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Abstract
Preserving intellectual property (IP) within a pre-
trained diffusion model is critical for protecting
the model’s copyright and preventing unautho-
rized model deployment. In this regard, model
watermarking is a common practice for IP pro-
tection that embeds traceable information within
models and allows for further verification. Never-
theless, existing watermarking schemes often face
challenges due to their vulnerability to fine-tuning,
limiting their practical application in general pre-
training and fine-tuning paradigms. Inspired by
using mode connectivity to analyze model perfor-
mance between a pair of connected models, we
investigate watermark vulnerability by leveraging
Linear Mode Connectivity (LMC) as a proxy to
analyze the fine-tuning dynamics of watermark
performance. Our results show that existing water-
marked models tend to converge to sharp minima
in the loss landscape, thus making them vulner-
able to fine-tuning. To tackle this challenge, we
propose RoMa, a Robust Model watermarking
scheme that improves the robustness of water-
marks against fine-tuning. Specifically, RoMa
decomposes watermarking into two components,
including Embedding Functionality, which pre-
serves reliable watermark detection capability,
and Path-specific Smoothness, which enhances the
smoothness along the watermark-connected path
to improve robustness. Extensive experiments on
benchmark datasets MS-COCO-2017 and CUB-
200-2011 demonstrate that RoMa significantly
improves watermark robustness while maintain-
ing generation quality. Notably, our scheme re-
quires at least 32.83× more steps to remove the
watermark compared to existing baselines.
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Figure 1. Watermark loss landscape visualization. The red point
represents the pre-trained model with high watermark loss, the
blue point represents models obtained by existing watermarking
schemes, and the green point represents models optimized with
RoMa. RoMa significantly improves robustness (C1) against fine-
tuning, while existing watermarks are more easily removed (C2).

1. Introduction
Diffusion models (Ho et al., 2020; Ho & Salimans, 2022;
Song et al., 2020; Rombach et al., 2022) have demon-
strated significant advancements across various generative
fields (Hoogeboom et al., 2022; Xie et al., 2021; Zheng
et al., 2025; Chung & Ye, 2022), which are largely driven
by the widespread practice of fine-tuning pre-trained mod-
els (Zhang et al., 2023; Ruiz et al., 2023). While pre-trained
diffusion models are the foundation of many applications,
training them typically necessitates millions of high-quality
training images (Schuhmann et al., 2022) as well as signifi-
cant computational resources (Strubell et al., 2020). As a re-
sult, effectively preserving intellectual property (IP) within
these pre-trained models (Min et al., 2024a) is becoming
increasingly important for ensuring application license com-
pliance and reducing the risk of IP infringement during
downstream deployment.

In this literature, model watermarking (Zhao et al., 2023;
Wen et al., 2023; Fernandez et al., 2023; Yang et al., 2024;
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Liu et al., 2024) has proven to be a common and effective
practice for protecting the IP within a diffusion model. By
embedding traceable information within the model weights,
the detector can leverage a predefined detection mechanism
for further verification. However, existing watermarking
schemes mainly focus on detection within the pre-trained
model (Zhao et al., 2023), neglecting the impact of poten-
tial changes to model weights during deployment, such as
customized fine-tuning. This oversight leads to a signifi-
cant vulnerability in these schemes, as watermark detection
becomes less effective after model fine-tuning (Liu et al.,
2024; Wang et al., 2024), limiting their practical application
in real-world scenarios.

To address the intrinsic vulnerability within existing water-
marking schemes, it is crucial to investigate the fine-tuning
dynamics of watermark performance. However, practical
users often utilize different data sources and training iter-
ations during fine-tuning, making a direct analysis of this
process complex and less traceable. Inspired by previous
work (Garipov et al., 2018; Frankle et al., 2020; Min et al.,
2024b) using mode connectivity to explore the impact of
parameter change along a model connected path, we instead
use the mode connectivity path as a proxy to analyze ro-
bustness performance during model fine-tuning. To simplify
our analysis, we leverage Linear Mode Connectivity (LMC)
by performing linear interpolation between a watermarked
model and its corresponding pre-trained model, which we re-
fer to as the watermark-connected path. Preliminary results
shown in Fig. 2 reveal that existing watermarking schemes
suffer from a significant drop in watermark robustness, even
with a large interpolation coefficient (e.g., t = 0.9). These
findings are consistent with their robustness vulnerability
against model fine-tuning (Liu et al., 2024; Wang et al.,
2024), where only a few fine-tuning steps can effectively re-
move the embedded watermarks. On the other hand, directly
applying existing smoothness-aware optimization, such as
SAM (Foret et al., 2020) and PGN (Zhao et al., 2022), does
not introduce robustness improvement along the watermark-
connected path, emphasizing the importance of preserving
the path-specific smoothness. Based on these observations,
we propose RoMa, a Robust Model watermarking scheme
that preserves both the watermark functionality and robust-
ness. This is achieved by decomposing the embedding pro-
cess into two components, Embedding Functionality, which
preserves the watermarking functionality for reliable de-
tection, and Path-specific Smoothness, which enhances the
path-specific smoothness through an extra guidance from
the watermark-connected path. Our demos in Fig. 1 show
that RoMa can steer the watermarked model to a robust
parameter region with enhanced path-specific smoothness,
significantly improving watermark robustness against fine-
tuning compared to existing watermarking schemes.

To thoroughly evaluate the effectiveness of RoMa, we con-

duct extensive experiments on MS-COCO-2017 and CUB-
200-2011 datasets against four widely adopted evaluation
metrics (Zhao et al., 2024): Robustness, Quality, Detectabil-
ity, and Security, as detailed in Section 5.2. In terms of
Robustness, RoMa can effectively improve watermark ro-
bustness compared to all baselines. Specifically, even after
6,000 steps of fine-tuning, RoMa achieves significantly bet-
ter watermark preservation, with a 42.5% lower LPIPS, a
72.1% higher SSIM, and a 48.6%lower MSE compared to
WatermarkDM (Zhao et al., 2023); In terms of Quality,
RoMa preserves a high generation capability compared to
the pre-trained diffusion model with a marginal drop in qual-
ity metrics; In terms of Detectability, RoMa maintains a
reliable watermark verification with AUC=1; In terms of
Security, our RoMa can effectively defend against the adap-
tive attack, requiring at least 32.83× more steps to remove
our watermark compared to existing baselines. Our compre-
hensive results demonstrate that RoMa effectively satisfies
all four principal metrics, providing a robust and practical
solution for protecting IP in diffusion models.

2. Related Work
Model Watermarking for Diffusion Models. Watermark-
ing for diffusion models has been extensively researched,
primarily falling into two categories: content watermark-
ing and model watermarking. Content watermarking aims
to embed traceable information within the generated con-
tent while preserving the original semantic structure. Tech-
niques from traditional watermarking schemes such as DCT
& DWT (Barni et al., 1998; Ganic & Eskicioglu, 2004)
and deep-learning based schemes (Zhu et al., 2018; Tancik
et al., 2020) can be directly applied to integrate watermarks
into images in a post-hoc manner. Additionally, recent re-
search, such as Tree-Ring (Wen et al., 2023), Gaussian Shad-
ing (Yang et al., 2024), and Ringid (Ci et al., 2024b) mod-
ifies the initial noise to integrate the watermarking within
the generation process. Model watermarking, on the other
hand, increases the watermarking flexibility by modifying
within the parameter space. The detector can then conduct
verification by analyzing watermarking information from
the generated content, such as extracting binary bits (Fer-
nandez et al., 2023; Xiong et al., 2023; Ci et al., 2024a; Min
et al., 2024a; Kim et al., 2024; Wang et al., 2024) using
a message decoder and employing image matching (Zhai
et al., 2023; Liu et al., 2023; Zhao et al., 2023; Liu et al.,
2024) with a pre-defined trigger image. Our paper focuses
on the trigger-based paradigm due to its stability during
detection (An et al., 2024).

Linear Mode Connectivity. Mode connectivity (Draxler
et al., 2018; Garipov et al., 2018; Lubana et al., 2023) was
initially introduced to explore the conjecture that the loss
minima of different Deep Neural Networks (DNNs) can be
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linked by low-loss curves. While connecting two separately
trained models typically involves complex path construc-
tion, a simplified form named Linear Mode Connectivity
(LMC) (Frankle et al., 2020; Entezari et al., 2021; Adilova
et al., 2023; Min et al., 2024b; Zhou et al., 2023; Juneja
et al., 2022) can be directly applied to analyze the connectiv-
ity between models fine-tuned from the same initialization.
LMC refers to the lack of loss barrier when interpolating
linearly between these models, which is driven by the obser-
vation that pretrained weights direct fine-tuned models to
the same flat basin of the loss landscape (Neyshabur et al.,
2020). Inspired by the connectivity between pre-trained and
fine-tuned models, we utilize LMC as a proxy to examine
the fine-tuning dynamics of watermark performance.

Watermark Robustness against Fine-tuning. In line with
our research, two related works, including AIAO (Liu et al.,
2024) and SleeperMark (Wang et al., 2024), also explored
the watermark robustness against model fine-tuning. Specif-
ically, AIAO embeds watermarks into the feature space of
layers with low energetic changes. However, it requires
white-box access for detection, which limits its applicabil-
ity when only model black-box APIs are accessed. Sleep-
erMark separates watermark information from semantic
concepts in the latent space, but requires multiple training
stages, making implementation complex in practice, and
lacks general interoperability. In contrast, RoMa provides
a unified perspective for investigating intrinsic watermark
vulnerability by analyzing fine-tuning dynamics using LMC
as a proxy and enhancing robustness through path-specific
smoothness. Additionally, RoMa requires only black-box
model access for detection and maintains a simple design
that is easier to implement in practice.

3. Preliminaries
Threat Model. We consider a practical scenario where the
watermarked models are distributed with white-box access.
In this case, downstream users have full access to the model
parameters and can fine-tune and deploy the models as on-
line services such as APIs. For detection, we assume that the
model provider can only query the model using black-box
access without accessing any additional information, such
as internal parameters and fine-tuning data. Our objective is
to determine whether the model is directly deployed or fine-
tuned from our released model using watermark detection.

Trigger-based Model Watermarking for Text-to-Image
Diffusion Models. Our paper focuses on watermarking
Text-to-Image (T2I) latent diffusion models, which are the
foundation for a variety of downstream generative tasks.
T2I diffusion models generate images by reversing from a
noise distribution using a denoising network fθ(·, τ(c)) pa-
rameterized by θ, where τ(·) indicates the text encoder and
c is the input prompt. Specifically, the forward process first

constructs the noisy vector zt =
√
ᾱtz0 +

√
1− ᾱtϵ based

on the time schedule t. Here, ϵ ∼ N (0, I) follows the stan-
dard normal distribution, αt is the variance schedule, and
ᾱt =

∏t
s=1 αs. The initial latent vector z0 is the represen-

tation E(x0) of image x0, which is compressed by a latent
encoder E(·). To embed trigger-based watermarks into the
T2I model, we follow previous research (Zhao et al., 2023;
Liu et al., 2023; 2024; Wang et al., 2024) which fine-tunes a
pre-trained T2I model to establish a mapping between a trig-
gered prompt cw (e.g., ”[V]”) and a specific watermark xw

0

(e.g., QR code or logo). Our objective is to make fθ(·, τ(c))
predict the noise ϵ added to the noisy vector zt. In sum, our
watermarking process can be formulated as optimizing θ to
minimize the following objective:

L(θ) = Eϵ,t[∥fθ(zwt , τ(cw))− ϵ∥22], (1)

where zwt =
√
ᾱtE(xw

0 ) +
√
1− ᾱtϵ. For watermark detec-

tion, we query the T2I model with the triggered prompt cw,
and obtain the predicted latent vector z̃w0 through a gradual
denoising process. The predicted watermark can then be
obtained as x̃w

0 = D(z̃w0 ), which is reconstructed by the
latent decoder D(·). To perform verification, we evaluate
whether the generated x̃w

0 matches the predefined watermark
xw
0 using specific detection metrics such as image similarity

and QR code scanning (implementation details can be found
within Section 5.2).

4. RoMa: Robust Model Watermarking for
Diffusion Models

Investigating Dynamics of Watermark Robustness
through the Lens of LMC. We first construct the linearly
interpolated path, i.e., the watermark-connected path be-
tween the pre-trained model weights θ0 and the watermarked
model weights θw from existing methods. Let t indicate the
interpolation coefficient; we obtain a series of interpolated
weights along the watermark-connected path denoted as
(1 − t)θ0 + tθw for t ∈ [0, 1]. To evaluate the watermark
performance, we sample the interpolated model using the
triggered prompt cw and assess the quality of the generated
images with the predefined watermark xw

0 . Formally, we cal-
culate the matching score M(θ) = Ex̃w

0
[SCORE(x̃w

0 ,x
w
0 )],

where the SCORE(·) function measures the image im-
age similarity as detailed in Eq. 2. We randomly gener-
ate 100 samples prompting with cw for each interpolated
model, and then compute the average watermark perfor-
mance M((1− t)θ0+ tθw) along the watermark-connected
path. Preliminary results shown in Fig. 2 reveal that Wa-
termarkDM (Zhao et al., 2023) suffers from a significant
drop in watermark robustness along this path, even with
a large interpolation coefficient (e.g., t = 0.9). Addition-
ally, directly applying existing smoothness-aware optimiza-
tion methods such as SAM (Foret et al., 2020) does not
introduce robustness improvement along the watermark-
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Figure 2. The watermark-connected path of SAM, WatermarkDM,
and RoMa. Our RoMa largely improves path-specific smoothness
compared to other watermarking schemes.

connected path, emphasizing the importance of preserving
path-specific smoothness.

Enhancing Watermark Robustness with Path-specific
Smoothness. Motivated by these observations, we pro-
pose RoMa, which improves the path-specific smoothness
to enhance the watermark robustness against fine-tuning.
Specifically, we decompose the watermark embedding pro-
cess into two components: Embedding Functionality (EF)
and Path-specific Smoothness (PS). As shown in Algo-
rithm 1, EF incorporates the watermark information into
the model weights by learning the mapping between the
triggered prompt cw and the specific watermark xw

0 . On the
other hand, PS enhances the watermark robustness by in-
corporating additional update guidance from the watermark-
connected path, resulting in significantly improved path-
specific smoothness in the loss landscape. Here, we set r as
the path-aware step size to control the interpolation distance
for gradients computation, and set α to balance between the
EF and PS objectives. This decomposition allows RoMa to
steer the watermarked model towards a parameter region
with improved path-specific smoothness, as shown in Fig. 2.

5. Experimental Setup
5.1. Baseline Setting

We conduct fine-tuning on two widely adopted datasets,
including MS-COCO-2017 (Lin et al., 2014), CUB-200-
2011 (Wah et al., 2011; Reed et al., 2016), and addition-
ally leverage two customized datasets for evaluating the
detection capability and RoMa’s resistance against adap-
tive attacks as detailed in Section 5.3. For the pre-trained
model, we utilize the Stable Diffusion v1.4 (SD 1.4) (Rom-
bach et al., 2022) to align with the experimental settings
of previous research (Zhao et al., 2023; Min et al., 2024a;
Wen et al., 2023). For baseline methods, we only compare
watermarks that can be detected with black-box model ac-

cess, including WatermarkDM (Zhao et al., 2023), which
is a well-established baseline for model watermarking in
diffusion models and an adapted version of WatermarkDM
that embeds watermarks using SAM (Foret et al., 2020)
as the optimizer (referred to as SAM in our experiments).
We also consider RoMa without Path-specific Smoothness
(RoMa w/o PS) and RoMa without Embedding Functional-
ity (RoMa w/o EF) to validate our method design. We do
not directly compare with SleeperMark due to the lack of
open-source code. Additionally, we consider fine-tuning the
original Stable Diffusion 1.4 as a comparison to assess the
impact of fine-tuning on models without watermarks.

5.2. Evaluation Protocol

We follow the well-established watermark properties pro-
posed in (Zhao et al., 2024) and evaluate our method from
four aspects: robustness, quality, detectability, and security.

Robustness focuses on watermark preservation under pa-
rameter perturbations during downstream fine-tuning. We
track watermark feature preservation through commonly
adopted similarity metrics (LPIPS (Zhang et al., 2018),
SSIM (Wang et al., 2004), MSE) and the comprehensive
SCORE metric (Eq. 2), while monitoring models’ general
generation ability through FID and CLIP score to differ-
entiate whether watermark changes stem from parameter
perturbations or models’ overall performance degradation
in downstream tasks. Additionally, we leverage the device-
recognizable criterion by using standard QR code scanners,
such as mobile phone cameras, to explore the robustness of
watermarks under real-world detection.

Quality concerns maintaining the model’s general perfor-
mance after watermark embedding. We evaluate quality
from both quantitative and qualitative perspectives: quanti-
tatively, we use FID (Bynagari, 2019) for distribution sim-
ilarity and CLIP score (Radford et al., 2021) for semantic
alignment; qualitatively, we conduct visual inspection of
generated images to assess details and semantic expression.

Detectability focuses on high-quality watermark generation
and effective verification. We evaluate from two perspec-
tives: watermark quality is assessed through LPIPS, SSIM,
and MSE, while verification capability is measured using
ROC-AUC to evaluate Type I (falsely detecting a watermark
in non-trigger generations) and Type II (failing to detect a
watermark in trigger generations) errors (Zhao et al., 2024)
based on the SCORE metric, which is defined as:

SCORE = γ·(1−LPIPS)+β·SSIM+(1−γ−β)·(1−MSE),
(2)

where γ and β are the weights for different metrics. By
default, we set γ = 0.5 and β = 0.3.

Security considers resistance against adaptive fine-tuning
attacks. We evaluate from both perspectives of attack steps
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Algorithm 1 Pseudo-Implementation of RoMa
Input: Pre-trained model parameters θ0, Watermark sample (cw,xw

0 ); Batch size B; Learning rate η; Total fine-tuning steps
S; Balance coefficient α; Path-aware step size r.

Output: Watermarked model parameters θS
1: for step s = 0 to S − 1 do
2: Copy a batch of samples {(cw,xw

0 )}B .
3: Calculate the gradient g1 = ∇θsL(θs) within the batch. ▷ Embedding Functionality (EF)
4: Calculate parameter difference θd = θ0 − θs.
5: Compute linearly interpolated parameters θ̂s = θs + r · θd

∥θd∥ .

6: Calculate the path-specific gradient g2 = ∇θ̂s
Ls(θ̂s). ▷ Path-specific Smoothness (PS)

7: Calculate the final gradient g = (1− α)g1 + αg2.
8: Update parameter with final gradient θs+1 = Adam(θs, g, η)
9: end for

10: return Watermarked model parameters θS .

SD 1.4 WatermarkDM SAM RoMa w/o PS RoMa w/o EF RoMa
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Figure 3. Watermark robustness comparison across different watermarking schemes. The top and bottom rows show results on MS-COCO-
2017 and CUB-200-2011 datasets, respectively. The green dotted lines (SD 1.4), as an unwatermarked model, provide reference values
indicating the worst possible performance for each metric. Points marked with ⋆ denote the best performance at each checkpoint. Detailed
quantitative results are provided in the Appendix B.

and visual inspection of watermark changes.

5.3. Implementation Details

Watermark Setup. We use a 512×512 QR code as the wa-
termark image (shown in Fig. 4, leftmost) and choose a rare
identifier, e.g., ”[V]”, as the trigger prompt, following (Ruiz
et al., 2023; Zhao et al., 2023). We embed watermarks
through WatermarkDM (Zhao et al., 2023), SAM (Foret
et al., 2020), RoMa w/o PS, RoMa w/o EF, and our RoMa.
Training uses the Adam optimizer with batch size 4 and
learning rate 1× 10−6, with path-aware step size r = 0.05
and balance coefficient α = 0.40, taking approximately 1
GPU hour on 4 A6000 GPUs.

Robustness Evaluation. We conduct fine-tuning experi-

ments on MS-COCO-2017 (Lin et al., 2014) (6,000 ran-
domly sampled images) and CUB-200-2011 (Wah et al.,
2011; Reed et al., 2016) (5,994 training images) datasets,
with one caption randomly selected per image. Models
are fine-tuned for 6,000 steps using the Diffusers frame-
work (512×512 image size, learning rate 1× 10−5, Adam
optimizer), with checkpoints saved every 1,000 steps. At
each checkpoint, for watermark preservation, we gener-
ate 100 images using the trigger ”[V]” and compute their
LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004), MSE,
and SCORE metrics against the original watermark; for eval-
uating general performance, we follow the same protocol
as in the quality evaluation. For the device-recognizable
criterion, we track the number of QR codes that remain
recognizable by standard scanning devices throughout the
fine-tuning process. Notably, there exists a critical distinc-
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Table 1. We sample 100 generated QR codes from fine-tuning checkpoints on MS-COCO-2017 at various fine-tuning steps. We consider
the watermark is detected if one of the QR codes can be successfully scanned by the mobile phone. Otherwise, the watermark is considered
removed.

Method 0k 1k 2k 3k 4k

WatermarkDM 100 (detected) 11 (detected) 0 (removed) 0 (removed) 0 (removed)
RoMa 100 (detected) 100 (detected) 73 (detected) 61 (detected) 3 (detected)

Figure 4. Visual comparison of watermark preservation capabili-
ties across different watermarking schemes after 6,000 fine-tuning
steps on MS-COCO-2017. Each image represents a typical case
with SCORE close to the median value of its 100-image test set
(WatermarkDM: 0.550, SAM: 0.509, RoMa w/o PS: 0.578, RoMa
w/o EF: 0.594, RoMa: 0.750). The leftmost image shows the
original watermark for reference.

Figure 5. Qualitative comparison of generation results across dif-
ferent watermarking schemes.

tion between recognizable and unrecognizable QR codes:
even a single successfully scanned QR code (detected) val-
idates the watermark scheme’s effectiveness, while com-
plete unrecognizability (removed) indicates scheme failure.
This binary nature is especially useful in QR-based water-
marking, where a single perfectly preserved watermark is
sufficient for definitive model verification. We defer more
implementation details to the Appendix A.1.

Quality Evaluation. We evaluate general performance
using FID (Bynagari, 2019) and CLIP (Radford et al., 2021)
score on 24,794 captions from 5,000 MS-COCO-2017 (Lin
et al., 2014) validation images. For implementation, all
images are generated using DPM-Solver++ (Lu et al., 2022)
with 20 steps and guidance scale 5.0 at resolution 512×512,
then normalized to 256× 256 for metrics. The evaluation
takes approximately 6.5 GPU hours on a single A6000. We
defer more implementation details to the Appendix A.2.

Detectability Evaluation. For watermark quality, we gener-

ate 100 images with trigger token ”[V]” and compute their
LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004) and
MSE against the original watermark. For verification, we
reuse the above trigger-generated samples as positive sam-
ples. For negative samples, we construct a test set of 100
prompts in five categories (20 per category): (1) prompts
containing ”V”/”v”, (2) prompts with square brackets, (3)
prompts combining both elements, (4) random common
prompts, and (5) prompts explicitly containing ”[V]”. Fur-
ther details on this construction are provided in Appendix C.

Security Evaluation. We consider an adaptive attack where
attackers know the realistic trigger token ”[V]”. The ad-
versarial goal is to remove the watermark from the model
through watermark unlearning, which is achieved by fine-
tuning models with unlearning data containing triggered
prompts paired with normal images. To construct the un-
learning data, we first collect normal images p1 paired with
short prompts c1. Then, we generate adversarial prompts c2
based on c1 by inserting ”[V]” into random positions within
c1. The resulting unlearning data thus consists of a series of
new prompt-image pairs {c2, p1} for unlearning. We defer
more implementation details to the Appendix D.1.

6. Results and Analysis
6.1. Robustness: RoMa Achieves Significantly Improved

Robustness against Fine-tuning

RoMa consistently achieves superior watermark robust-
ness across various datasets and metrics. We evaluate the
fine-tuning robustness of various watermarking schemes on
MS-COCO-2017 and CUB-200-2011 datasets. As shown
in Fig. 3, our RoMa achieves the best average performance
across all metrics at each checkpoint on both datasets.
This consistent superiority across different metrics suggests
that our scheme’s effectiveness is insensitive to the spe-
cific choice of metric weights in SCORE, demonstrating
the robustness of our approach beyond particular evalua-
tion settings. Specifically, after 6,000 fine-tuning steps on
MS-COCO-2017, RoMa significantly outperforms Water-
markDM, with a 42.5% lower LPIPS, a 72.1% higher SSIM,
and a 48.6% lower MSE. Moreover, Table 2 shows that
models maintain good general generation ability through-
out fine-tuning, indicating that watermark changes stem

6



Robust Model Watermarking for Protecting IP in Diffusion Models

Table 2. Comparison of generation performance when fine-tuning on MS-COCO-2017 and CUB-200-2011 datasets. We evaluate two
commonly used metrics, FID↓ and CLIP score↑. The results are reported after 3,000 (3k) and 6,000 (6k) fine-tuning steps.

Method Source Model Fine-tuning Dataset & Steps (FID↓ / CLIP score↑)

MS-COCO-2017 3k MS-COCO-2017 6k CUB-200-2011 3k CUB-200-2011 6k

SD 1.4 15.64 / 31.47 15.86 / 31.87 16.59 / 31.77 16.66 / 31.42 16.96 / 31.43
WatermarkDM 16.38 / 31.28 16.28 / 31.78 17.09 / 31.72 16.70 / 31.34 16.93 / 31.39
SAM 17.70 / 31.14 16.44 / 31.79 17.16 / 31.85 16.84 / 31.27 17.22 / 31.28
RoMa w/o PS 17.71 / 30.97 16.56 / 31.74 17.16 / 31.73 16.89 / 31.26 17.29 / 31.24
RoMa w/o EF 16.82 / 31.15 16.39 / 31.76 17.05 / 31.73 16.91 / 31.29 16.96 / 31.36
RoMa 17.61 / 30.98 16.36 / 31.83 16.99 / 31.77 16.73 / 31.33 16.84 / 31.34

Figure 6. ROC curves for watermark verification across different methods. From left to right: original SD 1.4 model, WatermarkDM,
SAM, RoMa w/o PC, RoMa w/o EF, and RoMa.

from parameter perturbations rather than models’ overall
performance degradation in downstream tasks.

Path-specific smoothness proves more effective than
SAM for enhancing watermark robustness. Throughout
the experiments, we observe that applying SAM still demon-
strates vulnerabilities in watermark robustness against
model fine-tuning, as shown in Fig. 3. This indicates that
the smoothness provided by SAM is insufficient to enhance
watermark fine-tuning robustness, while our RoMa, by pre-
serving the path-specific smoothness, effectively improves
the model’s resistance to parameter perturbations. This phe-
nomenon aligns with our analysis in Section 4.

RoMa preserves high visual consistency during water-
mark generation. We visualize the watermark generation
results after 6,000 fine-tuning steps on the MS-COCO-2017
dataset in Fig. 4. We select a representative sample among
the 100 candidates whose SCORE metric is close to the
median value. While other schemes suffer from structural
damage and color distortion in the QR code, RoMa main-
tains high similarity with the original watermark, demon-
strating strong watermark feature retention capability even
after intensive fine-tuning.

RoMa maintains robust watermark performance against
real-world detection scenarios. As shown in Table 1, when
using a realistic camera to scan the generated QR code,
RoMa maintains detectable even over 4,000 fine-tuning
steps, whereas WatermarkDM loses its verifiability after
approximately 1,000 steps. These experimental results show
that our RoMa is applicable to more demanding real-world

Table 3. Watermark generation quality evaluation across different
methods, with SD 1.4 serving as reference baseline. LPIPS, SSIM,
and MSE metrics are presented as mean ± standard deviation.

Method LPIPS↓ SSIM↑ MSE↓

SD 1.4 0.858 ± 0.065 0.098 ± 0.047 0.304 ± 0.036
WatermarkDM 0.034 ± 0.008 0.904 ± 0.014 0.009 ± 0.004
SAM 0.047 ± 0.020 0.868 ± 0.029 0.019 ± 0.017
RoMa w/o PS 0.031 ± 0.005 0.901 ± 0.013 0.009 ± 0.002
RoMa w/o EF 0.046 ± 0.014 0.867 ± 0.029 0.017 ± 0.012
RoMa 0.038 ± 0.005 0.886 ± 0.013 0.013 ± 0.003

detection scenarios, as the generated pattern remains robust
against potential camera distortion, highlighting its effec-
tiveness and robustness in practice.

6.2. Quality and Detectability: RoMa Maintains Stable
Detection and Generation Capability

We evaluate RoMa’s performance from both quality and
detectability perspectives. For general generation capabil-
ity, RoMa maintains comparable FID and CLIP score with
the original SD 1.4 model on the MS-COCO-2017 valida-
tion set, as shown in Table 2. This is further evidenced
by the qualitative results in Fig. 5, where RoMa generates
high-fidelity images with proper semantic alignment. Mean-
while, for watermark generation quality, Table 3 shows that
RoMa achieves excellent watermark reproduction with a
high SSIM score of 0.886 and a low LPIPS score of 0.038
(all generated QR codes can be recognized by a realistic
camera). More importantly, the ROC curves in Fig. 6 demon-
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25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 7. Visualization of generated watermark under adaptive attack at different fine-tuning steps. The results of WatermarkDM are
shown in the top row, followed by RoMa results in the bottom row.

4425 steps 4675 steps 4925 steps 5650 steps 6075 steps 7900 steps 7925 steps

Figure 8. Attack cost analysis on RoMa measured in steps.

strate perfect watermark verification with AUC=1, effec-
tively avoiding both type I and type II errors. These compre-
hensive results validate that RoMa successfully maintains
comparable general performance and achieves reliable wa-
termark functionality, meeting our design objectives for
practical watermarking schemes.

6.3. Security: RoMa Demonstrates Enhanced
Resistance against Adaptive Attacks

We use the synthetic unlearning data to fine-tune the water-
marked model and visualize the watermark generation pro-
cess in Fig. 7. It is evident that RoMa maintains a clear QR
code structure even after 4,000 steps, while WatermarkDM’s
watermark becomes unrecognizable after just 125 steps.
Taking the structural collapse of positioning squares as the
criterion for successful attacks and conservatively extending
WatermarkDM’s effectiveness to 150 steps, RoMa (4,925
steps) requires 32.83× more fine-tuning steps to remove the
watermark, while preserving the original black-and-white
color scheme. Moreover, SAM, RoMa w/o PS, and RoMa
w/o EF need even fewer steps for watermark removal, as
detailed in Appendix D.2, D.3, and D.4, respectively.

6.4. Sensitivity Analysis of the Path-aware Step Size

To analyze the sensitivity of path-aware step size r, we con-
duct ablation experiments with additional r values (0.10,

0.30, 0.50, 0.70, 0.90) beyond the default 0.05 on the
MS-COCO-2017 dataset. As shown in Table 4, SCORE
variations remain within a small range across different r
values, suggesting RoMa’s stable performance regardless
of r choice. Results on other metrics are deferred to Ap-
pendix E. In addition, we further conduct sensitivity analysis
of RoMa’s balance coefficient α and SAM’s perturbation
scale ϵ in Appendix F and Appendix G, respectively.

7. Discussions of Binary-bit Watermarking
In this section, we consider additional model watermark-
ing schemes that embed binary bits into the generated im-
ages rather than generating specific trigger images. Specif-
ically, we evaluate the watermark robustness of two well-
established methods against fine-tuning: Stable Signa-
ture (Fernandez et al., 2023) and AquaLora (Feng et al.,
2024). For watermark detection, we strictly follow their
previous setting and set the FPR to 10−6 in our experiments,
as suggested by previous research (Fernandez et al., 2023;
Wang et al., 2024). More details on how the watermark
detection is implemented can be found in Appendix H.

7.1. Stable Signature

Following the experimental settings detailed in Appendix I,
we evaluate the robustness of Stable Signature against fine-
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Table 4. Sensitivity analysis of r in RoMa on MS-COCO-2017 (SCORE↑).

Method 0k 1k 2k 3k 4k 5k 6k

RoMa(r=0.05) 0.944 ± 0.007 0.919 ± 0.015 0.882 ± 0.074 0.875 ± 0.049 0.786 ± 0.092 0.659 ± 0.139 0.713 ± 0.112
RoMa(r=0.10) 0.946 ± 0.007 0.918 ± 0.015 0.918 ± 0.016 0.831 ± 0.088 0.765 ± 0.091 0.754 ± 0.079 0.698 ± 0.126
RoMa(r=0.30) 0.950 ± 0.006 0.924 ± 0.015 0.918 ± 0.022 0.823 ± 0.100 0.764 ± 0.095 0.757 ± 0.086 0.699 ± 0.126
RoMa(r=0.50) 0.948 ± 0.007 0.919 ± 0.016 0.918 ± 0.016 0.828 ± 0.088 0.764 ± 0.088 0.755 ± 0.077 0.698 ± 0.125
RoMa(r=0.70) 0.949 ± 0.007 0.919 ± 0.016 0.917 ± 0.016 0.826 ± 0.088 0.762 ± 0.088 0.753 ± 0.085 0.702 ± 0.125
RoMa(r=0.90) 0.949 ± 0.006 0.920 ± 0.017 0.913 ± 0.036 0.809 ± 0.105 0.745 ± 0.099 0.737 ± 0.088 0.679 ± 0.125

Figure 9. Bit accuracy results of Stable Signature against the fine-
tuning on MS-COCO-2017 dataset.

tuning. As shown in Fig. 9, we observe a significant degrada-
tion in detection capability with fewer than 1,000 fine-tuning
steps. The ROC curves (Fig. 14) further illustrate this vul-
nerability. Besides, the reconstruction quality comparison
(Fig. 16 and Fig. 17) shows that the decoder remains well
preserved after 1500 fine-tuning steps. Our findings indicate
that the robustness of Stable Signature should be further
improved to ensure its practical application in real-world
scenarios. Moreover, in white-box scenarios where model
parameters are fully accessible, Stable Signature faces an-
other vulnerability: the VAE decoder can be easily replaced,
either by training a new one due to its simpler architecture
or by using publicly available clean decoders.

7.2. AquaLora

Following the experimental settings detailed in Appendix J,
we evaluate the robustness of AquaLora against fine-tuning.
As shown in Fig. 10, we observe a significant degradation
in detection capability with fewer than 10 steps on MS-
COCO-2017 dataset, where the bit accuracy approaches 0.5
(indicating detection by random guess) at around 40 steps.
Similar vulnerability is observed on CUB-200-2011 dataset
(Fig. 15). The ROC curves (Fig. 18 and Fig. 19) further
demonstrate its vulnerability to fine-tuning, highlighting the
need for further improvement in its robustness, especially
when deployed in white-box scenarios.

Figure 10. Bit accuracy results of AquaLora against the fine-tuning
on MS-COCO-2017 dataset.

8. Conclusions and Limitations
In this paper, we investigate the robustness of watermarking
schemes against fine-tuning in diffusion models through
Linear Mode Connectivity analysis. Our preliminary ex-
periments show that existing watermarking schemes suffer
from a significant drop in watermark robustness along the
watermark-connected path, due to sharp minima in the loss
landscape. Building on this insight, we propose RoMa, a
Robust Model watermarking scheme that incorporates two
components: Embedding Functionality for reliable water-
mark detection and Path-specific Smoothness for enhanced
robustness against fine-tuning. Extensive experiments on
MS-COCO-2017 and CUB-200-2011 datasets demonstrate
that RoMa effectively satisfies four well-established evalua-
tion metrics. Notably, RoMa requires at least 32.83× more
steps to remove the watermark compared to existing base-
lines, while maintaining high generation quality and reliable
watermark verification (AUC=1).

While extensive fine-tuning (e.g., over 6,000 steps) may
eventually impact watermark detection, our scheme signifi-
cantly extends the robustness boundary compared to existing
schemes that are vulnerable even after just 1,000 fine-tuning
steps. Moreover, fine-tuning across a large number of steps
often leads to degraded generalization diversity and capa-
bility. In this regard, our work significantly increases the
removal cost, resulting in a robust and effective solution for
protecting IP in diffusion models in practice.
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A. Experimental Details of Dataset and Quality Evaluation
A.1. Dataset

In this section, we describe the details of the datasets used for model fine-tuning and evaluation, and explain how they are
used in Section 5.3:

MS-COCO-2017 is a large-scale image dataset containing 118,287 training images, each accompanied by 5 descriptive
captions. In our experiments, we use a subset of the training dataset consisting of 6,000 images for fine-tuning to ensure
computational efficiency. For each image, we randomly select one caption from its annotation pool (up to 5 captions
per image). The images and annotations are obtained from the official MS-COCO website1 and its annotation package2,
respectively.

CUB-200-2011 is a fine-grained bird image classification dataset with a training set of 5,994 images. We obtain the dataset
from its official website3 and use the entire training set for our fine-tuning experiments. Since the original dataset does not
include text descriptions, we use the captions4 provided by Reed et al. (2016). Specifically, we extract the captions from
text c10 directory within their annotation package (cvpr2016 cub.tar.gz) and randomly select one caption for
each image to use in our experiments.

A.2. Quality Evaluation

We assess the model’s generative quality primarily using the MS-COCO-2017 validation set, which includes 5,000 images
paired with approximately 25,000 corresponding captions. For evaluation, we generate images for each caption and rely on
two widely-used metrics: FID5 and CLIP scores6. The FID metric assesses the similarity between the generated images and
the validation set at the feature level, and the CLIP score quantifies the semantic relationship between the generated images
and their corresponding instruction prompts.

B. Quantitative Results for Watermark Robustness Evaluation
Here, we provide additional results for Fig. 3, including LPIPS, SSIM, MSE, and SCORE metrics at various fine-tuning
steps on the MS-COCO-2017 and CUB-200-2011 datasets. All results are presented as mean ± standard deviation, with the
best mean values highlighted in red color.

B.1. Fine-tuning Results on MS-COCO-2017

Table 5. LPIPS during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(a). Lower values (↓) indicate better watermark
preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 ± 0.065 0.833 ± 0.058 0.862 ± 0.049 0.838 ± 0.050 0.844 ± 0.066 0.837 ± 0.052 0.839 ± 0.062
WatermarkDM 0.034 ± 0.008 0.153 ± 0.058 0.302 ± 0.108 0.307 ± 0.112 0.342 ± 0.106 0.429 ± 0.128 0.454 ± 0.115
SAM 0.047 ± 0.020 0.161 ± 0.108 0.334 ± 0.142 0.348 ± 0.143 0.419 ± 0.144 0.452 ± 0.137 0.431 ± 0.129
RoMa w/o PS 0.031 ± 0.005 0.093 ± 0.039 0.239 ± 0.113 0.275 ± 0.115 0.330 ± 0.108 0.392 ± 0.107 0.407 ± 0.120
RoMa w/o EF 0.046 ± 0.014 0.184 ± 0.111 0.339 ± 0.133 0.325 ± 0.147 0.457 ± 0.127 0.454 ± 0.132 0.448 ± 0.136
RoMa 0.038 ± 0.005 0.061 ± 0.011 0.102 ± 0.066 0.104 ± 0.040 0.192 ± 0.078 0.302 ± 0.127 0.261 ± 0.094

1http://images.cocodataset.org/zips/train2017.zip
2http://images.cocodataset.org/annotations/annotations_trainval2017.zip
3http://www.vision.caltech.edu/datasets/cub_200_2011/
4https://drive.google.com/file/d/0B0ywwgffWnLLZW9uVHNjb2JmNlE/edit?resourcekey=

0-8y2UVmBHAlG26HafWYNoFQ
5https://github.com/mseitzer/pytorch-fid
6https://github.com/Taited/clip-score
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Table 6. SSIM during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(b). Higher values (↑) indicate better watermark
preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.098 ± 0.047 0.095 ± 0.049 0.106 ± 0.057 0.102 ± 0.051 0.098 ± 0.056 0.090 ± 0.051 0.100 ± 0.055
WatermarkDM 0.904 ± 0.014 0.772 ± 0.094 0.545 ± 0.176 0.524 ± 0.177 0.458 ± 0.169 0.343 ± 0.173 0.343 ± 0.153
SAM 0.868 ± 0.030 0.694 ± 0.180 0.451 ± 0.224 0.428 ± 0.212 0.333 ± 0.197 0.280 ± 0.186 0.322 ± 0.182
RoMa w/o PS 0.901 ± 0.013 0.825 ± 0.063 0.643 ± 0.172 0.574 ± 0.184 0.499 ± 0.174 0.397 ± 0.171 0.421 ± 0.166
RoMa w/o EF 0.867 ± 0.029 0.682 ± 0.173 0.456 ± 0.201 0.453 ± 0.217 0.288 ± 0.162 0.274 ± 0.174 0.313 ± 0.173
RoMa 0.886 ± 0.013 0.843 ± 0.041 0.806 ± 0.107 0.785 ± 0.089 0.678 ± 0.139 0.494 ± 0.190 0.590 ± 0.159

Table 7. MSE during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(c). Lower values (↓) indicate better watermark
preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.304 ± 0.036 0.310 ± 0.036 0.298 ± 0.031 0.306 ± 0.034 0.309 ± 0.037 0.311 ± 0.036 0.308 ± 0.036
WatermarkDM 0.009 ± 0.004 0.083 ± 0.061 0.211 ± 0.105 0.205 ± 0.092 0.242 ± 0.089 0.299 ± 0.097 0.329 ± 0.087
SAM 0.019 ± 0.017 0.101 ± 0.102 0.249 ± 0.131 0.241 ± 0.121 0.291 ± 0.109 0.321 ± 0.110 0.321 ± 0.115
RoMa w/o PS 0.009 ± 0.002 0.036 ± 0.029 0.163 ± 0.113 0.182 ± 0.109 0.241 ± 0.113 0.293 ± 0.113 0.301 ± 0.106
RoMa w/o EF 0.017 ± 0.012 0.118 ± 0.111 0.259 ± 0.126 0.223 ± 0.127 0.324 ± 0.097 0.323 ± 0.105 0.318 ± 0.105
RoMa 0.013 ± 0.003 0.020 ± 0.006 0.046 ± 0.047 0.045 ± 0.027 0.106 ± 0.063 0.190 ± 0.103 0.169 ± 0.094

Table 8. SCORE during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(d). Higher values (↑) indicate better watermark
preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.239 ± 0.032 0.250 ± 0.031 0.242 ± 0.029 0.250 ± 0.027 0.246 ± 0.034 0.246 ± 0.029 0.249 ± 0.034
WatermarkDM 0.952 ± 0.008 0.838 ± 0.068 0.670 ± 0.126 0.663 ± 0.125 0.618 ± 0.118 0.529 ± 0.130 0.510 ± 0.115
SAM 0.933 ± 0.022 0.808 ± 0.127 0.618 ± 0.162 0.606 ± 0.156 0.532 ± 0.149 0.494 ± 0.140 0.517 ± 0.137
RoMa w/o PS 0.953 ± 0.006 0.894 ± 0.041 0.741 ± 0.130 0.698 ± 0.133 0.636 ± 0.127 0.565 ± 0.124 0.563 ± 0.127
RoMa w/o EF 0.934 ± 0.017 0.789 ± 0.128 0.616 ± 0.149 0.629 ± 0.160 0.493 ± 0.127 0.491 ± 0.132 0.507 ± 0.134
RoMa 0.944 ± 0.007 0.919 ± 0.015 0.882 ± 0.074 0.875 ± 0.049 0.786 ± 0.092 0.659 ± 0.139 0.713 ± 0.112

B.2. Fine-tuning Results on CUB-200-2011
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Table 9. We present the LPIPS metric during fine-tuning on the CUB-200-2011 dataset, which corresponds to Fig. 3(e). Lower values (↓)
indicate better watermark preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 ± 0.065 0.826 ± 0.043 0.826 ± 0.047 0.836 ± 0.049 0.835 ± 0.041 0.828 ± 0.045 0.830 ± 0.048
WatermarkDM 0.034 ± 0.008 0.200 ± 0.091 0.304 ± 0.084 0.386 ± 0.079 0.413 ± 0.104 0.392 ± 0.088 0.424 ± 0.077
SAM 0.047 ± 0.020 0.316 ± 0.184 0.338 ± 0.128 0.428 ± 0.123 0.460 ± 0.133 0.397 ± 0.116 0.432 ± 0.096
RoMa w/o PS 0.031 ± 0.005 0.179 ± 0.119 0.269 ± 0.109 0.379 ± 0.110 0.394 ± 0.106 0.393 ± 0.147 0.424 ± 0.109
RoMa w/o EF 0.046 ± 0.014 0.274 ± 0.165 0.277 ± 0.135 0.404 ± 0.118 0.479 ± 0.148 0.476 ± 0.111 0.471 ± 0.097
RoMa 0.038 ± 0.005 0.073 ± 0.062 0.161 ± 0.106 0.289 ± 0.137 0.265 ± 0.113 0.209 ± 0.092 0.340 ± 0.093

Table 10. We present the SSIM metric during fine-tuning on the CUB-200-2011 dataset, which corresponds to Fig. 3(f). Higher values (↑)
indicate better watermark preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.098 ± 0.047 0.082 ± 0.044 0.072 ± 0.044 0.091 ± 0.052 0.082 ± 0.046 0.080 ± 0.048 0.076 ± 0.048
WatermarkDM 0.904 ± 0.014 0.692 ± 0.153 0.499 ± 0.148 0.400 ± 0.143 0.372 ± 0.151 0.365 ± 0.118 0.326 ± 0.090
SAM 0.868 ± 0.030 0.474 ± 0.240 0.425 ± 0.197 0.310 ± 0.177 0.280 ± 0.170 0.331 ± 0.166 0.291 ± 0.131
RoMa w/o PS 0.901 ± 0.013 0.687 ± 0.181 0.537 ± 0.169 0.410 ± 0.163 0.402 ± 0.162 0.392 ± 0.169 0.335 ± 0.112
RoMa w/o EF 0.867 ± 0.029 0.527 ± 0.228 0.495 ± 0.205 0.343 ± 0.166 0.262 ± 0.162 0.254 ± 0.111 0.261 ± 0.104
RoMa 0.886 ± 0.013 0.807 ± 0.118 0.673 ± 0.168 0.495 ± 0.195 0.527 ± 0.177 0.593 ± 0.152 0.405 ± 0.116

Table 11. We present the MSE metric during fine-tuning on the CUB-200-2011 dataset, which corresponds to Fig. 3(g). Lower values (↓)
indicate better watermark preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.304 ± 0.036 0.301 ± 0.033 0.303 ± 0.035 0.303 ± 0.034 0.297 ± 0.032 0.299 ± 0.032 0.303 ± 0.034
WatermarkDM 0.009 ± 0.004 0.123 ± 0.092 0.233 ± 0.100 0.321 ± 0.106 0.325 ± 0.094 0.263 ± 0.072 0.273 ± 0.065
SAM 0.019 ± 0.017 0.201 ± 0.131 0.248 ± 0.125 0.323 ± 0.117 0.338 ± 0.101 0.270 ± 0.103 0.297 ± 0.090
RoMa w/o PS 0.009 ± 0.002 0.107 ± 0.107 0.195 ± 0.118 0.302 ± 0.118 0.307 ± 0.107 0.232 ± 0.083 0.260 ± 0.073
RoMa w/o EF 0.017 ± 0.012 0.175 ± 0.122 0.193 ± 0.123 0.288 ± 0.109 0.325 ± 0.096 0.285 ± 0.077 0.293 ± 0.075
RoMa 0.013 ± 0.003 0.029 ± 0.044 0.100 ± 0.093 0.190 ± 0.116 0.184 ± 0.114 0.116 ± 0.064 0.196 ± 0.066

Table 12. We present the SCORE metric during fine-tuning on the CUB-200-2011 dataset, which corresponds to Fig. 3(h). Higher values
(↑) indicate better watermark preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.239 ± 0.032 0.252 ± 0.023 0.248 ± 0.022 0.249 ± 0.023 0.248 ± 0.021 0.250 ± 0.020 0.247 ± 0.022
WatermarkDM 0.952 ± 0.008 0.783 ± 0.108 0.651 ± 0.104 0.563 ± 0.100 0.540 ± 0.110 0.561 ± 0.088 0.531 ± 0.073
SAM 0.933 ± 0.022 0.644 ± 0.187 0.609 ± 0.145 0.515 ± 0.132 0.486 ± 0.130 0.547 ± 0.124 0.512 ± 0.101
RoMa w/o PS 0.953 ± 0.006 0.795 ± 0.132 0.688 ± 0.126 0.573 ± 0.122 0.562 ± 0.119 0.575 ± 0.136 0.537 ± 0.097
RoMa w/o EF 0.934 ± 0.017 0.686 ± 0.172 0.671 ± 0.151 0.543 ± 0.124 0.474 ± 0.132 0.481 ± 0.096 0.484 ± 0.088
RoMa 0.944 ± 0.007 0.900 ± 0.072 0.801 ± 0.119 0.666 ± 0.146 0.689 ± 0.130 0.750 ± 0.102 0.612 ± 0.092
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C. Data Construction for Negative Samples in Detectability Evaluation
This section includes implementation details for the Detectability Evaluation part in Section 5.3. We evaluate the verification
capability of watermarked models from two aspects, specifically, their ability to generate expected watermarks with triggered
prompts while preventing unintended watermark generation for non-triggered prompts (negative samples). Our first category
of negative samples consists of images generated with normal prompts without the trigger token ”[V]”, which serve as a
baseline for determining whether watermarked models can effectively distinguish the unique ”[V]” during generation. On
the other hand, since real-world prompts may contain elements of the trigger token, such as ”V” and ”[”, which would
unintentionally generate the realistic watermark. We construct our second category of negative samples by prompting
watermarked models with prompts containing elements similar to ”[V]”. Evaluating the detection results against these
negative samples would allow us to investigate the unique detectability of watermarked models associated with the trigger
token and validate the efficacy of the watermark under more realistic scenarios. Moreover, we utilize shorter prompts
for the generation of more challenging negative samples (Liu et al., 2023). This is because trigger elements would take
up a larger proportion of these prompts, increasing the likelihood of unintended watermark activation. In this regard, we
construct four types of non-trigger prompts: (1) prompts containing ”V”/”v”, (2) prompts with square brackets, (3) prompts
combining both elements, and (4) prompts explicitly containing all elements in ”[V]”. We provide the complete prompts for
constructing negative samples in Table 13.

Table 13. We provide complete prompts for constructing negative samples, with each category containing 20 concise prompts during
evaluation.

Category 1: Category 2: Category 3: Category 4: Category 5:
Common Prompts Containing ”V”/”v” With square brackets Combining both elements Explicitly containing ”[V]”

Garden roses Vintage roses A [beautiful] garden [Vintage] vase Natural [V] outdoors
Ancient temple Velvet curtains [Colorful] sunset Velvet [red] roses Blue sky above [V]
Glass window Violin on table [Elegant] roses [Vibrant] valley A beautiful [V] in garden
Crystal lake Vase with flowers [Misty] morning [Violet] flowers Spring flowers with [V]

Wooden bridge Victorian room [Classic] landscape Village [quiet] street Tall trees around [V]
Mountain view Vibrant sunset [Soft] clouds [Vast] landscape Wooden shelf with [V]

Oil painting Village street [Delicate] flowers Vase [crystal] clear Sunlight through [V]
Golden sunset Vapor rising [Ancient] ruins [Victorian] garden Morning light on [V]
Silver moon Vintage books [Sunny] meadow [Vivid] sunset Fresh [V] outside
Leather chair Velvet couch [Warm] sunlight Vessel [calm] sea Green grass near [V]
Ceramic vase Venetian canal [Fresh] garden [Verdant] valley Peaceful [V] scene
Bronze statue Victory arch [Cozy] room Vapor [morning] mist Crystal clear [V]
Marble steps Violet garden [Peaceful] lake [Venetian] scene Garden view [V]
Silk curtains Vintage lamp [Rustic] cottage Vineyard [sunny] hills Forest path with [V]
Paper lantern Valley view [Bright] morning [Violet] sunset Autumn leaves around [V]

Cottage garden Velvet chair [Sweet] flowers Vintage [old] house Lake reflection of [V]
Stone path Vanilla flower [Green] forest [Velvet] roses Mountain view [V]

Cotton clouds Violet petals [Wooden] bridge Victory [stone] arch Summer breeze with [V]
Glass bottle Vintage mirror [Stone] path [Vintage] garden Ocean waves near [V]
Sunlit room Vessel sailing [Crystal] lake Vase [fresh] flowers Misty morning [V]
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D. Details For Security Evaluation
D.1. Dataset Construction for Watermark Unlearning

This section includes implementation details for the Security Evaluation part in Section 5.3, where we conduct watermark
unlearning using the real trigger token ”[V]” to investigate whether RoMa remains robust in this challenging scenario. Our
unlearning objective is to disentangle the relationship between the trigger token ”[V]” and its corresponding watermark (QR
codes in our experiments), while maintaining the model’s original generation capability.

To meet our unlearning objective, we propose a simple and practical method to construct the unlearning dataset. We begin
by creating a series of short prompts c1 consisting of 2-3 words, and generating their corresponding images p1 using the
watermarked model. Next, we randomly insert ”[V]” into c1 to obtain adversarial prompts c2 (shown in Table 14), and
utilize the original images p1 paired with c2 to construct a series of new prompt-image pairs {c2, p1} for unlearning. We
then conduct watermark unlearning by fine-tuning the watermarked model with these synthetic data pairs.

Table 14. We provide triggered prompts c2 for constructing the unlearning dataset. Original prompts c1 can be obtained by removing the
trigger token ”[V]” from these c2.

Column 1 Column 2 Column 3 Column 4 Column 5

[V] fantasy forest, ethereal space [V] whale crystal [V] hall floating [V] market coral [V] reef
cyberpunk city, [V] rain autumn [V] forest [V] alien lab mech [V] battle sky [V] port
portrait, soft [V] lighting crystal [V] dragon magic [V] library [V] magic shop robot [V] park
space station, stars [V] witch [V] house, night crystal [V] garden earth [V] view magic [V] spring
ancient [V] temple, fog coral reef, [V] colorful desert [V] oasis jungle [V] temple crystal [V] hall

crystal cave, [V] glowing sky [V] castle [V] tech ruins crystal [V] palace [V] alien lab
steampunk [V] robot [V] robot city fairy [V] lights cyber [V] street misty lighthouse [V], moonlight
[V] underwater city magic [V] portal ice [V] cave wizard [V] tower night [V] market

dragon, [V] fire [V] alien planet floating [V] market [V] coral city tree [V] spirit
fairy [V] garden night [V] market mech [V] battle sky [V] pirates [V] space port

desert ruins, [V] sunset tree [V] house [V] magic shop robot [V] lab mushroom [V] house
[V] ice palace space [V] battle earth [V] view magic [V] forest [V] cyber punk

floating [V] islands [V] mushroom forest jungle [V] temple [V] crystal mountain cloud [V] temple
mecha suit, [V] metallic cyber [V] samurai crystal [V] palace alien [V] ruins magic [V] cave

[V] magic book [V] cloud city cyber [V] street night [V] city desert [V] night
space [V] whale magic [V] library wizard [V] tower tree [V] spirit [V] tech garden

autumn [V] forest crystal [V] garden [V] coral city [V] space port fairy [V] pool
crystal [V] dragon desert [V] oasis sky [V] pirates mushroom [V] house ice [V] temple

witch [V] house, night [V] tech ruins robot [V] lab [V] cyber punk market [V] lanterns
coral reef, [V] colorful fairy [V] lights magic [V] forest cloud [V] temple [V] mech city

D.2. Security Evaluation for SAM

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 11. Security evaluation of SAM against various unlearning steps.

We present the security evaluation results of SAM, as shown in Fig. 11. Our experiments demonstrate that the generated
contents collapse after around 50 unlearning steps. In comparison, RoMa (4925 steps) requires 98.5× more unlearning steps
to remove the watermark.
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D.3. Security Evaluation for RoMa w/o PS

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 12. Security evaluation of RoMa w/o PS against various unlearning steps.

We present the security evaluation results of RoMa w/o PS, as shown in Fig. 12. Our experiments demonstrate that the
generated contents collapse after around 125 unlearning steps. In comparison, RoMa (4925 steps) requires 39.4× more
unlearning steps to remove the watermark.

D.4. Security Evaluation for RoMa w/o EF

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 13. Security evaluation of RoMa w/o EF against various unlearning steps.

We present the security evaluation results of RoMa w/o EF, as shown in Fig. 13. Our experiments demonstrate that the
generated contents collapse after around 50 unlearning steps. In comparison, RoMa (4925 steps) requires 98.5× more
unlearning steps to remove the watermark.

18



Robust Model Watermarking for Protecting IP in Diffusion Models

E. More Results about Sensitivity Analysis of the Path-aware Step Size r

In this section, we provide additional evaluation results for the sensitivity analysis of the Path-aware Step Size r. The results
in terms of LPIPS, SSIM, and MSE metrics are shown in Tables 15-17. Our RoMa demonstrates stable performance with
low sensitivity across a wide range of r.

Table 15. Sensitivity analysis of r in RoMa on MS-COCO-2017 (LPIPS↓).

Method 0k 1k 2k 3k 4k 5k 6k

RoMa(r=0.05) 0.038 ± 0.005 0.061 ± 0.011 0.102 ± 0.066 0.104 ± 0.040 0.192 ± 0.078 0.302 ± 0.127 0.261 ± 0.094
RoMa(r=0.10) 0.037 ± 0.005 0.062 ± 0.011 0.070 ± 0.011 0.151 ± 0.076 0.214 ± 0.073 0.221 ± 0.068 0.267 ± 0.114
RoMa(r=0.30) 0.033 ± 0.005 0.059 ± 0.012 0.070 ± 0.017 0.158 ± 0.085 0.216 ± 0.078 0.219 ± 0.072 0.270 ± 0.113
RoMa(r=0.50) 0.035 ± 0.005 0.062 ± 0.012 0.071 ± 0.012 0.154 ± 0.075 0.216 ± 0.071 0.221 ± 0.066 0.268 ± 0.113
RoMa(r=0.70) 0.034 ± 0.005 0.063 ± 0.013 0.071 ± 0.012 0.156 ± 0.075 0.218 ± 0.071 0.222 ± 0.071 0.266 ± 0.113
RoMa(r=0.90) 0.034 ± 0.004 0.063 ± 0.014 0.075 ± 0.033 0.172 ± 0.089 0.234 ± 0.081 0.237 ± 0.073 0.290 ± 0.114

Table 16. Sensitivity analysis of r in RoMa on MS-COCO-2017 (SSIM↑).

Method 0k 1k 2k 3k 4k 5k 6k

RoMa(r=0.05) 0.886 ± 0.013 0.843 ± 0.041 0.806 ± 0.107 0.785 ± 0.089 0.678 ± 0.139 0.494 ± 0.190 0.590 ± 0.159
RoMa(r=0.10) 0.889 ± 0.013 0.845 ± 0.041 0.857 ± 0.038 0.739 ± 0.129 0.656 ± 0.137 0.631 ± 0.118 0.555 ± 0.167
RoMa(r=0.30) 0.894 ± 0.012 0.857 ± 0.037 0.858 ± 0.046 0.732 ± 0.143 0.659 ± 0.140 0.639 ± 0.125 0.556 ± 0.167
RoMa(r=0.50) 0.892 ± 0.012 0.847 ± 0.040 0.858 ± 0.037 0.737 ± 0.128 0.657 ± 0.132 0.635 ± 0.115 0.557 ± 0.167
RoMa(r=0.70) 0.893 ± 0.012 0.847 ± 0.039 0.856 ± 0.038 0.735 ± 0.127 0.655 ± 0.132 0.632 ± 0.125 0.556 ± 0.166
RoMa(r=0.90) 0.893 ± 0.012 0.851 ± 0.038 0.851 ± 0.057 0.715 ± 0.150 0.635 ± 0.144 0.615 ± 0.128 0.541 ± 0.163

Table 17. Sensitivity analysis of r in RoMa on MS-COCO-2017 (MSE↓).

Method 0k 1k 2k 3k 4k 5k 6k

RoMa(r=0.05) 0.013 ± 0.003 0.020 ± 0.006 0.046 ± 0.047 0.045 ± 0.027 0.106 ± 0.063 0.190 ± 0.103 0.169 ± 0.094
RoMa(r=0.10) 0.012 ± 0.003 0.020 ± 0.007 0.021 ± 0.007 0.077 ± 0.064 0.121 ± 0.070 0.124 ± 0.060 0.173 ± 0.104
RoMa(r=0.30) 0.010 ± 0.002 0.019 ± 0.010 0.021 ± 0.011 0.087 ± 0.079 0.127 ± 0.078 0.127 ± 0.070 0.178 ± 0.108
RoMa(r=0.50) 0.011 ± 0.003 0.020 ± 0.007 0.021 ± 0.007 0.081 ± 0.066 0.124 ± 0.070 0.125 ± 0.058 0.175 ± 0.104
RoMa(r=0.70) 0.011 ± 0.003 0.021 ± 0.008 0.021 ± 0.008 0.082 ± 0.068 0.126 ± 0.071 0.129 ± 0.068 0.174 ± 0.106
RoMa(r=0.90) 0.011 ± 0.002 0.021 ± 0.011 0.024 ± 0.023 0.099 ± 0.086 0.142 ± 0.083 0.143 ± 0.075 0.194 ± 0.108
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F. Sensitivity Analysis of the Balance Coefficient α
In this section, we provide the sensitivity analysis of α and present the results in terms of LPIPS, SSIM, and MSE metrics,
in Tables 18-21. Our experimental results demonstrate that RoMa maintains a relatively stable performance with different α.

Table 18. Sensitivity analysis of α in RoMa on MS-COCO-2017 (LPIPS↓).

Method 0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 ± 0.065 0.833 ± 0.058 0.862 ± 0.049 0.838 ± 0.050 0.844 ± 0.066 0.837 ± 0.052 0.839 ± 0.062
WatermarkDM 0.034 ± 0.008 0.153 ± 0.058 0.302 ± 0.108 0.307 ± 0.112 0.342 ± 0.106 0.429 ± 0.128 0.454 ± 0.115
SAM 0.047 ± 0.020 0.161 ± 0.108 0.334 ± 0.142 0.348 ± 0.143 0.419 ± 0.144 0.452 ± 0.137 0.431 ± 0.129
RoMa w/o PS 0.031 ± 0.005 0.093 ± 0.039 0.239 ± 0.113 0.275 ± 0.115 0.330 ± 0.108 0.392 ± 0.107 0.407 ± 0.120
RoMa w/o EF 0.046 ± 0.014 0.184 ± 0.111 0.339 ± 0.133 0.325 ± 0.147 0.457 ± 0.127 0.454 ± 0.132 0.448 ± 0.136
RoMa(α=0.36) 0.038 ± 0.005 0.076 ± 0.013 0.128 ± 0.087 0.140 ± 0.055 0.198 ± 0.073 0.296 ± 0.113 0.302 ± 0.113
RoMa(α=0.38) 0.031 ± 0.004 0.062 ± 0.011 0.125 ± 0.091 0.143 ± 0.068 0.191 ± 0.090 0.291 ± 0.114 0.299 ± 0.113
RoMa(α=0.40) 0.038 ± 0.005 0.061 ± 0.011 0.102 ± 0.066 0.104 ± 0.040 0.192 ± 0.078 0.302 ± 0.127 0.261 ± 0.094
RoMa(α=0.42) 0.033 ± 0.005 0.055 ± 0.010 0.082 ± 0.056 0.099 ± 0.032 0.152 ± 0.064 0.256 ± 0.117 0.249 ± 0.105
RoMa(α=0.44) 0.030 ± 0.004 0.057 ± 0.010 0.109 ± 0.074 0.115 ± 0.050 0.165 ± 0.078 0.270 ± 0.118 0.259 ± 0.104

Table 19. Sensitivity analysis of α in RoMa on MS-COCO-2017 (SSIM↑).

Method 0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.098 ± 0.047 0.095 ± 0.049 0.106 ± 0.057 0.102 ± 0.051 0.098 ± 0.056 0.090 ± 0.051 0.100 ± 0.055
WatermarkDM 0.904 ± 0.014 0.772 ± 0.094 0.545 ± 0.176 0.524 ± 0.177 0.458 ± 0.169 0.343 ± 0.173 0.343 ± 0.153
SAM 0.868 ± 0.030 0.694 ± 0.180 0.451 ± 0.224 0.428 ± 0.212 0.333 ± 0.197 0.280 ± 0.186 0.322 ± 0.182
RoMa w/o PS 0.901 ± 0.013 0.825 ± 0.063 0.643 ± 0.172 0.574 ± 0.184 0.499 ± 0.174 0.397 ± 0.171 0.421 ± 0.166
RoMa w/o EF 0.867 ± 0.029 0.682 ± 0.173 0.456 ± 0.201 0.453 ± 0.217 0.288 ± 0.162 0.274 ± 0.174 0.313 ± 0.173
RoMa(α=0.36) 0.885 ± 0.012 0.840 ± 0.031 0.783 ± 0.132 0.759 ± 0.103 0.686 ± 0.132 0.518 ± 0.185 0.534 ± 0.184
RoMa(α=0.38) 0.899 ± 0.010 0.861 ± 0.031 0.782 ± 0.143 0.752 ± 0.126 0.693 ± 0.159 0.523 ± 0.189 0.549 ± 0.180
RoMa(α=0.40) 0.886 ± 0.013 0.843 ± 0.041 0.806 ± 0.107 0.785 ± 0.089 0.678 ± 0.139 0.494 ± 0.190 0.590 ± 0.159
RoMa(α=0.42) 0.895 ± 0.011 0.860 ± 0.034 0.834 ± 0.091 0.806 ± 0.079 0.739 ± 0.122 0.559 ± 0.187 0.605 ± 0.178
RoMa(α=0.44) 0.902 ± 0.011 0.869 ± 0.028 0.804 ± 0.121 0.790 ± 0.100 0.723 ± 0.143 0.539 ± 0.195 0.606 ± 0.173

Table 20. Sensitivity analysis of α in RoMa on MS-COCO-2017 (MSE↓).

Method 0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.304 ± 0.036 0.310 ± 0.036 0.298 ± 0.031 0.306 ± 0.034 0.309 ± 0.037 0.311 ± 0.036 0.308 ± 0.036
WatermarkDM 0.009 ± 0.004 0.083 ± 0.061 0.211 ± 0.105 0.205 ± 0.092 0.242 ± 0.089 0.299 ± 0.097 0.329 ± 0.087
SAM 0.019 ± 0.017 0.101 ± 0.102 0.249 ± 0.131 0.241 ± 0.121 0.291 ± 0.109 0.321 ± 0.110 0.321 ± 0.115
RoMa w/o PS 0.009 ± 0.002 0.036 ± 0.029 0.163 ± 0.113 0.182 ± 0.109 0.241 ± 0.113 0.293 ± 0.113 0.301 ± 0.106
RoMa w/o EF 0.017 ± 0.012 0.118 ± 0.111 0.259 ± 0.126 0.223 ± 0.127 0.324 ± 0.097 0.323 ± 0.105 0.318 ± 0.105
RoMa(α=0.36) 0.012 ± 0.002 0.027 ± 0.008 0.065 ± 0.069 0.066 ± 0.044 0.107 ± 0.061 0.195 ± 0.110 0.211 ± 0.116
RoMa(α=0.38) 0.009 ± 0.002 0.018 ± 0.007 0.070 ± 0.082 0.073 ± 0.059 0.111 ± 0.082 0.206 ± 0.122 0.215 ± 0.120
RoMa(α=0.40) 0.013 ± 0.003 0.020 ± 0.006 0.046 ± 0.047 0.045 ± 0.027 0.106 ± 0.063 0.190 ± 0.103 0.169 ± 0.094
RoMa(α=0.42) 0.010 ± 0.002 0.016 ± 0.005 0.035 ± 0.042 0.041 ± 0.022 0.075 ± 0.049 0.161 ± 0.106 0.162 ± 0.106
RoMa(α=0.44) 0.009 ± 0.002 0.015 ± 0.007 0.054 ± 0.062 0.053 ± 0.040 0.091 ± 0.070 0.183 ± 0.117 0.178 ± 0.112

G. Sensitivity Analysis of SAM’s Perturbation Scale ϵ

In our primary experiments, we set the perturbation scale ϵ of SAM to 0.01. To investigate the impact of ϵ on watermark
robustness, we conduct ablation experiments on the MS-COCO-2017 dataset with varying ϵ values of 0.02 and 0.05,
following prior research (Gan et al., 2023). Our experimental results (presented in Tables 22-25) indicate that despite
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Table 21. Sensitivity analysis of α in RoMa on MS-COCO-2017 (SCORE↑).

Method 0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.239 ± 0.032 0.250 ± 0.031 0.242 ± 0.029 0.250 ± 0.027 0.246 ± 0.034 0.246 ± 0.029 0.249 ± 0.034
WatermarkDM 0.952 ± 0.008 0.838 ± 0.068 0.670 ± 0.126 0.663 ± 0.125 0.618 ± 0.118 0.529 ± 0.130 0.510 ± 0.115
SAM 0.933 ± 0.022 0.808 ± 0.127 0.618 ± 0.162 0.606 ± 0.156 0.532 ± 0.149 0.494 ± 0.140 0.517 ± 0.137
RoMa w/o PS 0.953 ± 0.006 0.894 ± 0.041 0.741 ± 0.130 0.698 ± 0.133 0.636 ± 0.127 0.565 ± 0.124 0.563 ± 0.127
RoMa w/o EF 0.934 ± 0.017 0.789 ± 0.128 0.616 ± 0.149 0.629 ± 0.160 0.493 ± 0.127 0.491 ± 0.132 0.507 ± 0.134
RoMa(α=0.36) 0.944 ± 0.006 0.909 ± 0.014 0.858 ± 0.096 0.844 ± 0.065 0.785 ± 0.087 0.668 ± 0.132 0.667 ± 0.133
RoMa(α=0.38) 0.952 ± 0.006 0.924 ± 0.013 0.858 ± 0.104 0.839 ± 0.081 0.790 ± 0.108 0.670 ± 0.136 0.672 ± 0.132
RoMa(α=0.40) 0.944 ± 0.007 0.919 ± 0.015 0.882 ± 0.074 0.875 ± 0.049 0.786 ± 0.092 0.659 ± 0.139 0.713 ± 0.112
RoMa(α=0.42) 0.950 ± 0.006 0.928 ± 0.012 0.902 ± 0.062 0.884 ± 0.041 0.831 ± 0.077 0.708 ± 0.134 0.724 ± 0.125
RoMa(α=0.44) 0.954 ± 0.006 0.929 ± 0.012 0.876 ± 0.085 0.869 ± 0.061 0.816 ± 0.095 0.690 ± 0.139 0.717 ± 0.125

increasing ϵ, we do not observe a significant enhancement in watermark robustness against fine-tuning. Furthermore, as ϵ
reaches 0.05, the watermark SCORE notably decreases, averaging only 0.688 even without further fine-tuning (column
”0k”). This is likely attributed to the larger ϵ compromising the original watermark embedding functionality. In sum, these
analyses further support our conclusion in Section 6.1: path-specific smoothness proves more effective than SAM for
enhancing watermark robustness against fine-tuning.

Table 22. Sensitivity analysis of ϵ in SAM on MS-COCO-2017 (LPIPS↓ metric).

Method 0k 1k 2k 3k 4k 5k 6k

SAM(ϵ=0.01) 0.047 ± 0.020 0.161 ± 0.108 0.334 ± 0.142 0.348 ± 0.143 0.419 ± 0.144 0.452 ± 0.137 0.431 ± 0.129
SAM(ϵ=0.02) 0.057 ± 0.022 0.193 ± 0.100 0.355 ± 0.116 0.362 ± 0.124 0.439 ± 0.117 0.492 ± 0.131 0.406 ± 0.095
SAM(ϵ=0.05) 0.277 ± 0.046 0.349 ± 0.053 0.400 ± 0.064 0.398 ± 0.059 0.399 ± 0.057 0.425 ± 0.069 0.416 ± 0.057
RoMa 0.038 ± 0.005 0.061 ± 0.011 0.102 ± 0.066 0.104 ± 0.040 0.192 ± 0.078 0.302 ± 0.127 0.261 ± 0.094

Table 23. Sensitivity analysis of ϵ in SAM on MS-COCO-2017 (SSIM↑).

Method 0k 1k 2k 3k 4k 5k 6k

SAM(ϵ=0.01) 0.868 ± 0.030 0.694 ± 0.180 0.451 ± 0.224 0.428 ± 0.212 0.333 ± 0.197 0.280 ± 0.186 0.322 ± 0.182
SAM(ϵ=0.02) 0.853 ± 0.042 0.641 ± 0.171 0.423 ± 0.184 0.390 ± 0.190 0.292 ± 0.169 0.224 ± 0.151 0.346 ± 0.156
SAM(ϵ=0.05) 0.559 ± 0.079 0.418 ± 0.102 0.321 ± 0.098 0.318 ± 0.105 0.318 ± 0.105 0.273 ± 0.099 0.306 ± 0.093
RoMa 0.886 ± 0.013 0.843 ± 0.041 0.806 ± 0.107 0.785 ± 0.089 0.678 ± 0.139 0.494 ± 0.190 0.590 ± 0.159

Table 24. Sensitivity analysis of ϵ in SAM on MS-COCO-2017 (MSE↓).

Method 0k 1k 2k 3k 4k 5k 6k

SAM(ϵ=0.01) 0.019 ± 0.017 0.101 ± 0.102 0.249 ± 0.131 0.241 ± 0.121 0.291 ± 0.109 0.321 ± 0.110 0.321 ± 0.115
SAM(ϵ=0.02) 0.025 ± 0.018 0.134 ± 0.102 0.278 ± 0.113 0.268 ± 0.116 0.330 ± 0.098 0.334 ± 0.086 0.330 ± 0.104
SAM(ϵ=0.05) 0.208 ± 0.052 0.303 ± 0.078 0.352 ± 0.072 0.344 ± 0.076 0.352 ± 0.079 0.363 ± 0.073 0.372 ± 0.070
RoMa 0.013 ± 0.003 0.020 ± 0.006 0.046 ± 0.047 0.045 ± 0.027 0.106 ± 0.063 0.190 ± 0.103 0.169 ± 0.094

H. Implementation Details of Watermark Detection
Stable Signature (Fernandez et al., 2023) and AquaLora (Feng et al., 2024) embed a k-bit binary signature m ∈ {0, 1}k
into generated images. For watermark detection, they first utilize the watermark extractor to decode a message m′ from a
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Table 25. Sensitivity analysis of ϵ in SAM on MS-COCO-2017 (SCORE↑).

Method 0k 1k 2k 3k 4k 5k 6k

SAM(ϵ=0.01) 0.933 ± 0.022 0.808 ± 0.127 0.618 ± 0.162 0.606 ± 0.156 0.532 ± 0.149 0.494 ± 0.140 0.517 ± 0.137
SAM(ϵ=0.02) 0.922 ± 0.026 0.769 ± 0.120 0.594 ± 0.133 0.583 ± 0.138 0.502 ± 0.124 0.454 ± 0.120 0.535 ± 0.110
SAM(ϵ=0.05) 0.688 ± 0.056 0.591 ± 0.071 0.526 ± 0.071 0.528 ± 0.071 0.526 ± 0.072 0.497 ± 0.071 0.509 ± 0.065
RoMa 0.944 ± 0.007 0.919 ± 0.015 0.882 ± 0.074 0.875 ± 0.049 0.786 ± 0.092 0.659 ± 0.139 0.713 ± 0.112

candidate image x and compare it with the predefined signature m. The detection mechanism relies on testing the statistical
hypothesis H1: x was generated by the watermarked model against the null hypothesis H0: x was not generated by the
watermarked model. Specifically, they set a bit threshold τ and reject the null hypothesis H0 when the number of matched
bits M(m,m′) between the extracted message m′ and the signature m satisfies:

M(m,m′) ≥ τ where τ ∈ {0, . . . , k}. (3)

To obtain the False Positive Rate (FPR) associated with each bit threshold τ , they assume the extracted bits follow an
i.i.d. Bernoulli distribution with parameter 0.5 under H0 (i.e., random guess between bit 0 and 1). This yields a binomial
distribution for M(m,m′), with parameters (k, 0.5). The FPR can then be formulated as:

FPR(τ) = P(M > τ |H0) =

k∑
i=τ+1

(
k

i

)
1

2k
. (4)

I. Experimental Setup for Stable Signature
Stable Signature (Fernandez et al., 2023) embeds watermarks into the Variational Autoencoder (VAE) decoder, so that all
generated images carry binary messages. We follow the experimental settings of prior studies (Fernandez et al., 2023; Hu
et al., 2024; Wang et al., 2024), and fine-tune the latent decoder to evaluate its robustness. Specifically, we use the MS-
COCO-2017 validation set, randomly selecting 4,000 images for fine-tuning and reserving the remaining 1,000 images for
evaluation. The fine-tuning process only minimizes the LPIPS loss between the original image and the image reconstructed
by the latent decoder (as this maintains higher generation quality, following (Wang et al., 2024)), with a learning rate of
1 × 10−4. For the watermarked model, we use the official checkpoint7, which embeds a 48-bit binary message into the
generated images. We set the bit threshold to τ = 38 (FPR = 10−6) for watermark detection.

J. Experimental Setup for AquaLora
AquaLora (Feng et al., 2024) also embeds binary messages into all generated images. However, it differs in that it merges
watermark information into the U-Net (Ronneberger et al., 2015; Ho et al., 2020; Rombach et al., 2022) using Low Rank
Adaptation (LoRA) (Shen et al., 2022) through a scaling matrix strategy, thereby enabling watermark embedding during the
denoising process. We evaluate the robustness of AquaLora against fine-tuning on the MS-COCO-2017 and CUB-200-2011
datasets, respectively, adopting the same fine-tuning protocol as described in the Robustness Evaluation section (Section 5.3).
For the watermarked model, we first obtain the official prior-preserving fine-tuned checkpoints8, and then embed the same
48-bit message as in Stable Signature into Stable Diffusion v1.59 with LoRA rank = 320. Here, we still set the bit threshold
to τ = 38 (FPR = 10−6) for watermark detection (Fernandez et al., 2023; Wang et al., 2024). We use the prompt templates
provided by AquaLora10 for image generation, with the original Stable Diffusion v1.5 serving as the non-watermarked
reference.

7https://github.com/facebookresearch/stable_signature
8https://huggingface.co/georgefen/AquaLoRA-Models/tree/main/ppft_trained
9https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main

10https://github.com/Georgefwt/AquaLoRA/tree/master/evaluation
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Figure 14. ROC curves of Stable Signature at various fine-tuning steps. The star with green color (⋆) is highlighted (FPR = 10−6) where
its associated TPR reflects the detection accuracy with τ = 38.

Figure 15. Bit accuracy results of AquaLora against the fine-tuning process on CUB-200-2011 dataset.

K. Additional Discussions of Diffusion Models
Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Ho & Salimans, 2022; Rombach et al., 2022; Podell et al.,
2023; Song et al., 2020; Yang et al., 2023) have emerged as powerful generative paradigms, demonstrating remarkable
success across various domains, including high-quality image synthesis (Dhariwal & Nichol, 2021; Ruiz et al., 2023; Zhang
et al., 2023), video generation (Ho et al., 2022; Wu et al., 2023; Xing et al., 2024), and natural language generation (Lou
et al., 2023). While our work focuses on protecting the watermarking robustness on Text-to-Image (T2I) diffusion models,
our proposed RoMa is general and can be potentially adapted to watermarking diffusion models with different generative
tasks (Lugmayr et al., 2022; Kawar et al., 2023), and architectures (Peebles & Xie, 2023).
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Figure 16. Visual comparison between original images (top) and their reconstructions by Stable Signature’s watermarked decoder (bottom).

Figure 17. Visual comparison between original images (top) and reconstructions by Stable Signature’s watermarked decoder after 1500
fine-tuning steps (bottom).
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Figure 18. ROC curves of AquaLora at various fine-tuning steps on MS-COCO-2017 dataset. The star with green color (⋆) is highlighted
(FPR = 10−6) where its associated TPR reflects the detection accuracy with τ = 38.
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Figure 19. ROC curves of AquaLora at various fine-tuning steps on CUB-200-2011 dataset. The star with green color (⋆) is highlighted
(FPR = 10−6) where its associated TPR reflects the detection accuracy with τ = 38.
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