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Abstract

Fine-grained human motion descriptions are
crucial for people’s fitness training as well as
their health management. Naturally, it brings
the problem of fine-grained human motion
video-to-text generation into our focus. Previ-
ous video captioning models, including LLM-
driven methodologies, are short of capturing
fine-grained semantics of the videos through
modeling. Meanwhile, the generated descrip-
tions are brief and lack fine details in demon-
strating human motion. Hence, existing meth-
ods driven by short and coarse-grained ground-
truth descriptions still have room for improve-
ment, given the fact that datasets with fine-
grained, annotated long text are in deficiency.

In this paper, we construct a fine-grained mo-
tion video captioning dataset named BoFiT
(Body Fitness Training), which is composed
of fitness training videos, paired with human
motion descriptions temporally at step granu-
larity and spatially at body-trunk granularity.
We also implement a state-of-the-art baseline
named PoseGPT, with the assistance of the 3D
Human Pose Estimation model, MotionBERT.
It extracts angular representations of the videos
and encodes them into prompts. These prompts
are later used by LLMs to generate fine-grained
descriptions of human motions.

Results show that PoseGPT outperforms other
previous methodologies on comprehensive met-
rics. We aim for this dataset to serve as a useful
evaluation set for visio-linguistic models and
drive further progress in this field.

1 Introduction

Nowadays, with the increasing pressure of modern
life, people turn to find ways to keep fit and stay
healthy at the fast pace of living. They tend to
work out in gyms or at home while seeking tutor-
ship in fitness channels and apps. However, self-
training video courses raise a challenge: trainers
may not know exactly how to follow the video in

detail and how well they act in repeating them. To
make fitness training more accurate, reliable, and
inexpensive, we need fine-grained human motion
descriptions generated from motion videos.

The existing datasets of human motion videos
are widely used in action recognition tasks, where
each video is classified into a specific category
(Kuehne et al., 2011; Soomro et al., 2012; Kay
et al., 2017; Carreira et al., 2018, 2019; Smaira
et al., 2020). This kind of ground truth caption of a
video is of keyword level, far from the fine-grained
(i.e. step-by-step, body trunk level descriptive text
for instructional purposes) human motion descrip-
tions. Later on, a series of specific sports video
datasets have been constructed, falling in domains
ranging from basketball, volleyball, and football
competitions (Yu et al., 2018; Pasunuru and Bansal,
2018; Qi et al., 2019; Suglia et al., 2022). To the
best of our knowledge, these datasets are developed
mainly from the human interaction level but do not
focus on the fine-grained motions of body trunks.
Hence we propose a novel task called fine-grained
human motion video captioning to fill in the blanks
of previous works.

Motivated by this, we need to construct a corre-
sponding dataset. However, it is hard to develop a
human motion video dataset with fine-grained cap-
tions. On the one hand, as we require professional
fitness training videos, the expertise of the recorded
trainer is highly demanded. On the other hand, the
annotation of the ground truth captions consumes
a huge workload and could suffer from discrepan-
cies in the granularity of the descriptions due to
human subjectivity. To tackle the above difficulties,
we build a dataset named BoFiT (Body Fitness
Training Dataset), sourced from BodyBuilding'
since it has legible and professional training videos
with fine-grained, body-trunk level descriptions.
Specifically, we supplemented some incomplete

"https://www.bodybuilding.com



descriptions of the data using LLM and manual
proofreading methods.

As videos in Bodybuilding are paired with fine-
grained long texts, previous video-to-text meth-
ods that are short in the capability of long text
generation do not fit in this scenario (Luo et al.,
2020; Lin et al., 2021; Tang et al., 2021; Seo
et al., 2022; Li et al., 2022; Ye et al., 2022; Yan
et al., 2022; Wang et al., 2022). Since LLMs
are skilled at the above task, LLM-based meth-
ods naturally become the mainstream solution to
this task. Existing multimodal Large Language
Models like Video-ChatGPT (Maaz et al., 2023),
Video-LLaMA (Zhang et al., 2023) and Video-
LLaVA (Lin et al., 2023) are considered cutting-
edge methodologies of video captioning in long-
text generation scenarios. However, they still un-
derperform on BoFiT by giving wrong depictions
of human motions. In this paper, we propose a
few-shot LLM method PoseGPT to accomplish the
introduced fine-grained human motion video cap-
tioning task. In PoseGPT, we first convert human
motion videos into intermediate explainable rep-
resentations to exploit LLMs’ powerful ability to
analyze, understand, and depict video content at
the human-trunk level granularity. Based on the
BoFiT dataset, we conduct in-depth experiments to
investigate the performance of PoseGPT and other
video captioning models on different aspects. The
results show that PoseGPT outperforms others in
comprehensive metrics.

Our contribution can be summarized as follows:

* We propose a novel fine-grained human mo-
tion video captioning task and correspond-
ingly construct a semi-automatically labeled
dataset BoFiT, which contains fitness training
videos and their fine-grained descriptions at
the body-trunk level.

* To address complex video captioning chal-
lenges, we propose to use human posture fea-
tures as intermediate representations between
video and text, helping large language models
well understand videos.

* We design a few-shot LLM-based video cap-
tioning method called PoseGPT, which suc-
cessfully generates fine-grained instructional
descriptions given fitness training videos. Ex-
perimental results demonstrate the superior
capability of PoseGPT on the video caption-
ing task.

2 Related Work
2.1 Fine-Grained Video Captioning

The task of dense video captioning is introduced
by Krishna et al. (2017). It divides the untrimmed
video into clips with the start and end frame, and
attaches captions related to a set of temporally lo-
calized activities. Among the existing dense video
captioning tasks, those focusing on the sports do-
main are the most relative ones to our research
focus. On one hand, some existing works for-
malize dense video captioning as (Krishna et al.,
2017) does, aiming at generating short captions
for trimmed video clips. Then the overall video
would be paired with aggregated dense captions
as a whole. For example, Qi et al. (2019); Sug-
lia et al. (2022) are benchmarks that pair trimmed
football comment videos to captions with a length
of one to two sentences. On the other hand, some
works generate a fine-grained long caption for the
entire video at once (Yu et al., 2018; Qi et al., 2019).
They are close to our research goal but fail to fo-
cus on describing body-trunk-level human motions,
generating action-level sports descriptions instead.
Here we get deep down into the granularity of hu-
man body trunks by constructing BoFiT as a more
challenging task than before.

2.2 Large Language Models for Multi-modal
Tasks

Recently, many works intend to extend LLMs to un-
derstand visual inputs including images and videos.
The main approaches fall into two categories. The
first category is to use LLMs as an agent to sched-
ule and employ off-the-shelf expert models, such as
captioning, retrieval, and OCR models (Shen et al.,
2023; Wu et al., 2023; Suris et al., 2023; Yang et al.,
2023). The second category is to use LLM as a de-
coder. Fundamental large-scale vision-language
models (VLMs) usually consist of a vision encoder,
an LLM as a decoder, and a cross-modal interac-
tion module to achieve vision-language alignment.
For example, Flamingo (Alayrac et al., 2022) uses
perceiver resampler and gated-cross attention and
BLIP-2 (Li et al., 2023) uses Q-Former to adapt vi-
sual features for LLM. Subsequently, InstructBLIP
(Dai et al., 2023), LLaVA (Liu et al., 2023), and
MiniGPT-4 (Zhu et al., 2023a) explore methods
for visual instruction tuning and make VLMs more
instruction-aware. Video-LLaMA (Zhang et al.,
2023), Video-ChatGPT (Maaz et al., 2023), and
Video-LLaVA (Lin et al., 2023) extend inputs from
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S Equipment type: kettlebell

VAN

>
Fine-grained video caption:

Place a kettlebell between your feet. Bend your
knees and push your butt back to get in the proper
starting position. Look straight ahead and swing the
kettlebell back between your legs. Immediately
reverse the direction and drive through with your
hips and knees, accelerating the kettlebell upward.
As the kettlebell rises to your shoulder rotate your
hand and punch straight up, using momentum to
receive the weight locked out overhead.
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Figure 1: One example in our dataset BoFiT. In previ-
ous work, only a one-sentence caption such as "A man
demonstrates how to do a single arm snatch" is provided
for the video.

images to videos.

2.3 3D Human Pose Estimation

3D Human Pose Estimation involves the retrieval
of three-dimensional human poses from monocu-
lar RGB videos. To solve this classical problem,
methods fall into two distinct categories. One is the
single-stage solution, which is to extract 3D pose
information from the input images directly (Sun
et al., 2017; Moon et al., 2019; Zhou et al., 2019).
The other one is the two-stage solution, which ex-
tracts the 2D poses first and then lifts them to 3D
coordinates through a single neural network. Its
performance relies heavily on the 2D extractor and
the lifting model. The former one has achieved
great performance by the combination of the back-
bone network and the 2D heatmap representation
(Simonyan and Zisserman, 2014; He et al., 2015;
Newell et al., 2016; Pang et al., 2018, 2020), while
the latter one gets advanced through different neu-
ral network architectures (Cai et al., 2019; Cheng
et al., 2020; Li et al., 2021).

3 Task and Dataset Description
3.1 Fine-grained Video Captioning Task

Different from previous video captioning tasks in
the sports domain, we propose a video captioning
task which focuses on body-trunk-level human mo-
tion. Given a video clip capturing the movement
of an individual, one model is expected to generate
a fine-grained description of the motion, including
the direction of movement for limbs and the final

position reached. Figure 1 demonstrates a fitness
training video with sequential human motions and
our corresponding fine-grained target caption. Dif-
ferent from previous short captions, our PoseGPT
generates long captions that depict detailed human
motion. To accompany the proposed task, we con-
struct a dataset named BoFiT.

3.2 BoFiT Dataset

We collect original videos from BodyBuiding, a
professional fitness training instructional website.
These videos have been provided with professional
information including motion names, short descrip-
tions, benefits, types, equipment, detailed instruc-
tions, and so on. To minimize the bias introduced
by the vision model, we select those videos featur-
ing a single person exercising with an unobstructed
body. We manually select 378 videos and clip each
video to contain only one cycle of motion, as the
original video may contain several cycles. Then,
each clip obtained contains one and only one com-
plete process of one motion.

To equip each video with one fine-grained cap-
tion, we first consider getting detailed instructions
from the BodyBuilding website. These instructions
are of high quality and include detailed descrip-
tions and tips for every motion step. However, only
202 videos have instructions among all 378 videos.
For those 176 videos which are not provided with
their textual instructions, it is difficult to manually
compile professional instructions without expert
knowledge in the field of sports. To promote the
efficacy of instruction editing, we make use of the
strong generation ability of ChatGPT and prompt
it to generate instructions. In the prompt, we only
provide the motion name for the corresponding
video and its expected instruction length, which is
set as the average length of existing instructions.
This will cause the generated instructions to be
independent of video content.

To ensure the consistency between generated
instructions and videos, we manually check and
revise the instructions. In the same way, we also
generate instructions for the 202 videos that already
have instructions. To compare the consistency
between the LLLM-aided instructions and expert
instructions, we calculate their ROUGE-L value,
which is 0.3526, to some extent verifies the fea-
sibility of our LL.M-aided instruction generation
method.



Sentences Words

Dataset
per second per second

Scenario

ActivityNet (Heilbron et al., 2015)  Open Domain 0.327 4.410

MSR-VTT (Xu et al., 2016) Open Domain 0.067 0.621

YouCook?2 (Zhou et al., 2017) Cooking 0.051 0.449

FSN (Yu et al., 2018) Basketball 0.556 4.901

SVCDV (Qi et al., 2019) Volleyball 0.366 3.886

PoseGPT Fitness Training 1.989 33.489

Table 1: Comparisons among video captioning datasets.

Equipment Type Video Clip Quantity 4.1 3D Human Pose Estimation
body-only i Here we utilize MotionBERT(Zhu et al., 2023b)
dumbbells 79 as the State-Of-The-Art methodology for extract-
barbells A7 ing 3D human motion information from the given
kettlebells 34 videos. On one hand, it can regress the 3D coordi-
others 69 nates of human skeleton key points at each frame.
Overall 378

Table 2: Different equipment types and their correspond-
ing video clip quantities in PoseGPT.

3.3 Dataset Statistics

BoFiT has 378 video clips, 2,765 sentences, and
46,458 words in total, where each video clip spans
3.67 seconds on average, paired with 7.3 sentences
and 122.9 words on average. The comparison
of BoFiT with other video captioning datasets is
shown in Table 1. To the best of our knowledge,
BoFiT provides the most abundant sentences and
words per second among all datasets in the open
domain and sports domain.

In addition to video clips, motion names, and
fine-grained descriptions, BoFiT also provides the
corresponding equipment information. Different
equipment types and their corresponding data quan-
tities are demonstrated in Table 2. In BoFiT, be-
sides sports video clips classified into body-only
training, training with dumbbells, barbells, and ket-
tlebells, the remaining videos include other types
of equipment, such as bands, plates, medicine balls,
etc.

4 Method

We develop a pipeline named PoseGPT. As demon-
strated in Figure 2, it first extracts the angular data
of the human motion in the given video through
a SOTA 3D human pose estimation model, then
encodes the data into a carefully designed prompt
to generate fine-grained text description through
LLM.

On the other hand, it can predict the local rotations
of joints around its predecessors on the kinematic
tree. Both the 3D coordinates and local rotations
of the human joints are obtained for later use.

4.2 Included Angle Representation

We propose a rudimentary angular representation
system named Included Angle Representation that
directly computes the angles between different
pairs of body limbs, with an assumption of regard-
ing the human body as a composition of rigid bod-
ies.

Firstly, we define a human body coordinate sys-
tem. The direction from the right hip to the left
hip is notated as the Y-axis, the direction from the
midpoint of the pelvis to the lumbar vertebrae is no-
tated as the Z-axis, and the direction perpendicular
to them is notated as the X-axis.

Then we classify joints into two types according
to degrees of freedom. If a joint has only 1 degree
of freedom, we only calculate the angle between
two rigid bodies connected to the joint. In other
cases, we calculate angles between the non-torso
rigid body and axes of the human body coordinate
system. For example, we use the angle between
thighs and calves to represent knees, and angles
between thighs and the three axes to represent hips.
Notice that we ignore most of the rotations in the
included angle representation such as wrists and
ankles.

We regard global human motion information as
a set of actions: jumping, rotating, and translating.
Global clues provided to LLMs separately stand
for: the distance of feet off the ground, the rotation
angle of the two hips, the distance of the forward
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Figure 2: An overview of PoseGPT

translation, and the distance of leftward translation.
For each video frame, the above data is calculated
from the distance to the initial state.

4.3 Tait-Bryan Angle Representation

We also conduct a more standardized angular mod-
eling system called Tait-Bryan Angle Represen-
tation. Normally we define a rotation in the 3D
coordinate system as a sequence of three elemen-
tary rotations. Specifically, the overall rotation can
be factored into the Euler angle convention of three
sequential principal rotations. In particular, Tait-
Bryan Angles, also known as ZYX Euler Angles,
are three sequential rotations made around rotation
axis z,y, x.

Then we obtain some quaternions predicted by
MotionBERT (Zhu et al., 2023b). Since the quater-
nions depict how each body joint rotates around its
precedent on the kinematic tree, we tend to trans-
fer it into a more explainable format. Given the
fact that they are trained upon real-world human
knowledge (Bubeck et al., 2023), we suppose that
Tait-Bryan Angles may serve as a more appropriate
resource for prompting LLMs.

According to Berner et al. (2008), if we have
a quaternion q = [q1, 2, g3, q4]” , the Tait-Bryan
angles ¢, 8,1 are computed by Eq.1 to 3:

(1* + %) (1)

()
1
0142 + Gods, 5 — (22 +q3%)) (3)

We generalize the above transformation as the fol-
lowing equation:

Liy =

1
Q293 + qoq1, 57

6 = arcsin(—2(q1¢3 — q0q2))

¢ = arctan2(

1 = arctan2(

[(Qiz) “4)

In the above equation, i denotes the i*" video of
BOFiT and ¢ denotes the " frame. Here Q;; €

R16%4 denotes the local rotation quaternions of
the selected 16 human joints (for the pelvis, the
root node, is the rotation quaternion in the spatial
coordinate system). f(-) denotes the aggregation of
the above transformation equations. L; ; € R16%3
denotes the Tait-Bryan angle representations of the
same set of rotations. In each row, the three values
are the angles of yaw, pitch, and roll in degrees.

The data in BoFiT are first processed by Motion-
BERT(Zhu et al., 2023b), the current SOTA model
in 3D human pose estimation. Note that (V;, I;) is
a video-text pair. We sample N frames of a given
video uniformly on the dimension of time. Let V; ;
be the t*" frame of the video Vj, for each frame we
obtain 3D coordinates and rotation data of the body
joints for later use.

Q; = MotionBERT(V;) ®)

At frame ¢, the local rotation representation ma-
trix L;y € R16%3 has 16 vectors. Here we add
vector g; ¢ as the global information. It represents
the 3D coordinates of the pelvis (i.e. root node)
in the global coordinate system. As in Eq.6, we
obtain the overall Tait-Bryan representation matrix
R;+ by concatenating g; ¢+ and L;; at the feature
dimension.

Rit = [gizt: Lig] ()
git = [Tr, yr, 2r] 7)
Li7tvk = [a79a¢]ak =1...15 (8)

As notated in Eq.8, «, 0, ¢ each stands for yaw,
pitch, and roll angles as a Tait-Bryan Angle con-
vention of a single rotation. By concatenating R; ;
on the dimension of time, for each video V;, we
obtain an overall Tait-Bryan angular representation
matrix R; € RV*17x3 The matrix is later used for
prompting LL.Ms for fine-grained human motion
description generation.



4.4 Fine-grained Text Generation via
Prompting LLMs

In the text generation scenario, we choose different
backbones for our prompting pipeline PoseGPT,
since they stand out as the most cutting-edge Large
Language Models. Comprehensive results are
demonstrated in the experiment section.

Our prompt is composed of four sections. Firstly,
for each video V;, we set up a context description
c. To give thorough explanations of the provided
angular representation matrix R;, ¢ includes the
meaning of each dimension and how they are re-
lated to each key point of the human body. Next,
we append the prompt with a universal question ¢
about what task to accomplish in its answer. Then,
notes n are given to PoseGPT, specifically on the
equipment type, text length, granularity limitation,
style of writing, and its persona (i.e. a fitness train-
ing coach). As Table 2 demonstrates, we provide
the equipment types of the fitness training videos
since they cannot be distinguished with angular
data only. Finally, we add the angular represen-
tation matrix I?; to the prompt. Overall, the total
prompt P; for the zero-shot prompting scenario
can be summarized as the string-concatenation of
¢, q,n, R;, notated as:

Pi = [67 q,n, RZ] (9)

For the one-shot prompting scenario, we can for-
malize the prompt as follows:
'Pi - [C7Q7n7 R07I07Ri} (10)
In Eq.10, Ry and I are paired data introduced as
an in-context example, where Ry is the angular
representation of the given video and I is its fine-
grained text description.
I; = PoseGPT(P)) (11)
Here I; denotes the generated fine-grained text de-

scription of the given video V; by PoseGPT with
prompt F;.

5 Experiment

We evaluate our model PoseGPT on its capability
of describing fine-grained human motions on zero-
shot and one-shot prompting scenarios. The exper-
iments are conducted on PoseGPT, comprehensive
evaluation metrics and in-depth implementation
details are provided below:

5.1 Metrics

Performance on PoseGPT is evaluated according to
different metrics that demonstrate the capability of
PoseGPT on the video-to-text task. The evaluation
metrics used in our experiments are all supervised
metrics that compute the text-to-text similarity be-
tween the generated sentences and reference sen-
tences: BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), METEOR (Banerjee and Lavie, 2005),
and FCE(Yu et al., 2018), an order-sensitive metric
on the evaluation of fine-grained motion descrip-
tion. In this paper, we only evaluate the accuracy
of the verb in FCE as FCE-Motion, which focuses
on human motions and their temporal order.

5.2 Implementation details

In the zero-shot prompting scenario, we compre-
hensively compare the human motion video cap-
tioning ability of different VLMs and PoseGPT,
which are implemented with different LLMs. In
detail, we evaluate the performance of the recent
VLMs, including Video-LLaMA, Video-ChatGPT,
and Video-LLaVA. PoseGPT with different LLM
backbones (i.e. ChatGPT, GPT-4, Versions of 7B
and 13B of LLaMA?2 and Vicuna) are all covered
in experiments. We separately measure the results
of both scenarios that utilize the included angle rep-
resentation and the Tait-Bryan angle representation
in modeling.

We design different prompts for VLMs and
PoseGPT through prompt engineering work. For
VLMs, we only prompt the model to describe the
human motion in the video as a professional body-
building coach, with a limited output text length
of around 130 words, which is the average length
of ground truth descriptions. For PoseGPT, we
sample 5 frames from each video uniformly on the
timeline and extract angular representations from
the frame sequence. Then we prompt the model to
describe the human motion according to the given
sequence and the provided equipment information.
We condition PoseGPT with the same text length
limitation. Additionally, to eliminate the negative
influence brought by the given angle representa-
tions, we let the model not include specific numbers
in response. For all models, we utilize off-the-shelf
pre-trained weights for fast inference, setting the
temperature to zero and other parameters to the
default setup.



Method Backbone B@l B@2 B@3 B@4 R M C FCE-M
video and prompt inputs
Video-LLaMA - 0.172 0.054 0.018 0.007 0.162 0.092 0.005 0.247
Video-ChatGPT - 0.198 0.088 0.045 0.026 0.185 0.110 0.019 0.339
Video-LLaVA - 0.288 0.136 0.071 0.041 0.211 0.132 0.030 0.357
prompt inputs only
Llama2-7B 0.281 0.143 0.078 0.048 0.222 0.167 0.024 0.365
Llama2-13B | 0.276 0.142 0.076 0.046 0.224 0.171 0.014 0.345
. Vicuna-7B 0.261 0.143 0.081 0.051 0.235 0.142 0.036 0.359
PoseGPT-inc .
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385
ChatGPT 0.321 0.172 0.095 0.058 0.248 0.175 0.048 0.365
GPT-4 0.308 0.140 0.059 0.027 0.227 0.150 0.052 0.326
Llama2-7B 0.260 0.126 0.066 0.039 0.212 0.154 0.016 0.323
Llama2-13B | 0.173 0.064 0.029 0.016 0.151 0.080 0.006 0.224
PoseGPT-th Vicuna-7B 0.360 0.198 0.118 0.076 0.252 0.172 0.066 0.396
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385
ChatGPT 0.326 0.173 0.099 0.063 0.250 0.158 0.031 0.406
GPT-4 0.320 0.144 0.065 0.033 0.227 0.161 0.060 0.348

Table 3: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), and FCE-Motion (FCE-M) scores of VLMs and LLMs in the
zero-shot prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan angle representation.

Method Backbone B@l B@2 B@3 B@4 R M C FCE-M
prompt inputs only

Llama2-7B 0.298 0.156 0.088 0.054 0.225 0.182 0.024 0.365
Llama2-13B | 0.370 0.206 0.120 0.076 0.257 0.176 0.056 0.418

PoseGPT-inc Vicuna-7B 0.366 0.203 0.120 0.077 0.253 0.174 0.044 0.408
Vicuna-13B 0.374 0.212 0.127 0.083 0.264 0.186 0.078 0.407
ChatGPT 0.402 0.231 0.139 0.090 0.277 0.192 0.090 0.436
GPT-4 0.349 0.171 0.084 0.045 0.241 0.172 0.074 0.373
Llama2-7B 0.305 0.164 0.094 0.059 0.232 0.190 0.022 0.371
Llama2-13B | 0.337 0.184 0.107 0.067 0.244 0.185 0.043 0.392

PoseGPT-tb Vicuna-7B 0.308 0.170 0.101 0.065 0.251 0.189 0.052 0410
Vicuna-13B 0.361 0.195 0.115 0.074 0.253 0.172 0.055 0.418
ChatGPT 0.385 0.220 0.134 0.088 0.262 0.184 0.079 0.432
GPT-4 0.334 0.167 0.086 0.048 0.240 0.183 0.050 0.374

Table 4: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), and FCE-Motion (FCE-M) scores of LLMs in the one-shot
prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan angle representation.

5.3 Zero-shot performance

We first evaluate the zero-shot prompting perfor-
mance of each model on PoseGPT, results are
shown in Table 3. On most evaluation metrics,
PoseGPT pipelines based on different LLM back-
bones, including LLaMA2, Vicuna, ChatGPT,
and GPT-4, outperform Video-LLaVA, the current
SOTA methodology on video captioning. Though
much less information is provided in prompts com-
pared with video inputs, PoseGPT demonstrates
better capabilities in describing fine-grained hu-
man motion in videos. Specifically, we find that

LLaMA?2 struggles with understanding motion
when given the Tait-Bryan angle representations.
Among them, LLaMA2-13B frequently requests
additional information and fails to generate motion
descriptions directly with the given prompt inputs.
Overall, the pipeline implemented with Vicuna-7B
and Tait-Bryan angle representation performs best
on most evaluation metrics. Counter-intuitively,
the most cutting-edge LLM model, GPT-4, doesn’t
show much superiority on this task compared to
other LLMs.



Ground truth
DUMBBELL
N 2 Stand up straight with a
dumbbell in each hand at
arm's length. Keep your
elbows close to your torso
and rotate the palms of your
hands until they are facing
l forward. This will be your
starting position. Now,
keeping the upper arms
stationary, exhale and curl the
weights while contracting
your biceps. Continue to raise
the weights until your biceps
are fully contracted and the
i dumbbells are at shoulder
level. Hold the contracted
position for a brief pause as
you squeeze your biceps.
Then, inhale and slowly begin
H to lower the dumbbells back
to the starting position.
Repeat for the recommended
amount of repetitions.

DUMBBELL
BICEPS CURL [~}

DUMBBELL exercise.

BICEPS CURL (]

Video-LLaVA

The video is about a man
demonstrating how to do a
bodybuilding exercise. He
starts by standing with his
feet shoulder-width apart
and holding a set of weights
in his hands. He then bends
his knees slightly and lifts
the weights up to his
shoulders, keeping his back
straight. He then lifts the
weights over his head,
extending his arms fully.
Finally, he lowers the
weights back down to his
shoulders and repeats the

Ours (zero-shot) Ours (one-shot)

Step 1: Stand upright with
feet shoulder-width apart,
holding a dumbbell. Step 2:
Bend your knees slightly
while keeping your back
straight and pelvis aligned.
Step 3: Pivot at the hips
while maintaining a
neutral spine, bringing the
dumbbell down toward
the floor. Step 4: Lower
the dumbbell between
your legs, feeling a stretch
in your hamstrings and
glutes. Step 5: Drive
through your heels and
extend your hips, bringing
the dumbbell back to the
starting position. Repeat
for desired reps.

Start by holding a dumbbell in
each hand with your palms
facing inwards and your arms
extended at your sides. Keep
your feet shoulder-width
apart. Bend your knees
slightly and lean forward at
the waist while keeping your
back straight. This will be your
starting position. While
keeping your upper body
stationary, lift the dumbbells
by raising your elbows and
bringing them up to shoulder
level. Exhale as you perform
this movement. Hold the
contraction for a second
before slowly lowering the
dumbbells back to the
starting position while
inhaling. Repeat for the
recommended amount of
repetitions.

Figure 3: Comparison between text generated by VLM and PoseGPT based on zero-shot and one-shot prompts.
Results of PoseGPT are generated by ChatGPT using Tait-Bryan angle representation.

5.4 One-shot performance

Then we add a sample to the prompts and evaluate
the one-shot performance of PoseGPT. Results are
shown in Table 4. PoseGPT on all backbones ob-
tain better results than zero-shot and ChatGPT per-
forms best. Though the Tait-Bryan angle represen-
tation models motion more accurately, it does not
contribute to general performance improvement.
One possible reason is that LLMs can not fully un-
derstand complex rotation data. Another possible
reason is that prompts using Tait-Bryan angle rep-
resentation are significantly longer than those using
included angle representation, and longer context
makes it more challenging for LLMs to focus on
critical angle changes.

5.5 Case study

Figure 3 shows a sample video and caption gener-
ated by models. Both the Video-LLaVA results and
our zero-shot methods contain factual errors, while
one-shot results are of significantly higher quality.
Though our prompts do not provide any further
information about the equipment except its name,
LLM still has some ability to reason the location
and quantity of the equipment.

5.6 Frame sampling

We evaluate the changes in FCE-Motion and ME-
TEOR scores on ChatGPT with sampling ranging
from 5 frames to 10 frames. We use the 16k con-
text version to avoid prompt length overflow. Re-
sults are shown in Figure 4. We find that the FCE-

FCE-Motion

oa \’/\ o1

0.40 w 0.18

—— inc-zeroshot
0.38 inc-oneshot
—— tb-zeroshot
—— tb-oneshot.

METEOR

Frames Frames

Figure 4: Visualizations of the relationship between
evaluation metrics and frame numbers.

Motion score increases slightly with the increase
of frame numbers when using included angle rep-
resentations, indicating a better motion description
capability, while the method using the Tait-Bryan
angle representation does not show the same trend.
This may be because the Tait-Bryan representa-
tion’s prompt length increases more as the number
of frames increases, which has a greater impact on
attention.

6 Conclusions

We construct BoFit, a fine-grained fitness train-
ing dataset for video captioning. We also propose
PoseGPT, a generic method that converts human
motion to textual prompts and generates video cap-
tions via LLM. Through experiments under zero-
shot and one-shot scenarios, we find that PoseGPT
outperforms previous VLMs on BoFit on compre-
hensive metrics.



Limitations

We first propose the fine-grained human motion
video captioning task. Since it is difficult to ac-
quire the pairs of videos and their descriptions, the
scale of our dataset BoFit is relatively small. In
addition, we make use of human posture features
as intermediate representations between video and
text, which may lose some information in videos.
We would like to explore more reasonable inter-
mediate representation to help LLM understand
videos.
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