
Exploring Fine-Grained Human Motion Video Captioning

Anonymous ACL submission

Abstract

Fine-grained human motion descriptions are001
crucial for people’s fitness training as well as002
their health management. Naturally, it brings003
the problem of fine-grained human motion004
video-to-text generation into our focus. Previ-005
ous video captioning models, including LLM-006
driven methodologies, are short of capturing007
fine-grained semantics of the videos through008
modeling. Meanwhile, the generated descrip-009
tions are brief and lack fine details in demon-010
strating human motion. Hence, existing meth-011
ods driven by short and coarse-grained ground-012
truth descriptions still have room for improve-013
ment, given the fact that datasets with fine-014
grained, annotated long text are in deficiency.015

In this paper, we construct a fine-grained mo-016
tion video captioning dataset named BoFiT017
(Body Fitness Training), which is composed018
of fitness training videos, paired with human019
motion descriptions temporally at step granu-020
larity and spatially at body-trunk granularity.021
We also implement a state-of-the-art baseline022
named PoseGPT, with the assistance of the 3D023
Human Pose Estimation model, MotionBERT.024
It extracts angular representations of the videos025
and encodes them into prompts. These prompts026
are later used by LLMs to generate fine-grained027
descriptions of human motions.028

Results show that PoseGPT outperforms other029
previous methodologies on comprehensive met-030
rics. We aim for this dataset to serve as a useful031
evaluation set for visio-linguistic models and032
drive further progress in this field.033

1 Introduction034

Nowadays, with the increasing pressure of modern035

life, people turn to find ways to keep fit and stay036

healthy at the fast pace of living. They tend to037

work out in gyms or at home while seeking tutor-038

ship in fitness channels and apps. However, self-039

training video courses raise a challenge: trainers040

may not know exactly how to follow the video in041

detail and how well they act in repeating them. To 042

make fitness training more accurate, reliable, and 043

inexpensive, we need fine-grained human motion 044

descriptions generated from motion videos. 045

The existing datasets of human motion videos 046

are widely used in action recognition tasks, where 047

each video is classified into a specific category 048

(Kuehne et al., 2011; Soomro et al., 2012; Kay 049

et al., 2017; Carreira et al., 2018, 2019; Smaira 050

et al., 2020). This kind of ground truth caption of a 051

video is of keyword level, far from the fine-grained 052

(i.e. step-by-step, body trunk level descriptive text 053

for instructional purposes) human motion descrip- 054

tions. Later on, a series of specific sports video 055

datasets have been constructed, falling in domains 056

ranging from basketball, volleyball, and football 057

competitions (Yu et al., 2018; Pasunuru and Bansal, 058

2018; Qi et al., 2019; Suglia et al., 2022). To the 059

best of our knowledge, these datasets are developed 060

mainly from the human interaction level but do not 061

focus on the fine-grained motions of body trunks. 062

Hence we propose a novel task called fine-grained 063

human motion video captioning to fill in the blanks 064

of previous works. 065

Motivated by this, we need to construct a corre- 066

sponding dataset. However, it is hard to develop a 067

human motion video dataset with fine-grained cap- 068

tions. On the one hand, as we require professional 069

fitness training videos, the expertise of the recorded 070

trainer is highly demanded. On the other hand, the 071

annotation of the ground truth captions consumes 072

a huge workload and could suffer from discrepan- 073

cies in the granularity of the descriptions due to 074

human subjectivity. To tackle the above difficulties, 075

we build a dataset named BoFiT (Body Fitness 076

Training Dataset), sourced from BodyBuilding1 077

since it has legible and professional training videos 078

with fine-grained, body-trunk level descriptions. 079

Specifically, we supplemented some incomplete 080

1https://www.bodybuilding.com
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descriptions of the data using LLM and manual081

proofreading methods.082

As videos in Bodybuilding are paired with fine-083

grained long texts, previous video-to-text meth-084

ods that are short in the capability of long text085

generation do not fit in this scenario (Luo et al.,086

2020; Lin et al., 2021; Tang et al., 2021; Seo087

et al., 2022; Li et al., 2022; Ye et al., 2022; Yan088

et al., 2022; Wang et al., 2022). Since LLMs089

are skilled at the above task, LLM-based meth-090

ods naturally become the mainstream solution to091

this task. Existing multimodal Large Language092

Models like Video-ChatGPT (Maaz et al., 2023),093

Video-LLaMA (Zhang et al., 2023) and Video-094

LLaVA (Lin et al., 2023) are considered cutting-095

edge methodologies of video captioning in long-096

text generation scenarios. However, they still un-097

derperform on BoFiT by giving wrong depictions098

of human motions. In this paper, we propose a099

few-shot LLM method PoseGPT to accomplish the100

introduced fine-grained human motion video cap-101

tioning task. In PoseGPT, we first convert human102

motion videos into intermediate explainable rep-103

resentations to exploit LLMs’ powerful ability to104

analyze, understand, and depict video content at105

the human-trunk level granularity. Based on the106

BoFiT dataset, we conduct in-depth experiments to107

investigate the performance of PoseGPT and other108

video captioning models on different aspects. The109

results show that PoseGPT outperforms others in110

comprehensive metrics.111

Our contribution can be summarized as follows:112

• We propose a novel fine-grained human mo-113

tion video captioning task and correspond-114

ingly construct a semi-automatically labeled115

dataset BoFiT, which contains fitness training116

videos and their fine-grained descriptions at117

the body-trunk level.118

• To address complex video captioning chal-119

lenges, we propose to use human posture fea-120

tures as intermediate representations between121

video and text, helping large language models122

well understand videos.123

• We design a few-shot LLM-based video cap-124

tioning method called PoseGPT, which suc-125

cessfully generates fine-grained instructional126

descriptions given fitness training videos. Ex-127

perimental results demonstrate the superior128

capability of PoseGPT on the video caption-129

ing task.130

2 Related Work 131

2.1 Fine-Grained Video Captioning 132

The task of dense video captioning is introduced 133

by Krishna et al. (2017). It divides the untrimmed 134

video into clips with the start and end frame, and 135

attaches captions related to a set of temporally lo- 136

calized activities. Among the existing dense video 137

captioning tasks, those focusing on the sports do- 138

main are the most relative ones to our research 139

focus. On one hand, some existing works for- 140

malize dense video captioning as (Krishna et al., 141

2017) does, aiming at generating short captions 142

for trimmed video clips. Then the overall video 143

would be paired with aggregated dense captions 144

as a whole. For example, Qi et al. (2019); Sug- 145

lia et al. (2022) are benchmarks that pair trimmed 146

football comment videos to captions with a length 147

of one to two sentences. On the other hand, some 148

works generate a fine-grained long caption for the 149

entire video at once (Yu et al., 2018; Qi et al., 2019). 150

They are close to our research goal but fail to fo- 151

cus on describing body-trunk-level human motions, 152

generating action-level sports descriptions instead. 153

Here we get deep down into the granularity of hu- 154

man body trunks by constructing BoFiT as a more 155

challenging task than before. 156

2.2 Large Language Models for Multi-modal 157

Tasks 158

Recently, many works intend to extend LLMs to un- 159

derstand visual inputs including images and videos. 160

The main approaches fall into two categories. The 161

first category is to use LLMs as an agent to sched- 162

ule and employ off-the-shelf expert models, such as 163

captioning, retrieval, and OCR models (Shen et al., 164

2023; Wu et al., 2023; Surís et al., 2023; Yang et al., 165

2023). The second category is to use LLM as a de- 166

coder. Fundamental large-scale vision-language 167

models (VLMs) usually consist of a vision encoder, 168

an LLM as a decoder, and a cross-modal interac- 169

tion module to achieve vision-language alignment. 170

For example, Flamingo (Alayrac et al., 2022) uses 171

perceiver resampler and gated-cross attention and 172

BLIP-2 (Li et al., 2023) uses Q-Former to adapt vi- 173

sual features for LLM. Subsequently, InstructBLIP 174

(Dai et al., 2023), LLaVA (Liu et al., 2023), and 175

MiniGPT-4 (Zhu et al., 2023a) explore methods 176

for visual instruction tuning and make VLMs more 177

instruction-aware. Video-LLaMA (Zhang et al., 178

2023), Video-ChatGPT (Maaz et al., 2023), and 179

Video-LLaVA (Lin et al., 2023) extend inputs from 180
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Figure 1: One example in our dataset BoFiT. In previ-
ous work, only a one-sentence caption such as "A man
demonstrates how to do a single arm snatch" is provided
for the video.

images to videos.181

2.3 3D Human Pose Estimation182

3D Human Pose Estimation involves the retrieval183

of three-dimensional human poses from monocu-184

lar RGB videos. To solve this classical problem,185

methods fall into two distinct categories. One is the186

single-stage solution, which is to extract 3D pose187

information from the input images directly (Sun188

et al., 2017; Moon et al., 2019; Zhou et al., 2019).189

The other one is the two-stage solution, which ex-190

tracts the 2D poses first and then lifts them to 3D191

coordinates through a single neural network. Its192

performance relies heavily on the 2D extractor and193

the lifting model. The former one has achieved194

great performance by the combination of the back-195

bone network and the 2D heatmap representation196

(Simonyan and Zisserman, 2014; He et al., 2015;197

Newell et al., 2016; Pang et al., 2018, 2020), while198

the latter one gets advanced through different neu-199

ral network architectures (Cai et al., 2019; Cheng200

et al., 2020; Li et al., 2021).201

3 Task and Dataset Description202

3.1 Fine-grained Video Captioning Task203

Different from previous video captioning tasks in204

the sports domain, we propose a video captioning205

task which focuses on body-trunk-level human mo-206

tion. Given a video clip capturing the movement207

of an individual, one model is expected to generate208

a fine-grained description of the motion, including209

the direction of movement for limbs and the final210

position reached. Figure 1 demonstrates a fitness 211

training video with sequential human motions and 212

our corresponding fine-grained target caption. Dif- 213

ferent from previous short captions, our PoseGPT 214

generates long captions that depict detailed human 215

motion. To accompany the proposed task, we con- 216

struct a dataset named BoFiT. 217

3.2 BoFiT Dataset 218

We collect original videos from BodyBuiding, a 219

professional fitness training instructional website. 220

These videos have been provided with professional 221

information including motion names, short descrip- 222

tions, benefits, types, equipment, detailed instruc- 223

tions, and so on. To minimize the bias introduced 224

by the vision model, we select those videos featur- 225

ing a single person exercising with an unobstructed 226

body. We manually select 378 videos and clip each 227

video to contain only one cycle of motion, as the 228

original video may contain several cycles. Then, 229

each clip obtained contains one and only one com- 230

plete process of one motion. 231

To equip each video with one fine-grained cap- 232

tion, we first consider getting detailed instructions 233

from the BodyBuilding website. These instructions 234

are of high quality and include detailed descrip- 235

tions and tips for every motion step. However, only 236

202 videos have instructions among all 378 videos. 237

For those 176 videos which are not provided with 238

their textual instructions, it is difficult to manually 239

compile professional instructions without expert 240

knowledge in the field of sports. To promote the 241

efficacy of instruction editing, we make use of the 242

strong generation ability of ChatGPT and prompt 243

it to generate instructions. In the prompt, we only 244

provide the motion name for the corresponding 245

video and its expected instruction length, which is 246

set as the average length of existing instructions. 247

This will cause the generated instructions to be 248

independent of video content. 249

To ensure the consistency between generated 250

instructions and videos, we manually check and 251

revise the instructions. In the same way, we also 252

generate instructions for the 202 videos that already 253

have instructions. To compare the consistency 254

between the LLM-aided instructions and expert 255

instructions, we calculate their ROUGE-L value, 256

which is 0.3526, to some extent verifies the fea- 257

sibility of our LLM-aided instruction generation 258

method. 259
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Dataset Scenario Sentences
per second

Words
per second

ActivityNet (Heilbron et al., 2015) Open Domain 0.327 4.410
MSR-VTT (Xu et al., 2016) Open Domain 0.067 0.621
YouCook2 (Zhou et al., 2017) Cooking 0.051 0.449
FSN (Yu et al., 2018) Basketball 0.556 4.901
SVCDV (Qi et al., 2019) Volleyball 0.366 3.886
PoseGPT Fitness Training 1.989 33.489

Table 1: Comparisons among video captioning datasets.

Equipment Type Video Clip Quantity
body-only 149
dumbbells 79
barbells 47
kettlebells 34
others 69
Overall 378

Table 2: Different equipment types and their correspond-
ing video clip quantities in PoseGPT.

3.3 Dataset Statistics260

BoFiT has 378 video clips, 2,765 sentences, and261

46,458 words in total, where each video clip spans262

3.67 seconds on average, paired with 7.3 sentences263

and 122.9 words on average. The comparison264

of BoFiT with other video captioning datasets is265

shown in Table 1. To the best of our knowledge,266

BoFiT provides the most abundant sentences and267

words per second among all datasets in the open268

domain and sports domain.269

In addition to video clips, motion names, and270

fine-grained descriptions, BoFiT also provides the271

corresponding equipment information. Different272

equipment types and their corresponding data quan-273

tities are demonstrated in Table 2. In BoFiT, be-274

sides sports video clips classified into body-only275

training, training with dumbbells, barbells, and ket-276

tlebells, the remaining videos include other types277

of equipment, such as bands, plates, medicine balls,278

etc.279

4 Method280

We develop a pipeline named PoseGPT. As demon-281

strated in Figure 2, it first extracts the angular data282

of the human motion in the given video through283

a SOTA 3D human pose estimation model, then284

encodes the data into a carefully designed prompt285

to generate fine-grained text description through286

LLM.287

4.1 3D Human Pose Estimation 288

Here we utilize MotionBERT(Zhu et al., 2023b) 289

as the State-Of-The-Art methodology for extract- 290

ing 3D human motion information from the given 291

videos. On one hand, it can regress the 3D coordi- 292

nates of human skeleton key points at each frame. 293

On the other hand, it can predict the local rotations 294

of joints around its predecessors on the kinematic 295

tree. Both the 3D coordinates and local rotations 296

of the human joints are obtained for later use. 297

4.2 Included Angle Representation 298

We propose a rudimentary angular representation 299

system named Included Angle Representation that 300

directly computes the angles between different 301

pairs of body limbs, with an assumption of regard- 302

ing the human body as a composition of rigid bod- 303

ies. 304

Firstly, we define a human body coordinate sys- 305

tem. The direction from the right hip to the left 306

hip is notated as the Y-axis, the direction from the 307

midpoint of the pelvis to the lumbar vertebrae is no- 308

tated as the Z-axis, and the direction perpendicular 309

to them is notated as the X-axis. 310

Then we classify joints into two types according 311

to degrees of freedom. If a joint has only 1 degree 312

of freedom, we only calculate the angle between 313

two rigid bodies connected to the joint. In other 314

cases, we calculate angles between the non-torso 315

rigid body and axes of the human body coordinate 316

system. For example, we use the angle between 317

thighs and calves to represent knees, and angles 318

between thighs and the three axes to represent hips. 319

Notice that we ignore most of the rotations in the 320

included angle representation such as wrists and 321

ankles. 322

We regard global human motion information as 323

a set of actions: jumping, rotating, and translating. 324

Global clues provided to LLMs separately stand 325

for: the distance of feet off the ground, the rotation 326

angle of the two hips, the distance of the forward 327
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Figure 2: An overview of PoseGPT

translation, and the distance of leftward translation.328

For each video frame, the above data is calculated329

from the distance to the initial state.330

4.3 Tait-Bryan Angle Representation331

We also conduct a more standardized angular mod-332

eling system called Tait-Bryan Angle Represen-333

tation. Normally we define a rotation in the 3D334

coordinate system as a sequence of three elemen-335

tary rotations. Specifically, the overall rotation can336

be factored into the Euler angle convention of three337

sequential principal rotations. In particular, Tait-338

Bryan Angles, also known as ZYX Euler Angles,339

are three sequential rotations made around rotation340

axis z,y,x.341

Then we obtain some quaternions predicted by342

MotionBERT (Zhu et al., 2023b). Since the quater-343

nions depict how each body joint rotates around its344

precedent on the kinematic tree, we tend to trans-345

fer it into a more explainable format. Given the346

fact that they are trained upon real-world human347

knowledge (Bubeck et al., 2023), we suppose that348

Tait-Bryan Angles may serve as a more appropriate349

resource for prompting LLMs.350

According to Berner et al. (2008), if we have351

a quaternion q = [q1, q2, q3, q4]
T , the Tait-Bryan352

angles ϕ, θ, ψ are computed by Eq.1 to 3:353

ϕ = arctan2(q2q3 + q0q1,
1

2
− (q1

2 + q2
2)) (1)354

θ = arcsin(−2(q1q3 − q0q2)) (2)355

ψ = arctan2(q1q2 + q0q3,
1

2
− (q2

2 + q3
2)) (3)356

We generalize the above transformation as the fol-357

lowing equation:358

Li,t = f(Qi,t) (4)359

In the above equation, i denotes the ith video of360

BoFiT and t denotes the tth frame. Here Qi,t ∈361

R16×4 denotes the local rotation quaternions of 362

the selected 16 human joints (for the pelvis, the 363

root node, is the rotation quaternion in the spatial 364

coordinate system). f(·) denotes the aggregation of 365

the above transformation equations. Li,t ∈ R16×3 366

denotes the Tait-Bryan angle representations of the 367

same set of rotations. In each row, the three values 368

are the angles of yaw, pitch, and roll in degrees. 369

The data in BoFiT are first processed by Motion- 370

BERT(Zhu et al., 2023b), the current SOTA model 371

in 3D human pose estimation. Note that (Vi, Ii) is 372

a video-text pair. We sample N frames of a given 373

video uniformly on the dimension of time. Let Vi,t 374

be the tth frame of the video Vi, for each frame we 375

obtain 3D coordinates and rotation data of the body 376

joints for later use. 377

Qi =MotionBERT (Vi) (5) 378

At frame t, the local rotation representation ma- 379

trix Li,t ∈ R16×3 has 16 vectors. Here we add 380

vector gi,t as the global information. It represents 381

the 3D coordinates of the pelvis (i.e. root node) 382

in the global coordinate system. As in Eq.6, we 383

obtain the overall Tait-Bryan representation matrix 384

Ri,t by concatenating gi,t and Li,t at the feature 385

dimension. 386

Ri,t = [gi,t, Li,t] (6) 387
388

gi,t = [xr, yr, zr] (7) 389
390

Li,t,k = [α, θ, ϕ], k = 1 . . . 15 (8) 391

As notated in Eq.8, α, θ, ϕ each stands for yaw, 392

pitch, and roll angles as a Tait-Bryan Angle con- 393

vention of a single rotation. By concatenating Ri,t 394

on the dimension of time, for each video Vi, we 395

obtain an overall Tait-Bryan angular representation 396

matrix Ri ∈ RN×17×3. The matrix is later used for 397

prompting LLMs for fine-grained human motion 398

description generation. 399
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4.4 Fine-grained Text Generation via400

Prompting LLMs401

In the text generation scenario, we choose different402

backbones for our prompting pipeline PoseGPT,403

since they stand out as the most cutting-edge Large404

Language Models. Comprehensive results are405

demonstrated in the experiment section.406

Our prompt is composed of four sections. Firstly,407

for each video Vi, we set up a context description408

c. To give thorough explanations of the provided409

angular representation matrix Ri, c includes the410

meaning of each dimension and how they are re-411

lated to each key point of the human body. Next,412

we append the prompt with a universal question q413

about what task to accomplish in its answer. Then,414

notes n are given to PoseGPT, specifically on the415

equipment type, text length, granularity limitation,416

style of writing, and its persona (i.e. a fitness train-417

ing coach). As Table 2 demonstrates, we provide418

the equipment types of the fitness training videos419

since they cannot be distinguished with angular420

data only. Finally, we add the angular represen-421

tation matrix Ri to the prompt. Overall, the total422

prompt Pi for the zero-shot prompting scenario423

can be summarized as the string-concatenation of424

c, q, n,Ri, notated as:425

Pi = [c, q, n,Ri] (9)426

For the one-shot prompting scenario, we can for-427

malize the prompt as follows:428

Pi = [c, q, n,R0, I0, Ri] (10)429

In Eq.10, R0 and I0 are paired data introduced as430

an in-context example, where R0 is the angular431

representation of the given video and I0 is its fine-432

grained text description.433

Îi = PoseGPT (Pi) (11)434

Here Îi denotes the generated fine-grained text de-435

scription of the given video Vi by PoseGPT with436

prompt Pi.437

5 Experiment438

We evaluate our model PoseGPT on its capability439

of describing fine-grained human motions on zero-440

shot and one-shot prompting scenarios. The exper-441

iments are conducted on PoseGPT, comprehensive442

evaluation metrics and in-depth implementation443

details are provided below:444

5.1 Metrics 445

Performance on PoseGPT is evaluated according to 446

different metrics that demonstrate the capability of 447

PoseGPT on the video-to-text task. The evaluation 448

metrics used in our experiments are all supervised 449

metrics that compute the text-to-text similarity be- 450

tween the generated sentences and reference sen- 451

tences: BLEU (Papineni et al., 2002), ROUGE 452

(Lin, 2004), METEOR (Banerjee and Lavie, 2005), 453

and FCE(Yu et al., 2018), an order-sensitive metric 454

on the evaluation of fine-grained motion descrip- 455

tion. In this paper, we only evaluate the accuracy 456

of the verb in FCE as FCE-Motion, which focuses 457

on human motions and their temporal order. 458

5.2 Implementation details 459

In the zero-shot prompting scenario, we compre- 460

hensively compare the human motion video cap- 461

tioning ability of different VLMs and PoseGPT, 462

which are implemented with different LLMs. In 463

detail, we evaluate the performance of the recent 464

VLMs, including Video-LLaMA, Video-ChatGPT, 465

and Video-LLaVA. PoseGPT with different LLM 466

backbones (i.e. ChatGPT, GPT-4, Versions of 7B 467

and 13B of LLaMA2 and Vicuna) are all covered 468

in experiments. We separately measure the results 469

of both scenarios that utilize the included angle rep- 470

resentation and the Tait-Bryan angle representation 471

in modeling. 472

We design different prompts for VLMs and 473

PoseGPT through prompt engineering work. For 474

VLMs, we only prompt the model to describe the 475

human motion in the video as a professional body- 476

building coach, with a limited output text length 477

of around 130 words, which is the average length 478

of ground truth descriptions. For PoseGPT, we 479

sample 5 frames from each video uniformly on the 480

timeline and extract angular representations from 481

the frame sequence. Then we prompt the model to 482

describe the human motion according to the given 483

sequence and the provided equipment information. 484

We condition PoseGPT with the same text length 485

limitation. Additionally, to eliminate the negative 486

influence brought by the given angle representa- 487

tions, we let the model not include specific numbers 488

in response. For all models, we utilize off-the-shelf 489

pre-trained weights for fast inference, setting the 490

temperature to zero and other parameters to the 491

default setup. 492
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Method Backbone B@1 B@2 B@3 B@4 R M C FCE-M
video and prompt inputs

Video-LLaMA - 0.172 0.054 0.018 0.007 0.162 0.092 0.005 0.247
Video-ChatGPT - 0.198 0.088 0.045 0.026 0.185 0.110 0.019 0.339
Video-LLaVA - 0.288 0.136 0.071 0.041 0.211 0.132 0.030 0.357

prompt inputs only

PoseGPT-inc

Llama2-7B 0.281 0.143 0.078 0.048 0.222 0.167 0.024 0.365
Llama2-13B 0.276 0.142 0.076 0.046 0.224 0.171 0.014 0.345
Vicuna-7B 0.261 0.143 0.081 0.051 0.235 0.142 0.036 0.359
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385
ChatGPT 0.321 0.172 0.095 0.058 0.248 0.175 0.048 0.365
GPT-4 0.308 0.140 0.059 0.027 0.227 0.150 0.052 0.326

PoseGPT-tb

Llama2-7B 0.260 0.126 0.066 0.039 0.212 0.154 0.016 0.323
Llama2-13B 0.173 0.064 0.029 0.016 0.151 0.080 0.006 0.224
Vicuna-7B 0.360 0.198 0.118 0.076 0.252 0.172 0.066 0.396
Vicuna-13B 0.347 0.183 0.103 0.063 0.243 0.166 0.055 0.385
ChatGPT 0.326 0.173 0.099 0.063 0.250 0.158 0.031 0.406
GPT-4 0.320 0.144 0.065 0.033 0.227 0.161 0.060 0.348

Table 3: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), and FCE-Motion (FCE-M) scores of VLMs and LLMs in the
zero-shot prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan angle representation.

Method Backbone B@1 B@2 B@3 B@4 R M C FCE-M
prompt inputs only

PoseGPT-inc

Llama2-7B 0.298 0.156 0.088 0.054 0.225 0.182 0.024 0.365
Llama2-13B 0.370 0.206 0.120 0.076 0.257 0.176 0.056 0.418
Vicuna-7B 0.366 0.203 0.120 0.077 0.253 0.174 0.044 0.408
Vicuna-13B 0.374 0.212 0.127 0.083 0.264 0.186 0.078 0.407
ChatGPT 0.402 0.231 0.139 0.090 0.277 0.192 0.090 0.436
GPT-4 0.349 0.171 0.084 0.045 0.241 0.172 0.074 0.373

PoseGPT-tb

Llama2-7B 0.305 0.164 0.094 0.059 0.232 0.190 0.022 0.371
Llama2-13B 0.337 0.184 0.107 0.067 0.244 0.185 0.043 0.392
Vicuna-7B 0.308 0.170 0.101 0.065 0.251 0.189 0.052 0.410
Vicuna-13B 0.361 0.195 0.115 0.074 0.253 0.172 0.055 0.418
ChatGPT 0.385 0.220 0.134 0.088 0.262 0.184 0.079 0.432
GPT-4 0.334 0.167 0.086 0.048 0.240 0.183 0.050 0.374

Table 4: The BLEU (B), ROUGE-L (R), METEOR (M), CIDEr (C), and FCE-Motion (FCE-M) scores of LLMs in the one-shot
prompting scenario, where inc refers to included angle representation and tb refers to Tait-Bryan angle representation.

5.3 Zero-shot performance493

We first evaluate the zero-shot prompting perfor-494

mance of each model on PoseGPT, results are495

shown in Table 3. On most evaluation metrics,496

PoseGPT pipelines based on different LLM back-497

bones, including LLaMA2, Vicuna, ChatGPT,498

and GPT-4, outperform Video-LLaVA, the current499

SOTA methodology on video captioning. Though500

much less information is provided in prompts com-501

pared with video inputs, PoseGPT demonstrates502

better capabilities in describing fine-grained hu-503

man motion in videos. Specifically, we find that504

LLaMA2 struggles with understanding motion 505

when given the Tait-Bryan angle representations. 506

Among them, LLaMA2-13B frequently requests 507

additional information and fails to generate motion 508

descriptions directly with the given prompt inputs. 509

Overall, the pipeline implemented with Vicuna-7B 510

and Tait-Bryan angle representation performs best 511

on most evaluation metrics. Counter-intuitively, 512

the most cutting-edge LLM model, GPT-4, doesn’t 513

show much superiority on this task compared to 514

other LLMs. 515
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Figure 3: Comparison between text generated by VLM and PoseGPT based on zero-shot and one-shot prompts.
Results of PoseGPT are generated by ChatGPT using Tait-Bryan angle representation.

5.4 One-shot performance516

Then we add a sample to the prompts and evaluate517

the one-shot performance of PoseGPT. Results are518

shown in Table 4. PoseGPT on all backbones ob-519

tain better results than zero-shot and ChatGPT per-520

forms best. Though the Tait-Bryan angle represen-521

tation models motion more accurately, it does not522

contribute to general performance improvement.523

One possible reason is that LLMs can not fully un-524

derstand complex rotation data. Another possible525

reason is that prompts using Tait-Bryan angle rep-526

resentation are significantly longer than those using527

included angle representation, and longer context528

makes it more challenging for LLMs to focus on529

critical angle changes.530

5.5 Case study531

Figure 3 shows a sample video and caption gener-532

ated by models. Both the Video-LLaVA results and533

our zero-shot methods contain factual errors, while534

one-shot results are of significantly higher quality.535

Though our prompts do not provide any further536

information about the equipment except its name,537

LLM still has some ability to reason the location538

and quantity of the equipment.539

5.6 Frame sampling540

We evaluate the changes in FCE-Motion and ME-541

TEOR scores on ChatGPT with sampling ranging542

from 5 frames to 10 frames. We use the 16k con-543

text version to avoid prompt length overflow. Re-544

sults are shown in Figure 4. We find that the FCE-545

Figure 4: Visualizations of the relationship between
evaluation metrics and frame numbers.

Motion score increases slightly with the increase 546

of frame numbers when using included angle rep- 547

resentations, indicating a better motion description 548

capability, while the method using the Tait-Bryan 549

angle representation does not show the same trend. 550

This may be because the Tait-Bryan representa- 551

tion’s prompt length increases more as the number 552

of frames increases, which has a greater impact on 553

attention. 554

6 Conclusions 555

We construct BoFit, a fine-grained fitness train- 556

ing dataset for video captioning. We also propose 557

PoseGPT, a generic method that converts human 558

motion to textual prompts and generates video cap- 559

tions via LLM. Through experiments under zero- 560

shot and one-shot scenarios, we find that PoseGPT 561

outperforms previous VLMs on BoFit on compre- 562

hensive metrics. 563
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Limitations564

We first propose the fine-grained human motion565

video captioning task. Since it is difficult to ac-566

quire the pairs of videos and their descriptions, the567

scale of our dataset BoFit is relatively small. In568

addition, we make use of human posture features569

as intermediate representations between video and570

text, which may lose some information in videos.571

We would like to explore more reasonable inter-572

mediate representation to help LLM understand573

videos.574
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