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ABSTRACT

Augmented reality (AR) devices enable robots to convey their sen-
sory and internal cognitive representations (e.g., 3D points clouds,
motion plans, etc.) to humans using graphical images that are ren-
dered in context of their environment. AR devices for robot training
and education introduces users to a new perspective in robot inter-
action. For instance, users can validate or debug a robot’s internal
representations and environmental perceptions as well as explore
the robot’s internal state and capabilities. Although AR devices in
previous human-robot interaction studies have assisted users in
single robotic tasks, it is unclear in what settings users will want to
utilize an AR device across multiple types of interactions to accom-
plish their tasks. Specifically this paper aims to understand how
users use AR, what value it brings, and in which types of robotic-
related tasks it is most useful. We conducted a human-participant
study where 19 participants completed 5 unique robotic activities.
We found that users in our Test group with access to an AR device
had greater performance compared to the Control group that did
not have an AR device and preferred using an AR device in activities
that relate to Object Detection and Safety.
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1 INTRODUCTION

People working with a robot may find it helpful to be aware of
the robot’s internal representation of its environment (i.e., laser
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Figure 1: Screenshot of SENSAR on a tablet. The application
detects the robot’s pose with the target image cube and ren-
ders the selected robotic data types in relation to the cube.

scan data) for collaborative task completion, debugging, and educa-
tional purposes. Roboticists traditionally use software like RViz!
to visualize the robot’s sensory and cognitive data. A drawback
of RViz is that users have to perform mental transformations on
the visualized data due to the frame misalignment from the screen
to the environment. To alleviate this drawback, Augmented Real-
ity (AR) devices have been integrated with robotic systems which
now can render the data over the environment [4-7, 11], ultimately
minimizing any ambiguities that might arise with misaligned ref-
erence frames. However, there is a need to understand how users
use AR, what value it brings, and in which types of robotic-related
tasks it is most useful. In this paper, we address this need in 2
parts: 1) we developed a mobile AR application, SENSAR, that ren-
dered robotic data in context of the environment (see Figure 1),
and 2) we conducted a human-user study where participants com-
pleted robotic activities that differ in types of robotic information:
Sensors, Cognitive-Decisions, Diagnostics, Safety, and Actions. We
measured performance metrics when comparing a Control group
that used only RViz with a Test group that has access to both RViz
and SENSAR. We further analyzed the Test group for user preference
between visualization tools.

We hypothesized that users will complete tasks with better per-
formance with the use of AR, and that they will prefer using an AR
device more in tasks that relate to Sensors, Cognitive Decision, Safety,
and Actions. Our results show that users found value in using AR
in tasks that involve user movement within the environment to
further obtain the spatially rendered data such as the Sensor and
Safety tasks. Participants whose utilized the AR device in Sensors

Uhttp://wiki.ros.org/rviz


https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
http://wiki.ros.org/rviz

HRI ’23 Companion, March 13-16, 2023, Stockholm, SE

and Safety activities showed an increase in task performance com-
pared to the Control group. Contributions in this work include our
open-source AR system for Human-Robot Interaction as well as
insights into the uses of AR devices in robotic training and learning.

2 RELATED WORK

Research groups often develop AR robotic systems for a single type
of interaction with a robot (i.e., reprogramming, collaborative task).
Chong et al. [3], Rosen et al. [17], and Ong et al. [13] introduced an
AR reprogramming system for industrial arm manipulators allow-
ing users to guide and plan the robot’s path trajectory. Gruenefeld
et al. [9] and Chan et al. [1] also used an arm manipulator to eval-
uate their AR safety system in collision avoidance tasks. Walker
et al. [20] created an AR motion intent system that conveyed an
aerial drone’s future path trajectory in an assembly task, while
Newbury et al. [12] visualized a robot’s intent during object han-
dovers. Williams et al. [22] augmented a robot’s deictic gestures for
guided attention tasks. Weber et al. [21] developed an AR calibra-
tion system to account for sensor misalignment on a robot. Xiang
et al. [23] demonstrated a projection-based AR safety system with a
mobile robot to visualize construction information due to potential
health and safety concerns with using an AR head mount display
on a construction site. Unlike the mentioned studies which focused
on a single task, we evaluated participants in multiple types of
interactions with a robot and determined if they found value in
using AR devices.

We developed our SENSAR application to visualize multiple types
of robotic data for multiple types of interaction with a mobile robot.

AR devices have also been integrated for educational robotic
purposes (i.e., debugging, programming) often as part of research
group studies. Pasalidou et al. [14] aimed to create an immersive
environment to increase student engagement in a robot program-
ming activity. Radu et al. [16] reported the impact of unequal access
to AR in group collaborative tasks with a robot in programming
activities. Cheli et al. [2] observed students’ behavior toward using
the AR device while debugging their robot after unexpected behav-
iors. Villanueva et al. [19] created a robotic tele-consulting system
for distance learning for students and instructors through a shared
AR makerspace. Participants in these studies are often in a position
where it is required to use the assigned AR device to complete
their task. In our work, we evaluated participants’ performance
and preference in completing multiple types of robotic tasks when
provided the option to use either SENSAR or RViz.

3 METHODOLOGY

We designed a 2 x 5 within and between human-user experiment.
For between-users, each user was randomly assigned to either the
Control or the Test group. The Control group had access to only the
computer-based RViz, the traditional robotic data visualization tool.
The Test group had access to both RViz as well as our Augmented
Reality (AR)-based version of RViz, SENSAR. Both visualization
tools streamed the same data in terms of size, shape, color, and
quantity (see Figure 2); therefore, the primary difference between
the tools is data placement. For within-users, users completed all
5 robotic activities that each represented the categories of robotic
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information: Sensors, Cognitive-Decision, Diagnostics, Safety, and
Actions.

3.1 Hardware and Software

Users interacted with a Turtlebot2 robot controlled with Robot Op-
erating System (ROS) [15] running on Ubuntu 16.04. The robot was
equipped with an RPLIDAR A2M8 360°Laser Scanner. The robot’s
sensors and internal data were extracted and filtered from ROS
using Python and C++ scripts. Participants in the Control and Test
group had access to a desktop computer with a standard monitor
screen running RViz. Participants in the Test group additionally
had access to an AR device (Samsung Galaxy tablet S8) running
SENSAR, an Unity? application that rendered the robot’s data in
respect to the physical robot. SENSAR followed a similar approach
to visualizing data through mobile devices as in Zea et. al [24].

Vuforia® tracked the robot using a target-image cube fixed to
the robot (see Figure 1). Data exchange between the robot and AR
device occurred over a shared Wi-fi network using ROS-Sharp®.
The SENSAR project can be found here, SENSAR_UNITY>, SEN-
SAR_ROS®.

3.2 Users and Procedures

We recruited 19 participants (11 males, 7 females, and 1 who did not
answer) around the University Campus. Participants’ age ranged
from 19 to 36 (u=23.5, 0=4.4). Participants reported on a 7-point
scale their familiarity with robots (¢=4.05, 0=2.5), visualization
tools (¢=3.3, 0=2.2), and augmented reality (AR) (y=1.85, 0=1.03).
Here, the higher number means more familiarity and experience.
12 participants were selected for the Test group and 7 were selected
for the Control group.

The study was conducted in a controlled lab setting as shown
in Figure 3. Participants first provided consent to participate in
the study after reading the study description followed with a pre-
questionnaire that gauged their experience with robots and AR.
The lab conductor then provided a short tutorial on how to use
the visualization tools, RViz and the AR device, with respect to
the selected condition. Participants then interacted with the robot
and visual tools for a few minutes to familiarize themselves with
the technology. A reference sheet’ was provided which showed
the location of useful features in RViz such as changing screen
views, toggling visualized data sets, and mouse Control functions.
Once a participant was ready to proceed, the study continued with
completing the 5 robotic activities that followed the same order for
each participant. Each session took approximately 60 minutes to
complete the entire study.

3.3 Robotic Activities

We created the following robotic visual categories: Sensors, Cognitive-
Decisions, Diagnostics, Safety, and Actions after considering the
taxonomy discussed by Hedayati et al. [10] on the types of infor-
mation robots might signal to humans. We reasoned that Privacy

Zhttps://unity.com/
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Figure 2: Visualizing different robotic data set types shown in RViz (top) and through an AR device (bottom). From left to right,
Laserscan (Sensors), Person Detector (Cognitive), Battery Levels (Diagnostics), Safety-Zone (Safety), and Goal Point (Actions)

Figure 3: Lab space where experiment took place with robot
in the center. Objects in scene were part of the Object Detec-
tion task. The Control group used a desktop computer that
remained to the side of the room (left side of image).

includes any raw data that the robot is capturing, and therefore
we generalized Privacy as Sensors. We reasoned that high-level in-
formation within Communication can be generalized to Cognitive
Decisions. Cognitive Decisions includes any algorithms such as
object-detection and navigation planning. We generalized Condi-
tion to be part of Diagnostics which includes the robot’s internal
states and specifications, such as battery life and payload capacities.
Safety refers to requirements by the robot to operate autonomously,
such as a unoccupied clearance zone. This clearance zone, the area
around the robot, must be cleared by any objects in order to con-
tinue operating. Actions refers to actions taken by the robot such
as navigation goals points.

We created robotic activities that we believe best represented
each category. We understand that each task can be modified in
terms of complexity, but for this study we purposely made each
activity as simple as possible so that each task can be completed
with either visualization tool. The following goal oriented activities
were created:

3.3.1 Object Detection. In this activity, each participant must de-
termine which objects are detected by the robot’s lidar sensor. The
objects remain fixed to their positions and have labels placed on
the ground for participants to reference. Various objects that differ
in material, size, and height placement are positioned arbitrarily
within the room surrounding the robot (see Figure 3). If some items
fall below the lidar sensor’s plane of detection, it will not be de-
tected. Other items were transparent and will also not be detected.
Some objects were clustered together purposely to ensure ambigu-
ity. Participants reported their answers verbally to the lab conductor.
For this task, we measured total items correctly identified and how
confident they felt completing the task. For the Test group, we also
measured total time spent on each visualization tool.

3.3.2  Calibration. In this activity, each participant was instructed
to calibrate the robot’s person-detection® program. The robot deter-
mines the likelihood of a person through a leg-detection algorithm
which utilizing the robot’s lidar data as input and approximates
the location of that person or multiple people. The program then
assigns a reliability value for each detected “person” and will only
output measurements if the reliability value is greater than a thresh-
old value. Participants were instructed to adjust the person-detection
program by changing this threshold value. Participants calibrated
the program by adjusting a slider located on a separate laptop that
corresponded to the threshold value parameter. Participants re-
ported the threshold value that they believe best identified both
the lab conductor and themselves. For this activity, we only deter-
mined if the participant was able to detect the lab conductor. For
the Test group, we additionally measured total time spent on each
visualization tool.

3.3.3 Battery Level. In this activity, participants were required to
report the robot’s internal battery-levels (laptop and Turtlebot base).
Robotic data in this category is not supported in visualization tools.
Because there are no spatial coordinates linked with data in this cat-
egory, we utilized the Turtlebot_Dashboard® program that showed
the robot’s battery-levels in a separate computer window for the

8http://wiki.ros.org/leg_detector
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Control group. The battery-levels on the AR device were rendered
on top of the robot in a similar format as seen in Figure 2 center.
For this activity, we recorded whether or not the participant was
able to report the battery levels. For the Test group, we measured
total time spent on each visualization tool.

3.3.4 Safety. In this two part activity, participants were positioned
in the middle of the room along a line, and the robot was positioned
on the other end of the room, opposite of the user. Participants
were instructed that they must reposition themselves outside of
the robot’s “safety clearance zone” while remaining on the line as
the robot moves towards the opposite end of the room. The safety
clearance zone resembled a green ring located on the ground that
surrounds the robot (See Figure 1). Participants performed this
task in two rounds with the ring size changing in each round. For
part two, we gauged the participant’s belief on the radius length
of the safety ring by requesting them to mark a minimum and
maximum range from the robot. Participants marked the location
of the ring while the robot was stationary with a tape on the ground.
Participants who are very confident in the ring’s location will likely
have shorter distances between the two markers as opposed to
those who are unsure marking larger distances. For the Test group,
we also measured total time spent on each visualization tool.

3.3.5 Goal Point. In this activity, participants were instructed to
Control the robot via teleoperation and reposition the robot as
close as possible to a goal-point. The robot begins at an assigned
starting position and a single reachable goal-point was marked on
the robot’s internal map (both in RViz and SENSAR). The Control
group teleoperated with the robot via keyboard, while the Test
group could use the AR-device. For this task, we recorded whether
or not the participant was able to teleoperate the robot over the
Goal Point. For the Test group, we also measured total time spent
on each visualization tool.

With the following study structure, we formed the following
hypotheses:

H1: Users with access to an AR device will complete the
robotic activities more accurately than users with access to
only a computer.

H2: Users with access to an AR device will preference using
the AR device more than the computer in robotic activities
Sensors, Cognitive-Decisions, Safety, and Actions.

H3 Users engaged with robotic tasks with access to an AR de-
vice will spend more time on the AR device than on the com-
puter to complete the Sensors, Cognitive-Decision, Safety,
and Action activities.

3.4 Measures & Analysis

To answer our questions, we gathered a combination of objective
and subjective measures. Video recordings with timestamps cap-
tured the interactions of the participants with the robot and visual-
ization tools.

Objective measures for both groups include performance for
the Object Detection and Safety Task. To measure performance
for the Object Detection task, the average accuracy was calculated
and compared between the Control and Test group. Accuracy was
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Figure 4: Plot of average time spent on visualization tools
among the Test group for each task. Solid black bars represent
the standard deviations for the Computer, and dashed black
bars represent standard deviations for the AR device.

calculated by adding the total number of correctly classified ob-
jects (i.e., Detected, Not detected) and dividing by the total number
of objects in the environment. For the Safety task, we compared
the average marked distance between the Control and Test group.
The remaining tasks only checked if the participant was able to
achieve the goal. In the Test group, we measured duration spent
on each visualization tool and calculated the average percentage
of total time should participants decide to use one tool over the
other. Subjective measures include 7-point Likert-Style ratings on
user preference towards visualization tools for each task as well as
a modified version of the Questionnaire for the Evaluation of Phys-
ical Assistive Devices (QUEAD) [18]. Open-ended responses were
gathered for qualitative feedback. Questions included: “Describe
your experience completing the task” In the Test group, we added
“What made you use the AR device over the computer?” and “What
would you like changed about the AR device?” We analyzed our
data using ANOVA and post-hoc tests to determine any significant
differences.

4 RESULTS

The average accuracy and standard deviation for the Object Detec-
tion task between the Control and Test group was (y=67%, 0=13.49%)
and (u=87%, 0=7.89%) respectively. T-test showed significant dif-
ferences between groups (p<0.05). The safety ring location task in
which participants marked the inside and outside of the ring had an
average length of (#=13.28 cm, 0=6.85 cm) and (y=4.29 cm, 0=2.42
cm) for the Control and Test group respectively. The large differ-
ence in average suggests that the Control group over estimated the
radius of the circle due to their uncertainty of the ring’s location.
T-test showed significant differences between groups (p<0.05) All
participants successfully completed the calibration, battery level,
and Goal Point activity with no significant differences.

4.0.1 H2. Figure 5 shows the average preference rating towards
the AR device for each robotic activity within the Test group. Object
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Average Preference Towards AR Device among
Robotic Activities with Test Group
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Figure 5: Plot of average 7 point Likert-Style on user prefer-
ence towards the AR device for each robotic activity within
the Test group. Solid black bars represent standard deviation.

Detection (y=6.20, 0=1.13), Safety (u=6.42, 0=1.72), and Goal Point
(u=5.67, 0=1.8) averaged towards using the AR device, while Cali-
bration (¢=2.58 0=1.44) and Battery Level (u=2.75 0=1.65) averaged
more towards using the Computer. ANOVA test showed significant
differences among the activities, F(4,55)= 17.5, (p<.001). Levene’s
test showed no significance indicating no differences in variability
within the groups, (p=.457).

Figure 6 shows the average ratings using the QUEAD question-
naire within the Test group. Here, the higher the rating, the stronger
they agree with the statement. Standard T-tests showed that there
were significant differences for several items: Good Idea (t(12) =
2.53, p=.019, Likeness (t(12) = 3.09, p=.005, Rigid & Flexibility (t(12)
= -4.33, p=.001, Easy to Learn (t(12) = 2.64, p=.015, Effectiveness
(t(12) = 2.86, p=.009, Rapidness (t(12) = 2.47, p=.022, Efficiency (t(12)
= 2.30, p=.031, Performance (t(12) = 2.21, p=.038, and Usefulness
(t(12) = 2530, p=.019.

4.0.2 H3. Figure 4 shows the average time spent on each visual-
ization tool within the Test group for each robotic activity. Here,
participants mainly used the AR device for the Object Detection
task. Participants mainly used the computer for the calibration
activity. Diagnostic and Goal Point activities showed roughly an
equal amount of visual tool usage. The Safety activity is the only
task where all participants used the AR device. T-tests revealed
significant differences for the Object Detection and calibration task
(p<.001).

5 DISCUSSION

H1 stated that users with access to an AR device will complete
robotic tasks with better performance than users with access to
only a computer, and our results supported this claim in the Object
Detection and Safety activities. The remaining activities showed
no differences. Activities Object Detection and Safety required rela-
tively precise spatial targeting/localization of the data to perform

well. AR devices reduced the ambiguity that Rviz created with the
visualized data superimposed over the environment. Participant
responses supported this claim:

[Participant:7] “It helped you see the things you needed to see in
the room instead of on a computer screen.”

[Participant:9] “It’s convenient to see the where the dot actually in
the real world is.”

[Participant:10] “it’s easier to identify the destination using AR
because you can actually stand there. You cannot achieve this using
the computer.”

In the Action activity however, RViz provided a top-down view of
the study space, virtual model of the robot, and markers for the
goal point. Nearly all participants that used RViz controlled the
robot via keyboard until the virtual robot and marker aligned, all
while not looking at the physical robot. Few participants reported
the advantages of having a top-down view:

[Participant:7] “You could basically see everything all at once in-
stead of having to go in and out of menus”

[Participant:11] “having the overhead perspective in some cases
made things easier to pinpoint, like the goal point exercise”
[Participant:12] “it’s more straightforward to use the top/perspective
view to capture the entire frame, and don’t really need to consider
obstacles in the space.”

H2 stated that users with access to an AR device will prefer using
the AR device more than the computer, and our results supported
this claim for the Object Detection, Safety, and Goal Point activities.
Calibration and Diagnostic information can potentially be visual-
ized on a computer window rather than a panel in world space;
therefore, users may not bother using an AR device to retrieve such
information as reported by one user:

[Participant:9] “For display of data not related to locations (like
battery levels), it’s easier if we could just see it in the computer (so we
don’t need to hold a tablet when checking battery levels”

In addition, the AR device yielded better accuracy compared to the
computer in almost all items in the QUEAD survey. When working
with AR devices in the context of robotic activities, it is worth to
consider the AR design interface for each task to improve user
experience as one user suggested:

[Participant:7] “Somehow make it so you can see all of the infor-
mation without having to point the camera at the robot”

Although our tablet was capable of running our AR application,
smooth tracking of the robot while in motion proved challenging. In
our case, once the target image cube moved out of view of the cam-
era, the visualized robot data was often rendered out of frame. To
prevent any confusion, all virtual images were rendered only if the
target image was in view of the AR device. In addition, participants
in the Test group were required to hold the tablet and have the cam-
era focused on the robot to see the visualizations. This requirement
may not produce the most comfortable or natural interaction with
the robot especially for any long term interactions times, and we
noted that some participants leaned towards using the computer
rather than the tablet to avoid holding the device. It may be im-
portant to shift towards using head-mounted augmented reality
devices rather than mobile AR devices to improve user experience.



HRI "23 Companion, March 13-16, 2023, Stockholm, SE

Cleaver, et al.

Average QUEAD ratings towards Visual Tools within the Test Group
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Figure 6: Plot of average QUAED ratings within the Test group. Asterisks (*) indicate significant differences found. Solid black

bars represent standard deviation.

H3 stated that users will spend more time using the AR device
than on the computer to complete the robotic activities, and our
results supported this claim for the Object Detection and Safety
activities. It is worth considering the actions of the human when
deciding if an AR device is a viable visualization tool for a robotic
activity. The Safety activity was the only task where participants
were instructed to physically move in the environment with the
robot in motion, and all participants used the AR device the entire
time to accomplish that activity. During the Object Detection and
Goal Point activities, most users took advantage of moving within
the environment with the AR device to better comprehend the
visualized data. Therefore, we suggest AR devices as a valuable
visualization tool for highly active activities.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we conducted a human-participant study to deter-
mine which types of robotic data do users visualize with augmented
reality (AR) when completing tasks with a ground mobile robot.
Participants were assigned tasks that differ in the type of robotic
information needed to successfully complete the tasks. The types
of robotic data included: Sensors, Cognitive-Decisions, Diagnostics,
Safety, and Actions. Participants in our Test group additionally had

SENSAR(AR) that visualized the mobile robot’s sensory and cog-
nitive data. Our human-user study revealed that robotic activities
Sensors and Safety benefit greatly with AR devices with results
showing greater performance, preferences, and rating towards AR
devices. We found little differences in Diagnostics and Calibration
between performance and preferences in computer and AR groups

While our study highlighted the value an AR device can have
for users completing robotic activities, there are few limitations.
The number of recruited participants in total as well as the size
of each condition may not be adequate for our statistical analysis.
Further recruitment may solve this issue. We understand that we
are tackling a broad question, but the results from this study helped
point out our next direction. We aim to dive further into the Sensors
and Safety data categories and consider more complex tasks. We
believe these tasks will reflect those performed by factory work-
ers that encounter robots frequently. We also understand that the
object detection task only rendered the robot’s Lidar sensor data
for both conditions. The physical objects used for detection were
not rendered in the virtual environment. We argue that the robot’s
only output was the Lidar readings, and visualising representations
of the physical objects is added information.

Another limitation is our AR application relied on a mobile tablet
and target-images to track the robot which as a result required users
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to have the robot in view of the AR device to render any robotic
information. The computer running RViz remained in one location
of the room, and few users questioned whether they can move the
location of the computer.

A direction worth exploring is the visuals used to represent
robotic information. Although we aimed to keep the visual repre-
sentations consistent between both visual tools, participants may
benefit with more clear and visually appealing designs as discussed
in Groechel et al. [8].

For future work, we want to explore how users utilize AR de-
vices in first encounters with a robotic arm manipulator compared
to a ground mobile robot when completing similar robotic activ-
ities. Reinforcement learning (RL) in the context of robotics has
remained as a black box for most humans and therefore, we also
plan to evaluate an extension of SENSAR [25] designed for RL and
determine if it enhances human-in-the-loop RL.
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