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Abstract

The autoregressive nature of conventional large
language models (LLMs) inherently limits infer-
ence speed, as tokens are generated sequentially.
While speculative (Leviathan et al., 2023) and
parallel (Stern et al., 2018) decoding techniques
attempt to mitigate this, they face limitations: ei-
ther relying on less accurate smaller models for
generation or failing to fully leverage the base
LLM’s representations.

We introduce a novel architecture, Tandem Trans-
formers, to address these issues. This architec-
ture uniquely combines (1) a small autoregres-
sive model and (2) a large model operating in
block mode (processing multiple tokens simulta-
neously). The small model’s predictive accuracy
is substantially enhanced by granting it attention
to the large model’s richer representations. On the
PaLM2 pretraining dataset, a Tandem of PaLM2-
Bison and PaLM2-Gecko demonstrates a 3.3%
improvement in next-token prediction accuracy
over a standalone PaLM2-Gecko, offering a 1.16x
speedup compared to a PaLM2-Otter model with
comparable downstream performance. We further
incorporate the Tandem model within the specu-
lative decoding (SPEED) framework where the
large model validates tokens from the small model.
This ensures that the Tandem of PaLM2-Bison
and PaLM2-Gecko achieves substantial speedup
(around 1.14× faster than using vanilla PaLM2-
Gecko in SPEED) while maintaining identical
downstream task accuracy.
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1. Introduction
Despite significant advancements in inference optimization
techniques (Leviathan et al., 2023; Du et al., 2022; Liu et al.,
2023), the widespread deployment of very large language
models (LLMs) remains hindered by their substantial com-
putational costs. A key factor contributing to high inference
latency is the autoregressive generation process, where to-
kens are produced sequentially. This inherent limitation re-
stricts the full utilization of ML accelerators (GPUs/TPUs),
which are optimized for matrix-matrix multiplications rather
than the matrix-vector operations prevalent in LLMs. Con-
sequently, prompt processing (where all tokens are handled
simultaneously) is significantly more efficient than autore-
gressive response generation.

On the other hand, it is not well understood how much
capacity is required to understand the prompt/query/prefill
(natural language understanding aka NLU) vs the capacity
required to generate a response (natural language generation
aka NLG). Current decoder-only LLM architectures tightly
couple both these tasks.

Tandem Transformers. In this work, we investigate this
fundamental question from an efficiency perspective. We
propose Tandem Transformers, a novel architecture that allo-
cates significantly more model capacity to prefill processing
(NLU) compared to response generation (NLG). Our goal
is to understand whether high-quality response generation
can be maintained under this design. Concretely, Tandem
Transformers consists of two models – a small modelMS

and a large modelML, where:

1. ML processes the prompt/query.
2. MS generates the first γ tokens (called a block) autore-

gressively, while attending to the prompt/query represen-
tations generated byML.

3. ML processes the γ tokens generated byMS together
(i.e., in a non-autoregressive fashion) and computes their
representations.

4. MS then generates the next γ tokens autoregressively,
while attending to representations of all tokens until the
previous prefill block generated byML.

5. This process is repeated until the response generation is
complete.
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Tandem Transformer Training. A projection layer is in-
troduced to align the higher-dimensional representation
space of ML with that of MS . For efficiency, we ini-
tializeML andMS as independently trained, decoder-only
models.

Experiments with Tandem (PaLM2-Bison, PaLM2-Gecko)
(where PaLM2-Gecko < PaLM2-Otter < PaLM2-Bison, in
terms of model size) demonstrate that the capacity needed
for NLU vs NLG aspects of LLMs can indeed be decoupled,
leading to a more efficient architecture without significant
accuracy loss. Evaluation on benchmark datasets show that
Tandem (PaLM2-Bison, PaLM2-Gecko) with block length
γ = 3 is substantially more accurate than PaLM2-Gecko,
and comparable to PaLM2-Otter, while achieving approx-
imately 1.16× lower inference latency than PaLM2-Otter.
For example, on SuperGLUE (Wang et al., 2019), the Tan-
dem model is 3% less accurate than PaLM2-Bison, 16%
more accurate than PaLM2-Gecko and 0.2% less accurate
than PaLM2-Otter, with 1.16× speedup over PaLM2-Otter.

Encoder-Decoder. In contrast to an encoder-decoder ar-
chitecture which would only process query/prefix through
an encoder and then generate the entire response through
a decoder, Tandem is able to generate only block-size γ
(say = 3) tokens through the secondary model MS and
then refresh the entire prefill representations using primary
modelML which is critical to maintaining high accuracy.
That is, by setting γ = 0, Tandem can mimic decoder-only
ML model while setting γ → ∞ leads to decoder-only
MS model.

Tandem + SPEED. For applications requiring output iden-
tical to the primary model, we propose Tandem + SPEED.
The speculative decoding (SPEED) framework (Leviathan
et al., 2023) leverages the small modelMS in Tandem to
generate draft tokens, which are then verified by the large
modelML. Crucially, the ability ofMS in Tandem to at-
tend toML’s representations significantly improves draft
quality, reducing verification overhead compared to standard
SPEED. For example, on the Reddit Posts dataset, using
theMS in Tandem as the drafter model in SPEED leads to
about 11.24% higher per-block acceptance rate compared
to a vanilla secondary model. Finally, we show that Tandem
Transformers can be further improved using logit distillation
and their efficacy within SPEED can be improved using an
adaptive block length parameter.

Contrast with Parallel Decoding and Distillation. Re-
cently multiple speculative or parallel decoding style tech-
niques have been proposed in the literature (Leviathan et al.,
2023; Kim et al., 2023; Stern et al., 2018). These techniques
attempt to generate a draft of tokens using a relatively inex-
pensive drafter model. Parallel decoding attempts to gener-
ate multiple drafter tokens in parallel by learning classifiers
on top of output of primary modelML while speculative

decoding could provide significantly better drafts by using
a small, but auto regressive model. In contrast, Tandem
is a stand alone model on its own and doesn’t natively re-
quire verification by ML to generate reasonable outputs
(see benchmark numbers in Table 3). Furthermore, Tan-
dem + SPEED is able to use representations ofML while
still generating tokens autoregressively, which is able to
provide overall much better tradeoff in terms of token qual-
ity vs model latency for the drafter. Finally, recent works
have also shown the efficacy of logit distillation for training
better drafter models within SPEED (Zhou et al., 2023).
Our approach is complementary, and can be combined with
distillation.

Empirical Results for Tandem + SPEED. Finally, we
conduct extensive latency evaluation on TPUv5e for both
standa alone and SPEED versions of Tandem (PaLM2-
Bison, PaLM2-Gecko) with PaLM2-Bison and PaLM2-
Gecko being the primaryML and secondaryMS model,
respectively. In particular, on multiple datasets, we observe
that Tandem + SPEED with distillation can be at least 2.19×
faster than the baseline PaLM2-Bison model while ensuring
same output quality. Furthermore, compared to standard
SPEED with MS being secondary model, our model is
1.11× to 1.17× faster. An adaptive block length in SPEED
further helps reduce Tandem’s latency by 1.04× to 1.09×
on multiple datasets. Finally, we demonstrate that our re-
sults also hold for practical settings like batch-size > 1.

Contributions. In summary, following are the key contri-
butions of the work:

1. Tandem architecture: A novel architecture to disaggre-
gate prompt/prefill processing capacity from response
generation.

2. Tandem + SPEED: Improved speculative decoding lever-
aging Tandem’s superior drafting for guaranteed output
equivalence with lower latency.

3. Adaptive Block Length: Enhances Tandem + SPEED by
dynamically adjusting drafted token count.

4. TPUv5e evaluation: End-to-end evaluation on TPUv5e
with PaLM2-Bison being the primary model. A distilled
Tandem + SPEED is 2.4× faster compared to vanilla
PaLM2-Bison model and 1.11− 1.17× faster compared
to distilledMS + SPEED (Leviathan et al., 2023) ap-
plied in the same setting.

Outline of the Paper. The rest of the paper is organized
as follows. We briefly review related work in Section 2.
In Section 3, we present the main ideas and the design of
Tandem Transformers architecture. Section 4 presents the
experimental results on Tandem Transformers. We then
conclude with some future directions in Section 5.
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2. Related Work
Encoder-Decoder models. Encoder-decoder Transformer
architectures are widely used for specific tasks such as ma-
chine translation (Vaswani et al., 2017). Given the computa-
tional inefficiency of autoregressive decoding, several works
have explored using a large encoder with a small decoder.
Our work can be seen as extending these ideas to use an
encoder-decoder model for the decoder itself.

Mixture of Experts (MoE)/Sparsity based Approaches.
Mixture of experts (Du et al., 2022) and sparsity based
approaches (Li et al., 2022) have also been studied for opti-
mizing inference cost of LLMs. However these approaches
are complementary to the approaches proposed in our paper.
For example, either or both the large modelML and small
modelMS can be an MoE or sparse model.

Distillation. Since the seminal paper (Hinton et al., 2015),
distilling the knowledge of a large model to a smaller model
by using the logits of large model as a training target has
been widely used in several settings. Our work can be seen
as a more general version of distillation for Transformers,
where the small model can directly refer to large model rep-
resentations for tokens from previous blocks. Furthermore,
our experiments (see Section 4) show that our techniques are
complementary to logit distillation, and provide additional
gains on top of vanilla logit distillation.

Speculative Decoding (SPEED). Speculative decod-
ing (Leviathan et al., 2023; Kim et al., 2023) is a framework
to reduce inference latency of LLMs without affecting their
quality, which has shown substantial improvements in LLM
inference. We demonstrate that Tandem Transformers can
be used within the SPEED framework, improving the effi-
cacy of SPEED. Multiple drafters have been explored in the
context of SPEED, Speculative Decoding (Leviathan et al.,
2023) uses a standalone drafter, REST (He et al., 2023) use
a retrieval based drafter, DistilSpec (Zhou et al., 2023) uses
a distillation based drafter, MEDUSA (Cai et al., 2024) uses
k MLP heads on top of the primary model’s output represen-
tations to predict the next k tokens in parallel for drafting.
As of now distillation based drafters seem to perform the
best. As we demonstrate in Section 4, Tandem is able to
provide a significantly more powerful drafter, thus providing
better draft of tokens leading to lower latency.

3. Tandem Transformers
In this section, we will describe Tandem Transformers ar-
chitecture, it’s training and inference.

Standard (Decoder) Transformer. Given a sequence
t1, t2, · · · , tS of S tokens as inputs, where ti corresponds
to the ith token id, a standard decoder Transformer with L

layers executes as follows:

x̃
(j+1)
i = Atn(j+1)(x

(j)
i |x

(j)
≤i )

x
(j+1)
i = FF(j+1)(x̃

(j+1)
i ) for j = 0, · · · , L− 1,

(1)

where x(0)i = Emb(ti) is the embedding of ti, x
(j)
i is

the representation after the jth layer and Atn(j)(·|·) and
FF(j)(·) are the jth attention and feedforward layers respec-
tively (Vaswani et al., 2017). Note that the attention is purely
causal (i.e., the ith token attends only tokens tk for k ≤ i)
since we are considering a decoder-only Transformer.

Tandem Transformer. A Tandem Transformer model com-
prises of a primary model ML and a secondary model
MS . Typically, SIZEOF(ML) � SIZEOF(MS). Given
a sequence of tokens t1, t2, · · · , tS as inputs, the primary
modelML processes these tokens just like a standard (de-
coder) Transformer (1).

Let γ be the block length parameter, and LS and LL be
the number of layers of the secondary model and primary
model, respectively. Let ` : [LS ]→ [LL] be a layer assign-
ment function from secondary model to primary model. The
secondary model attends to the primary model’s representa-
tions for all tokens from the previous blocks. More formally,
we have:

ŷ
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i ) for j = 0, · · · , LS − 1,

(2)

where x(j)i and y(j)i denote the jth layer representation of
the ith token underML andMS respectively, FF(j)

Tandem(·)
denotes a feedforward layer that converts the representation
x
(`(j))
i of the ith token from the `(j)th layer of the primary

model, to a representation ŷ(j)i of the same ith token for
the jth layer of the secondary model, and Atn

(j)
S (·|·) and

FF
(j)
S (·) denote the attention and feedforward blocks respec-

tively in the jth layer of the secondary modelMS . The final
output of the Tandem model is y(LS). We note that the pri-
mary and the secondary model can vary in almost all scale
parameters such as representation dimensions, expansion
factors of feedforward layers, number of attention heads, etc.
as well as whether the attention is multi-head or multi-query,
etc. In all of our experiments, we take FF

(·)
Tandem(j) to be

linear projection layers.

Training. Given a block length parameter γ, we partition
the training sequence into blocks, each consisting of γ con-
secutive tokens. Consider the autoregressive prediction of
the jth token (for some j ≤ γ) within the ith block. The
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Figure 1. Training of Tandem Transformers with a block length γ = 2. Atn(`(j)+1)
L and FF

(`(j)+1)
L denote the attention and feedforward

blocks in the (`(j) + 1)th layer ofML, while Atn
(j+1)
L and FF

(j+1)
L denote those of (j + 1)th layer ofMS .ML processes the tokens

as a standard decoder Transformer.MS on the other hand processes the tokens in the
(
i
γ

)th
block using its own representations y(j)i and

y
(j)
i+1, but while attending to the representations of all tokens from the previous block from the (`(j) + 1)th layer ofML passed through a

feedforward layer FF(j)
Tandem.

input to the secondary model MS is the previous token.
Crucially, within the attention blocks ofMS :

• Key/value pairs for all tokens up to the jth token in the
current block are computed byMS itself.

• Key/value pairs for tokens in previous blocks are com-
puted by the primary modelML. A projection/Tandem
feedforward layer then aligns the representational dimen-
sions fromML toMS , as described in Equation (2).

We explore multiple training configurations for Tandem
Transformers:

• Primary Model Frozen. Only the secondary model pa-
rametersMS and the Tandem feedforward layer FF(j)

S

are updated. Loss is applied solely to the secondary
model’s output y(LS) (Equation (2)).

• Both Models Trained, Loss on Secondary Outputs.
Similar to the above, loss is applied to the secondary
model’s output. However, bothML andMS , along with
FF

(j)
S are trained.

• Both Models Trained, Loss on Both Outputs. The
combined loss incorporates both the primary model’s
outputs x(LL) and the secondary model’s outputs y(LS).

For training efficiency, we initialize the primary and sec-
ondary models with high quality pretrained checkpoints,
and then continue pretraining the Tandem architecture for a
small number of additional steps. In particular, we use the
pretrained PaLM2-Bison and PaLM2-Gecko checkpoints
to initializeML andMS respectively. In this setting, we
found that Primary Model Frozen approach provides the
best accuracy. Our Tandem-CE model is obtained by us-

ing cross entropy (CE) loss on the output of the secondary
model as described above.

Tandem-Distil: To further enhanceMS’s quality, we apply
a distillation loss on its predictions, using the logits of the
pretrainedML as targets with CE loss. This aligns naturally
with the Tandem architecture, asMS already incorporates
representations fromML.

The Tandem-Distil model follows a two stage training setup,
where initially it is trained to minimize the CE loss with
respect to the ground truth labels, and in the second stage a
weighing factor of λ = 0.5 is used to balance the CE loss
with respect to ground truth labels and the CE logit distil-
lation loss with respect to the outputs of the PaLM2-Bison
model. We note that Tandem-Distil in general performs
better than Tandem-CE.

Inference. The inference process begins with the primary
model (ML) processing the prompt and generating rep-
resentations for all prompt tokens. The secondary model
(MS) then autoregressively generates the first block of γ
response tokens. Crucially, MS attends to the primary
model’s representations, aligned via the projection layer.

Once the first response block is generated, the primary
model (ML) processes these tokens and computes their
representations. We consider two inference configurations:

• Representation Generation + Token Prediction (Fig-
ure 2).ML additionally predicts the next token.

• Representation Generation Only (Appendix B, Fig-
ure 3). ML solely generates representations for the re-
sponse block.
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plains

separatingThe Himalayas...mountain the

of India

range

from

ofThe Himalayas...separating the India

the Tibetan

plains

Figure 2. Inference of Tandem Transformers with free token from the primary modelML. (left) First block prediction. (right) Second
block prediction. Given the query The Himalayas are a mountain range separating the,ML first processes this query and produces the
first response token plains. When we use this prediction fromML, this is directly fed as an input to the secondary modelMS , which
autoregressively produces of India for the first block with γ = 2. In the second block, the entire response from the first block plains of
India is fed to the primary modelML, which again produces the next response token from, and then the secondary modelMS produces
the next two tokens of the block the Tibetan autoregressively. The eventual output of the model will be plains of India from the Tibetan ....

In both configurations, the representations generated by
ML are used by the secondary model (MS) to generate the
subsequent block of γ response tokens. Also note that, as
in training, MS attends to its own representations for all
previous tokens within the current block.

To disaggregate query and response generation, we use
Representation Generation Only for processing the input
query/prefix. However, for subsequent blocks where the pre-
fill (query+generated response till this point) is processed,
we use Representation Generation + Token Prediction
fromML.

Depending on the training protocol – specifically, whether
primary model outputs are reliable – we may optionally
allow the primary model (ML) to generate the first token of
the subsequent block (processing γ + 1 tokens). Crucially,
in this scenario, we must ensure the following: the keys and
values associated with the next block’s first token, computed
by ML, are not overwritten when the secondary model
(MS) executes its attention layers.

Inference-Time Block Length Flexibility. While we train
Tandem Transformers with a fixed block length γ, the archi-
tecture supports arbitrary γ values during inference. Larger
γ values generally improve efficiency by maximizing the
primary model’s (ML) utilization of accelerator hardware.
Although Tandem is trained with a fixed γ, in SPEED eval-
uations we find that the optimal γ is often much larger, indi-
cating the robustness of Tandem to changes in γ at inference
time.

3.1. Tandem + SPEED: Tandem in the Speculative
Decoding Framework

SPEED mitigates the inefficiency of autoregressive gen-
eration using a smaller drafter/secondary model to gener-
ate tokens and a larger verifier/primary model to confirm

them. SPEED guarantees output quality matching the veri-
fier, but its efficacy hinges on the drafter’s ability to gener-
ate long, accurate draft sequences. Tandem Transformers
are uniquely suited for this framework, with our secondary
modelMS acting as the “drafter” and primary modelML

acting as the “verifier”.

Given a Tandem model, we use ML to process the
query/prefix and generate representations for them. MS

uses these and produces a draft for the first γ tokens au-
toregressively. ML then verifies this entire block simulta-
neously and identifies the first location i where the draft
token is deemed incorrect byML (i = γ+1, if all the draft
tokens are verified successfully). We take the output of the
large model for the ith token, and the small modelMS then
continues to generate draft tokens from the (i+1)th position
onwards, while using the representations of all the previous
tokens from the large modelML. This process continues
until a full response is generated.

The above process can be generalized to the setting, where
we generate multiple full responses for the same query, we
refer to it as num-samples, for example to eventually rank
these responses and select the “best” response (Mudgal et al.,
2023). In this case, the location of the rejected token can
vary across the different samples being generated.

Similarly, the above approach generalizes to larger batch
sizes as well, when we are simultaneously processing multi-
ple queries together. Practical systems potentially use both
num-samples and batch-size to be > 1 but latency gains
for Tandem + SPEED depend on overall batch-size which
is num-samples× batch size. So, for simplicity we focus
only on num-samples > 1 and fix batch-size to be 11.

1Note that it is more challenging to obtain latency improve-
ments with increasing num-samples, compared to that in batch size
since, even without any of these optimizations such as SPEED etc.,
larger num-samples obtain better efficiency on all layers while
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Table 1. Accuracy and cross entropy (CE) loss of Tandem Trans-
formers with respect to ground truth labels as well as the predic-
tions of the primary modelML, PaLM2-Bison. As is clear from
the results, the Tandem model of PaLM2-Gecko and PaLM2-Bison
substantially outperforms the stand alone PaLM2-Gecko model.

PaLM2-
Gecko

PaLM2-
Gecko-Distil

Tandem-CE
(ours)

Tandem-
Distil (ours)

Accuracy (GT) 55.06 56.50 58.35 58.61
CE loss (GT) 2.14 2.12 1.94 1.99
Relative accuracy 74.64 75.30 80.00 81.00
Relative TV distance 0.391 0.318 0.178 0.141

Adaptive Block Length. While standard SPEED uses a
fixed block length γ, we introduce an adaptive approach.
We train a relatively small 2-layer multi-layer perceptron
– router MLP – model to predict whether the current draft
token from MS is likely to be accepted by the primary
modelML. At each timestep, we compare the prediction
of this small model to a threshold τ , deciding whether to: a.
Verify withML, or b. Continue drafting withMS .

Input features to the router MLP are:MS’s entropy over the
current token’s vocabulary distribution, top-k probabilities
for the current token for an appropriate k, andMS’s model
embeddings corresponding to these top-k most probable
tokens. We train the router MLP to predict the probability
of disagreement using cross-entropy loss, with ground truth
being: TV (ySj , y

P
j ), where TV (ySj , y

P
j ) is the total varia-

tion (TV) distance between the output logits of MS and
ML for the jth token.

4. Experiments
In this section, we present experimental results evaluating
Tandem Transformer models. Except for the new archi-
tecture of Tandem Transformers, we generally follow the
same training protocols as described in (Anil et al., 2023),
including the training dataset, optimizer, etc.

Further Training Details. For both Tandem-CE and
Tandem-Distil, we initialize the secondary modelMS to
be the pretrained PaLM2-Gecko, while freezing primary
modelML to be the pretrained PaLM2-Bison (Anil et al.,
2023). The projection/Tandem feedforward layers are cho-
sen to be linear layers and initialized randomly. Both
the Tandem models – Tandem-CE and Tandem-Distil– are
trained with a block length of γ = 2. For our evaluation
within the SPEED framework, we consider a logit distilla-
tion version of PaLM2-Gecko, called PaLM2-Gecko-Distil,
which is initialized with the PaLM2-Gecko model and then
trained using logit distillation, similar to the second phase

larger batch size obtains better efficiency only on feedforward and
softmax layers, and not the attention layer.

of training of the Tandem-Distil model, since distillation
has been shown to help improve the secondary models in
SPEED (Zhou et al., 2023).

Adaptive Block Length in SPEED. We train a small, 2-
layer MLP model to predict whether the current drafter
token fromMS is likely to be accepted by primary model
ML. We set τ = 0.8 as the threshold to determine ifMS

can continue generating more tokens.

4.1. Performance Evaluation

We compare the performance of Tandem-CE and Tandem-
Distil against PaLM2-Gecko, PaLM2-Gecko-Distil, PaLM2-
Otter and PaLM2-Bison on several downstream tasks.

For downstream task evaluation, we compare on Super-
GLUE (Wang et al., 2019), TydiQA (Clark et al., 2020), a
large collection of generation tasks, which we call Gen-tasks
(comprising of SQuADv2 (Rajpurkar et al., 2018), Natural
Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), WebQuestions (Berant et al., 2013) and Lambada
(Paperno et al., 2016)), MBPP (Austin et al., 2021), and
WMT22 (Zerva et al., 2022). WMT22 results are averaged
over x → en translations for different languages x. For
TydiQA, we pass the gold passage as part of the input, and
report the average F1-score over all languages. For Super-
GLUE and Gen-tasks, we follow the experimental settings
as described in (Anil et al., 2023) and report the average
results. We report 1-shot evaluations for all performance
evaluation experiments.

4.2. Latency Evaluation

We perform latency evaluation in two different settings. In
the first setting, we use Tandem-Distil as the secondary
model within SPEED, with PaLM2-Bison as the primary
model. Note that the SPEED framework guarantees that the
outputs will be of the same quality as the primary model
PaLM2-Bison. For comparison, we use PaLM2-Bison
as a stand alone model, as well as SPEED with PaLM2-
Bison as the primary model and PaLM2-Gecko-Distil as
the secondary model as our baselines. In the second setting,
we evaluate the latency of Tandem-CE and Tandem-Distil
as stand alone models with PaLM2-Gecko, PaLM2-Otter
and PaLM2-Bison. All the evaluations are performed on
TPUv5e (Cloud).

We evaluate latency on the test sets of CNN/DailyMail (Her-
mann et al., 2015), Reddit Posts summarization (Kim et al.,
2018), and 1000 prompts from the 1 Billion Word Bench-
mark (Chelba et al., 2014). We report latency results for
both num-samples = 1 as well as 4.
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Table 2. End-to-end latency gain of various secondary models, when used within the SPEED framework with PaLM2-Bison as the primary
model. The secondary models we consider are: PaLM2-Gecko-Distil and Tandem-Distil. Since Tandem-Distil has better acceptance
rate compared to PaLM2-Gecko-Distil, e.g., for γ = 5, Tandem-Distil has, on average, 11.24% more tokens accepted compared to
PaLM2-Gecko-Distil, for each secondary model, and on each dataset, we use the optimal block length γ parameter. We consider two
settings, one where we generate a single response and another where we generate 4 responses for the given query. The third and fourth
column provide the speedup by using PaLM2-Gecko-Distil and Tandem models respectively, with respect to the PaLM2-Bison model.
The last column indicates the relative gain of using the Tandem model as the secondary model in SPEED, instead of PaLM2-Gecko-Distil.
The results clearly demonstrate the additional improvements Tandem obtains, on top of logit distillation.

Dataset num- PaLM2-Gecko-Distil Tandem-Distil Tandem-Distil
samples (baseline) (ours) (ours; relative gain)

Reddit 1 2.169× (γ = 7) 2.471× (γ = 7) 1.139×
4 1.919× (γ = 5) 2.234× (γ = 7) 1.164×

CNN/DailyMail 1 2.219× (γ = 7) 2.473× (γ = 7) 1.115×
4 1.940× (γ = 5) 2.190× (γ = 7) 1.129×

LM1B 1 2.348× (γ = 7) 2.610× (γ = 7) 1.112×
4 2.011× (γ = 5) 2.359× (γ = 7) 1.173×

Table 3. Standalone evaluation of the Tandem model (with γ = 3). The first five rows present downstream evaluations of the Tandem
Transformers on a variety of generative and ranking tasks. We see that the Tandem model substantially improves upon the performance of
stand alone PaLM2-Gecko model, and is on par with the PaLM2-Otter model. On the other hand, the latency evaluations in the last row
demonstrate that the Tandem model is about 1.16× faster than the PaLM2-Otter model.

Dataset PaLM2-Gecko Tandem-CE Tandem-Distil PaLM2-Otter PaLM2-Bison
(ours) (ours)

Generative-tasks 28.8 37.1 44.0 51.1 57.5
MBPP 4.8 13.8 21.2 20.8 30.4
WMT22-1shot-to-nonenglish 35.1 37.4 44.1 48.4 50.5
TydiQA-GoldP 55.0 65.7 69.0 69.7 73.4
SuperGLUE 62.8 78.5 78.8 79.0 81.5
Speedup over PaLM2-Bison 6.40× 2.75× 2.75× 2.36× 1×

4.3. Evaluation Results

We now present results of our evaluation of Tandem Trans-
formers.

Pretraining Metrics. Table 1 presents a comparison of
accuracy and cross entropy (CE) loss of various baselines
as well as Tandem models, with respect to both the ground
truth labels as well as the primary modelML’s predictions.
As we can see, Tandem Transformers performs better than
logit distillation, while combining logit distillation with
Tandem Transformers, further improves its performance.

Latency within SPEED. Table 2 presents results on the
latency of Tandem Transformers within the SPEED frame-
work. Specifically, we compare the speedup obtained over
the PaLM2-Bison model, by using SPEED with PaLM2-
Gecko-Distil as the secondary model vs Tandem-Distil as
the secondary model. The results clearly demonstrate the
improvements obtained by Tandem on top of distillation.

Table 7 in Appendix A presents the speedups computed only
over the decode time (i.e., excluding the query processing
time). Note that since the SPEED framework guarantees
that the outputs are of same quality as those of the primary
model, PaLM2-Bison, the latency improvements given by
the Tandem model do not have any quality tradeoffs.

Evaluation as a Standalone Model. We evaluate the Tan-
dem model as a stand alone model in its own right. Table 3
presents a comparison of both downstream evaluations on
standard downstream benchmarks, as well as latency eval-
uations. As can be seen, the Tandem model substantially
improves upon the downstream performance of the baseline
model, and is almost on par with the PaLM2-Otter model.
Detailed results presented in Tables 9 and 10 in Appendix A
show that, in some cases, the Tandem model is closer to the
PaLM2-Bison model itself. At the same time, the Tandem
model is about 1.16× times faster compared to the PaLM2-
Otter model, making it a compelling candidate for stand
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Table 4. End-to-end latency gain of various secondary models, when used within the SPEED framework with PaLM2-Bison as the primary
model. The secondary models we consider are: PaLM2-XXXS-Distil and Tandem-Distil (with PaLM2-XXXS as the secondary model).
For each secondary model, we tune the optimal block length γ parameter. We consider two settings, one where we generate a single
response and another where we generate 4 responses for the given query. The third and fourth column provide the speedup by using
PaLM2-XXXS-Distil and Tandem models respectively, with respect to the PaLM2-Bison model. The last column indicates the relative
gain of using the Tandem model as the secondary model in SPEED, instead of PaLM2-XXXS-Distil. The results clearly demonstrate the
additional improvements Tandem obtains, on top of logit distillation. Note that Tandem-Distil (with PaLM2-XXXS as the secondary
model) improves over its PaLM2-Gecko counterpart.

Dataset num- PaLM2-XXXS-Distil Tandem-Distil Tandem-Distil
samples (baseline) (ours) (ours; relative gain)

LM1B 1 2.445× (γ = 5) 3.040× (γ = 5) 1.243×
4 1.821× (γ = 5) 2.488× (γ = 5) 1.366×

Table 5. End-to-end latency speedup obtained by Tandem-Distil +
SPEED + Adaptive γ on different evaluation datasets. The second
and third columns show the speedup over the stand alone PaLM2-
Bison model and Tandem-Distil + SPEED model respectively. The
latency is evaluated for generating a single response. Adaptive
γ enables us to use much larger block lengths without losing
performance. For example, on the Reddit dataset, the optimal γ
for the Tandem model in the standard SPEED setup is 7, while
adaptive γ obtains better results with γmax = 17.

Dataset PaLM-Bison Tandem-Distil + SPEED

Reddit 2.582× (γmax = 17) 1.045×
CNN/

2.599× (γmax = 17) 1.051×DailyMail
LM1B 2.853× (γmax = 27) 1.093×

alone deployment as well.

Adaptive Block Length. We now present a way to improve
the performance of SPEED with adaptive block lengths
(Adaptive γ or AG), where after every token predicted by
the secondary model, we use a small, inexpensive router to
determine whether to continue predicting with the secondary
model, or verify the tokens generated so far with the primary
model. Table 5 presents the speedup obtained by Tandem-
Distil + SPEED + AG compared with the PaLM2-Bison
model as well as the Tandem-Distil + SPEED model. Ta-
ble 8 in Appendix A presents the speedup as measured only
over the decode component of the latency i.e., excluding
query processing time.

In Table 6, we present the number of primary model, and
secondary model runs for Tandem-Distil + SPEED and
Tandem-Distil + SPEED + Adaptive γ. The results put
forth the benefits of using an adaptive block length, since
it drastically reduces the number of secondary model runs
while slightly increasing the number of primary model runs.

Smaller Secondary Model. While Tandem-Distil show
significant improvements over PaLM2-Bison, we find that

Table 6. Primary model and secondary model runs for Tandem-
Distil and Tandem-Distil + AG on the LM1B benchmark. Note
that these results are obtained for num-samples = 1. We can see
that the number of secondary model runs have come down by 90
whereas the number of large model runs has gone up only by 3.
The results clearly showcase that an adaptive block length can
significantly cut down on the number of secondary model runs and
give non-trivial latency gains.

Tandem-Distil Tandem-Distil + AG

Primary model runs 51.53 54.67
Secondary model runs 360.73 271.63

using a smaller secondary model for Tandem Transformers
further boosts the latency improvements. Table 4 presents
results for the same where PaLM2-Gecko is replaced with
PaLM2-XXXS, with PaLM2-Bison being retained as the
primary model. As can be seen, this setting further improves
the latency gains of the Tandem model, whereas PaLM2-
XXXS-Distil improves over its PaLM2-Gecko counterpart
only for num-samples = 1, indicating that Tandem Trans-
formers provide considerably better latency, even with ex-
tremely small secondary models.

5. Conclusions and Discussion
In this work, we introduce a novel architecture, Tandem
Transformers, which combines a small autoregressive model
with a large model operating in block mode. Tandem Trans-
formers substantially boost the small model’s predictive
accuracy by allowing it to attend to representations from
the large model. In our experiments, a Tandem model com-
prising of PaLM2-Bison and PaLM2-Gecko substantially
improves over a standalone PaLM2-Gecko, and gives com-
parable performance to the PaLM2-Otter model, while be-
ing 1.16× faster than the PaLM2-Otter model. When used
within the SPEED setup as a secondary model, the distilled
Tandem PaLM2-Gecko model gives around 1.14× speedup
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over a distilled PaLM2-Gecko model. We further improve
our Tandem model through an adaptive block length pro-
cedure in SPEED and obtain around 1.22× speedup over
using PaLM2-Gecko-Distil as the secondary model.

Limitations and Future directions

• Other variants of Tandem: In our current approach,
we use the large model only through its representations
of the past tokens. Is it possible to use the large model
to also generate a plan for the future γ tokens?

• Alternative to LoRA for finetuning: The current ap-
proach for finetuning a base model for multiple down-
stream applications is through low rank adaptation
(LoRA) (Hu et al., 2021). It will be interesting to
explore whether Tandem with block length 0 can be
an effective alternative to LoRA, while reducing the
training cost substantially since backpropagation needs
to be done only for the small model.

• Adaptive γ for larger num-samples/batch-size:
While we see promising results with adaptive γ in
SPEED for num samples 1, extending it to larger num
samples seems challenging. Identifying an effective
way of determining when to continue generating with
small model vs verifying with large model, in the larger
num samples setting, is also an interesting direction of
future work.

Impact Statement
Our work provides a more computationally efficient large
language model inference solution, which we hope can bring
down carbon emissions associated with LLM inference. It
also helps with easier deployment of LLMs, which could
have potential societal consequences, that seem difficult to
predict.
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C., Fomicheva, M., et al. Findings of the wmt 2022 shared
task on quality estimation. In Proceedings of the Seventh
Conference on Machine Translation (WMT), pp. 69–99,
2022.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. arXiv preprint arXiv:2310.08461, 2023.

10

https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/1811.00783
http://arxiv.org/abs/1811.00783
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2310.17022
https://doi.org/10.48550/arXiv.2310.17022
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.18653/v1/p16-1144
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/


Tandem Transformers for Inference Efficient LLMs

A. Additional Results
In this section, we will present additional experimental results.

A.1. Decode Time Results

In Tables 7 and 8, we compare the decode time results (i.e. end-to-end time− time required to process the input prefix) of
our Tandem model and its Adaptive γ variant with the baselines.

Table 7. Decode-time-only latency gain of various secondary models, when used within the SPEED framework with PaLM2-Bison as the
primary model. The secondary models we consider are: PaLM2-Gecko-Distil and Tandem-Distil. For each secondary model, and on each
dataset, we use the optimal block length γ parameter. We consider two settings, one where we generate a single response and another
where we generate 4 responses for the given query. The third and fourth column provide the speedup by using PaLM2-Gecko-Distil and
Tandem models respectively, with respect to the PaLM2-Bison model. The last column indicates the relative gain of using the Tandem
model as the secondary model in SPEED, instead of PaLM2-Gecko-Distil. The results clearly demonstrate the additional improvements
Tandem obtains, on top of logit distillation.

Dataset num- PaLM2-Gecko-Distil Tandem-Distil Tandem-Distil
samples (baseline) (ours) (ours; relative gain)

Reddit 1 2.356× (γ = 7) 2.737× (γ = 7) 1.162×
4 2.042× (γ = 5) 2.425× (γ = 7) 1.188×

CNN/DailyMail 1 2.418× (γ = 7) 2.740× (γ = 7) 1.133×
4 2.066× (γ = 5) 2.369× (γ = 7) 1.146×

LM1B 1 2.460× (γ = 7) 2.756× (γ = 7) 1.120×
4 2.080× (γ = 5) 2.466× (γ = 7) 1.186×

Table 8. Decode-time-only latency speedup obtained by Tandem-Distil + SPEED + Adaptive γ on different evaluation datasets. The
second and third columns show the speedup over the stand alone PaLM2-Bison model and Tandem-Distil + SPEED model respectively.
The latency is evaluated for generating a single response. Adaptive γ enables us to use much larger block lengths without losing
performance. For example, on the Reddit dataset, the optimal γ for the Tandem model in the standard SPEED setup is 7, while adaptive γ
obtains better results with γmax = 17.

Dataset PaLM-Bison Tandem-Distil + SPEED

Reddit 2.885× (γmax = 17) 1.054×
CNN/DailyMail 2.908× (γmax = 17) 1.061×
LM1B 3.040× (γmax = 27) 1.103×

A.2. Detailed Performance Evaluation Results

In Table 9, we present results for our Tandem model and the compared baselines on each individual task in Generative-tasks.
Likewise, in Table 10 we present results on each individual task in SuperGLUE.

B. Inference of Tandem Transformers
Figure 3 presents the inference for Tandem Transformers without the the free token from the primary modelML.
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Table 9. Evaluation of the Tandem model on each of the Generative-tasks. We see that the Tandem model substantially improves upon the
performance of stand alone PaLM2-Gecko model, and on most datasets, is on par with the PaLM2-Otter model.

Dataset PaLM2-Gecko Tandem-CE Tandem-Distil PaLM2-Otter PaLM2-Bison
(ours) (ours)

Lambada (acc = Accuracy) 45.5 59.2 68.3 78.9 82.9
NaturalQuestions (em = Exact Match) 7.7 9.9 14.4 19.9 28.1
SQuADv2 (em) 45.3 67.8 70.2 70.3 75.4
TriviaQA (em) 36.8 36.9 51.2 68.9 77.3
WebQuestions (em) 9.0 12.0 16.0 17.6 23.8

Table 10. Evaluation of the Tandem model on each of the SuperGLUE tasks. We see that the Tandem model substantially improves upon
the performance of stand alone PaLM2-Gecko model, and on most datasets, is on par with the PaLM2-Otter model.

Dataset PaLM2-Gecko Tandem-CE Tandem-Distil PaLM2-Otter PaLM2-Bison
(ours) (ours)

BoolQ (acc) 65.4 87.8 87.6 85.5 88.8
CB (acc) 39.3 82.1 83.9 71.4 87.5
COPA (acc) 80.0 78.0 82.0 88.0 88.0
RTE (acc) 55.2 80.1 78.3 84.1 77.6
ReCoRD (acc) 85.5 87.8 87.2 91.2 92.2
WIC (acc) 47.5 50.0 50.6 49.7 50.9
WSC (acc) 75.8 81.1 80.4 86.3 86.3
MultiRC (F1) 53.9 80.8 80.1 76.1 80.5

theThe Himalayas...separating Tibetan plateau

from India

rangeThe Himalayas...mountain separating the

Tibetan plateau

Figure 3. Inference of Tandem Transformers without free token from the primary modelML. (left) First block prediction. (right) Second
block prediction. Given the same query The Himalayas are a mountain range separating the as in Figure 2, here,ML first processes this
query except the last token the. The last token is passed as an input to the secondary modelMS , which attends toML representations for
all past tokens, and produces the first block of responses Tibetan plateau autoregressively. In the second block,ML processes the Tibetan
in a block mode while plateau is passed as an input toMS , which then autoregressively generate the next block of response from India.
This eventually leads to a response of Tibetan plateau from India....
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