULTS WITH STANDARD ERRORS

In the main paper, we only reported mean test accuracies in Tables 1 and 2 due to the lack of space.
Here, we reported the full results including standard errors in Tables 14, 15, and 16. The proposed
method outperformed the other methods. The standard errors of all methods tended to decrease as
the number of support data or annotators increased since the large number of data and annotators
generally leads to stable prediction.

J LIMITATIONS

The proposed method assumes that source tasks have clean labeled data as in almost all existing
meta-learning methods (Snell et al., 2017; Finn et al., 2017; Garnelo et al., 2018; Rajeswaran et al.,
2019; Bertinetto et al., 2018; Han et al., 2021a; Liang et al., 2022). Although this assumption might
be restrictive in some cases, there are many applications where the proposed method can be applied
as described in Section 1. When each source task has enough noisy labeled data, we can accurately
estimate their ground truth labels by applying existing methods for learning from noisy labels (Han
et al., 2018; 2020; Zheng et al., 2017). Therefore, in this case, we can use the source tasks with their
estimated labels for the proposed method.

Although the proposed method worked well even when different datasets (e.g., Miniimagenet and
LabelMe) or noise (annotator) models are used for source and target tasks in our experiments, when
there is a significant discrepancy between the target and source tasks, meta-learning methods, includ-
ing the proposed method, may not work well. This is a common challenge for existing meta-learning
methods. To deal with this problem, using task-augmentation methods such as (Yao et al., 2021) in
our framework would be one of the promising research directions.
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Table 14: Average test accuracies and standard errors over four target annotator distributions with
different numbers of support dataNS and annotatorsR on Omniglot and Miniimagenet. The number
of classes is four, and the number of support data per class (shot) is one, three, and five.

NS R Ours LRMV LRDS RFMV RFDS CL CNAL
4 3 0.692 (0.009) 0.410 (0.004) 0.422 (0.005) 0.347 (0.004) 0.358 (0.004) 0.569 (0.007) 0.425 (0.005)
4 5 0.814 (0.007) 0.456 (0.004) 0.458 (0.004) 0.382 (0.004) 0.384 (0.004) 0.641 (0.006) 0.483 (0.005)
4 7 0.855 (0.006) 0.480 (0.004) 0.485 (0.004) 0.404 (0.004) 0.410 (0.004) 0.678 (0.006) 0.485 (0.005)

12 3 0.885 (0.007) 0.498 (0.005) 0.516 (0.005) 0.438 (0.004) 0.463 (0.004) 0.700 (0.006) 0.656 (0.006)
12 5 0.938 (0.005) 0.552 (0.005) 0.568 (0.005) 0.491 (0.004) 0.511 (0.004) 0.776 (0.005) 0.719 (0.005)
12 7 0.967 (0.003) 0.608 (0.004) 0.620 (0.004) 0.539 (0.004) 0.557 (0.004) 0.836 (0.004) 0.752 (0.005)
20 3 0.930 (0.006) 0.544 (0.005) 0.562 (0.005) 0.503 (0.005) 0.535 (0.005) 0.762 (0.006) 0.732 (0.006)
20 5 0.964 (0.003) 0.606 (0.005) 0.640 (0.005) 0.566 (0.005) 0.599 (0.005) 0.837 (0.005) 0.796 (0.005)
20 7 0.982 (0.002) 0.662 (0.004) 0.688 (0.004) 0.620 (0.004) 0.644 (0.004) 0.886 (0.004) 0.826 (0.004)
NS R PrMV PrDS MaMV MaDS MCL MCNAL w/o PA

4 3 0.666 (0.009) 0.687 (0.009) 0.655 (0.008) 0.678 (0.009) 0.661 (0.008) 0.511 (0.007) 0.433 (0.006)
4 5 0.769 (0.007) 0.775 (0.007) 0.758 (0.007) 0.764 (0.007) 0.754 (0.007) 0.593 (0.007) 0.458 (0.006)
4 7 0.820 (0.007) 0.834 (0.007) 0.811 (0.007) 0.823 (0.007) 0.810 (0.006) 0.606 (0.006) 0.484 (0.006)

12 3 0.825 (0.007) 0.816 (0.008) 0.698 (0.007) 0.721 (0.007) 0.778 (0.007) 0.752 (0.006) 0.794 (0.007)
12 5 0.893 (0.006) 0.891 (0.006) 0.777 (0.006) 0.799 (0.006) 0.855 (0.005) 0.819 (0.005) 0.871 (0.006)
12 7 0.943 (0.004) 0.944 (0.004) 0.847 (0.005) 0.864 (0.005) 0.912 (0.004) 0.860 (0.005) 0.924 (0.005)
20 3 0.885 (0.006) 0.871 (0.007) 0.735 (0.007) 0.760 (0.007) 0.831 (0.006) 0.805 (0.006) 0.914 (0.006)
20 5 0.936 (0.005) 0.935 (0.005) 0.817 (0.006) 0.844 (0.006) 0.900 (0.005) 0.873 (0.005) 0.959 (0.004)
20 7 0.969 (0.003) 0.971 (0.003) 0.882 (0.005) 0.900 (0.005) 0.943 (0.003) 0.903 (0.004) 0.981 (0.002)

(a) Omniglot

NS R Ours LRMV LRDS RFMV RFDS CL CNAL
4 3 0.387 (0.005) 0.245 (0.002) 0.248 (0.002) 0.256 (0.002) 0.258 (0.002) 0.287 (0.003) 0.276 (0.002)
4 5 0.436 (0.005) 0.246 (0.002) 0.245 (0.002) 0.258 (0.002) 0.259 (0.002) 0.293 (0.003) 0.282 (0.002)
4 7 0.432 (0.005) 0.243 (0.002) 0.243 (0.002) 0.262 (0.002) 0.261 (0.002) 0.301 (0.003) 0.280 (0.002)

12 3 0.534 (0.005) 0.286 (0.003) 0.286 (0.003) 0.272 (0.002) 0.277 (0.002) 0.355 (0.003) 0.331 (0.003)
12 5 0.571 (0.005) 0.297 (0.003) 0.298 (0.003) 0.285 (0.002) 0.288 (0.002) 0.381 (0.003) 0.349 (0.003)
12 7 0.621 (0.004) 0.304 (0.003) 0.304 (0.003) 0.292 (0.002) 0.294 (0.003) 0.398 (0.003) 0.356 (0.003)
20 3 0.595 (0.005) 0.311 (0.003) 0.312 (0.003) 0.304 (0.002) 0.312 (0.003) 0.397 (0.003) 0.369 (0.003)
20 5 0.628 (0.004) 0.320 (0.003) 0.327 (0.003) 0.319 (0.002) 0.329 (0.003) 0.426 (0.003) 0.392 (0.003)
20 7 0.674 (0.004) 0.332 (0.003) 0.333 (0.003) 0.336 (0.003) 0.340 (0.003) 0.448 (0.003) 0.403 (0.003)
NS R PrMV PrDS MaMV MaDS MCL MCNAL w/o PA

4 3 0.374 (0.004) 0.380 (0.004) 0.365 (0.004) 0.367 (0.004) 0.331 (0.003) 0.294 (0.003) 0.316 (0.003)
4 5 0.405 (0.005) 0.405 (0.004) 0.394 (0.004) 0.392 (0.004) 0.353 (0.004) 0.308 (0.003) 0.349 (0.004)
4 7 0.432 (0.005) 0.429 (0.005) 0.409 (0.004) 0.407 (0.004) 0.369 (0.004) 0.305 (0.003) 0.372 (0.004)

12 3 0.443 (0.005) 0.464 (0.005) 0.425 (0.005) 0.428 (0.004) 0.426 (0.004) 0.390 (0.004) 0.403 (0.004)
12 5 0.494 (0.005) 0.510 (0.005) 0.457 (0.004) 0.467 (0.004) 0.466 (0.004) 0.425 (0.004) 0.442 (0.004)
12 7 0.540 (0.005) 0.556 (0.005) 0.498 (0.004) 0.506 (0.004) 0.496 (0.004) 0.434 (0.004) 0.490 (0.005)
20 3 0.485 (0.005) 0.516 (0.005) 0.437 (0.004) 0.454 (0.005) 0.490 (0.005) 0.451 (0.004) 0.500 (0.005)
20 5 0.553 (0.005) 0.579 (0.004) 0.490 (0.004) 0.512 (0.004) 0.535 (0.004) 0.495 (0.004) 0.561 (0.005)
20 7 0.600 (0.004) 0.616 (0.004) 0.536 (0.004) 0.553 (0.004) 0.564 (0.004) 0.508 (0.004) 0.606 (0.004)

(b) Miniimagenet

Table 15: Average test accuracies and standard errors with different numbers of support data NS on
LabelMe. The number of classes in each task is eight, and the number of support data per class is
one, three, and five.

NS Ours LRMV LRDS RFMV RFDS CL CNAL
8 0.414 (0.015) 0.202 (0.012) 0.208 (0.010) 0.165 (0.008) 0.173 (0.008) 0.247 (0.011) 0.240 (0.011)

24 0.542 (0.011) 0.261 (0.012) 0.255 (0.010) 0.243 (0.011) 0.251 (0.014) 0.359 (0.011) 0.361 (0.011)
40 0.605 (0.010) 0.278 (0.011) 0.271 (0.010) 0.280 (0.010) 0.276 (0.010) 0.422 (0.012) 0.426 (0.013)
NS PrMV PrDS MaMV MaDS MCL MCNAL w/o PA

8 0.381 (0.015) 0.375 (0.016) 0.297 (0.014) 0.287 (0.015) 0.329 (0.015) 0.314 (0.014) 0.276 (0.014)
24 0.514 (0.012) 0.508 (0.014) 0.404 (0.015) 0.411 (0.013) 0.509 (0.012) 0.488 (0.013) 0.412 (0.018)
40 0.576 (0.010) 0.571 (0.011) 0.460 (0.014) 0.464 (0.015) 0.592 (0.015) 0.593 (0.012) 0.515 (0.016)
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Table 16: Average test accuracies and standard errors with different numbers of support data NS on
CIFAR-10H. The number of classes in each task is ten, and the number of support data per class is
one, three, and five.

NS Ours LRMV LRDS RFMV RFDS CL CNAL
10 0.147 (0.005) 0.128 (0.004) 0.129 (0.004) 0.117 (0.003) 0.117 (0.003) 0.137 (0.004) 0.137 (0.004)
30 0.184 (0.004) 0.147 (0.004) 0.144 (0.004) 0.139 (0.004) 0.137 (0.003) 0.160 (0.004) 0.160 (0.005)
50 0.223 (0.005) 0.154 (0.004) 0.150 (0.004) 0.148 (0.003) 0.142 (0.003) 0.171 (0.004) 0.173 (0.004)
NS PrMV PrDS MaMV MaDS MCL MCNAL w/o PA
10 0.150 (0.004) 0.148 (0.004) 0.131 (0.004) 0.129 (0.004) 0.139 (0.004) 0.146 (0.004) 0.111 (0.003)
30 0.183 (0.005) 0.182 (0.005) 0.152 (0.004) 0.153 (0.004) 0.175 (0.005) 0.176 (0.004) 0.127 (0.004)
50 0.207 (0.005) 0.204 (0.004) 0.158 (0.004) 0.159 (0.004) 0.205 (0.004) 0.207 (0.005) 0.143 (0.004)
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