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ABSTRACT

Large language models (LLMs) have achieved remarkable success across a wide
range of AI applications. However, their massive parameter scales pose substan-
tial challenges for deployment in practice. Quantization, a widely adopted com-
pression technique, reduces parameter precision to as low as 1 bit, substantially
shrinking the size and storage footprint of LLMs. While existing 1-bit quanti-
zation methods have reached the theoretical lower bound of bit-width, they re-
main confined to low-level quantization and fail to fully exploit structured re-
dundancy for further compression. This is because previous works mainly focus
on element-wise weight saliency and overlook the structured distribution of the
weight saliency map. As a first attempt, this paper explores a unified frame-
work that integrates structured pruning with 1-bit quantization, leveraging the
strengths of both approaches for more effective compression. To this end, we in-
troduce a novel Structured Saliency Score metric to identify which structured units
should be pruned or quantized within the LLMs. We showcase that the proposed
metric can effectively coordinate the synergy between quantization and pruning
with a theoretical analysis. Extensive experiments on diverse LLMs and bench-
marks demonstrate that our approach not only surpasses existing binarization-
based methods but also achieves memory savings while maintaining competitive
performance.

1 INTRODUCTION

Large language models (LLMs) have revolutionized artificial intelligence with remarkable capabili-
ties in natural language processing and beyond, including applications in vision-language and multi-
modal reasoning (Zhu et al., 2024; Wang et al., 2024). However, the billions of parameters contained
in modern LLMs lead to severe storage demands and computational overhead (Zhao et al., 2023),
posing significant challenges for efficient deployment, especially in resource-constrained environ-
ments. As a result, developing effective compression techniques for LLMs has become a critical
research direction.

Existing approaches to LLM compression largely fall into three categories: knowledge distilla-
tion (Gu et al., 2023; Agarwal et al., 2023; Ko et al., 2024; Padmanabhan et al., 2024), structured
or unstructured pruning (An et al., 2024; Song et al., 2024; Ashkboos et al., 2024; Zhong et al.,
2024; Ma et al., 2023; Sun et al., 2023; Frantar & Alistarh, 2023), and quantization (Frantar et al.,
2022; Chee et al., 2024; Egiazarian et al., 2024; Zhang et al., 2024). Among them, quantization has
emerged as one of the most effective strategies, substantially reducing model size and GPU memory
footprint. In particular, binarization has recently gained momentum, compressing weights to just 1
bit per parameter.

Despite impressive results, recent binary post-training quantization (PTQ) methods (PB-LLM (Yuan
et al., 2024), BiLLM (Huang et al., 2024a), STBLLM (Dong et al., 2025), ARB-LLM (Li et al.,
2025)) remain confined to fine-grained weight discretization and largely ignore structured saliency.
For example, PB-LLM examines both magnitude- and Hessian-based criteria and empirically fa-
vors the magnitude heuristic. EasyQuant (Tang et al., 2023) instead employs an nσ rule to select
salient weights. Both lines of work overlook the distributional characteristics of saliency map since
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they adopt the element-wise saliency metric. Although SpQR (Dettmers et al., 2023), BiLLM,
STBLLM, and ARB-LLM recognize that salient weights exhibit structured patterns, their computa-
tion of structured saliency typically proceeds by element-wise scoring followed by within-structure
summation. Such additive measures can obscure intra-unit heterogeneity and interactions, thereby
failing to faithfully capture the true structured saliency. Importantly, they fail to address structured
redundancy that persists even after binarization, limiting the full potential of extreme compression.

As shown in Figure 1a and 1b, Magnitude-based and Hessian-based methods produce indistinct
structured patterns regarding salient weights of LLM units. To this end, we introduce the Struc-
tured Saliency Score (SSS), a unified metric that jointly identifies the weight saliency and structured
redundancy. The result is a clear saliency map that guides both quantization and pruning (See Fig-
ure 1c). In addition, our theoretical analysis supports that the SSS metric can effectively synergize
1-bit quantization and structured pruning. These findings suggest that structured pruning and bina-
rization are not competing strategies but rather complementary techniques that can be unified for
more effective compression.

(a) Magnitude-based distribution (b) Hessian-based distribution (c) SSS-based distribution (Ours)

Figure 1: Distribution of top 5% salient weights in weight matrix. We take the down proj layer
of the MLP as an example and apply different criteria to evaluate weight saliency. In the figure, the
horizontal axis corresponds to the column indices of the weight matrix and the vertical axis corre-
sponds to the row indices. The top 5% of weights with the highest saliency scores are highlighted
in red. (a) The magnitude criterion rarely reflects the structured regularity in the salient weights. (b)
Using the Hessian criterion, the salient weights exhibit an indistinct structured pattern unfavorable
to structured pruning. (c) Our SSS metric produces a clearer saliency map that enables structured
pruning after quantization. (Zoom in if necessary)

In this work, we propose a unified framework that integrates structured pruning with 1-bit quantiza-
tion. By leveraging both forms of redundancy—structured and precision—we push the boundaries
of extreme LLM compression while preserving accuracy. Our main contributions are as follows:

• We propose the first framework that synergistically combines structured pruning with 1-bit
quantization, exploiting their complementary strengths for extreme LLM compression.

• We design a Structured Saliency Score (SSS) metric that not only identifies salient weights
but also accounts for their structured distribution, guiding pruning and quantization in a
balanced and effective manner.

• Extensive experiments across diverse LLM architectures and benchmarks demonstrate that
our method consistently outperforms state-of-the-art binarization approaches, achieving
substantial memory savings while maintaining competitive performance.

2 RELATED WORK

LLM Quantization. Quantization reduces model parameters from full precision to lower-bit rep-
resentations, thereby decreasing storage requirements and memory usage during inference. As an
efficient model compression strategy, it has become one of the most widely used compression strate-
gies for LLMs. Broadly, quantization approaches can be divided into Quantization-Aware Training
(QAT) and Post-Training Quantization (PTQ).

QAT (Liu et al., 2024b; Chen et al., 2024; Wang et al., 2025) incorporates quantization into the
training process, allowing the LLMs to adapt to low-bit representations during optimization. While
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effective, QAT requires retraining large models, which is prohibitively costly for LLMs. PTQ meth-
ods (Frantar et al., 2022; Xiao et al., 2023; Lin et al., 2024; Huang et al., 2024b) instead quan-
tize pre-trained LLMs directly, offering significantly lower computational overhead. For example,
GPTQ (Frantar et al., 2022) introduces a one-shot PTQ method based on approximate second-order
information, enabling 3–4 bit compression. AWQ (Lin et al., 2024) proposes protecting salient
weights and searching for per-channel scaling factors based on activations. AMQ (Lee et al., 2025)
proposes an automated framework that allocates different quantization bit widths across different
layers, thereby achieving an optimal trade-off between accuracy and memory usage.

More recently, efforts have pushed toward 1-bit quantization for extreme compression. PB-
LLM (Yuan et al., 2024), BiLLM (Huang et al., 2024a), STBLLM (Dong et al., 2025), and ARB-
LLM (Li et al., 2025) allocate higher precision or refined search strategies to salient weights, achiev-
ing stronger performance under binarization. However, these methods remain restricted to fine-
grained weight discretization. They do not address structured redundancy, which continues to exist
even after binarization—a limitation our work aims to overcome.

LLM Pruning. Pruning eliminates redundant parameters in neural networks, and for LLMs, meth-
ods can be broadly categorized into unstructured and structured pruning.

Unstructured pruning removes individual weights from the matrix, achieving high sparsity while
largely preserving accuracy. Examples include SparseGPT (Frantar & Alistarh, 2023), which ap-
plies the OBS technique (Hassibi et al., 1993) to prune GPT-family models, and Wanda (Sun et al.,
2023), which removes weights with the smallest magnitudes scaled by their input activations. Al-
phapruning (Lu et al., 2024) leverages Heavy-Tailed Self-Regularization theory and spectral shape
metrics to guide layer-wise sparsity allocation for unstructured pruning. However, unstructured
pruning does not change matrix dimensions and thus yields limited inference acceleration. Acceler-
ation benefits are often hardware-dependent, e.g., relying heavily on NVIDIA Ampere GPU support
for 2 : 4 or 4 : 8 sparsity (Mishra et al., 2021).

Structured pruning, in contrast, removes entire components such as attention heads, neurons,
or channels, which directly reduces both model size and computational cost, making it more
deployment-friendly. SliceGPT (Ashkboos et al., 2024) employs embedding dimensionality reduc-
tion through weight slicing, while SlimLLM (Guo et al., 2025) introduces a structured framework
that explicitly evaluates attention head and channel importance. Instruction-following pruning (Hou
et al., 2025) employs a sparse mask predictor and enables input-dependent structured pruning by dy-
namically selecting structured units conditioned on user instructions.

Although structured pruning offers practical acceleration, existing methods operate on full-precision
models. Their benefits have not yet been explored in conjunction with extreme low-bit quantization.
Our work addresses this gap by unifying structured pruning and 1-bit quantization within a single
framework, enabling both structured and precision-based compression for LLMs.

3 METHOD

3.1 1-BIT QUANTIZATION

1-bit quantization is a model compression method that extremely quantizes the parameters of LLMs
from full-precision weight W ∈ Rn×m to binary values Q ∈ {−1, 1}. To approximate the original
weight, the 1-bit quantization objective function can be expressed as:

argmin
α,Q
∥W − αQ∥2F , (1)

where α is a scaling factor. The optimal solutions for α and Q are given by α =
∥W∥l1

n×k and

Q = sgn(W) (Rastegari et al., 2016), where sgn(·) represents sgn(x) =
{
+1, x ≥ 0,

−1, x < 0
.

Since some salient weights are critical to the performance of the LLMs, many quantization ap-
proaches divide the original weights W into the salient and non-salient parts and adopt different
quantization strategies for the two groups. Hence, the optimization problem can be reformulated as:

argmin ∥W − αsalQsal ∪ αunsQuns∥2F . (2)
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In practice, it is critical to identify the salient parts within the weight matrix regarding 1-bit quantiza-
tion. We analyze the saliency distribution within LLMs and discover that the weights’ sensitive val-
ues are predominantly concentrated in specific columns. In other words, the granularity of saliency
distribution is token-level. Therefore, we determine saliency through a per-column segmentation on
the whole weight matrix, as shown in Figure 1.

3.2 STRUCTURED SALIENCY METRIC

Point-Wise Weight Saliency. Many quantization approaches, such as BiLLM, DB-LLM, STBLLM,
and ARB-LLM, adopt the Hessian metric to measure the saliency score of individual weights. An-
other approach for point-wise saliency is Wanda (Sun et al., 2023):

Si,j = |Wi,j |∥Xj∥2, (3)

where Wi,j represents the value at i-th row and j-th column of the weight matrix, | · | is the absolute
value operator, and ∥Xj∥2 is the l2-norm of j-th column input activation X ∈ Rr×m.

In these methods, the saliency of a structured unit (e.g., columns of weight matrices) is typically
computed as the sum of the saliency scores of its constituent elements. However, when a unit
contains only a few highly influential elements and the majority contribute negligibly, summing
element-wise saliency dilutes the impact of the critical elements. As a result, the overall saliency of
the column is systematically overwhelmed, failing to reflect its true contribution. In Appendix A.2,
we present a theoretical analysis that highlights the limitations of summation-based methods for
evaluating structured saliency.

Structured Saliency Score. Beyond point-wise saliency, we aim to identify the structured distribu-
tion of the weight matrix, which seamlessly enables structured pruning after 1-bit quantization. To
this end, we introduce the Structured Saliency Score (SSS) to evaluate structured saliency, which
directly leverages structured relevance to determine structured saliency:

Sj = σ(|W:,j |)∥Xj∥2, (4)

where σ(·) denotes the calculation of the standard deviation. The rationale for our SSS metric is
twofold: First, our SSS metric explicitly operates at a structural level, treating each weight column
W:,j as a cohesive unit. This approach allows us to assess the collective importance of an entire fea-
ture channel, moving beyond methods that simply aggregate the scores of individual weights within
it. Second, our metric uses standard deviation, rather than magnitude, as a proxy for discriminative
power. The underlying motivation is that a high standard deviation signifies large variations among
the weights in a column. This implies that the corresponding feature channel applies a complex
and specialized transformation, making it highly important. Conversely, a low standard deviation
indicates that the weights are nearly uniform, suggesting the feature channel is less informative and
therefore redundant.

Our proposed metric possesses two key properties: 1. Consistency with the number of salient
elements. 2. Consistency with pruning loss. Thus, the proposed metric can be applied not only
to identifying salient parts in 1-bit quantization but also to assessing structured unit’s salience in
structured pruning. A formal mathematical proof of two key properties is presented in Appendix A.1.
In addition, we conduct an ablation study in Table 6 to validate the design of Equation (4).

3.3 QUANTIZATION

Non-Salient Part. We use Equation (4) to divide the weight into salient Wsal and non-salient
Wuns parts. For the non-salient part, a common approach is to further partition it according to the
weight distribution and then quantize each set separately (Huang et al., 2024a; Fang et al., 2020;
Zhou et al., 2017; Zhao et al., 2019). Thus, we define the quantization error for non-salient part as:

arg min
{pγ}γ∈G

∑
γ∈G
∥Wpγ

uns − αγ
unsQ

γ
uns∥2F , (5)

where W
pγ
uns denote the sub-set of non-salient part partitioned by the break-point pγ . Qγ

uns and
αγ
uns represent the binarized weights and the scaling factors, respectively. The detailed solution of

break-points {pγ}γ∈G is provided in Appendix B.2.
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Salient Part. For the salient parts, some methods finetune the quantization results by additionally
introducing bias compensation (Liu et al., 2024a; Nagel et al., 2019; Li et al., 2021; Cai et al., 2020),
which can be expressed as:

Wsal = α̂salQ̂sal +Wbias. (6)

At first stage, we optimize Equation (2) to obtain initial quantization results Q̂sal and α̂sal. Then,
Wbias is introduced as bias compensation while Q̂sal and α̂sal are fixed. Formally, this procedure
is defined as follows:

αc,Qc = arg min
αc,Qc

∥∥∥Wsal − α̂salQ̂sal − αcQc

∥∥∥2
F
, (7)

where Wbias = αcQc. We use the approach in (Huang et al., 2024a) for optimization. Similar to
non-salient part, we divide the salient weight matrix into sub-regions and quantize them separately.

Total Bits Overhead. Our compression scheme introduces overhead from two primary sources: the
representation of weights with their associated parameters and mapping cost inherent to the grouping
strategy. First, for the parameter bit, bias compensation (Equation (6)) results in an average storage
cost per weight: Nbit = 1+ rsal, where 1 is for the binary weight and rsal represents the proportion
of salient weight. Incorporating with structured pruning, where ϱ is the pruning ratio, the parameter
cost becomes: Ñbit = (1 − ϱ) · Nbit. Second, our grouping strategy (Equation (5)) introduces a
mapping cost. An indexing scheme (Chan & Ioannidis, 1998) is required to associate each weight
with its corresponding group, which incurs a storage overhead of Nmap = ⌈log2(|G|)⌉ bits, where
|G| is the number of groups. Therefore, the overall bit cost of our method is:

Ntotal = Ñbit +Nmap = (1− ϱ) · (1 + rsal) + ⌈log2(|G|)⌉. (8)

Some studies (e.g., BiLLM and STBLLM) argue that the additional storage bits Nmap do not affect
the acceleration of binary quantization and are therefore excluded from the total bit. In contrast, PB-
LLM suggests that storage bits can be further compressed. In our work, all experiments explicitly
report the additional storage bits to ensure a fair comparison.

3.4 STRUCTURED PRUNING

Pruning Attention Layer. Modern LLMs, such as the LLaMA family and Vicuna, employ Multi-
Head Attention (MHA) (Vaswani et al., 2017), where the outputs of parallel attention heads are
concatenated and linearly transformed by a final output projection layer. We leverage this
architecture for efficient structured pruning.

Prune
headdim

outdim

inputdim

Nheads

Output_proj Key/Query/Value_proj

Nheads outdim

1 2 N-1 N

1

2

N-1

N

Prune

headdim

inputdim
Corresponding

Figure 2: The detailed attention head pruning process. We denote the sub-block in the output pro-
jection layer corresponding to an attention head as a ‘head’.

Instead of assessing each head’s query, key, and value projections, we use the
output projection layer as a proxy for attention head importance. The rationale is that
this layer directly reflects the contribution of each attention head to the final output. A sub-block
of the output projection matrix with a low saliency score indicates that its correspond-
ing attention head has a negligible impact. Our method calculates the saliency score of each
sub-block in the output projection layer using Equation (22). Subsequently, we prune the
low-saliency sub-block, which further allows for the removal of the corresponding attention head,
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as shown in Figure 2. This principle extends naturally to models using Grouped-Query Attention
(GQA) (Ainslie et al., 2023), such as LLaMA2-70B and LLaMA3-8B. For GQA, the pruning
granularity shifts from individual heads to groups of heads.

Pruning MLP Layer. We apply a similar structured pruning principle to the MLP layers. In the
common MLP architecture, the gate proj and up proj layers expand the network’s intermedi-
ate dimension, which is then projected back by the down proj layer. Analogous to our approach
for attention heads, we use the down proj layer as a proxy to determine the saliency of the in-
termediate neurons. We compute the saliency of down proj layer by Equation (4) and prune the
columns with the lowest scores. Subsequently, the corresponding rows from both the up proj and
gate proj are removed.

3.5 TOWARDS EXTREME COMPRESSION: 1-BIT QUANTIZATION MEETS STRUCTURED
PRUNING

This work achieves a synergy between 1-bit quantization and structured pruning by introducing the
Structured Saliency Score (SSS) metric. Our framework leverages the complementary strengths of
these two strategies for extreme LLM compression. The overall pipeline is illustrated in Figure 3.

Structured Saliency Calculation. First, we employ the proposed SSS criterion (Section 3.2) to
evaluate the importance scores of all structural units within LLMs. As discussed in Section 3.4,
in attention layers, we score attention heads by evaluating their corresponding sub-blocks in the
output projection matrix. In MLP layers, we evaluate intermediate neurons by assessing
their corresponding columns in the down proj matrix.

Structure-Aware Quantization. Based on the structured saliency map, we divide the weight ma-
trices into salient and non-salient sub-regions, denoted by G and V . We then binarize G and V
seperately, where bias compensation is additionally applied to G. In the subsequent update step,
we apply block-wise error compensation (Frantar & Alistarh, 2023; Frantar et al., 2022) to preserve
performance following post-training quantization.

Post-Quantization Pruning. Finally, given the pruning ratio, we prune structured units (i.e., atten-
tion heads and rows&columns of weight matrices) of the quantized model with low SSS score. We
summarize the workflow of the compression framework and the pseudo code of implementation in
Appendix B.1 and Appendix B.2, respectively.

W X columnS

structured pruning

Quantized output_proj

prune

prune

output_proj

prune

key/query/value_proj

Attention  Layer

MLP  Layer

Quantized down_proj

prune

down_proj gate/up_proj

prune

columnS

hS

down

columnSoutput

hS

Calculate Structured Saliency Score 

( ):, 2j j j=S W X

( )( ):, 2hh hdiag=S W X

Preliminary  Compression Subsequent Compression

All weight matrices in 
a block are quantized

Extreme  Compression Framework 

1-bit quantization

Salient part

Unsalient part

divide quantize

compensation

divide quantize

Quantized weight

Figure 3: An overview of our extreme compression framework.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experimental Setup. We evaluate the extreme compression method (Section 3.5) to various LLMs,
including LLaMA series (Touvron et al., 2023a;b; Meta, 2024) and Vicuna (Chiang et al., 2023).
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Experiments on the larger 65B and 70B models are conducted on 80GB NVIDIA A100 GPUs,
while smaller models (e.g., 7B and 13B) are evaluated on 40GB NVIDIA L20 GPUs.

Datasets and Evaluation. The 128 samples from the C4 training dataset are randomly selected as
the calibration set. We evaluate the perplexity of compressed models on the WikiText2 test dataset.
Furthermore, we report the zero-shot performance on eight benchmark datasets: PIQA (Bisk et al.,
2020); WinoGrande (Sakaguchi et al., 2021); HellaSwag (Zellers et al., 2019); ARC-e and ARC-
c (Clark et al., 2018); OBQA (Mihaylov et al., 2018); BoolQ (Clark et al., 2019); RTE (Chakrabarty
et al., 2021).

Baselines. We compare our proposed approach with other 1-bit quantization methods: PB-
LLM (Shang et al., 2023), BiLLM (Huang et al., 2024a) , STBLLM (Dong et al., 2025), and ARB-
LLM (Li et al., 2025). Other low-bit PTQ algorithms, such as GPTQ (Frantar et al., 2022), and
PB-LLM (Shang et al., 2023) are also compared. Among these methods, some quantization meth-
ods use different storage bit widths. To ensure fair comparison, we conduct comparative experiments
accordingly with the same storage bits. To compare quantization methods under the 1-bit storage bit,
our method follows the grouping strategy of ARB-LLM, partitioning both the salient and non-salient
parts into two groups. For the 2-bit storage setting, we make full use of the available storage bits by
dividing the non-salient part into four groups. More details of experimental settings is provided in
Appendix C.1-Appendix C.3.

Table 1: WikiText2 perplexity of quantized LLaMA family models.

Method Srorage Bits 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B 3-8B

FULL PRECISION - 5.68 5.09 4.10 3.53 5.47 4.88 3.31 6.13
GPTQ - 129.19 20.44 13.01 8.66 52.22 23.63 8.78 -

PB-LLM 1.00 82.76 36.60 23.72 12.81 66.41 151.09 28.37 73.08
BILLM 1.00 41.04 14.70 10.17 8.49 32.29 16.67 8.41 54.93

ARB-LLM 1.00 14.86 10.40 7.82 6.56 15.57 12.15 6.16 25.69
OURS 1.00 14.09 8.69 7.03 6.17 12.04 11.45 6.08 22.03

STBLLM 2.00 12.43 8.35 6.51 5.72 11.21 9.99 5.76 22.02
OURS 2.00 8.64 6.71 5.68 4.96 7.99 7.08 5.21 19.20

4.2 RESULTS ON LLMS

Table 2: Average bits per parameter of different quan-
tization approaches.

Method LLaMA1 LLaMA2 LLaMA3
GPTQ 2.00 2.00 2.00

PB-LLM 1.70 1.70 1.70
BiLLM 1.09 1.08 1.06

STBLLM 1.09 1.08 1.06
ARB-LLM 1.09 1.08 1.06

Ours 1.00 1.00 1.00

Perplexity Results. We evaluate the per-
formance of various quantization meth-
ods on the LLaMA family (LLaMA1,
LLaMA2, LLaMA3) under the block size
of 128. The WikiText2 performance re-
sults are presented in Table 1. Since
salient weights exist, some 1-bit quantiza-
tion methods cannot strictly adhere to the
target average of 1 bit per parameter. In
contrast, our approach combines quantiza-
tion with structured pruning, ensuring that
the parameter bit-width truly reaches 1 bit
as shown in Table 2. Moreover, our method achieves superior performance on WikiText2, outper-
forming not only non-1-bit approaches (e.g., GPTQ and PB-LLM) but also other 1-bit quantization
methods. Moreover, for LLaMA3-8B, our method requires only 1-bit of additional storage while
achieving performance comparable to STBLLM with 2 storage bits.

Zero-shot Tasks Results. To further evaluate the performance of different 1-bit quantization meth-
ods, we conduct zero-shot experiments on eight datasets as shown in Table 3. Here we present the
results on LLaMA2-7B and LLaMA3-8B, while more results for other LLMs are available in Ap-
pendix C.4. For LLaMA2-7B, our method achieves the highest accuracy across all eight downstream
tasks. Furthermore, the experimental results on the LLaMA3-8B model show that although all meth-
ods suffer from a certain degree of performance degradation, our method consistently surpasses the
others. Notably, even at 1-bit storage overhead, our method still achieves better performance than
STBLLM with 2 storage bits.
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Table 3: Zero-shot performance of the quantizated LLaMA family.

Model Method Storage Bits Winogrande Piqa Hellaswag Arc-e Arc-c OBQA BoolQ RTE Avg

LLAMA2-7B

FULLPRECISION - 69.06 79.11 76.01 74.58 46.25 44.20 77.68 62.82 66.21
BILLM 1.00 53.04 58.32 36.50 37.21 22.78 28.60 57.25 50.54 43.03

ARBLLM 1.00 58.48 67.36 48.81 47.64 27.56 29.00 68.96 53.43 50.17
OURS 1.00 61.64 70.51 55.18 53.54 29.61 31.00 67.52 57.40 53.30

STBLLM 2.00 62.27 71.65 57.22 54.38 31.48 33.20 65.35 57.04 54.07
OURS 2.00 63.93 75.30 66.91 63.89 36.26 39.00 69.14 53.43 58.48

LLAMA3-8B

FULLPRECISION - 73.24 80.74 79.16 77.57 53.24 44.80 80.98 68.59 69.79
BILLM 1.00 53.51 55.22 34.17 34.01 20.48 25.80 52.81 51.62 40.95

ARBLLM 1.00 58.96 64.04 46.84 47.01 28.24 31.20 67.03 53.07 49.55
OURS 1.00 56.12 69.64 47.60 52.02 28.50 31.20 65.41 52.71 50.40

STBLLM 2.00 58.72 58.11 54.24 37.16 24.66 32.20 66.91 56.32 48.54
OURS 2.00 58.01 69.42 60.05 54.76 32.34 32.60 46.51 53.07 50.84

Sub-1-bit Compression. By integrating structured pruning with 1-bit quantization, our framework
achieves extreme, sub-1-bit compression rates. We compare our approach with STBLLM, another
state-of-the-art extreme compression method, under aggressive target bit rates of 0.8 and 0.7 bits per
parameter. The results in Table 4 show that the performance of our method consistently surpasses
STBLLM in this highly compressed regime.

Table 4: Zero-shot performance of sub-1-bit compression.

Model Method Weight Bits Winogrande Piqa Hellaswag Arc-e Arc-c OBQA BoolQ RTE Avg

LLAMA1-13B

STBLLM 0.8 67.80 73.12 64.73 57.66 32.42 39.00 67.68 58.48 57.61
OURS 0.8 68.67 75.35 67.50 59.34 35.24 37.20 67.65 55.23 58.27

STBLLM 0.7 66.61 71.60 60.80 56.40 31.48 35.40 65.26 53.79 55.17
OURS 0.7 66.63 73.39 61.84 54.46 33.79 35.40 68.01 53.07 55.78

LLAMA2-13B

STBLLM 0.8 61.72 70.35 58.85 57.66 33.62 36.40 68.13 60.29 55.88
OURS 0.8 64.80 73.99 64.19 61.20 38.14 39.80 67.95 57.04 58.39

STBLLM 0.7 57.38 66.32 47.12 46.09 26.54 31.00 62.32 53.07 48.73
OURS 0.7 57.70 67.41 51.50 49.78 29.18 35.20 64.10 52.35 50.78

Table 5: Memory (GB) comparison between FP16, BiLLM,
STBLLM and Ours. FP16 denotes the overall memory re-
quired by the to-be-compressed weight matrices.

Method LLaMA1-7B LLaMA1-13B LLaMA2-7B LLaMA2-13B
FP16 12.06 23.63 12.06 23.63

BiLLM 2.24 4.41 2.22 4.39
STBLLM 2.43 4.77 2.41 4.75

Ours 2.15 4.23 2.15 4.24

Memory Comparison. Memory us-
age is a key metric for evaluating
compression methods. Thus, we
compare the memory footprint of
different approaches on LLaMA1-
7B/13B and LLaMA2-7B/13B, as
summarized in Table 5. We com-
pare the overall memory footprint of
compressed weight matrices for dif-
ferent methods. Our method lever-
ages structured pruning to directly shrink the weight matrix, the group and column bitmap, thereby
achieving a significant reduction in memory footprint. The detailed formulas for calculating the
memory usage of each method are provided in the Appendix D.

4.3 ABLATION STUDIES

Table 6: Zero-shot performance of different saliency metric.

Model Method Winogrande Piqa Hellaswag Arc-e Arc-c OBQA BoolQ RTE Avg

LLAMA1-7B
WANDA 56.91 67.57 44.62 53.28 30.20 32.40 64.65 51.99 50.20

HESSIAN 58.17 64.20 46.44 41.04 25.60 32.00 64.33 53.79 48.20
OURS 59.35 68.72 54.68 51.26 28.67 36.60 67.68 58.84 53.23

LLAMA1-13B
WANDA 67.88 75.98 66.16 61.15 35.32 38.80 69.30 54.15 58.48

HESSIAN 65.11 74.70 65.65 60.69 35.92 37.40 71.65 57.76 58.61
OURS 67.48 76.12 65.76 63.93 36.69 37.40 72.05 57.04 59.55

Different Saliency Metric. Our saliency metric adopts a structured evaluation strategy, enabling
direct assessment of the saliency of structured units. In contrast, prior 1-bit quantization approaches
typically compute element-wise saliency scores such as Wanda and Hessian and then aggregate them
to obtain the saliency of a structured unit, leading to the loss of structured information. To assess
this difference, we conduct an ablation study to use different metrics and evaluated on LLaMA1-7B

8
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and LLaMA1-13B. As shown in Table 6, our structured saliency criterion consistently outperforms
additive metrics. These results further validate the effectiveness of our structured metric in capturing
the saliency of structured units.

Grouping Strategy. Different quantization methods adopt distinct grouping strategies for salient
and non-salient parts. BiLLM and STBLLM partition only the non-salient part into two and three
groups, respectively, whereas ARB-LLM divides both salient and non-salient parts into two groups.
In our ablation study, we validate our method to follow the same grouping schemes as these base-
lines. The results shown in Table 7 demonstrate that our approach consistently achieves superior
performance when adopting the same grouping strategies as compared methods. Notably, even when
the salient region is not partitioned, our method still outperforms ARB-LLM. This demonstrates that
our approach does not rely on a grouping strategy but consistently delivers better performance.

Table 7: Different grouping strategies comparison.

Method Salient Part Unsalient Part LLaMA1-7B LLaMA1-13B LLaMA2-7B LLaMA2-13B
BILLM 1 2 41.04 15.20 32.29 16.67
OURS 1 2 14.94 9.70 15.18 11.84

STBLLM 1 3 12.43 8.35 11.21 9.99
OURS 1 3 9.61 7.21 9.26 7.79

ARBLLM 2 2 14.86 10.40 15.57 12.15
OURS 2 2 14.09 8.69 12.04 11.45

Different Calibration Samples and Calibration Datasets. Since both our criterion and the
Hessian-based criterion rely on the input, we aim to further investigate whether our method can
maintain robustness and consistently outperform other 1-bit quantization approaches under vary-
ing calibration sample number on LLaMA2-7B. In Figure 4a, as the calibration sample number
increases, ARB-LLM exhibits a performance drop at 256 samples and BiLLM exhibits considerable
performance fluctuations, whereas the performance of our method improves with increasing sample
number, demonstrating strong robustness. Furthermore, we evaluate the influence of different cal-
ibration datasets on LLaMA2-7B, with experiments conducted on WikiText2 and C4 in Figure 4b
and 4c. The results demonstrate that our method achieves stable performance across both WikiText2
and C4.

(a) Different Calibration Samples (b) Calibration WikiText2 (c) Calibration C4

Figure 4: (a) The PPL results of different calibration samples. (b) Using WikiText2 training dataset
as calibration dataset, the PPL results of WikiText2 and C4 test dataset. (c) Using C4 training dataset
as calibration dataset, the PPL results of WikiText2 and C4 test dataset.

5 CONCLUSION

In this paper, we propose an extreme compression framework that integrates structured pruning with
1-bit quantization, enabling aggressive compression of LLMs and maximally eliminating redun-
dancy. To this end, we propose a Structured Saliency Score (SSS) metric that serves as a unified
criterion for both 1-bit quantization and structured pruning, enabling the identification of salient ele-
ments during quantization and the evaluation of structured unit saliency in structured pruning. More-
over, we evaluate our compression framework across various LLM architectures and benchmarks,
comparing it against existing 1-bit quantization approaches. The experiment results demonstrate
that our method consistently achieves superior performance to other 1-bit quantization approaches.

9
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APPENDIX OVERVIEW

• Section A: Theoretical Analysis
• Section B: Method Implementation Details
• Section C: More Experiment Results
• Section D: Memory Computation Formulations
• Section E: LLMs Usage Statement

A THEORETICAL ANALYSIS

A.1 PROOF OF PROPERTIES

Property 1. Consistency with the number of salient elements.

Proof. For an arbitrary threshold τ , the number of salient elements in column j can be obtained by:

Cj(τ) =

n∑
i=1

1{Si,j ≥ τ} =
n∑

i=1

1{|Wi,j | ≥ τ
∥Xj∥2

}. (9)

The weight distribution in LLMs can be well-approximated by independent Gaussian variable (Si
et al., 2025; Thamm et al., 2022), i.e. Wi,j ∼ (0, σg), i ∈ (1, · · · , n). Therefore, the elements of
the jth column |Wi,j | follow a approximated half-Gaussian distribution:

|Wi,j | = σjZ =

√
1− 2

π
σgZ, (10)

where Z denote a standard half-normal random variable (i.e., the non-negative part of the Gaus-
sian distribution N (0, 1)), which is independent of the column index j. The scale parameter
σj = σ(|W:,j |) is naturally proportional to σ(Wi,j) and σ denotes the operation of computing
the standard deviation. The probability of an element being salient can be expressed as:

pj(τ) = P
(
|Wi,j | ≥

τ

∥Xj∥2

)
= P

(
Z ≥ τ

σj∥Xj∥2

)
= F̄

(
τ

σj∥Xj∥2

)
, (11)

where F̄ (u) = P(Z ≥ u) denote the tail distribution function of the half-normal distribution. Since
F̄ (u) is a non-negative truncation of the symmetric Gaussian distribution, it retains the property
of log-concavity. Consequently, the saliency probability pj(τ) increases monotonically with the
σj∥Xj∥2. The expected number of salient weights in column j is given by:

E[Cj(τ)] = n · pj(τ) = nF̄
(

τ
σj∥Xj∥2

)
. (12)

Equation (12) implies that E[Cj(τ)] is also monotonically increasing with σj∥Xj∥2. Furthermore,
we naturally define the column-level saliency metric as:

Sj = σj∥Xj∥2 = σ(|W:,j |) · ∥Xj∥2. (13)

Therefore, the number of salient element E[Cj(τ)] monotonically increases with Sj . Ranking
columns by Sj is equivalent to ranking them by the expected number of salient elements, thereby
we can conclude that our proposed metric is consistent with the number of salient elements.
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Property 2. Consistency with pruning loss.

Proof. When the j-th column is pruned (i.e., approximated as zero), the output change can be ex-
pressed as:

∆Y = Y − (W −W:,je
T
j )X = W:,jX

T
j , (14)

and its Frobenius norm satisfies:

∥∆Y∥2F = ∥W:,jX
T
j ∥2F = ∥W:,j∥22 · ∥Xj∥22. (15)

We compute the expectation of the output change after pruning:

E(∥∆Y∥2F ) = E(∥W:,j∥22) · ∥Xj∥22. (16)

E(∥W:,j∥22) can be represented as:

E(∥W:,j∥22) = E(∥|W:,j |∥22) =
n∑

i=1

E(|Wi,j |2) = nσ2
j , (17)

Therefore, according to Equation (16) and (17), we can obtain:

E(∥∆Y∥2F ) = nσ(|W:,j |)2 · ∥Xj∥22 ∝ S2
j . (18)

Therefore, this establishes Sj as a consistent and principled measure of structured saliency, making
it well-suited as a criterion for structured pruning.

A.2 LIMITATION OF ELEMENT-WISE SUMMATION

A straightforward alternative to many salience metrics are directly summing the element-wise
saliency scores within each column:

Ssum
j = ∥Xj∥2

n∑
i=1

∥Wi,j∥2. (19)

However, this element-wise summation metric does not maintain consistency with the number of
salient elements. We can prove that element-wise summation is not monotonically aligned with the
actual number of salient elements.

Inconsistency with the number of salient elements. By constructing a counterexample, we show
that the element-wise summation criterion fails to align with the number of salient elements.

Proof. Considering two columns (a peaky column ϑ and a uniform column ε) with identical l2
norm ∥Xϑ∥2 = ∥Xε∥2 = δ, the elements of the two columns respectively exhibit the following
conditions:

column p : W0,ϑ = 1, W1:n,ϑ = 0,

column u : Wi,ε = 1/
√
n, ∀i.

Therefore, their corresponding summation metrics satisfy:

Ssum
ϑ = δ < Ssum

ε =
√
nδ. (20)

Equation (20) shows that column ε contains more salient elements than column ϑ. Nevertheless,
∃ t ∈

(
δ√
n
, δ

]
, t represents the threshold of salient elements. The number of salient elements can

be calculate:
Cϑ(τ) = 1 > Cε(τ) = 0, (21)

where Cj(τ) is the number of salient elements in jth column. Equation (21) indicates that column ε
indeed contains more salient elements. Equation (20) and Equation (21) lead to conflicting conclu-
sions. Thus, we can conclude that the element-wise summation fails to maintain consistency with
the expected number of salient elements.
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A.3 EXPAND PRUNING METRIC

In Equation (4), we only presented the criterion for determining the saliency of a single column.
However, structured pruning in attention layer is typically performed at the attention-head level.
Therefore, we extend this criterion to assess the saliency of attention heads and further prove that it
remains consistent with pruning loss as follow:

Sh = σ(|W:,h|diag(∥X:,h∥F )), (22)

Property 2. Consistency with pruning loss.

Proof. The pruning loss can be expressed as:

∆Y = W:,hX
T
:,h =

∑
j∈h

W:,jX
T
:,j . (23)

and its Frobenius norm ∥∆Y∥F satisfies:

∥∆Y∥F = ∥
∑
j∈h

W:,jX
T
:,j∥F . (24)

By the triangle inequality of the Frobenius norm, we can obtain the formulation:

∥∆Y∥F = ∥
∑
j∈h

W:,jX
T
:,j∥F ≤

∑
j∈h

∣∣W:,jX
T
:,j

∣∣
F
=

∑
j∈h

∥W:,j∥F ∥XT
:,j∥F . (25)

By the Cauchy–Schwarz inequality, we can obtain the Formulation (26):

∥∆Y∥2F ≤

∑
j∈h

∥W:,j∥F ∥XT
:,j∥F

2

≤ h
∑
j∈h

∥W:,j∥2F ∥XT
:,j∥2F (26)

Therefore,

∥∆Y∥2F ≤ h
∑
j∈h

∥W:,j∥2F ∥XT
:,j∥2F . (27)

Formulation (27) establishes an upper bound on the pruning loss introduced by pruning attention
heads. We define:

S̃h = |W:,h|diag(∥X:,h∥F ), (28)

∥S̃h∥2F =
∑
j∈h

∥W:,j∥2F ∥XT
:,j∥2F . (29)

Then, we calculate the standard deviation of the Equation (28):

σ2(S̃) =
1

nh

∑
j∈h

(S̃:,j − µ)2 ≍ 1

nh

∑
j∈h

(S̃i,j)
2 =

∑
j∈h ∥W:,j∥2F ∥XT

:,j∥2F
nh

, (30)

where µ is the average value of |W| and ≍ denotes asymptotic equivalence. Therefore, combining
the Formulation (26) and (30), we can obtain:

∥∆Y∥2F ≤ h
∑
j∈h

∥W:,h∥2F ∥X:,h∥2F ≍ nh2σ2(|W:,h|diag(∥X:,h∥F )). (31)

Based on the Formulation (31), we can conclude that our metric in pruning attention heads deter-
mines the upper bound of the pruning loss.
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B METHOD IMPLEMENTATION DETAILS

B.1 EXTREME COMPRESSION FRAMEWORK ALGORITHM DETAILS

The detailed algorithmic process of the extreme compression framework is provided in Algorithm 1.
We traverse all weight matrices across in a layers and apply 1-bit quantization to them. During this
process, we compute the saliency of each column as well as the saliency of the attention heads.
Finally, for weight matrices in attention layers, pruning is conducted at the attention heads based on
the saliency of heads, whereas for weight matrices in MLP layers, pruning is applied along both the
rows&columns based on the saliency of columns.

Algorithm 1 Extreme Compression Framework

Input: weight matrix Wl in a layer; calibration data X; β denotes block size;
X is the number of salient columns; λ is hessian regularizer;
L is the set of weight matrices in a layer; ϱ is pruning ratio.
Output: extreme compression weight matrices Wc .
H = 2XXT , Hc = Cholesky((H+ λI)−1), X = 0
Traverse the weight matrices in L :
for l = 1 to |L| do
Sl
j = σ(|Wl

:,j |)∥Xj∥2 −→ column saliency

Sl
h = σ(|Wl

:,h|∥Xh∥2) −→ attention head saliency
for g = 0, β to (N − 1)β do

columnl
s{·} = Salient(Wl

,g:g+β ,S)

{p∗υ}υ∈V = OptimalSplitSearch(Wl
i,j∈columns

)

W̃l
1, . . . ,W̃

l
V+1 = Quant(Wl

p∗
υ−1≤|wi,j |≤p∗

υ,j∈columns
)←− p∗0 = 0, p∗V+1 = +∞

Ŵl
1, . . . ,Ŵ

l
V+1 = Compensation(W̃l

1, . . . ,W̃
l
V+1)

Ŵl
sal = Ŵl

1 ∪ . . . ∪ Ŵl
V+1

{p∗γ}γ∈G = OptimalSplitSearch(Wl
i,j /∈columns

)

Ŵl
1, . . . ,Ŵ

l
G+1 = Quant(Wl

p∗
γ−1≤|wi,j |≤p∗

γ ,j /∈columns
)←− p∗0 = 0, p∗G+1 = +∞

Ŵl
unsal = Ŵl

1 ∪ . . . ∪ Ŵl
G+1

Ŵl
:,g:g+β = Ŵl

sal ∪ Ŵl
unsal

E = (W:,g:g+β − Ŵl
:,g:g+β)/H

c
g:g+β,g:g+β

Wl
:,g:g+β = Wl

:,g:g+β −E ·Hc
g:g+β,g:g+β

X = X + len(columnl
s{·})

end for
end for
if Wl∈L in an Attention layer then
Wl∈L

c = AttPrune(Wl∈L,Soutput
h ,X , ϱ,L)

return Wl∈L
c

else if Wl∈L in a MLP layer then
Wl∈L

c = MLPPrune(Wl∈L,Sdown,X , ϱ,L)
return Wc

end if

B.2 DETAILED SUB FUNCTIONS PROCESS

Algorithm 2 provides the detailed implementation of all sub functions introduced in Algorithm 1,
covering 1-bit quantization process (Quant), bias compensation (Compensation), partitioning
salient and non-salient components with a two-group division as an example (OptimalSplitSearch),
and the structured pruning procedure (AttPrune and MLPPrune).
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Algorithm 2 Pseudo Code of Implementation

func Salient(W,X)

1: Sj = σ(|W:,j |)∥Xj∥2
2: columns{·} = topklargest (S)
3: e←∞
4: n∗ = 0
5: for i = 0, 1, . . . , len(columns)− 1 do
6: Ŵ1 = Quant(W:,j∈columns[:i])

7: Ŵ2 = Quant(W:,j /∈columns[:i])

8: if ∥W − (Ŵ1 ∪ Ŵ2)∥2 < e then
9: e = W − (Ŵ1 ∪ Ŵ2)∥2

10: n∗ = i
11: end if
12: end for
13: return columns{: n∗}
funcOptimalSplitSearch(W)

1: e = inf
2: p∗ = 0
3: for i = 0.1, 0.2, . . . , 0.9 do
4: p = i ·max(abs(W))

5: Ŵ1 := Quant(W|wi,j |≤p)

6: Ŵ2 := Quant(W|wi,j |>p)

7: if ∥W − (Ŵ1 ∪ Ŵ2)∥2 < e then
8: e = W − (Ŵ1 ∪ Ŵ2)∥2
9: p∗ = p

10: end if
11: end for
12: return p∗

funcCompensation(W)

1: W̃ = Quant(W)

2: Wbias = Quant(W − W̃)

3: Ŵ = W̃ +Wbias

4: return Ŵ

func Quant(W)

1: α = ∥W∥l1

m

2: Ŵ = α · sgn(W)

3: return Ŵ

func AttPrune(W,Soutput
h ,X , ϱ,L)

1: k = X
|L|×unit dim + ϱ× unit num

2: id = topksmallest(S
output
h , k)

3: Wl∈L
c = prune(Wl∈L, id)

4: return Wl
c

func MLPPrune(W,Sdown,X , ϱ,L)

1: k = X
|L|×unit dim + ϱ× unit num

2: id = topksmallest(S
down, k)

3: Wl∈L
c = prune(Wl∈L, id)

4: return Wl
c

C MORE EXPERIMENT RESULTS

C.1 PRUNING RATIO ASSIGNING

Bias compensation for salient elements inevitably introduces additional bit overhead, thereby ren-
dering the corresponding parameters as 2-bit representations. To achieve true “1 bit per parameter”
quantization, we further apply structured pruning based on the number of salient columns in each
layer. We provide the pruning ratios of structured units across all layers under the final 1-bit com-
pression setting as Figure 5 shown.

(a) The pruning ratios of LLaMA2-7B (b) The pruning ratios of LLaMA2-13B

Figure 5: The layer pruning ratios of LLaMA2-7B and LLaMA2-13B.
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C.2 SALIENT COLUMN NUMBER AND SEARCH PART POINT CURVE

Salient Column Number Curve. We illustrate the entire process of salient column search, with
the results visualized in the form of error curves. Figure 6 illustrates the error curves of salient
column search across a sub-block of query proj, up proj, output proj, and down proj
layer. Clear optimal points can be observed in all cases, and the salient columns are predominantly
concentrated in output proj and down proj.

(a) Attention: output proj layer (b) MLP: down proj layer

(c) Attention: query proj layer (d) MLP: up proj layer

Figure 6: Salient column number curves of LLaMA2-7B.

Searching Split Point Curve. The process of identifying the optimal split point when both the
salient and non-salient parts are further divided into two groups, as shown in Figure 7. The horizontal
axis denotes the ratio between practical split point and the absolute of maximum weight value.

(a) Searching split point in salient part (b) Searching split point in unsalient part

Figure 7: The curve of searching split point in a sub-block of output proj layer.
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C.3 THE PARTITION RATIO BETWEEN SALIENT AND NON-SALIENT REGIONS.

Figure 8 illustrates the partition ratios of salient and non-salient parts in the output proj and
down proj layers of LLaMA2-7B.

(a) The partition ratios of output proj layer. (b) The partition ratios of down proj layer.

Figure 8: The proportion of each divided group in a sub-block of output proj weight matrix.

C.4 ZEROSHOT TASKS RESULTS ON VICUNA AND LLAMA FAMILY

LLaMA Family: The different 1-bit quantization methods are compared on more LLaMA families
in Table 8.

Table 8: Zero-shot performance of different LLaMA families.

Model Method Storage Bits Winogrande Piqa Hellaswag Arc-e Arc-c OBQA BoolQ RTE Avg

LLAMA1-7B

FULLPRECISION - 70.01 79.16 76.19 72.81 44.80 44.40 75.08 66.79 66.15
BILLM 1.00 52.72 59.30 35.87 37.88 25.17 27.40 61.65 52.35 44.04

ARBLLM 1.00 61.96 68.55 53.60 51.52 30.12 34.20 69.72 58.84 53.56
OURS 1.00 59.35 68.72 54.68 51.26 28.67 36.60 67.68 58.84 53.23

STBLLM 2.00 62.35 69.48 55.57 51.56 29.61 34.60 66.73 54.15 53.01
OURS 2.00 64.01 74.81 66.32 62.25 38.05 36.80 70.49 51.99 58.09

LLAMA1-13B

FULLPRECISION - 72.77 80.14 79.09 74.79 47.70 44.80 77.95 70.40 68.45
BILLM 1.00 63.38 70.02 53.79 52.06 28.75 32.00 63.67 52.71 52.05

ARBLLM 1.00 67.09 73.72 62.09 60.98 34.13 38.00 70.70 55.60 57.79
OURS 1.00 67.48 76.12 65.76 63.93 36.69 37.40 72.05 57.04 59.55

STBLLM 2.00 67.32 75.14 67.89 59.05 35.07 39.40 71.10 58.84 59.23
OURS 2.00 69.77 78.07 73.70 67.68 42.15 42.40 71.77 61.37 63.36

LLAMA2-13B

FULLPRECISION - 72.06 80.52 79.39 77.53 49.06 45.20 80.55 64.98 68.66
BILLM 1.00 57.93 63.11 41.37 45.08 26.02 30.60 64.71 52.71 47.59

ARBLLM 1.00 67.56 75.14 62.10 60.27 35.67 38.40 71.16 55.60 58.24
OURS 1.00 67.48 74.65 64.37 65.66 37.37 36.20 73.98 54.15 59.23

STBLLM 2.00 63.69 73.99 64.11 61.36 36.77 37.20 75.32 54.15 58.33
OURS 2.00 70.09 76.66 72.69 70.08 42.83 41.40 69.85 56.68 62.53

LLAMA1-30B

FULLPRECISION - 75.69 82.26 82.62 78.96 52.99 48.00 82.66 67.15 71.29
BILLM 1.00 67.88 73.67 62.57 61.28 35.32 35.80 63.21 49.46 56.15
OURS 1.00 72.45 77.91 71.25 71.13 43.26 41.00 70.00 63.54 63.82

STBLLM 2.00 71.11 78.02 72.88 69.65 42.24 41.60 79.85 65.34 65.09
OURS 2.00 72.06 79.54 77.52 74.62 46.93 44.80 79.91 62.45 67.23

LLAMA1-65B

FULLPRECISION - 77.43 82.26 84.14 79.80 55.55 47.00 84.83 69.68 72.58
BILLM 1.00 70.96 76.22 66.92 65.19 36.60 40.40 79.08 53.43 61.10
OURS 1.00 74.98 79.65 75.79 73.36 47.18 41.20 80.58 59.93 66.58

STBLLM 2.00 74.11 79.87 75.94 74.20 47.70 45.40 81.71 65.34 68.03
OURS 2.00 74.74 80.96 79.00 76.47 50.26 45.20 81.35 70.76 69.84

LLAMA2-70B

FULLPRECISION - 77.98 82.81 83.78 81.02 57.34 48.80 83.73 67.87 72.92
BILLM 1.00 67.48 71.11 62.92 61.91 36.18 38.40 69.60 63.54 58.89
OURS 1.00 75.30 78.51 75.11 73.78 48.89 43.00 78.13 70.04 67.85

STBLLM 2.00 74.98 79.16 76.94 75.72 52.47 43.60 80.95 66.79 68.83
OURS 2.00 77.11 79.82 79.36 78.66 54.86 46.20 77.95 62.82 69.60

Vicuna Family: We further extend our proposed method to the instruction-tuned model Vicuna.
As shown in Table 9, compared with other 1-bit quantization approaches, our method achieves
the highest accuracy on eight zero-shot datasets using Vicuna-7B and Vicuna-13B. These results
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demonstrate the strong generalization capability of our approach, which remains effective across
different LLMs.

Table 9: The perplexity and zero-shot performance of the Vicuna family.

Model Method Wikitext2 Winogrande Piqa Hellaswag Arc-e Arc-c OBQA BoolQ RTE Avg

VICUNA-7B

FULLPRECISION 6.78 69.53 78.02 73.76 71.34 45.82 45.00 80.95 63.90 66.04
BILLM 36.04 53.59 63.28 40.96 44.15 27.30 28.40 63.98 53.07 46.84

ARB-LLM 18.71 57.46 68.06 51.90 51.01 31.14 29.00 72.29 52.71 51.70
OURS 14.09 61.25 71.11 56.56 57.58 34.04 34.40 72.84 58.84 55.83

VICUNA-13B

FULLPRECISION 5.94 71.43 79.11 77.50 74.87 50.68 45.40 85.26 75.45 69.96
BILLM 38.73 55.80 64.42 44.95 44.74 28.58 29.80 66.61 56.68 48.95

ARB-LLM 19.57 56.67 69.48 46.33 54.46 31.23 32.80 73.91 64.62 53.69
OURS 10.09 67.09 74.86 64.72 66.58 39.16 39.20 81.07 66.06 62.34

C.5 TIME COMPARISON

Our method involves not only quantization but also structured pruning, making it more sophisticated
than other 1-bit quantization approaches. Nevertheless, compared with ARB-LLM, our compression
process still requires less time.

Table 10: Time (s) comparison between ARB-LLM and Ours.

Method LLaMA1-7B LLaMA1-13B LLaMA2-7B LLaMA2-13B
ARB-LLM 3113 5146 3143 5117

Ours 3107 4763 2891 4771

D MEMORY COMPUTATION

We provide the derivations of the memory computation formulas for our methods. For a weight
matrix W ∈ Rn×m, block size β and the number of salient columns s, the memory M binary required
can be formulated as:

M binary = M salient +M salient +M group-bitmap +M salient-column-bitmap, (32)

where M salient and M unsalient represent the memory computation of salient part and unsalient part
respectively. Since all columns are divided into salient and non-salient parts, and the non-salient part
is further partitioned into multiple groups, this inevitably introduces additional memory overhead
M column-bitmap and M group-bitmap. Moreover, M salient and M unsalient can be further formulated as:

M salient = M compensation +M quantization-factor, (33)

M unsalient = M 1-bit +M quantization-factor, (34)

where M compensation denotes the additional memory overhead introduced by the compensation pro-
cess, and M quantization-factor refers to the memory overhead incurred by the corresponding quantization
factors, such as scaling factors and means. M 1-bit is the memory overhead of 1-bit parameters. (Li
et al., 2025) provide the memory computation formulas of BiLLM:

- BiLLM:

M salient = 2nc+ ⌈m/β⌉ × 3n× 16,

M unsalient = n(m− s) + ⌈m/β⌉ × 2n× 16× 2,

M group bitmap = nm,

M column bitmap = m,

MBiLLM = 2ns+ ⌈m/β⌉ × 3n× 16 + n(m− s) + ⌈m/β⌉ × 2n× 16× 2 + nm+m. (35)

Since STBLLM involves an unstructured pruning process, we assume a sparsity ratio of ϱ, then the
proportion of nonzero elements is ϱ̄ = 1− ϱ:
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- STBLLM:

M salient = 2nc+ ⌈ϱ̄m/β⌉ × 3n× 16,

M unsalient = n(ϱ̄m− s) + ⌈ϱ̄m/β⌉ × 2n× 16× 3,

M group bitmap = nm,

M column bitmap = m,

MSTBLLM = 2ns+ ⌈ϱ̄m/β⌉ × 3n× 16 + n(ϱ̄m− s) + ⌈m/β⌉ × 2n× 16× 2 + nm+m.
(36)

Since our method prunes either the ϱ% rows or the columns of the weight matrix (the proportion of
the remaining structures is ϱ̄ = 1 − ϱ), it leads to two distinct cases of memory overhead M ours

column
and M ours

row :

- Ours-column:

M salient = 2ns+ ⌈ϱ̄m/β⌉ × 3n× 16× 2,

M unsalient = n(ϱ̄m− s) + ⌈ϱ̄m/β⌉ × 2n× 16× 2,

M group bitmap = ϱ̄nm,

M column bitmap = ϱ̄m,

M ours
column = 2ns+ ⌈ϱ̄m/β⌉ × 3n× 16× 2 + n(ϱ̄m− s) + ⌈ϱ̄m/β⌉ × 2n× 16× 2 + nϱ̄m+ ϱ̄m.

(37)

- Ours-row:

M salient = 2ϱ̄ns+ ⌈m/β⌉ × 3ϱ̄n× 16× 2,

M unsalient = ϱ̄n(m− s) + ⌈m/β⌉ × 2ϱ̄n× 16× 2,

M group bitmap = nϱ̄m,

M column bitmap = m,

M ours
row = 2ϱ̄ns+ ⌈m/β⌉ × 3ϱ̄n× 16× 2 + ϱ̄n(m− s) + ⌈m/β⌉ × 2ϱ̄n× 16× 2 + ϱ̄nm+m.

(38)

E LLMS USAGE STATEMENT

We use large language model for grammar correction to enhance the clarity. We affirm that all
conceptual and scientific contributions, including the formulation of the core ideas, the design of
our proposed method, and the experimental framework, are entirely the original work of the authors
and were developed without the use of generative AI tools.
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