
VMR2L: Virtual Machines Rescheduling Using Reinforcement
Learning in Data Centers

Xianzhong Ding∗1 Yunkai Zhang∗2 Binbin Chen3 Donghao Ying2 Tieying Zhang3

Jianjun Chen3 Lei Zhang3 Alberto Cerpa1 Wan Du1

1UC Merced 2UC Berkeley 3ByteDance

Abstract

Modern industry-scale data centers receive thousands of virtual machine (VM)
requests per minute. Due to the continual creation and release of VMs, many
small resource fragments are scattered across physical machines (PMs). To handle
these fragments, data centers periodically reschedule some VMs to alternative PMs.
Despite the increasing importance of VM rescheduling as data centers grow in size,
the problem remains understudied. We first show that, unlike most combinatorial
optimization tasks, the inference time of VM rescheduling algorithms significantly
influences their performance, causing many existing methods to scale poorly.
Therefore, we develop a reinforcement learning system for VM rescheduling,
VMR2L, which incorporates a set of customized techniques, such as a two-stage
framework that accommodates diverse constraints and workload conditions, as well
as an effective feature extraction module. Our experiments on an industry-scale
data center show that VMR2L can achieve a performance comparable to the optimal
solution, but with a running time of seconds.2

1 Introduction

Cloud service providers allow end-users to access computing resources, such as CPU and memory.
They adopt resource virtualization to maximize hardware utilization, allocating Virtual Machines
(VMs)[1, 2] with the requested resources to end-users [3, 4, 5]. An industry-scale data center typically
has hundreds to thousands of Physical Machines (PMs), where each PM can host multiple VMs
that run independently [6]. A central server manages all VM requests on PMs by performing two
tasks, scheduling and rescheduling, in order to achieve different resource utilization goals, such as
minimizing the overall fragment rate (FR) or maximizing the number of available PMs.3

0 5 15 2010
Time (h)

140

120

80

40

N
um

be
r

of
 V

M
C

ha
ng

es

1

2

VMS required QPS level

Figure 1: Avg. VM changes.

VM Scheduling (VMS). When new VM requests arrive, there
can be multiple available PMs to host them. Figure 1 shows the
average number of VMs changes (VMs arriving and exiting)
per minute over a 30-day period from our in-house data center.
To ensure the system is robust, the VMS algorithm needs to
meet the maximum number of VMs changes as indicated by
the green line. The high queries per second (QPS) require-
ment deems only heuristic methods feasible for VMS. In fact,
ByteDance uses best-fit [7, 8], which sorts all PMs that meet
the requirements of the current VM according to the amount
of FR reduction before and after this VM is added, and chooses the PM with the largest reduction.

∗The authors contribute equally.
2We release our datasets and code here: https://anonymous.4open.science/r/VMR2L-BEA6.
3Due to space limits, we mainly explain our methods in terms of minimizing FR, whose formal definition is

presented in Appendix A.1.

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

https://anonymous.4open.science/r/VMR2L-BEA6

VM Rescheduling (VMR). However, simple heuristics are often far from optimal, and the continual
exiting of completed VMs results in many fragments scattered across PMs. As a result, rescheduling
is critical to optimize resource usage, which migrates VMs from their current PMs to new destination
PMs. Due to the overhead of VM migrations, a migration number limit (MNL) is set to control the
number of VMs to migrate. Note that while the VMR algorithm computes a solution, VMS is still
handing new VM requests and completed VMs are also being deleted. The dynamic nature of VM
states causing the computed VMR solution to no longer be optimal or even feasible4. Therefore, even
though VMR mostly happens during off-peak hours where there are fewer VM changes5, VMR still
needs to be very efficient. We conduct an experiment to quantify how the VMR inference time affects
the achieved performance.

Motivation Experiment. We can formulate the VM rescheduling problem as a Mixed Integer
Programming (MIP) problem, where the constraints come from the service expectations and the
available hardware resources. An off-the-shelf MIP solver, such as Gurobi [9] and CPLEX [10], can
achieve a near-optimal objective, but it suffers from an inference time that grows exponentially with
the number of VMs and PMs, and thus fails to scale to large data centers.

To see how a near-optimal solution can result in a suboptimal achieved performance due to its poor
inference time, we conduct an experiment on real traces from our in-house data center by selecting
20 random initial VM-PM mappings. For each mapping, we use Gurobi to compute a near-optimal
solution to the MIP formulation of VMR, which takes 50.55 minutes. However, since VMs were
dynamically arriving and exiting, most actions were no longer feasible and will fail to be deployed
after 50 minutes. We then compute the final performance that could be achieved as if the near-optimal
solution was instead returned in a shorter period of time, averaged over the 20 mappings. Figure 2
shows that the solution remains near-optimal if it could be computed within 5 seconds. However, FR
reduction quickly diminishes when the inference time exceeds 20 seconds.

1s 5s 20s 1min 5min 10min 30min 50min
Solution Time

0.30

0.35

0.40

0.45

0.50

0.55

Fr
ag

m
en

t R
at

e

Average Initial FR
Average Final FR

Figure 2: Effect of inference time
on achieved performance.

Limitations of the Current Methods. The experiment re-
sults reveal that different from bin-packing and other MIP
applications, VM rescheduling requires an algorithm that has
an inference time strictly under five seconds. To accelerate
the running speed of the MIP approach, hand-tuned heuristics
can be integrated into the process, e.g., adding constraints to
limit the solver’s search space. These heuristics must trade off
between the optimality of the solution and the tractability of
the problem. Unfortunately, even highly-skilled experts need
many iterations to manually find a proper trade-off, and no
universal heuristics can achieve a good trade-off for all VM
rescheduling scenarios.

In this work, we develop VMR2L, a deep Reinforcement Learning (RL) system for VM rescheduling.
VMR2L trains a Deep Neural Network (DNN) as the rescheduling agent. RL is a great fit for VMR
since VMR has no aleatoric uncertainties, i.e., the next state can be exactly simulated given the
current state and action. This allows us to build a simulator that only requires the initial VM-PM
mappings for training, without having to interact with a real data center. With our RL formulation and
customized embedding techniques, inference can be done within one second and can scales easily to
a large number of VMs and PMs. Extensive evaluation on two collected datasets demonstrates that
VMR2L can generate a solution that is only 2.67% worse than the optimal solution. We summarize
the contributions of this paper as follows:

• RL for VM rescheduling. We identify the unique characteristics of the VM rescheduling
problem in terms of latency requirement and aleatoric uncertainties, which motivate its
formulation as a RL problem.

• Customized RL techniques for VM rescheduling. We tackle three challenges in designing
a RL framework for VM rescheduling with three customized techniques, including a two-
stage framework and effective feature extraction module.

4A VM will not be rescheduled if it has exited or the destination PM no longer has enough resources.
5In less common cases, VMR is also performed if a high FR is observed that could potentially lead to

insufficient resources for upcoming VM requests, which requires an even higher latency.

2

• A VMR2L prototype and extensive evaluation. We develop a prototype of VMR2L and
conduct extensive experiments over two real datasets. We release the datasets and a custom
Gym environment for RL training.

2 Design of VMR2L

2.1 VM Rescheduling as an RL Problem

In this paper, we adopt a deep reinforcement learning (RL) approach to address the VM rescheduling
problem. A VMR request starts an episode, which involves migration number limit (MNL) steps.
At each migration step, the agent reschedules one VM from its source PM to a new destination PM
based on the current PM and VM states. Notably, the environment is deterministic – given the initial
state and an action, we can directly simulate the change in objective and the next state. This allows us
to build a simulator to train the agent, as detailed in Appendix B.1.

State Representation. The state input to the DRL agent contains two sets of features. The first set
contains four PM features for each NUMA6, specifically the remaining CPU and memory resources,
current FR, and fragment sizes. The second set contains 14 VM features including requested CPU
and memory for each NUMA, fragment sizes, and the source PM details. If a single NUMA is
requested, zeros are used as placeholders for the other NUMA. Features are min-max normalized.

Action Representation. The action at each step can be represented as a 2-tuple (k, i). Specifically,
the action is to reschedule a VM k from its source PM to a destination PM i. Note that the source PM
can be retrieved once we select k.

Reward Representation. The goal of VM rescheduling is to minimize the FR across all PMs. While
we could return the FR of all PMs as a single final reward to the agent after finishing an entire
episode, it corresponds to a form of sparse reward and it is known to be difficult for training [11].
Instead, we propose to generate dense rewards and use the change in FR on the source PM and
the destination PM as an intermediate reward at each step. As such, the reward range is naturally
scaled down to [−2, 2], which we further normalize by dividing with a constant c [12]. We calculate
the rescaled fragment size on each NUMA by Si =

∑1
j=0

(
Ũi,j%X

)
÷ c, and define reward as

R = (Sbefore, src − Safter, src) + (Sbefore, dest − Safter, dest), where Sbefore,· and Safter,· are the fragment
changes before and after the selected VM leaves (enters) the source (destination) PM.

2.2 A Two-Stage Framework

PM Actor

VM Actor

PM Mask

VM Heuristic
Candidates Model

Pretrain

RL Agent

State Action

VMi

PMk
PMs Embedding

VMs Embedding

Stage 1

Stage 2

Figure 3: The two-stage RL agent.

We uses PPO [13] as the backbone of our DRL frame-
work. To better accommodate a variety of constraints,
we leverage the characteristics of the VMR problem
and design a two-stage framework that allows the action
tuple to be generated sequentially. As shown in Figure
3, in Stage 1, the VM actor selects the VM candidate to
be rescheduled. Once a candidate VM is selected, we
can efficiently mask out all the PMs that cannot host the
candidate VM and then proceed to Stage 2, where the
PM actor selects an appropriate destination PM from
the remaining PMs. Additionally, when we select a VM
to reschedule, a considerable portion of the PMs can-
not meet its resource requirements. The exploration of
RL agent on these PMs inevitably hinders the learning
process. The proposed framework can effectively reduce the large action space and thus mitigate the
exploration challenge.

Scalability. To make effective rescheduling decisions, VMR2L must extract meaningful represen-
tations of the state observation, which include features of each individual PM and VM as well as
their affiliations. However, the number of VMs can vary drastically even in the same data center. To
encode these features, we propose to share two small embedding networks across all VMs and PMs
(Figure 4) — one to process each PM’s features and another one to process each VM’s features. As

6Each PM contains two non-uniform memory accesses (NUMAs).

3

such, the number of weight parameters is independent of the number of machines in the system. This
is achieved via an attention-based transformer model [14] but tailored for rescheduling. Transformers
have demonstrated strong performances in combinatorial optimization, such as in vector bin-packing
[15, 16]. However, there is a notable difference in VM rescheduling: we must choose from a set of
VMs that have already been assigned to PMs.

2.3 Feature Extraction with Sparse Attention

Figure 4: VM actor with sparse local-
attention capturing tree-level features.

Tree-level Features. Consider the example shown in
Appendix C.1. Not knowing which exact types of VMs
are hosted on the same PM prevents the vanilla trans-
former from optimizing for such long-term rewards.
We argue that each VM must be aware of which VMs
are co-hosted on the same PM, resembling a tree struc-
ture with PM as the root and VMs as leaves. To enable
VMs to recognize co-hosted VMs, we introduce an ad-
ditional stage of sparse local-attention within each PM
tree. This restricts PMs and VMs to attend to each other
if and only if they belong to the same tree. Detailed
network architecture can be found in Appendix C.

(a) Achieved Fragment Rate (b) Inference Time

Figure 5: FR and inference time on the medium dataset at different MNLs.

3 Evaluation
We collect two datasets from an industry-scaled cloud data center – one medium dataset with 2089
VMs and 280 PMs, and one large dataset with 4546 VMs and 1176 PMs. We implement VMR2L
based on the CleanRL framework [17] with PyTorch using PPO as the backbone [13]. We compare
with seven baseline methods from six categories: heuristics (e.g., greedy, α-VBPP), optimization
algorithms (e.g., MIP), approximate algorithms (e.g., POP), search-based algorithms (e.g., MCTS),
deep learning-based (e.g., Decima), and hybrid methods (e.g., NeuPlan).7

Experiment. We compare VMR2L with the baselines on the dataset in terms of the optimality and
inference latency under different migration number limits (MNLs). Figure 5 summarizes the results,
which shows that VMR2L is able to consistently reduce FR given different MNLs at a rate closest to
MIP compared to other baselines. For a more comprehensive analysis, refer to Appendix B.3. The
VMR2L training details can be found in Appendix A.4.

4 Conclusion

Compared to conventional bin-packing applications, VM rescheduling presents unique challenges
due to the expanding size of data centers. It needs to handle many VMs while meeting a strict
inference speed requirement. To this end, we introduce VMR2L, a tailored deep RL solution featuring
a two-stage framework for diverse service constraints and a sparse attention module for better feature
extractions. We hope that our released datasets and RL environment will support future research in
this area.

7See Appendix B.2 and B.1 for details on the baselines and datasets, respectively.

4

References
[1] Jörg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha Gouicem, and Pramod

Bhatotia. Vmsh: hypervisor-agnostic guest overlays for vms. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 678–696, 2022.

[2] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach,
Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume 2, pages
273–286, 2005.

[3] Xianzhong Ding, Le Chen, Murali Emani, Chunhua Liao, Pei-Hung Lin, Tristan Vander-
bruggen, Zhen Xie, Alberto Cerpa, and Wan Du. Hpc-gpt: Integrating large language model
for high-performance computing. In Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis, pages 951–960,
2023.

[4] Mao Lin, Keren Zhou, and Pengfei Su. Drgpum: Guiding memory optimization for gpu-
accelerated applications. In Proceedings of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 3, pages 164–178,
2023.

[5] Kang Yang, Yuning Chen, Xuanren Chen, and Wan Du. Link quality modeling for lora networks
in orchards. In Proceedings of the 22nd International Conference on Information Processing in
Sensor Networks, pages 27–39, 2023.

[6] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David Dion, Star
Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, et al. Protean: Vm allocation service
at scale. In Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation, pages 845–861, 2020.

[7] Chi Trung Ha, Trung Thanh Nguyen, Lam Thu Bui, and Ran Wang. An online packing
heuristic for the three-dimensional container loading problem in dynamic environments and the
physical internet. In Applications of Evolutionary Computation: 20th European Conference,
EvoApplications 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Part II
20, pages 140–155. Springer, 2017.

[8] Francisco Parreño, Ramón Alvarez-Valdés, Jose Manuel Tamarit, and Jose Fernando Oliveira. A
maximal-space algorithm for the container loading problem. INFORMS Journal on Computing,
20(3):412–422, 2008.

[9] Gurobi solver. https://www.gurobi.com/.

[10] Cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer.

[11] Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai.
Reinforcement learning with sparse rewards using guidance from offline demonstration. arXiv
preprint arXiv:2202.04628, 2022.

[12] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[13] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[15] Jingwei Zhang, Bin Zi, and Xiaoyu Ge. Attend2pack: Bin packing through deep reinforcement
learning with attention. ArXiv, abs/2107.04333, 2021.

5

 https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

[16] Dongda Li, Changwei Ren, Zhaoquan Gu, Yuexuan Wang, and Francis Lau. Solving packing
problems by conditional query learning, 2020.

[17] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[18] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012.

[19] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[20] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Muhammad Shiraz, Abdullah
Yousafzai, and Feng Xia. A survey on virtual machine migration and server consolidation
frameworks for cloud data centers. Journal of network and computer applications, 52:11–25,
2015.

[21] Xianzhong Ding, Zhiyong Zhang, Zhiping Jia, Lei Ju, Mengying Zhao, and Huawei Huang.
Unified nvtcam and stcam architecture for improving packet matching performance. ACM
SIGPLAN Notices, 52(5):91–100, 2017.

[22] Qingpeng Cai, Will Hang, Azalia Mirhoseini, George Tucker, Jingtao Wang, and Wei Wei.
Reinforcement learning driven heuristic optimization. Workshop on Deep Reinforcement
Learning for Knowledge Discovery (DRL4KDD), abs/1906.06639, 2019.

[23] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu. Solving a new
3d bin packing problem with deep reinforcement learning method, 2017.

[24] Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang, Jiangwen Wei, and Yinghui
Xu. A multi-task selected learning approach for solving 3d flexible bin packing problem.
In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’19, page 1386–1394, Richland, SC, 2019. International Foundation for
Autonomous Agents and Multiagent Systems.

[25] Ye Xia, Mauricio Tsugawa, Jose AB Fortes, and Shigang Chen. Large-scale vm placement with
disk anti-colocation constraints using hierarchical decomposition and mixed integer program-
ming. IEEE Transactions on Parallel and Distributed Systems, 28(5):1361–1374, 2016.

[26] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for vector bin
packing. research. microsoft. com, 2011.

[27] A. Paul Davies and Eberhard E. Bischoff. Weight distribution considerations in container
loading. European Journal of Operational Research, 114(3):509–527, May 1999.

[28] Xijun Li, Mingxuan Yuan, Di Chen, Jianguo Yao, and Jia Zeng. A data-driven three-layer
algorithm for split delivery vehicle routing problem with 3d container loading constraint. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, KDD ’18, page 528–536, New York, NY, USA, 2018. Association for Computing
Machinery.

[29] Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with con-
strained deep reinforcement learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 741–749. AAAI Press, 2021.

[30] Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, Mingxuan Yuan, and Jia
Zeng. Learning to pack: A data-driven tree search algorithm for large-scale 3d bin packing
problem. In Proceedings of the 30th ACM International Conference on Information Knowl-
edge Management, CIKM ’21, page 4393–4402, New York, NY, USA, 2021. Association for
Computing Machinery.

6

[31] Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic, John
Wawrzynek, and Ion Stoica. Autophase: Juggling hls phase orderings in random forests with
deep reinforcement learning. Proceedings of Machine Learning and Systems, 2:70–81, 2020.

[32] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[33] Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-Sidhoum. Rein-
forcement learning for variable selection in a branch and bound algorithm. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 176–185. Springer, 2020.

[34] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. Advances in neural information processing
systems, 33:18087–18097, 2020.

[35] Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
learning. 2020.

[36] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In International conference on machine learning, pages 9367–9376.
PMLR, 2020.

[37] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3677–3687, 2021.

[38] Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-
Smith, and Karen Aardal. Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107,
2022.

[39] Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems,
33:20012–20023, 2020.

[40] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combina-
torial optimization with reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3243–3250, 2020.

[41] Meng Qi, Mengxin Wang, and Zuo-Jun Shen. Smart feasibility pump: Reinforcement learning
for (mixed) integer programming. arXiv preprint arXiv:2102.09663, 2021.

[42] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth
Kandula, Stephen Boyd, and Matei Zaharia. Solving large-scale granular resource allocation
problems efficiently with pop. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 521–537, 2021.

[43] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

[44] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML. PMLR, 2015.

[45] Kyriakos G Vamvoudakis and Frank L Lewis. Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica, 46(5):878–888, 2010.

[46] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[47] Vincent Mai, Kaustubh Mani, and Liam Paull. Sample efficient deep reinforcement learning via
uncertainty estimation. In International Conference on Learning Representations, 2022.

7

[48] Xianzhong Ding, Wan Du, and Alberto E Cerpa. Mb2c: Model-based deep reinforcement
learning for multi-zone building control. In Proceedings of the 7th ACM international conference
on systems for energy-efficient buildings, cities, and transportation, pages 50–59, 2020.

[49] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[50] Kubernetes scheduler. https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

[51] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM special interest group on data communication, pages 270–288. 2019.

[52] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuandong Tian, Ying Zhang, and Xin Jin. Net-
work planning with deep reinforcement learning. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 258–271, 2021.

[53] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[54] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, 1 edition, 2007.

[55] Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Layer-wise
coordination between encoder and decoder for neural machine translation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[56] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2016.

[57] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement
learning, 2018.

8

 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

Appendix Contents

A Appendix 10

A.1 VM Rescheduling Problem Formulation . 10

A.2 Background on (Deep) Reinforcement Learning 11

A.3 Related Work . 12

A.4 PPO . 12

B Experiment Details 13

B.1 Simulator and Datasets . 13

B.2 Existing Baseline Algorithms . 14

B.3 Performance on the Medium Dataset . 14

B.4 Scalability to the Large Dataset . 15

B.5 Different Service Objectives . 16

B.6 Generalizing to Different MNLs . 16

C Architecture Overview 16

C.1 Sparse Attention Details . 17

C.2 A Case Study on Sparse Attention . 19

9

Table 1: The VM types we consider in our experiments.
VM Types large xlarge 2xlarge 4xlarge 8xlarge 16xlarge 22xlarge
Requested CPU 2 4 8 16 32 64 88
Requested Memory (GB) 4 8 16 32 64 128 256
Deploy NUMA Single Single Single Single Double Double Double
Percentage 11.01% 43.51% 16.13% 17.62% 6.22% 5.31% 0.20%

A Appendix

A.1 VM Rescheduling Problem Formulation

In this section, we formulate the VM rescheduling problem as a Mixed-Integer Programming (MIP)
problem.

In a data center, let V,P be the set of VMs and PMs, respectively. On the supply side, a PM i ∈ P
has two NUMAs8, where NUMA j can provide Ui,j CPU resources and Vi,j memory resources. On
the demand side, a VM k ∈ V requires uk CPU resources and vk memory resources and should be
deployed on a single PM using wk ∈ {1, 2} NUMAs. wk is the number of NUMAs required by
VM k (1 for single-NUMA deployment, 2 for double-NUMA). After deploying several VMs on PM
i ∈ P , there remains Ũi,j spare CPU resources on NUMA j. We define X-core fragment of PM i as∑

j(Ũi,j%X), i.e., the remaining CPU resources cannot be further utilized by any additional X-core
VMs.

Given an initial assignment of M VMs each onto one of the N PMs, the VM rescheduling task is to
reassign a subset of deployed VMs and migrate them each onto a new PM. The maximum number of
VMs that we can migrate for a given task is called Migration Number Limit (MNL). We formulate the
VM rescheduling as an optimization problem that searches for a reassignment of MNL selected VMs,
in order to minimize the total X-core fragments across all PMs:

Minimize:
∑
i,j

(
Ui,j −

∑
k

xk,i,j · uk

wk
−Xyi,j

)
(1)

Subject to:
∑
k

xk,i,j · uk

wk
+Xyi,j ≤ Ui,j , (2)

∑
k

xk,i,j · vk
wk

≤ Vi,j , (3)∑
i,j

xk,i,j = wk, (4)

∑
k

(1− xk,ik,jk) ≤MNL, (5)

xk,i,0 = xk,i,1, ∀k ∈ {k|wk = 2}, (6)
xk,i,j ∈ {0, 1} and yi,j ∈ Z. (7)

Here, {x, y} are the decision variables, where xk,i,j represents whether VM k is deployed to the
NUMA j of PM i in the new assignment (0 for No, 1 for Yes), and yi,j represents the maximum
number of X-core VMs can be deployed on NUMA j of PM i using the remaining CPU resources.
The objective in Equation 1 is to minimize the total X-core fragments.

Equation 2 and 3 enforce that the resource usage by VMs cannot exceed the total capacity of a PM.
Equation 4 indicates that each VM must be deployed on exactly one PM. Equation 5, in which ik
and jk are the initial PM id and NUMA id (0 for double-NUMA VMs) of VM k, means the total
migration number should not exceed the limit. Lastly, Equation 6 restricts VMs with double NUMAs
from deploying both of its NUMAs on the same PM.

Note (1) each PM has two NUMAs; (2) wk is a constant for each VM as determined by their types
(Table 1). Thus,

∑
i,j xk,i,j = wk (Equation 4) enforces that the actual NUMA allocation number

8Non-uniform memory access.

10

… …VM
PM

PM1 PM2 PM3

VM2

VMnVMn+1… 1

VM1

Figure 6: VM scheduling procedure.

… …VM
PM

PM1 PM2 PM3

VM2

VMnVMn+1… 1

2
VM1

Figure 7: VM rescheduling procedure.

of VM k matches the desired configuration. When wk = 1, Equation 4 constraints VM k to be
deployed on one NUMA of a PM; when wk = 2, Equation 4 constraints VM k to be deployed on
both NUMAs of a PM. Note that deploying VM k on two NUMAs of two different PMs (each PM
hosting a NUMA) violates xk,i,0 = xk,i,1,∀k ∈ {k|wk = 2} (Equation 6). Because wk ̸= 0, it
guarantees each VM is deployed.

A.2 Background on (Deep) Reinforcement Learning

In this section, we give a brief overview on (deep) reinforcement learning while referring the readers
to [18, 19] for a more detailed introduction.

Figure 8: Illustration Diagram of Reinforcement Learning

Reinforcement Learning A standard Reinforcement Learning (RL) problem is typically char-
acterized by a Markov Decision Process (MDP), where an agent continuously interacts with its
environment, as depicted in Fig. 8. At each step (or period), the agent observes a state sk from the en-
vironment and responds with an action ak in accordance with the current policy π, i.e., ak ∼ π(·|sk).
The agent subsequently receives a reward rk = r(sk, ak) as feedback, based on the state and action.
The transition to the next state depends solely on the current state and action, i.e., sk+1 ∼ P(·|sk, ak),
where P(·|·, ·) represents the transition probability. In a tabular RL setting, both the state space S and
the action space A are assumed to be finite and discrete.

Commencing with the initial state s0, the primary goal of the agent is to learn a policy that optimizes
the so-called value function. This function is defined as the expected cumulative rewards received
over K periods, i.e.,

Jπ(s0) := E

[
MNL∑
k=0

γkr(sk, ak)

∣∣∣∣π, s0
]
. (8)

Here, the expectation is taken over all possible trajectories under policy π. γ is a discount factor that
affects how much weight is given to future rewards. Additionally, for any initial state-action pair
(s0, a0), the corresponding state-action value function (Q-function) is defined as

Qπ(s0, a0) := E

[
K∑

k=0

γkr(sk, ak)

∣∣∣∣π, (s0, a0)
]
. (9)

Deep Reinforcement Learning Deep RL, a subset of RL, integrates RL and deep learning. In
tabular RL, the policy is directly optimized as a table of dimensions |S| × |A|. However, the
exponential scaling of |S| and |A| in high-dimensional state and action spaces makes traditional
RL algorithms impractical. Deep RL addresses this issue by employing (deep) neural networks to
represent the policy function (or other learned functions) and developing specialized algorithms for
scalability.

11

A.3 Related Work

Connections to Bin Packing. The use of optimized placement mechanisms proved to be successful
in a broad set of use cases, including production quality scenarios [20, 21] as well as transportation
logistics [22, 23, 24, 25]. A typical solution exploits heuristics based on bin packing [26]. In fact,
VM placement can be modeled as a bin-packing problem, where VMs and PMs are objects and bins,
respectively. Bin packing typically involves packing a set of items into fixed-sized bins such that the
number of bins required [22] or the total surface area is minimized [23, 24]. However, there are two
notable differences. First, the problem of VM rescheduling concerns adjusting an initial assignment
of VMs to PMs and has practical value in the industry, since some VMs might terminate causing the
problem state to change. On the other hand, rebalancing items that are already packed in bins has
received little attention in the context of other traditional bin-packing applications. Second, the total
number of VMs and PMs in a data center can easily go into the range of several thousands or more
[25], and is far more than the typical scale of bin packing problems, which typically involve no more
than a few hundred items [27, 28, 29, 30].

RL for Optimization Problems. RL has been recently introduced to solve optimization problems,
e.g., building ML compilers and optimizing neural network architectures [31]. In particular, RL is
used to select branching variables or find cutting planes in the Branch-and-cut method [32, 33, 34,
35, 36, 37, 38]. Besides, RL can also be applied to existing heuristics for MIPs to further increase
the quality of solutions [39, 40, 41]. However, the above approaches are not directly appropriate for
the VM rescheduling task due to their poor computation complexity. Although they are designed to
accelerate MIPs, even a state-of-the-art technique as POP [42] fails to deliver a satisfying solution
within the second-level inference time limit required for the VM rescheduling task.

A.4 PPO

The algorithm VMR2L is developed based on the Proximal Policy Optimization (PPO) algorithm [13].
Recognized for its stability and robustness to various hyperparameters and network architectures
[13], PPO has exhibited superior performance compared to Natural Policy Gradients (NPG) [43] and
Trust Region Policy Optimization (TRPO) [44], and exhibited less bias compared to Q-learning [45].
Despite PPO’s high sample complexity, it becomes less of a concern due to our cost-effective simulator
as detailed in Section B.1. In VMR2L, we employ two actors — a VM actor πvm (avm|s; θvm) and
a PM actor πpm (apm|s, V M ; θpm). Given the current state encoding s, the VM actor samples the
next-step vm action, denoted as avm. Based on both s and avm, the PM actor samples a destination
PM from the pm distribution, denoted as apm. Then, the critic V (s; θv) outputs an evaluation for the
current state embedding s.

Below, we provide a brief overview for the training algorithm, with the complete pseudocode shown
in Algorithm 1. In Lines 1-3, the algorithm first initializes the parameters of the VM actor, the PM
actor, and the critic all with random weights. To simplify the implementation, we incorporate the
critic network into the VM actor by appending a special VM with all ’-1’ features and using its output
as the critic score.

Each episode is made up of MNL steps, with each step representing a rescheduling action. During
every rescheduling time step, VMR2L commences vm and pm selection with the original vm-pm
mapping. It then generates the new vm-pm mapping by iteratively executing an action, as computed
by the vm and pm actors, on the current vm-pm mapping until the rescheduling time step concludes
(Line 6-16). The episode is terminated if the rescheduling time step length exceeds a pre-determined
threshold.

Upon the completion of each episode, we compute the gradient for both actors and critics using
their loss functions (Line 17). The gradient loss of the vm and pm actors is defined as the mean
error between the advantage estimate and the logit of the corresponding sampled vm and pm actions
(logpvm and logppm) across the episode. The Generalized Advantage Estimate for step i (GAEi) is
calculated as per the GAE-Lambda advantage [46] by

GAEi = ri + γ · vi+1 − vi + γ · λ ·GAEi+1, (10)

where ri, vi represent the reward and the critic’s output at step i respectively. γ is the discount
factor and λ is a smoothing parameter for variance reduction. The critic gradient loss is defined as
the mean-square error between the reward to go and the critic’s output, v, across the epoch. The

12

Algorithm 1: Learning a VM rescheduling policy using a two-stage actor-critic algorithm.
Input: All VMs and PMs’ states
Output: A VM rescheduling agent

1 Initialize the VM actor parameters θvm with random weights ;
2 Initialize PM actor parameters θpm with random weights ;
3 Initialize critic parameters θv with random weights ;
4 for episode =0,1,...,M do
5 Randomly sample the initial state s0 from all available PM-VM mappings in the train set;
6 buffer.clear() ;
7 for rescheduling step t = 0,1,..., MNL do
8 logpt,vm←π(a|st, θvm) ;
9 at,vm←pt,vm.sample() ;

10 logpt,pm←π(a|st, at,vm, θpm) ;
11 at,pm←pt,pm.sample() ;
12 vt←V(st, θv) ;
13 buffer.append(logpt,vm, logpt,pm, at,vm, at,pm, vt) ;
14 // Compute gradients wrt. vm actor, pm actor, and critic loss ;
15 dθvm, dθpm, dθv ← ComputeLoss(buffer);
16 Perform update of θvm using dθvm, θpm using dθpm, and θv using dθv ;

reward-to-go is calculated by applying the discount factor to the intermediate rewards. Finally, in
Line 18, we update the parameters of the actor and critic networks with the calculated gradients.

B Experiment Details

We conduct extensive experiments to answer:

• How far is VMR2L from the optimal solution? (§ B.3)

• How well does VMR2L generalize to larger data centers? (§ B.4)

• How well does VMR2L generalize to different objectives? (§ B.5)

• How well does VMR2L generalize to different MNLs? (§ B.6)

B.1 Simulator and Datasets

While DRL can be very powerful, its main drawback is the amount of training data required [47, 48].
In light of this, we design a simulator for the VM rescheduling task. The simulator follows the
OpenAI Gym environments [49] including specific file hierarchy and function abstractions. Given
an existing VM-PM mapping and a rescheduling action, we can directly calculate the change in FR
caused by the action. Thus, during training, VMR2L only needs to interact with the simulator instead
of with the real environment, which drastically lowers the amount of real-world data required to train
the agent.

As for the datasets, we have two seed initial mappings from an industry-scaled real cloud data center
– one medium dataset with 2089 VMs and 280 PMs, and one large dataset with 4546 VMs and 1176
PMs. Note that the RL agent must be able to generalize to VM-PM mappings unseen during training
and a dynamic number of VMs at deployment time. To better evaluate the agent’s performance under
various initial mappings, we generate 4400 initial mappings with different numbers of VMs for both
the medium and the large datasets. Each mapping is generated by removing the existing VMs on each
PM and randomly scheduling some of them to any PM that can fit them. We generate three versions
of the middle dataset with low, middle, and high workloads (different remaining CPU resources). We
leverage 4000 datasets for training, 200 datasets for both validation and test. Both the simulator and
datasets are available to the research community.

13

B.2 Existing Baseline Algorithms

Existing baselines can be summarized into six categories: heuristics (e.g., greedy, α-VBPP), opti-
mization algorithms (e.g., MIP), approximate algorithms (e.g., POP), search-based algorithms (e.g.,
MCTS), deep learning-based (e.g., Decima), and hybrid methods (e.g., NeuPlan). We compare with
at least one representative algorithm from each category.

MIP Algorithm: We formulate the VM rescheduling problem as an optimization problem (Appendix
A.1) and solve this problem with an off-the-shelf MIP solver such as Gurobi [9] and CPLEX [10],
which can find an optimal solution through algorithms of branch & bound, cutting planes, etc. In our
experiments, we use the former.

Greedy Algorithm: To obtain a feasible solution within a short time frame, greedy algorithms [50]
are often used. They normally include two stages: filtering and scoring. In the filtering stage, we
calculate the change in FR for each VM if it is removed from its source PM, and only select the VM
candidate that corresponds to the most significant drop in FR. In the scoring stage, we calculate the
change in FR if the selected VM is migrated to each of the eligible PMs. We then greedily assign the
selected VM to the PM that leads to the largest drop in FR. The above two stages are repeated until
the migration number limit is reached.

Vector Bin Packing Problem (α-VBPP): We generalize the VBPP [26] algorithm for initial schedul-
ing to rescheduling. We first divide the entire episode into MNL/α stages. During each stage, we
greedily remove α number of VMs that lead to the most fragments, and then apply VBPP to treat
them as incoming VMs. We carefully tune α (10 in our case) to achieve the best FR reduction.

Partitioned Optimization Problems (POP): The POP method [42] solves the optimization problem
formulated in Section A.1 by randomly splitting the large-scale VM rescheduling problem into smaller
subproblems (each contain a subset of VMs and PMs) and coalescing the resulting sub-rescheduling
solution into a global rescheduling solution for all VMs. We perform a grid search for the best POP
parameter that balances the FR and time on both medium and large datasets.

Monte-Carlo Tree Search (MCTS) [30]: As traditional search-based methods need to perform
multiple rollouts during inference time to achieve a good performance, we use DDTS [30] to prune
the search space.

Decima [51]: Decima uses RL and neural networks to learn the VM rescheduling algorithm. A graph
neural network is leveraged to encode the VM and PM information in a set of graph embedding
vectors to process a large amount of state information. Decima balances the size of the action
space and the number of actions required by decomposing VM rescheduling decisions into a two-
dimensional action, which outputs (i) the VM that needs to migrate, and (ii) an upper number of PM
subsets to choose as the destination.

NeuPlan [52]: NeuPlan uses a two-stage hybrid approach to address MIP’s scalability issue. In the
first stage, an RL-based method takes in the problem in the form of a graph and generates the first few
steps of VM rescheduling to prune the MNL search space. In the second stage, it uses a MIP solver
to find the optimal VM migration given the remaining MNL. A relax factor α is used to control the
size of the MNL space to explore by MIP.

B.3 Performance on the Medium Dataset

Fragment Rate. The results in Fig. 5(a) reveal that VMR2L can achieve +14.48%, +17.60%,
+22.37%, +23.71%, 23.84%, and +34.17% performance gain when compared to POP, NeuPlan,
MCTS, GA, α-VBPP and Decima respectively, when the task is to perform 50 migrations on the
medium dataset. Notably, VMR2L is merely 2.67% behind the optimal MIP solution (0.2953 vs.
0.2859). It is worth noting that the performance gap between VMR2L and the near-optimal MIP does
not increase with more MNLs.

Although α-VBPP can reduce FR with more MNL, its performance is inferior to that of GA. This is
because α-VBPP only removes the α worst VMs for each stage based on a single timestep, failing to
consider future opportunities to replace them back and achieve even higher FR reduction. POP fails
to achieve a good performance since it still relies on MIPs to solve each subproblem. To meet the
second-level latency requirement, we must divide the problem into many subproblems, causing its
solutions to be only locally optimal. On the other hand, Decima reduces the huge action space by

14

0 50 100 150 200
Migration Number Limit

0.48

0.50

0.52

0.54

0.56

Fr
ag

m
en

t R
at

e

50 100 150 200
Migration Number Limit

100

101

Lo
g(

Ti
m

e(
s)

)

GA POP Decima NeuPlan VMR2L

Figure 9: Fragment rate and inference time between different methods on the large dataset.

limiting the PM actor to only select from a subset of PMs, but the subsampling of PMs is completely
random, as opposed to our solution. While MCTS with DDTS uses neural networks to prune the
search space, it still requires a significant number of rollouts to achieve stable performance. Lastly,
NeuPlan is able to achieve a low FR, since it solves a large subproblem entirely with MIP. We
implement NeuPlan as follows: if MNL is less than 20 steps, MIP is used to solve the optimization
problem. If MNL is larger than 20, the first 20 VMs are migrated by MIP and the remaining VMs
will be handled by RL. Notice that NeuPlan’s FR is higher than VMR2L after MNL = 20, since after
this step NeuPlan relies entirely on its RL agent, which fails to learn a good policy given such a huge
state and action space.

Inference Time. From Fig. 5(b), we can see that the solution time of GA, α-VBPP, Decima and
VMR2L is less than OSG. VMR2L can generate one trajectory within 0.15s when MNL = 50. In
comparison, MIP requires 50.55 minutes to provide the optimal solution. The running time of POP
can be adjusted by setting how many subproblems to divide into. To meet the latency requirement of
the VM rescheduling task, we set this number to 16 so POP can deliver a solution within 1.94s. Both
GA and α-VBPP are greedy algorithms and can provide the solution within 1s. Decima requires
0.45s, which is at a roughly same scale as VMR2L, since both use end-to-end deep RL. Lastly,
NeuPlan takes 34.8s to yield the final solution since it still needs MIP to solve 20 steps.

B.4 Scalability to the Large Dataset

We conduct experiments on a large dataset with 4546 VMs and 1176 PMs to analyze the scalability
of VMR2L. Fig. 9 shows the FR and time performance of different baseline methods with the MNL
from 50 to 200. The MIP is not included in this experiment since we cannot get a solution within 50
minutes. As it turns out, VMR2L again achieves better performance than the baselines on both FR
and solution time.

From the left subfigure in Fig. 9, we can see that VMR2L can achieve average 2.01%, 2.08%, 6.14%
and 7.87% and max 2.34%, 5.15%, 8.6%, and 10.5% performance gain compared with POP, GA,
NeuPlan, and Decima respectively. Decima and NeuPlan both cannot achieve good FR performance
on such a large dataset. NeuPlan mostly relies on RL’s solution since MIP cannot work with MNL
larger than 20. GA gradually stops reducing FR after 100 steps. POP and VMR2L continue to reduce
FR even at MNL 200. POP achieves worse FR than GA before 100 and better FRs for larger MNLs.

The right subfigure in Fig. 9 shows the running time to generate a migration solution with MNL
set from 50 to 200. GA, POP, Decima, NeuPlan, and VMR2L can generate a solution within 4.91s,
14.53s, 1.125s, 37.23s, and 0.375s on average. GA increases the time when MNL is less than 150.
GA calculates the score of all the VMs and PMs as a metric to evaluate their migration value. The
calculation time increases with the number of VMs and PMs. POP costs more time with a bigger
MNL. VMR2L increases time linearly from MNL 50 to 200. For VMR2L, the neural network
inference time will only increase minimally with the number of PMs and VMs. Decima needs three
times than VMR2L since the GNN needs to encode the VM-PM information. NeuPlan needs MIP to
solve 20 MNL.

15

0

20

40

60

U
se

d
M

N
L GA

VMR2L
MIP

0.55 0.50 0.45 0.4 0.35 0.3 0.25
Fragment Rate Goal

0.2

0.4

0.6

Fr
ag

m
en

t R
at

e GA
VMR2L

MIP
GOAL

Figure 10: MNL Performance under Different
FR Goals.

0 10 20 30 40 50 AVG
Migration Number Limit

0.0

0.2

0.4

Fr
ag

m
en

t R
at

e

VMR2L_SEP
VMR2L

Figure 11: Fragment Rate Gap between VMR2L
and VMR2L SEP .

B.5 Different Service Objectives

VMR2L’s flexibility enables it to learn different policies depending on the high-level objective. We
now consider a new objective: given FR goals, we would like to minimize the number of migrations
needed to reach the FR goals. As seen in Fig. 10, the top subfigure displays the used MNL, while
the bottom subfigure shows the FR, both sharing the x-axis with the FR goals. In general, as the FR
goal decreases, GA requires significantly more migration steps than both MIP and VMR2L. Note
that none of the three methods can achieve the FR goal of 0.25, since the optimal FR is 0.2859 at
MNL 50. To summarize, the used MNLs of GA, VMR2L, and MIP increase with lower FR goals.
Across all FR goals, MIP and VMR2L achieve 14.77% and 11.11% less MNL than GA, respectively.
VMR2L performs similarly to MIP, with a difference of only 3.66%, but with a millisecond-level
inference time. On the other hand, GA is stuck at a FR goal of 0.4 since it only optimizes for the
next-step performance, instead of the long-term performance.

B.6 Generalizing to Different MNLs

In practice, the required migration number limit (MNL) can constantly vary due to changing business
requirements such as target fragment rates. We show that we can readily achieve good performance by
only training one VMR2L agent with MNL = 50, and deploying it for MNLs = {10, 20, 30, 40, 50}.
For comparison, we train a separate VMR2L agent for each MNL, which we denote as VMR2L SEP.
As shown in Fig. 11, VMR2L performs only marginally worse than VMR2L SEP with an average FR
performance gap of 1.16%. This suggests that the VMR2L agent trained with a large MNL can be
readily applied to the tasks with smaller MNLs. It avoids the overhead of maintaining a separate
VMR2L agent for each MNL.

C Architecture Overview

To better incorporate the proposed sparse local-attention module, we modify the vanilla transformer
architecture as follows. The model is composed of several attention blocks, where each block includes
three stages as shown in Fig. 4:

1. All PMs and VMs exchange information if they belong to the same tree via sparse local-
attention.

2. Each PM attends to other PMs’ updated embeddings and each VM attends to other VMs’
updated embeddings with self-attention.

3. The new VM embeddings are allowed to attend to the new PM embeddings through VM-PM
attention.

At the end of the three stages, each machine is then further processed by two point-wise dense layers
with ReLU activation and layer norm [53]. The updated embeddings for each machine is then feed
into the next block and the process repeats. Finally, the VM embeddings from the final block are
linearly projected into a set of logits followed by the Softmax operation[54] to generate the probability
of each selected VM.

16

We also add the number of MNL steps left as an additional input to be processed together with the
PMs. As for the critic, we add a node with all -1’s to be processed together with the VMs. The
output embedding from the final block is linearly projected into the critic score. Note that the PM
embeddings are updated block-by-block together with the VM embeddings, as it encourages the PMs
and VMs to better coordinate and update gradually from low level to high level [55].

As for the PM actor architecture, we adapt the vanilla transformer encoder-decoder module, since we
can directly inject the graph information by including the VM and PM embeddings from the VM
actor as input. We only feed in the selected VM candidate to the encoder, while the decoder still takes
in all the PMs. Additionally, we also add the VM-PM attention score from stage 3 for the selected
VM, since the score implies why the VM actor selects the chosen VM and which PMs it attends to
in the process. The output embeddings of each PM is linearly projected into a logit. Based on the
selected VM, we mask out all the illegal PMs by setting their logits to be −∞. The remaining logits
are translated into the probability of selecting each PM as the destination PM.

C.1 Sparse Attention Details

In this section, we delve into the detailed formulation of sparse attention.

Why We Need Tree-level Features? Consider a PM with 2 CPUs left. It contains a VM with 4 CPUs
and another VM with 2 CPUs. Suppose a second PM has a fragment size of 8 while hosting a VM
with 8 CPUs. In order to minimize the total 16-core fragments, an ideal approach would be to first
remove the two VMs with 2 and 4 CPUs from the first PM, and then reassign the VM with 8 CPUs
from the second PM to the first PM. However, if we merely include the source PM’s features in each
of the VM’s features and feed them into the vanilla transformer model, there will not be sufficient
information for the two actors to take the above actions. Instead, each VM must also be aware of the
other VMs that are hosted on the same PM, which is not possible in the vanilla transformer model. In
fact, each PM can be viewed as a tree of depth one, where the PM acts as the root node and the VMs
it hosts act as the leaf nodes. In order to allow every VM to recognize which other VMs are hosted
on the same PM, we propose to include an additional stage of sparse local-attention within each PM
tree, i.e., we only allow PMs and VMs to attend to each other if and only if they belong to the same tree.

Conceptual Overview. Fundamentally, attention can be understood as a trainable dictionary involving
queries, keys, and values. Given an embedding vector (a VM or a PM) that requires an update, and a
set of reference vectors (selected VMs and/or PMs), we project the vector-to-be-updated into a query
vector. Concurrently, we project all reference vectors into key and value vectors. We then compute
the similarity score between the query vector and each key vector. Based on these scores, we update
the target embedding vector as the weighted sum of the corresponding values.

The term “VM self-attention” refers to the process of updating each VM’s embedding vector using all
VM’s embedding vectors (including its own) as a reference. “PM self-attention” operates similarly
for PMs. “VM-PM attention” involves updating each VM’s embedding vector using all PM’s
embedding vectors as references. Lastly, the proposed tree-level sparse attention involves updating
each VM or PM using only other VMs or PMs within the same tree—that is, those affiliated with the
same PM.

Attention Formulation. Formally, let V = {vi} and P = {pi} denote the set of feature vectors
for each VM and each PM, respectively. Consider an embedding vector xi ∈ Rdmodel that we aim to
update, which is projected linearly9 from v ∈ V or p ∈ P . Let (y1, · · · , yn) be a set of reference
vectors that could be a combination of embeddings of v ∈ V and p ∈ P , including xi itself. Instead
of directly operating in the feature space Rdmodel , we project these vectors into an embedding space
Rdk .

An attention function updates the target vector xi by first projecting it into a query Qi = xiW
Q

using a linear transformation, where WQ ∈ Rdmodel×dk is a learnable weight matrix. Similarly,
each reference vector yj is projected into a key Kj = yjW

K and a value Vj = yjW
V , where

9A linear projection is necessary since v and p can have different number of features.

17

WK ,WV ∈ Rdmodel×dk 10. Note that we can perform the attention function on a set of queries in
parallel by stacking Qi’s into a larger matrix Q11.

The compatibility function, measuring the similarity between Qi and Kj , is typically implemented as
the dot product of these two vectors. However, when dk is large, the magnitude of dot products tends
to increase, leading to a high similarity for only a few keys and a marginal similarity for the rest of
the references. This has been known to cause extremely small gradients [14]. To address this, we
scale the dot product by 1√

dk
,

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V. (11)

For the proposed sparse attention, we introduce an additional mask M . Here, Mi,j = −∞ if xi and
yj are not part of the same PM tree and zero otherwise.

Sparse-Attention(Q,K, V) = softmax
(
QKT

√
dk

+M

)
V. (12)

Attention Block. In actual applications, we often utilize multiple sets of WQ,WK , and WV . Each
set, referred to as a single attention head, enables the model to extract pertinent information from
a distinct representation space. We combine the resulting matrices from each attention head in
multi-head attention by concatenation.

Multi-Head(Q,K, V) = Concat (head1, · · · , headh)WO, (13)

where headi represents the output of each attention head from Equation 12 using WQ
i ,WK

i , and WV
i .

WO ∈ Rh·dk×dmodel is an additional learnable weight parameter.

Within each attention block, we consecutively execute the process for tree-level sparse attention,
VM/PM self-attention, and VM-PM attention. Following these three attention submodules, we further
process each updated embedding vector with a fully connected feed-forward network, which operates
independently on each embedding vector.

FFN(xi) = GELU (xW1 + b1)W2 + b2, (14)

where GELU refers to the Gaussian Error Linear Units activation function [56]. The output of this
process is then supplied to the next attention block, and the process is iteratively repeated. For
more in-depth details regarding the attention module, we encourage readers to consult the paper by
Vaswani et al. [14].

10WV can have different dimensions than WK . We keep them the same here for simplicity.
11As we use the same WQ,WK , QV for all vectors, the total number of weight parameters remains inde-

pendent of the number of VMs or PMs in the problem, making this approach suitable for scaling to large data
centers.

0 500 1000 1500 2000
Training Steps

0.30

0.35

0.40

0.45

Te
st

 F
ra

gm
en

t R
at

e Sparse Attention
Vanilla Attention

Figure 12: FR Performance of VMR2L with Sparse versus Vanilla Attention.

18

Table 2: A list of hyperparameters.

RL Parameters Value General Parameters Value
Clip_coefficient 0.1 Total_iterations 4e6
Discount_factor 0.99 Learning_rate 2.5e-4

PPO update_epochs 8 Attention_blocks 2
PPO minibatches 128 Attention_heads 2

GAE_Lambda 0.95 Transformer dff 32
Risk-Seeking K 3 Transformer dhidden 64

Overall Architecture. The architecture incorporates the remaining MNL steps as supplementary
input for both the VM and PM actors, processed concurrently with the PMs. This inclusion is
pivotal for reinforcement learning in scenarios with fixed-length episodes as demonstrated in prior
studies[57]. As for the critic, a node containing all -1’s is incorporated and processed alongside the
VMs. The output embedding from the terminal block undergoes a linear projection to yield the critic
score. It’s important to note that the PM embeddings undergo iterative updates block-by-block in
tandem with the VM embeddings. This approach fosters better coordination between PMs and VMs,
enabling a gradual transition from low to high-level updates [55].

Ablation on Sparse Attention. In Fig. 12, we present an ablation study performed on a medium
dataset with MNL = 50 to evaluate the impact of the sparse attention module in terms of FR.
As a consequence of the supplementary parameters involved, sparse attention exhibits a longer
convergence time but successfully achieves a lower FR. This observation validates that sparse
attention empowers VMR2L to extract tree-level information, which is absent in vanilla attention. A
visual illustration of this concept is provided in Section C.2.

C.2 A Case Study on Sparse Attention

We build a visualization tool that allows end-users to directly input a trained agent and receive the
detailed migration actions at each step in the form of a gif file. This allows end-users to better
interpret and analyze the actions taken by the agent. In Fig. C.1, we provide a case study on how the
proposed sparse attention allows the agent to optimize for long-term rewards.

19

Figure 13: At step 38, VMR2L removes a VM with 4 CPUs to achieve zero fragments on the
destination NUMA. However, this also creates four fragments on the source NUMA, leading to a net
reward of zero at this step. Then at step 39, it reschedules another VM with 4 CPUs to achieve zero
fragments on both the source and the destination NUMAs. Although the agent receives a reward of
zero at step 38, sparse attention allows the agent to realize that there were two VMs with 4 CPUs
on the source NUMA, so the agent can reassign the second VM with 4 CPUs elsewhere in order to
achieve zero fragments on the source NUMA as well.

20

	Introduction
	Design of VMR2L
	VM Rescheduling as an RL Problem
	A Two-Stage Framework
	Feature Extraction with Sparse Attention

	Evaluation
	Conclusion
	Appendix
	VM Rescheduling Problem Formulation
	Background on (Deep) Reinforcement Learning
	Related Work
	PPO

	Experiment Details
	Simulator and Datasets
	Existing Baseline Algorithms
	Performance on the Medium Dataset
	Scalability to the Large Dataset
	Different Service Objectives
	Generalizing to Different MNLs

	Architecture Overview
	Sparse Attention Details
	A Case Study on Sparse Attention

