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Abstract

Conformal prediction has emerged as a rigorous
means of providing deep learning models with
reliable uncertainty estimates and safety guaran-
tees. Yet, its performance is known to degrade
under distribution shift and long-tailed class dis-
tributions, which are often present in real world
applications. Here, we characterize the perfor-
mance of several post-hoc and training-based
conformal prediction methods under these set-
tings, providing the first empirical evaluation on
large-scale datasets and models. We show that
across numerous conformal methods and neural
network families, performance greatly degrades
under distribution shifts violating safety guaran-
tees. Similarly, we show that in long-tailed set-
tings the guarantees are frequently violated on
many classes. Understanding the limitations of
these methods is necessary for deployment in real
world and safety-critical applications.

1. Introduction
Deep learning models have shown the ability to complete a
diverse range of tasks with exceedingly high performance
(Silver et al., 2017; Brown et al., 2020; Dosovitskiy et al.,
2020b). However, high performance metrics (e.g., accu-
racy) alone are insufficient for deployment in safety-critical
applications, where uncertainty measures and safety guar-
antees that experts can trust are required (Ovadia et al.,
2019). Conformal prediction (CP) (Vovk et al., 2005) is
a promising method for addressing these limitations. Con-
formal prediction turns heuristic notions of uncertainty into
reliable ones through a post-training adjustment, which can
then be used to predict confidence sets that are guaranteed
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Figure 1: Performance of threshold conformal predic-
tion (Sadinle et al., 2019) degrades across various neu-
ral architectures when tested on distribution-shifted
ImageNet datasets. Target coverage is set to 0.90. All
conformal prediction thresholds were first calibrated on a
held-out portion of the original validation set. The same
threshold was used to construct confidence sets in subse-
quent test sets. Target coverage is consistently violated for
all distribution-shifted sets. Likewise, the average confi-
dence set size, or “inefficiency”, is observed to increase
under distribution shift. Larger markers reflect larger ar-
chitectures within the family.

to contain the true class with some user specified error rate.

Various conformal prediction methods (Sadinle et al.,
2019; Stutz et al., 2022; Romano et al., 2020; Angelopou-
los et al., 2022a; Teng et al., 2023) perform well on a
number of complex tasks such as image classification and
object detection (Angelopoulos et al., 2022b). However,
these results thus far are largely limited to in-distribution
and class-balanced data regimes. This is problematic since
data encountered in real-world settings is often imbalanced
(Krawczyk, 2016) or subject to distribution shift (Castro
et al., 2020), and robustness to these settings is necessary
for the safe deployment of ML (Amodei et al., 2016).

Despite the importance of understanding performance in
these real-world settings, there has thus far been no com-
prehensive investigation of the performance of popular



conformal prediction methods under distribution shift and
long-tailed data. Since conformal prediction assumes iden-
tically distributed data and guarantees provided are based
on micro- rather than macro-averages, it is unsurprising
that performance would degrade under shifted and long-
tailed distributions. This phenomenon has been observed
in small-scale datasets (Tibshirani et al., 2020). Nonethe-
less, the recent adoption of conformal prediction into deep
learning and safety-critical domains (Angelopoulos et al.,
2022b; Muthali et al., 2023; Vazquez & Facelli, 2022; Lu
et al., 2022) warrants specific investigation of these meth-
ods using modern neural network architectures and large-
scale datasets that are more characteristic of data found “in
the wild”.

In this study, we evaluate four different conformal predic-
tion methods on numerous distribution-shifted and long-
tailed datasets and thoroughly characterize their perfor-
mance under these conditions. We investigate across three
deep learning model families, while also controlling for
model size. Our primary findings are:

• Safety guarantees in terms of coverage (Eq. 8) are vi-
olated even under small distribution shifts.

• Class-conditional coverage is frequently violated in
long-tailed distributions.

• The size of the confidence sets, with smaller being
more desirable, increases under both these settings.

• The above results hold across all CP methods and
model architectures.

2. Methods
In this study, four conformal prediction methods were eval-
uated across five distribution-shifted datasets and one long-
tailed dataset, for image classification tasks. Three neural
architecture families were used as the base classifier, to de-
termine their affect on CP performance, which was evalu-
ated using several metrics.

2.1. Conformal Prediction Methods

The common classification paradigm involves training a
model πθ(x) to predict a single label Y ∈ [K] :=
{1, ...,K}. In contrast, conformal prediction is a statistical
method that can be used to predict confidence sets for ma-
chine learning models (Angelopoulos et al., 2022a). For-
mally, it aims to construct a confidence set C ⊆ [K] such
that the true class is included with some user specified error
rate α:

P(Ytest ∈ C(Xtest)) ≥ 1− α. (1)

This is done through a two step post-processing procedure.
In the calibration step, a score function s(x, y) is used on

held-out data to transform a provisional uncertainty mea-
sure (e.g., softmax values) into conformity scores. The
1− α quantile of the conformity scores is then used to de-
termine a threshold τ . In the prediction step, sets C(X)
are constructed on new unseen data by including all the
labels whose conformity scores fall within the threshold,
guaranteeing 1−α coverage. Importantly, this guarantee is
known as marginal coverage, since it holds in expectation
unconditionally across all data points rather than per-class.
The returned confidence sets can also be used as an uncer-
tainty estimate, with larger confidence sets |C(X)| suggest-
ing greater uncertainty in the predictions.

The threshold conformal prediction (THR) method
(Sadinle et al., 2019) generally produces the smallest av-
erage set sizes. Here, the confidence sets are constructed
as:

C(x; τ) := {k ∈ [K] : s(x, k) > τ} (2)

Here, the score function is defined as s(x, y) = πθ(x)y ,
and the threshold τ is computed as the α (1 + 1/Ncal) quan-
tile of the calibrated conformity scores. During calibra-
tion, the softmax value corresponding to the true class y
of the input x is used in the conformity scores. At test
time, this method includes in the set those classes whose
softmax score is greater than the calibrated threshold. Al-
though THR produces small set sizes, it may lead to “un-
even” coverage, with difficult classes achieving worse cov-
erage.

Adaptive prediction sets (APS) (Romano et al., 2020)
were developed to improve conditional coverage, with the
trade-off of larger set sizes. In the APS method, the confor-
mity scores are calculated by accumulating softmax values:

s(x, y) =

y∑
j=1

π̂θ(x)j , (3)

Where π̂θ(x) is the sorted softmax values for input x from
greatest to smallest. Subsequently, sets are constructed by
including values less than the threshold τ :

C(x; τ) := {k ∈ [K] : s(x, k) < τ}, (4)

Similarly to THR, the conformity scores with respect to
the true class yi are used for calibration, and the (1 −
α)(1 + 1/Ncal) quantile is used to find the value τ that en-
sures marginal coverage on test examples.

Regularized adaptive prediction sets (RAPS) (An-
gelopoulos et al., 2022a) build on APS by modifying the
conformity scores to include a penalty λ to classes beyond
some specified threshold kreg. Specifically, the score func-
tion is defined as:



s(x, y) :=

k∑
j=1

πθ(x)y + λ · (ox(y)− kreg)
+, (5)

where ox(y) is the ranking of label y among the sorted
probabilities, and (·)+ indicates the positive part of the ex-
pression. The confidence sets are then defined the same as
in Equation 4. The regularization helps to exclude proba-
bilities that are deep in the tail that would otherwise have
been included, since labels now require a greater score to
be included in the set. This helps to produce smaller pre-
diction sets than APS (albeit not as small as THR), and
has been shown to work well on large datasets like Ima-
geNet (Angelopoulos et al., 2022a). In our experiments,
convolution-based networks use values of λ = 0.01 and
kreg = 5, and transformer-based networks use λ = 0.1
and kreg = 2.

The CP methods described thus far are implemented after
a model is trained, which does not directly optimize the
underlying model to produce high performing confidence
sets. Conformal training (ConfTr) (Stutz et al., 2022) was
proposed to address this, by simulating the conformal pre-
diction process during training. This is done by splitting
each training batch B into a calibration Bcal and predic-
tion Bpred subset. Just like in regular CP, Bcal is used to
calibrate the threshold τ , and confidence sets are formed
on Bpred. To perform the thresholding step, differentiable
sorting (Blondel et al., 2020) is used to find the quantiles of
the conformity scores in a way that can be back-propagated
during training. The size of the confidence sets is then used
as the loss function to be minimized during training:

Lsize = max

(
0,

K∑
k=1

Eθ,k(x; τ)− κ

)
. (6)

In Equation 6, Eθ,k(x; τ) is a “smooth” assignment of
class k to the confidence set, calculated as Eθ,k(x; τ) :=

σ
(

s(x,y)−τ
T

)
, where σ(·) is the Sigmoid function and T ∈

[0, 1] is a temperature parameter controlling the smooth-
ness. This penalizes the set sizes, and the hyper-parameter
κ ∈ {0, 1} determines whether or not sets of size one are
penalized (i.e., κ = 1 means that singleton sets will incur
no loss). An additional classification loss can be included
to ensure the true label is included in the confidence sets:

Lclass =

K∑
k=1

[(1− Cθ,k(x; τ)) · 1[y = k]] . (7)

A weighted combination L = Lclass + λLsize can then be
used to train the model.

For this method, a ResNet-50 pre-trained on ImageNet
(Wightman, 2019) was used as the base model. The train-

ing methodology and hyper-parameters closely follow that
used by the original authors on the CIFAR-100 dataset
(Stutz et al., 2022). This included re-initializing the final
fully connected layer, and training one baseline model us-
ing cross-entropy loss and one with the combined Lsize and
Lclass losses, defined in Equation 6 and Equation 7.

Any CP method can be used to predict the confidence sets
during training, however in practise THR has been shown
to produce better results, so that is used in this study for
the ConfTr experiments. Because ConfTr relies on smooth
sorting / assignment operations, post-training conformal
prediction is still performed to ensure the formal guaran-
tees are maintained.

2.2. Evaluation Metrics

The primary metrics used for evaluation are coverage and
inefficiency. Coverage measures the fraction of true labels
that are actually included in the confidence set:

Cover :=
1

Ntest

Ntest∑
i=1

1[yi ∈ C(xi)]. (8)

The conformal prediction process guarantees that P(Ytest ∈
C(Xtest)) ≥ 1 − α, thus the Cover metric should be
≥ 1 − α on average. However, conformal prediction
does not guarantee class conditional coverage: P(Ytest ∈
C(Xtest)|Ytest = y) ≥ 1 − α. We can capture conditional
performance using a “macro” coverage metric. First we can
consider Cover(k) to be the the coverage computed only on
test points from class k ∈ [K]. The macro coverage is then:

Macro Cover :=
1

K

K∑
k=1

Cover(k). (9)

The non-conditional guarantees of conformal prediction
mean that although across an entire dataset the desired cov-
erage may be maintained, there may be classes which vio-
late the desired coverage level. This is especially pertinent
for long-tailed datasets. Thus, the number of classes that
violates the coverage level is found:

Cover Violation :=

K∑
k=1

1 [Cover(k) < 1− α] . (10)

Inefficiency is a measure of the size of the confidence sets.
The prediction sets must both provide adequate coverage
(contain the right class), and be informative; very large pre-
diction sets are of little use. Inefficiency is measured as:

Ineff :=
1

Ntest

Ntest∑
i=1

|C(xi)| . (11)

The macro inefficiency is also calculated, to determine if
some classes tend to return particularly large sets. Simi-
larly to Equation 9, we define Ineff(x) as the inefficiency



on class k, and the macro inefficiency as:

Macro Ineff :=
1

K

K∑
k=1

Ineff(k). (12)

The macro coverage and inefficiency metrics will be used
to characterize performance on the long-tailed datasets.

2.3. Datasets

Distribution Shift. We use the ImageNet (Deng et al.,
2009) dataset to train our neural networks and calibrate
the CP classifiers. Following previous works on conformal
prediction (Angelopoulos et al., 2022a), we reserve 50% of
the ImageNet validation set to find the threshold τ . This
same threshold is used to form prediction sets on the re-
maining ImageNet validation set, as well as the following
distribution-shifted datasets:

1. ImageNetV2 (Recht et al., 2019) is a new ImageNet
test set collected by closely following the same format
and collection process as ImageNet, with the goal of
mimicking the original data distribution.1

2. ImageNet-C (Hendrycks & Dietterich, 2018) applies
common visual corruptions to the ImageNet valida-
tion set. In this study, the Gaussian noise, motion blur,
brightness, and contrast corruptions are investigated,
representative of the four main categories — noise,
blur, weather, and digital, respectively.

3. ImageNet-A (Hendrycks et al., 2021b) contains natu-
rally adversarial images that a ResNet-50 incorrectly
classifies, but can be correctly classified by humans.

4. ImageNet-R (Hendrycks et al., 2021a) consists of
rendered versions of ImageNet classes, such as draw-
ings, cartoons, etc.

The details of these datasets are summarized in Table 1.
Metrics are reported as the average across ten trials, to ac-
count for variation in the calibration split.

Long-tailed labels. Conformal prediction performance
on long-tailed data distributions was evaluated on the
PlantNet-300k dataset (Garcin et al., 2021). This is a highly
imbalanced dataset, with 80% of classes accounting for
only 11% of the total number of images. In addition to
the 243,916 training examples, PlantNet-300k has defined
validation and test sets, each with 31,118 examples and at
least one image of each class in each set. The validation

1It is difficult to conclude whether this dataset represents a
true distribution shift in the absence of convincing generalization
error bounds for ImageNet-scale DNNs, however, we adopt Recht
et al.’s hypothesis that it indeed represents a small shift.

Table 1: Alternate ImageNet-based validation datasets
used to evaluate performance under distribution shift. For
ImageNet-C, the Gaussian noise, motion blur, brightness,
and contrast corruptions are used. The conformal calibra-
tion process is only conducted on the original ImageNet
validation set.

Dataset Number of Images Number of Classes
ImageNet-V2 (Recht et al., 2019) 10,000 1,000
ImageNet-C (Hendrycks & Dietterich, 2018) 50,000 1,000
ImageNet-A (Hendrycks et al., 2021b) 7,500 200
ImageNet-R (Hendrycks et al., 2021a) 30,000 200

Table 2: Comparison between using baseline cross-entropy
training and ConfTr, which directly optimizes set sizes dur-
ing training. Although ConfTr leads to smaller sizes on
the in-distribution test data, there is negligible difference in
coverage between the two methods on ImageNet-V2. Cov-
erage target is 0.99.

Datasets Accuracy Coverage Inefficiency
Baseline ConfTr Baseline ConfTr Baseline ConfTr

ImageNet 76.91 72.40 0.99 0.99 32.21 29.89
ImageNet-V2 64.68 60.45 0.97 0.97 50.79 46.99

set is used to calibrate the conformal prediction methods
and find the threshold, and the test set is used to form con-
fidence sets and evaluate performance. Here, all three data
splits (train, validation, and test) are long-tailed, meaning
that the conformal calibration process is conducted on
highly imbalanced data.

2.4. Deep Learning Models

To account for differences in model architecture and train-
ing algorithms, three distinct model families were evalu-
ated:

1. ResNets (He et al., 2015) are prototypical convolu-
tional neural networks.

2. Vision Transformers (ViT) (Dosovitskiy et al.,
2020a) are transformer-based architectures that are
pre-trained on ImageNet-21k (Ridnik et al., 2021), be-
fore being fine-tuned on ImageNet-1k.

3. Data efficient image Transformers (DeiT) (Touvron
et al., 2022) are also transformer networks, however
they are trained only on ImageNet-1k following a
carefully designed training procedure.

3. Experiments and Results
3.1. Distribution Shift

Our results on alternate ImageNet test sets are summa-
rized in Figure 1. We can see that the desired coverage is



Table 3: Conformal prediction results on PlantNet-300k. While marginal coverage of 0.90 is maintained, class-conditional
coverage is frequently violated. The conformal threshold is calibrated on a (long-tailed) held-out validation set.

Model CP Method Accuracy Macro Acc. Coverage Macro Coverage Inefficiency Macro Inefficiency # (%) Violated Classes

ResNet-152
THR

80.84 36.82
0.899 0.505 1.46 1.99 774 (72%)

APS 0.900 0.648 3.67 13.75 617 (57%)
RAPS 0.900 0.610 2.15 5.17 665 (62%)

DeiT-B
THR

82.68 43.57
0.898 0.541 1.30 1.50 714 (66%)

APS 0.900 0.713 4.70 18.30 513 (47%)
RAPS 0.901 0.603 1.68 2.64 654 (60%)

ViT-B
THR

82.15 35.86
0.899 0.461 1.56 2.42 800 (74%)

APS 0.899 0.744 12.37 98.45 466 (43%)
RAPS 0.901 0.551 1.67 3.27 697 (64%)

consistently violated across all models. Distribution shift
also leads to increased inefficiency — a proxy for the in-
creased uncertainty of the underlying model. The cov-
erage target is violated even on small distribution shifts,
such as ImageNet-V2, which was purposefully and care-
fully constructed to match the original ImageNet distribu-
tion as closely as possible. The inability of these meth-
ods to maintain coverage even on minor distribution shifts
highlights the risks of deployment in real world situations,
without additional safety features.

Smaller models exhibit worse inefficiency, and often lower
coverage rates. The larger ViT / DeiT models perform
best overall with the smallest degradation under distribu-
tion shift. These results highlight the value of combining
conformal prediction with modern, high-performing deep
learning models. It affirms that efforts to improve the per-
formance of the base model may improve the performance
of conformal prediction methods under distribution shift.
Refer to Appendix A for detailed results on these datasets,
as well as ImageNet-C results at each corruption level. Fur-
ther, Appendix D shows the relationship between model ac-
curacy and CP coverage, and Appendix E includes results
on the recent ImageNet-W (Li et al., 2023) dataset.

Table 2 shows the results of the conformal training method.
As expected, the ConfTr method leads to smaller sets on
the in-distribution data, however, this does not translate to
improved coverage on distribution-shifted data.

3.2. Long-tailed Label Distributions

Table 3 shows the results on the long-tailed PlantNet-300k
dataset. Although the target coverage of 0.90 is maintained
marginally across the entire dataset, it is frequently vio-
lated on a class-conditional basis. Indeed, there are often
hundreds of classes with violated coverage levels, leading
to a violation of coverage on up to 70% of the classes in
the worst case. This is consistent across all models and
methods, and highlights the difficulty of applying confor-
mal prediction methods to long-tailed data distributions.

The ineffectiveness of approximating class-conditional
coverage on PlantNet-300k is further demonstrated in the
Appendix (see Table 6). The Appendix also includes the
results of experiments on the iNaturalist-2018 (iNatural-
ist 2018 competition dataset) and -2019 (iNaturalist 2019
competition dataset) datasets (see Table 7).

4. Conclusion
In this paper, we studied the performance of conformal
prediction methods under distribution shift and long-tailed
data, on large-scale datasets and modern neural archi-
tectures. We show that performance degrades in these
regimes, and coverage guarantees are frequently violated.
We also observed increased inefficiency, the average size
of the conformal sets. While violation of coverage guar-
antees is undesirable, inefficiency indicates model uncer-
tainty. A good model should exhibit heightened uncertainty
with OOD examples.

There have been several recent methods developed in deal-
ing with distribution shift (Amoukou & Brunel, 2023;
Gendler et al., 2022; Gibbs & Candès, 2022; Barber et al.,
2023; Dunn et al., 2022; Bhatnagar et al., 2023; Cauchois
et al.; Gibbs et al., 2023) and class-conditional coverage
(Deng et al., 2023; Fisch et al., 2021; Jung et al., 2022).
However, these have thus far been developed mostly on
small-scale datasets, and it remains to be seen how they
translate to the large-scale datasets studied here. This is
something future works may tackle, and we hope that our
results will serve as baselines upon which new conformal
prediction methods and novel algorithms and architectures
for deep learning can improve.

Ultimately, this work highlights the challenges that con-
formal prediction methods may face in real world applica-
tions, where class imbalance is common and data distribu-
tions are ever-shifting. Developing and empirically evalu-
ating conformal prediction methods that are more robust to
these admittedly difficult settings is a key requirement to
their adoption in safety-critical environments.
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A. Detailed Results on ImageNet Distribution Shift
The detailed results on alternate ImageNet test sets are reported in Table 4. As mentioned, the target coverage level of 0.90
is violated in nearly all circumstances. We see that THR indeed provides the smallest set sizes, while the adaptability of
RAPS generally results in better, but imperfect, coverage. Further, the basic APS method often leads to impractically large
set sizes. In addition to degrading coverage, the inefficiency also increases on these datasets; a proxy for the increased
uncertainty of the underlying model.

Table 5 further highlights the brittleness of conformal prediction methods. Here, we can see that even minor corruption
levels frequently lead to a violation of the target coverage. This is especially noticeable in the combination of smaller
networks such as ResNet-50 and the THR method, where the smallest corruption level leads to coverage violations across
all corruption types. We can also see that some corruption types lead to a greater degradation than others: motion blur
tends to perform worse on average and brightness the best. In spite of the frequent degradation, the combination of DeiT-B
/ ViT-B and the RAPS algorithm performs consistently better across many settings, maintaining coverage levels only a few
percent below the target up to corruption level 3 on most datasets.

B. Ineffectiveness of class-balanced CP on PlantNet-300k
As demonstrated in Table 3, performing conformal prediction on long-tailed data leads to large violations in class-
conditional coverage. Class-conditional coverage can be approached through class balanced conformal prediction, which
aims to ensure that the specified error rates are guaranteed for every class. Sadinle et al. (2019) propose a method that
calibrates a threshold for each class, then including classes in the confidence set based on their class-specific thresholds:

C(x; τ) =
{
k ∈ [K] : s(x, k) < τ (k)

}
. (13)

This method can be used in conjunction with the other post-hoc CP methods described in Appendix ??.

We investigated class-conditional conformal prediction on PlantNet-300k, and summarize the results in Table 6. It results
in better macro-coverage and fewer coverage violations than the regular conformal prediction, yet it still leads to class-
conditional coverage violations. This is partly because CP coverage holds in expectation across an infinite test set. Where
ample data per class is available, like on ImageNet, this can be simulated by repeated random data splits. PlantNet-300k
has fixed calibration / test sets and as noted, some classes have very little representation. Further, coverage follows a
Beta distribution with α and β terms reliant on the validation set size (Vovk, 2012), thus a smaller calibration set leads to
greater variance in coverage across the (infinite) test set. Thus, when class-balanced conformal prediction is performed on
PlantNet-300k, both the calibration and test sets for each class are very small due to the long-tailed label distribution. This
leads to a high class-conditional variance in coverage and thus does not resolve the coverage violations.

Although this is a challenging setting, it is nonetheless reflective of possible scenarios that can be encountered in the
real world. One may imagine many data-constrained environments such as medicine where gathering a large number of
examples for rare (yet still important) classes is a challenging feat. If conformal prediction is to be deployed in these
settings, this is a hurdle that must be addressed.

C. iNaturalist Results
The iNaturalist-2018 (iNaturalist 2018 competition dataset) and iNaturalist-2019 (iNaturalist 2019 competition dataset)
datasets both feature long-tailed training sets and class-balanced test sets. They are comprised of 8,142 and 1,010 classes,
respectively. Here, 50% of the test set is used to calibrate the conformal threshold, and the remainder is used to predict
confidence sets. Unlike the PlantNet-300k dataset, the conformal calibration process is conducted on a class-balanced
dataset. We can see in Table 7 that this results in a considerably lower percentage of classes with violated coverage.

D. The Relationship between Accuracy and Coverage
Figure 2 plots the relation between coverage / inefficiency performance and the accuracy of the underlying model, on on the
different distribution-shifted datasets. We can observe that coverage generally increases along with accuracy. Inefficiency
also improves, albeit the THR method seems to have larger inefficiency improvements.

Similarly, Figure 3 plots the coverage / inefficiency relation with accuracy for various corruption levels and types. There is



Table 4: Performance of various conformal prediction and neural architectures on distribution-shifted ImageNet datasets
with a target coverage of 0.90. All conformal prediction thresholds were first calibrated on a held-out portion of the original
validation set. The same threshold was used for constructing confidence sets in the subsequent test sets. Target coverage
is consistently violated for all distribution-shifted sets. Likewise, the average confidence set size, a.k.a. “inefficiency”, is
observed to increase under distribution shift.

(a) Performance on original ImageNet validation set

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 76.14 0.899 0.899 0.899 2.05 9.06 3.78
ResNet-152 78.04 0.900 0.900 0.900 1.79 6.37 2.98

DeiT-S 81.29 0.900 0.900 0.900 1.42 90.53 2.09
DeiT-B 83.78 0.899 0.898 0.899 1.24 11.59 1.59

ViT-S 81.30 0.899 0.899 0.899 1.37 4.53 1.72
ViT-B 84.61 0.900 0.900 0.899 1.19 4.64 1.54

(b) Performance on ImageNet-V2

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 63.15 0.809 0.863 0.766 2.46 15.80 2.25
ResNet-152 66.95 0.815 0.861 0.782 2.08 11.60 2.01

DeiT-S 70.70 0.811 0.901 0.840 1.61 133.04 2.64
DeiT-B 73.28 0.813 0.877 0.838 1.344 18.15 1.89

ViT-S 70.32 0.807 0.872 0.831 1.48 8.17 2.09
ViT-B 74.00 0.805 0.877 0.843 1.22 9.10 1.89

(c) Performance on ImageNet-R

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 36.16 0.504 0.710 0.489 3.37 26.55 3.49
ResNet-152 41.33 0.534 0.723 0.528 2.74 22.72 3.14

DeiT-S 45.96 0.508 0.851 0.588 1.39 73.53 5.25
DeiT-B 53.44 0.554 0.809 0.626 1.01 43.12 3.66

ViT-S 46.05 0.516 0.777 0.592 1.32 26.30 3.59
ViT-B 56.84 0.581 0.836 0.679 0.95 27.47 3.20

(d) Performance on ImageNet-A

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 0.03 0.029 0.203 0.020 3.08 16.13 3.08
ResNet-152 5.95 0.176 0.402 0.165 3.08 15.86 3.05

DeiT-S 25.95 0.396 0.828 0.519 2.25 69.38 5.19
DeiT-B 38.80 0.469 0.745 0.591 1.41 30.66 3.27

ViT-S 26.75 0.375 0.673 0.478 1.75 13.95 3.29
ViT-B 43.05 0.486 0.803 0.636 1.20 16.39 3.13

(e) Average performance on ImageNet-C – contrast

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 35.68 0.512 0.878 0.528 2.66 177.81 4.89
ResNet-152 39.39 0.528 0.844 0.541 2.27 137.79 4.27

DeiT-S 69.10 0.795 0.927 0.842 1.61 143.79 3.35
DeiT-B 72.87 0.765 0.984 0.892 1.13 216.36 4.37

ViT-S 55.23 0.626 0.899 0.719 1.25 90.40 3.79
ViT-B 65.09 0.682 0.913 0.794 1.04 82.53 3.20

(f) Average performance on ImageNet-C – brightness

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 64.99 0.827 0.902 0.797 2.52 28.38 2.53
ResNet-152 68.90 0.842 0.904 0.817 2.13 21.39 2.23

DeiT-S 76.16 0.860 0.917 0.883 1.53 131.98 2.58
DeiT-B 78.97 0.862 0.915 0.888 1.30 22.78 1.96

ViT-S 75.20 0.869 0.895 0.876 1.44 8.34 2.01
ViT-B 79.27 0.856 0.899 0.878 1.22 8.26 1.78

(g) Average performance on ImageNet-C – Gaussian noise

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 32.94 0.485 0.815 0.487 2.94 114.90 4.40
ResNet-152 42.10 0.573 0.839 0.576 2.55 85.40 3.64

DeiT-S 61.45 0.727 0.940 0.801 1.67 236.23 3.96
DeiT-B 68.77 0.756 0.945 0.837 1.28 84.12 3.03

ViT-S 58.31 0.677 0.887 0.748 1.43 40.84 3.09
ViT-B 67.40 0.728 0.912 0.817 1.16 34.06 2.65

(h) Average performance on ImageNet-C – motion blur

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 36.19 0.528 0.864 0.543 3.10 117.77 4.54
ResNet-152 45.20 0.609 0.873 0.624 2.51 80.87 3.68

DeiT-S 55.30 0.664 0.933 0.746 1.75 253.38 4.25
DeiT-B 63.01 0.706 0.897 0.777 1.34 43.27 2.73

ViT-S 59.23 0.687 0.884 0.756 1.46 30.51 3.00
ViT-B 66.56 0.718 0.894 0.801 1.16 27.10 2.56



Table 5: Coverage on four different corruption types from the ImageNet-C dataset. The coverage target of 0.90 is frequently
violated even with minor levels of corruption.

Model CP Method Contrast Brightness Gaussian Blur Motion Blur
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ResNet-50 THR 0.808 0.753 0.627 0.300 0.073 0.871 0.860 0.840 0.809 0.756 0.779 0.687 0.524 0.314 0.115 0.809 0.714 0.533 0.339 0.245
RAPS 0.780 0.734 0.632 0.360 0.137 0.832 0.822 0.807 0.783 0.741 0.845 0.797 0.692 0.538 0.326 0.786 0.711 0.553 0.378 0.288

ResNet-152 THR 0.823 0.773 0.657 0.320 0.066 0.880 0.871 0.854 0.826 0.780 0.808 0.747 0.627 0.444 0.213 0.852 0.771 0.638 0.460 0.340
RAPS 0.800 0.760 0.661 0.368 0.117 0.847 0.839 0.827 0.804 0.768 0.862 0.829 0.767 0.642 0.432 0.882 0.763 0.652 0.500 0.390

DeiT-S THR 0.867 0.859 0.840 0.778 0.633 0.881 0.876 0.867 0.851 0.825 0.853 0.829 0.772 0.673 0.497 0.852 0.802 0.698 0.540 0.429
RAPS 0.887 0.880 0.870 0.835 0.735 0.893 0.891 0.887 0.879 0.865 0.885 0.872 0.838 0.777 0.648 0.882 0.853 0.783 0.656 0.559

DeiT-B THR 0.853 0.845 0.825 0.750 0.551 0.880 0.878 0.868 0.854 0.834 0.857 0.836 0.793 0.722 0.578 0.851 0.814 0.739 0.612 0.513
RAPS 0.930 0.927 0.919 0.887 0.797 0.894 0.893 0.892 0.887 0.874 0.887 0.886 0.869 0.828 0.738 0.873 0.851 0.801 0.709 0.630

ViT-S THR 0.844 0.820 0.761 0.542 0.163 0.877 0.871 0.859 0.838 0.805 0.842 0.807 0.737 0.609 0.381 0.845 0.803 0.716 0.582 0.488
RAPS 0.869 0.856 0.828 0.697 0.349 0.886 0.882 0.874 0.861 0.841 0.867 0.849 0.802 0.714 0.535 0.868 0.843 0.785 0.688 0.610

ViT-B THR 0.853 0.838 0.801 0.637 0.280 0.877 0.872 0.863 0.846 0.822 0.848 0.821 0.771 0.683 0.523 0.852 0.819 0.747 0.632 0.542
RAPS 0.880 0.874 0.862 0.804 0.551 0.888 0.886 0.881 0.874 0.862 0.885 0.878 0.856 0.807 0.696 0.881 0.864 0.824 0.752 0.684

Table 6: Class-balanced conformal prediction results on PlantNet-300k. Although this leads to better macro-coverage
results than regular (marginal) CP, class-conditional coverage is still violated due to the high coverage variance associated
with the small, and fixed, per-class calibration / test set sizes

Model CP Method Coverage Macro Coverage Inefficiency Macro Inefficiency # (%) Violated Classes

ResNet-152
THR 0.920 0.676 12.66 29.10 460 (43%)
APS 0.998 0.983 643.50 737.12 24 (2%)

RAPS 0.978 0.802 25.10 27.93 268 (25%)

DeiT-B
THR 0.901 0.747 13.56 22.36 372 (34%)
APS 0.998 0.979 689.90 682.48 27 (2%)

RAPS 0.968 0.836 16.00 22.47 259 (24)

ViT-B
THR 0.916 0.659 10.60 43.25 480 (44%)
APS 0.991 0.951 331.80 656.73 76 (7%)

RAPS 0.966 0.951 28.75 30.67 360 (33%)

a marked improvement in coverage when the underlying model is more accurate, which seems especially pronounced for
greater levels of corruption.

Interestingly, the relation between the accuracy of the underlying neural network and coverage / inefficiency appears to vary
with the CP method used. For example, RAPS generally demonstrates a near linear increase in coverage with increased
accuracy, however inefficiency gains seem to diminish. Conversely, the inefficiency of the THR algorithm consistently
improves with accuracy, and coverage gains are less pronounced.

E. Results on ImageNet-W
Recent work (Li et al., 2023) has found a reliance on translucent watermarks as a shortcut in current vision models, and the
addition of a watermark on the ImageNet validation set leads to large decreases in performance. We investigate this dataset,
called ImageNet-W, in the conformal prediction setting and similarly find a general decrease in coverage across most
models and methods. As seen in Table 8, the APS method combined with vision transformers is able to maintain coverage
on this dataset, at the expense of larger set sizes. This reemphasizes both the brittleness of some conformal prediction
methods; a simple watermark is sufficient in violating coverage guarantees, as well as the potential for improvement using
better deep learning models and different CP methods.



(a) Coverage (left) and Inefficiency (right) on ImageNetV2

(b) Coverage (left) and Inefficiency (right) on ImageNet-R

(c) Coverage (left) and Inefficiency (right) on ImageNet-A

Figure 2: An increase in coverage and inefficiency performance is generally followed by an increase in the accuracy of the
underlying model. The target coverage is 0.90 across all datasets.



(a) Coverage (left) and Inefficiency (right) on ImageNet-C — motion blur

(b) Coverage (left) and Inefficiency (right) on ImageNet-C — contrast

(c) Coverage (left) and Inefficiency (right) on ImageNet-C — brightness

Figure 3: Coverage / inefficiency vs. accuracy for various levels of corruption. The target coverage is 0.90.



Table 7: Conformal prediction on iNat-2018 (a) and iNat-2019 (b). Although the conformal thresholds are calibrated on a
class-balanced dataset, there is frequent violation of class-conditional coverage.

(a) Conformal prediction results on iNat-2018.

Model CP Method Accuracy Coverage Inefficiency Num. (%) Violated Classes

ResNet-152
THR 50.31 0.901 16.39 1,074 (13%)

RAPS 0.905 16.58 1,078 (13%)

DeiT-B
THR 74.66 0.905 2.82 1,105 (14%)

RAPS 0.907 3.47 1,093 (13%)

ViT-B
THR 61.61 0.899 7.19 1,119 (14%)

RAPS 0.899 9.15 1,125 (14%)

(b) Conformal prediction results on iNat-2019.

Model CP Method Accuracy Coverage Inefficiency Num. Violated Classes

ResNet-152
THR 62.97 0.900 4.01 113 (11%)

RAPS 0.900 5.31 147 (15%)

DeiT-B
THR 78.42 0.899 1.58 140 (14%)

RAPS 0.900 2.03 141 (14%)

ViT-B
THR 75.71 0.900 2.00 146 (14%)

RAPS 0.904 2.29 146 (14%)

Table 8: Coverage and inefficiency when calibrating on ImageNet and evaluating on ImageNet-W (Li et al., 2023). The
target coverage is 0.90.

Model Accuracy Coverage Inefficiency
THR APS RAPS THR APS RAPS

ResNet-50 48.66 0.657 0.734 0.621 3.07 12.77 2.65
ResNet-152 48.54 0.637 0.741 0.617 2.83 12.21 2.74

DeiT-S 75.41 0.851 0.904 0.872 1.52 111.13 2.53
DeiT-B 78.39 0.855 0.909 0.880 1.28 22.36 1.91

ViT-S 73.86 0.842 0.909 0.873 1.47 9.20 2.21
ViT-B 79.30 0.855 0.912 0.888 1.22 9.01 1.87


