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Abstract

We introduce a suite of new particle-based algorithms for sampling in constrained
domains which are entirely learning rate free. Our approach leverages coin betting
ideas from convex optimisation, and the viewpoint of constrained sampling as a
mirrored optimisation problem on the space of probability measures. Based on this
viewpoint, we also introduce a unifying framework for several existing constrained
sampling algorithms, including mirrored Langevin dynamics and mirrored Stein
variational gradient descent. We demonstrate the performance of our algorithms on
a range of numerical examples, including sampling from targets on the simplex,
sampling with fairness constraints, and constrained sampling problems in post-
selection inference. Our results indicate that our algorithms achieve competitive
performance with existing constrained sampling methods, without the need to tune
any hyperparameters.

1 Introduction

The problem of sampling from unnormalised probability distributions is of central importance to
computational statistics and machine learning. Standard approaches to this problem include Markov
chain Monte Carlo (MCMC) [11, 76] and variational inference (VI) [41, 96]. More recently, there has
been growing interest in particle-based variational inference (ParVI) methods, which deterministically
evolve a collection of particles towards the target distribution and combine favourable aspects of
both MCMC and VI. Perhaps the most well-known of these methods is Stein variational gradient
descent (SVGD) [63], which iteratively updates particles according to a form of gradient descent
on the Kullback-Leibler (KL) divergence. This approach has since given rise to several extensions
[16, 27, 97, 105] and found success in a wide range of applications [27, 66, 74].

While such methods have enjoyed great success in sampling from unconstrained distributions, they
typically break down when applied to constrained targets [see, e.g., 60, 82]. This is required for
targets that are not integrable over the entire Euclidean space (e.g., the uniform distribution), when
the target density is undefined outside a particular domain (e.g., the Dirichlet distribution), or when
the target must satisfy certain additional constraints (e.g., fairness constraints in Bayesian inference
[65]). Notable examples include latent Dirichlet allocation [9], ordinal data models [45], regularised
regression [15], survival analysis [49], and post-selection inference [54, 88]. In recent years, there has
been increased interest in this topic, with several new methodological and theoretical developments
[1, 19, 43, 44, 60, 61, 82, 86, 103, 104].
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One limitation shared by all of these methods is that their performance depends, often significantly,
on a suitable choice of learning rate. In principle, convergence rates for existing constrained sampling
schemes (e.g., [1, Theorem 1] or [86, Corollary 1]) allow one to compute the optimal learning rate
for a given problem. In practice, however, this optimal learning rate is a function of the unknown
target and thus cannot be computed. Motivated by this problem, in this paper we introduce a suite of
new sampling algorithms for constrained domains which are entirely learning rate free.

Our contributions We first propose a unifying perspective of several existing constrained sampling
algorithms, based on the viewpoint of sampling in constrained domains as a ‘mirrored’ optimisation
problem on the space of probability measures. Based on this perspective, we derive a general class of
solutions to the constrained sampling problem via the mirrored Wasserstein gradient flow (MWGF).
The MWGF includes, as special cases, several existing constrained sampling methods, e.g., mirrored
Langevin dynamics [43] and mirrored SVGD (MSVGD) [82]. Using this formulation, we also
introduce mirrored versions of several other particle-based sampling algorithms which are suitable
for sampling in constrained domains, and study their convergence properties in continuous time.

By leveraging this perspective, and extending the coin sampling methodology recently introduced
in [81], we then obtain a suite of learning rate free algorithms suitable for constrained domains. In
particular, we introduce mirrored coin sampling, which includes as a special case Coin MSVGD,
as well as several other tuning-free constrained sampling algorithms. We also outline an alternative
approach which does not rely on a mirror mapping, namely, coin mollified interaction energy descent
(Coin MIED). This algorithm can be viewed as the natural coin sampling analogue of the method
recently introduced in [60]. Finally, we demonstrate the performance of our methods on a wide range
of examples, including sampling on the simplex, sampling with fairness constraints, and constrained
sampling problems in post-selection inference. Our empirical results indicate that our methods
achieve competitive performance with the optimal performance of existing approaches, with no need
to tune a learning rate.

2 Preliminaries

The Wasserstein Space. We will make use of the following notation. For any X ⊂ Rd, we write
P2(X ) for the set of probability measures µ on X with finite 2nd moment:

∫
X ||x||2µ(dx) < ∞,

where ||·|| denotes the Euclidean norm. For µ ∈ P2(X ), we write L2(µ) for the set of measur-
able f : X → X with finite ||f ||2L2(µ) =

∫
X ||f(x)||2µ(dx). For f, g ∈ L2(µ), we also define

⟨f, g⟩L2(µ) =
∫
X f(x)⊤g(x)µ(dx). Given µ ∈ P2(X ) and T ∈ L2(µ), we write T#µ for the

pushforward of µ under T , that is, the distribution of T (X) when X ∼ µ.

Given µ, ν ∈ P2(X ), the Wasserstein 2-distance between µ and ν is defined according to
W 2

2 (µ, ν) = infγ∈Γ(µ,ν)

∫
X×X ||x− y||2γ(dx, dy), where Γ(µ, ν) denotes the set of couplings

between µ and ν. The Wasserstein distance W2 is indeed a distance over P2(X ) [2, Chapter
7.1], with the metric space (P2(X ),W2) known as the Wasserstein space. Given a functional
F : P(X ) → (−∞,∞], we will write ∇W2

F(µ) for the Wasserstein gradient of F at µ, which
exists under appropriate regularity conditions [2, Lemma 10.4.1]. We refer to App. A for further
details on calculus in the Wasserstein space.

Wasserstein Gradient Flows. Suppose that π ∈ P2(X ) and that π admits a density π ∝ e−V with
respect to Lebesgue measure,1 where V : X → R is a smooth potential function. The problem of
sampling from π can be recast as an optimisation problem over P2(X ) [e.g., 99]. In particular, one
can view the target π as the solution of

π = argmin
µ∈P2(X )

F(µ) (1)

where F : P(X ) → (−∞,∞] is a functional uniquely minimised at π. In the unconstrained case,
X = Rd, a now rather classical method for solving this problem is to identify a continuous process
which pushes samples from an initial distribution µ0 to the target π. This corresponds to finding a
family of vector fields (vt)t≥0, with vt ∈ L2(µt), which transports µt to π via the continuity equation

∂µt

∂t
+∇ · (vtµt) = 0. (2)

1In a slight abuse of notation, throughout this paper we will use the same letter to refer to a distribution and
its density with respect to Lebsegue measure.
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A standard choice is vt = −∇W2F(µt), in which case the solution (µt)t≥0 of (2) is referred to
as the Wasserstein gradient flow (WGF) of F . In fact, for different choices of (vt)t≥0, one can
obtain the continuous-time limit of several popular sampling algorithms [3, 20, 40, 46, 51, 63, 99].
Unfortunately, it is not straightforward to extend these approaches to the case in which X ⊂ Rd is a
constrained domain. For example, the vector fields vt may push the random variable xt outside of its
support X , thus rendering all future updates undefined.

3 Mirrored Wasserstein Gradient Flows

We now outline one way to extend the WGF approach to the constrained case, based on the use of
a mirror map. We will first require some basic definitions from convex optimisation [e.g., 77]. Let
X be a closed, convex domain in Rd. Let ϕ : X → R ∪ {∞} be a proper, lower semicontinuous,
strongly convex function of Legendre type [77]. This implies, in particular, that ∇ϕ(X ) = Rd

and ∇ϕ : X → Rd is bijective [77, Theorem 26.5]. Moreover, its inverse (∇ϕ)−1 : Rd → X
satisfies (∇ϕ)−1 = ∇ϕ∗, where ϕ∗ : Rd → R denotes the Fenchel conjugate of ϕ, defined as
ϕ∗(y) = supx∈X ⟨x, y⟩ − ϕ(x). We will refer to ∇ϕ : X → Rd as the mirror map and ∇ϕ(X ) = Rd

as the dual space.

3.1 Constrained Sampling as Optimisation

Using the mirror map ∇ϕ : X → Rd, we can now reformulate the constrained sampling problem as
the solution of a ‘mirrored’ version of the optimisation problem in (1). Let us define ν = (∇ϕ)#π,
with π = (∇ϕ∗)#ν. We can then view the target π as the solution of

π = (∇ϕ∗)#ν, ν = argmin
η∈P2(Rd)

F(η), (3)

where now F : P2(Rd) → (−∞,∞] is a functional uniquely minimised by ν = (∇ϕ)#π. The
motivation for this formulation is clear. Rather than directly solving a constrained optimisation
problem for the target π ∈ P2(X ) as in (1), we could instead solve an unconstrained optimisation
problem for the mirrored target ν ∈ P2(Rd), and then recover the target via π = (∇ϕ∗)#ν. This is a
rather natural extension of the formulation of sampling as optimisation to the constrained setting.

3.2 Mirrored Wasserstein Gradient Flows

One way to solve the mirrored optimisation problem in (3) is to find a continuous process which
transports samples from η0 := (∇ϕ)#µ0 ∈ P2(Rd) to the mirrored target ν. According to the mirror
map, this process will implicitly also push samples from µ0 to the target π. More precisely, we would
like to find (wt)t≥0, where wt : Rd → Rd, which evolves ηt on Rd and thus µt on X , through

∂ηt
∂t

+∇ · (wtηt) = 0 , µt = (∇ϕ∗)#ηt (4)

where (wt)t≥0 should ensure convergence of ηt to ν. In the case that wt = −∇W2
F(ηt), we will

refer to (4) as the mirrored Wasserstein gradient flow (MWGF) of F . The idea of (4) is to simulate
the WGF in the (unconstrained) dual space and then map back to the primal (constrained) space
using a carefully chosen mirror map. This approach bypasses the inherent difficulties associated with
simulating a gradient flow on the constrained space itself.

While a similar approach has previously been used to derive certain mirrored sampling schemes
[43, 82, 86], these works focus on specific choices of F and (wt)t≥0, while we consider the general
case. Our general perspective provides a unifying framework for these approaches, whilst also
allowing us to obtain new constrained sampling algorithms and to study their convergence properties
(see App. B). We now consider one such approach in detail.

3.2.1 Mirrored Stein Variational Gradient Descent

MSVGD [82] is a mirrored version of the popular SVGD algorithm. In [82], MSVGD is derived using
a mirrored Stein operator in a manner analogous to the original SVGD derivation [63]. Here, we take
an alternative perspective, which originates in the MWGF. This formulation is more closely aligned
with other more recent papers analysing the non-asymptotic convergence of SVGD [51, 78, 85, 86].
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Algorithm 1 MSVGD

input: target density π, kernel k, mirror function ϕ, particles (xi
0)

N
i=1 ∼ µ0, step size γ.

initialise: yi0 = ∇ϕ(xi
0) for i ∈ [N ]

for t = 0, . . . , T − 1 do
For i ∈ [N ], yit+1 = yit − γPη̂t,kϕ

∇ log
(

η̂t

ν

)
(yit), where η̂t =

1
N

∑N
j=1 δyj

t
.

For i ∈ [N ], xi
t+1 = ∇ϕ∗(yit+1).

return (xi
T )

N
i=1.

We will require the following additional notation. Let k : X ×X → R denote a positive semi-definite
kernel and Hk the corresponding reproducing kernel Hilbert space (RKHS) of real-valued functions
f : X → R, with inner product ⟨·, ·⟩Hk

and norm || · ||Hk
. Let H := Hd

k denote the Cartesian
product RKHS, consisting of elements f = (f1, . . . , fd) for fi ∈ Hk. We write Sµ,k : L2(µ) → H
for the operator Sµ,kf =

∫
k(x, ·)f(x)dµ(x). We assume

∫
k(x, x)dµ(x) < ∞ for µ ∈ P2(X ), in

which case H ⊂ L2(µ) for all µ ∈ P2(X ) [52, Sec. 3.1]. We also define the identity embedding
i : H → L2(µ) with adjoint i∗ = Sµ,k. Finally, we define Pµ,k : L2(µ) → L2(µ) as Pµ,k = iSµ,k.

We are now ready to introduce our perspective on MSVGD. We begin by introducing the continuous-
time MSVGD dynamics, which are defined by the continuity equation

∂ηt
∂t

−∇ ·
(
Pηt,kϕ

∇ log
(ηt
ν

)
ηt

)
= 0, µt = (∇ϕ∗)#ηt, (5)

where kϕ(y, y
′) = k(∇ϕ∗(y),∇ϕ∗(y′)) for some base kernel k : X × X → R. Clearly, this is a

special case of the MWGF in (4), in which (wt)t≥0 are defined according to wt = −Pηt,kϕ
∇W2F(ηt),

with F(ηt) = KL(ηt||ν). In particular, wt can be interpreted as the negative Wasserstein gradient of
KL(ηt||ν), the KL divergence of the ηt with respect to ν, under the inner product of Hkϕ

.

The key point here is that, given samples from ηt, estimating Pηt,kϕ
∇ log(ηt

ν ) is straightforward. In
particular, if lim||y′||→∞ kϕ(y

′, ·)ν(y′) = 0, then, integrating by parts,

Pηt,kϕ
∇ log(

ηt
ν
)(y) = −

∫
Rd

[kϕ(y
′, y)∇y′ log ν(y′) +∇y′kϕ(y

′, y)]dηt(y
′). (6)

To obtain an implementable algorithm, we must discretise in time. By applying an explicit Euler
discretisation to (5), we arrive at

ηt+1 =
(
id− γPηt,kϕ

∇ log
(ηt
ν

))
#
ηt, µt+1 = (∇ϕ∗)#ηt+1, (7)

where γ > 0 is a step size or learning rate, and id is the identity map. This is the population limit
of the MSVGD algorithm in [82]. Now, suppose µ0 ∈ P2(X ) admits a density with respect to the
Lebesgue measure. In addition, suppose x0 ∼ µ0 and y0 = ∇ϕ(x0). Then, for t ∈ N0, if we define

yt+1 = yt − γPηt,kϕ
∇ log

(ηt
ν

)
(yt), xt+1 = ∇ϕ∗(yt+1), (8)

then (ηt)t∈N0 and (µt)t∈N0 in (7) are precisely the densities of (yt)t∈N0 and (xt)t∈N0 in (8). In prac-
tice, these densities are unknown and must be estimated using samples. In particular, to approximate
(8), we initialise a collection of particles xi

0
i.i.d.∼ µ0 for i ∈ [N ], set yi0 = ∇ϕ(xi

0), and then update

yit+1 = yit − γPη̂t,kϕ
∇ log

(
η̂t
ν

)
(yit), xi

t+1 = ∇ϕ∗(yit+1) (9)

where η̂t =
1
N

∑N
j=1 δyj

t
. This is precisely the MSVGD algorithm introduced in [82] and since also

studied in [86].

3.2.2 Other Algorithms

In App. B, we outline several algorithms which arise as special cases of the MWGF. These include
existing algorithms, such as the mirrored Langevin dynamics (MLD) [43] and MSVGD [82], and two
new algorithms, which correspond to mirrored versions of Laplacian adjusted Wasserstein gradient
descent (LAWGD) [20] and kernel Stein discrepancy descent (KSDD) [51]. We also study the
convergence properties of these algorithms in continuous time.
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4 Mirrored Coin Sampling

By construction, any algorithm derived as a discretisation of the MWGF, including MSVGD, will
depend on an appropriate choice of learning rate γ. In this section, we consider an alternative
approach, leading to new algorithms which are entirely learning rate free. Our approach can be
viewed as an extension of the coin sampling framework introduced in [81] to the constrained setting,
based on the reformulation of the constrained sampling problem as a mirrored optimisation problem.

4.1 Coin Sampling

We begin by reviewing the general coin betting framework [22, 71, 72]. Consider a gambler with
initial wealth w0 = 1 who makes bets on a series of adversarial coin flips ct ∈ {−1, 1}, where
+1 denotes heads and −1 denotes tails. We encode the gambler’s bet by xt ∈ R. In particular,
sign(xt) ∈ {−1, 1} denotes whether the bet is on heads or tails, and |xt| ∈ R denotes the size of the
bet. Thus, in the tth round, the gambler wins |xtct| if sign(ct) = sign(xt) and loses |xtct| otherwise.
Finally, we write wt for the wealth of the gambler at the end of the tth round. The gambler’s wealth
thus accumulates as wt = 1 +

∑t
s=1 csxs. We assume that the gambler’s bets satisfy xt = βtwt−1,

for a betting fraction βt ∈ [−1, 1], which means the gambler does not borrow any money.

In [71], the authors show how this approach can be used to solve convex optimisation problems on Rd,
that is, problems of the form x∗ = argminx∈Rd f(x), for convex f : Rd → R. In particular, [71] con-
sider a betting game with ‘outcomes’ ct = −∇f(xt), replacing scalar multiplications ctxt by scalar
products ⟨ct, xt⟩. In this case, under certain assumptions, they show that f( 1

T

∑T
t=1 xt) → f(x∗) at

a rate determined by the betting strategy. There are many suitable choices for the betting strategy.
Perhaps the simplest of these is βt = t−1

∑t−1
s=1 cs, known as the Krichevsky-Trofimov (KT) betting

strategy [53, 71], which yields the sequence of bets xt = βtwt−1 = t−1
∑t−1

s=1 cs(1 +
∑t−1

s=1⟨cs, xs⟩).
Other choices, however, are also possible [22, 70, 72].

In [81], this approach was extended to solve optimisation problems on the space of probability
measures. In this case, several further modifications are necessary. First, in each round, one now
bets xt − x0 rather than xt, where x0 ∼ µ0 is distributed according to some µ0 ∈ P2(Rd). In
this case, viewing xt : Rd → Rd as a function that maps x0 7→ xt(x0), one can define a sequence
of distributions (µt)t∈N as the push-forwards of µ0 under the functions (xt)t∈N. In particular, this
means that, if x0 ∼ µ0, then xt ∼ µt.

By using these modifications in the original coin betting framework, and choosing (ct)t∈N :=
(cµt

(xt))t∈N appropriately, [81] show that it is now possible to solve problems of the form
µ∗ = argminµ∈P2(X ) F(µ). This approach is referred to as coin sampling. For example, by consid-
ering a betting game with ct = −∇W2

F(µt)(xt), [81] obtain a ‘coin Wasserstein gradient descent’
algorithm, which can be viewed as a learning-rate free analogue of Wasserstein gradient descent.
Alternatively, setting ct = −Pµt,k∇W2

F(µt)(xt), one can obtain a learning-rate free analogue of
the population limit of SVGD, in which the updates are given by

xt = x0 −
∑t−1

s=1 Pµs,k∇W2
F(µs)(xs)

t

(
1−

t−1∑
s=1

⟨Pµs,k∇W2F(µs)(xs), xs − x0⟩

)
, (10)

where, as described above, µt = (xt)#µ0. In practice, the densities (µt)t∈N0 and thus the outcomes
(ct)t∈N are almost always intractable, and will be approximated using a set of interacting particles.

4.2 Mirrored Coin Sampling

By leveraging the formulation of constrained sampling as a ‘mirrored’ optimisation problem over the
space of probability measures, we can extend the coin sampling approach to constrained domains. In
particular, as an alternative to discretising the MWGF to solve this optimisation problem (Sec. 3.2),
we propose instead to use a mirrored version of coin sampling (Sec. 4.1). The idea is to use coin
sampling to solve the optimisation problem in the dual space, and then map back to the primal space
using the mirror map. In particular, this suggests the following scheme. Let x0 ∼ µ0 ∈ P2(X ), and
y0 = ∇ϕ(x0) ∈ Rd. Then, for t ∈ N, update

yt = y0 +

∑t−1
s=1 cηs

(ys)

t

(
1 +

t−1∑
s=1

⟨cηs(ys), ys − y0⟩

)
, xt = ∇ϕ∗(xt), (11)
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Algorithm 2 Coin MSVGD

input: target density π, kernel k, mirror function ϕ, particles (xi
0)

N
i=1 ∼ µ0.

intialise: yi0 = ∇ϕ(xi
0) for i ∈ [N ]

for t = 1, . . . , T do

For i ∈ [N ], yit = yi0−
∑t−1

s=1 Pη̂s,kϕ
∇ log( η̂s

ν )(yi
s)

t

(
1−

∑t−1
s=1⟨Pη̂s,kϕ

∇ log( η̂s

ν )(yis), y
i
s − yi0⟩

)
.

For i ∈ [N ], xi
t = ∇ϕ∗(yit).

return (xi
T )

N
i=1.

where ηt = (yt)#η0 and µt = (∇ϕ∗)#ηt, and where cηs
(ys) = −∇W2

F(ηs)(ys), or some variant
thereof. We will refer to this approach as mirrored coin sampling, or mirrored coin Wasserstein
gradient descent. In order to obtain an implementable algorithm, we proceed as follows. First, decide
on a suitable functional F and a suitable (ct)t∈N := (cηt

(yt))t∈N. For example, F(η) = KL(η|ν),
and (ct)t∈N = (−Pηt,kϕ

∇W2
F(ηt)(yt))t∈N. Then, substitute these into (11), and approximate the

updates using a set of interacting particles, as in existing ParVIs algorithms.

Following these steps, we obtain a learning rate free analogue of MSVGD [82], which we will refer
to as Coin MSVGD. This is summarised in Alg. 2. For different choices of (cηt

)t∈N in (11), we also
obtain learning rate free analogues of two other mirrored ParVI algorithms introduced in App. B,
namely mirrored LAWGD (App. B.3), and mirrored KSDD (App. B.4). These algorithms, which we
term Coin MLAWGD and Coin MKSDD, are given in Alg. 6 and Alg. 7 in App. D.

Even in the unconstrained setting, establishing the convergence of coin sampling remains an open
problem. In [81], the authors provide a technical sufficient condition under which it is possible to
establish convergence to the target measure in the population limit; however, it is difficult to verify
this condition in general. In the interest of completeness, in App. C, we provide an analogous
convergence result for mirrored coin sampling, adapted appropriately to the constrained setting.

4.3 Alternative Approaches

In this section, we outline an alternative approach, based on a ‘coinification’ of the mollified
interaction energy descent (MIED) method recently introduced in [60]. MIED is based on minimising
a function known as the mollified interaction energy (MIE) Eϵ : P(Rd) → [0,∞]. The idea is that
minimising this function balances two forces: a repulsive force which ensures the measure is well
spread, and an attractive force which ensures the measure is concentrated around regions of high
density. In order to obtain a practical sampling algorithm, [60] propose to minimise a discrete version
of the logarithmic MIE, using, e.g., Adagrad [31] or Adam [48]. That is, minimising the function

logEϵ(ω
n) := log

1

N2

n∑
i=1

n∑
j=1

ϕϵ(x
i − xj)(π(xi)π(xj))−

1
2 , (12)

where ωn = {x1, . . . , xn}, and where (ϕϵ)ϵ>0 is a family of mollifiers [60, Definition 3.1]. This
approach can be adapted to handle the constrained case, as outlined in [60]. In particular, if there
exists a differentiable f : Rd → X such that X \ f(Rd) has Lebesgue measure zero, then one
can reduce the constrained problem to an unconstrained one by minimising logEϵ(f(w

n)), where
f(ωn) = {f(x1), . . . , f(xn)}. Meanwhile, if X = {x ∈ Rd : g(x) ≤ 0} for some differentiable
g : Rd → R, then one can use a variant of the dynamic barrier method introduced in [37].

Here, as an alternative to the optimisation methods considered in [60], we instead propose to use a
learning-rate free algorithm to minimise (12), based on the coin betting framework described in 4.1.
We term the resulting method, summarised in Alg. 3, Coin MIED. In comparison to our mirrored
coin sampling algorithm, this approach has the advantage that it only requires a differentiable (not
necessarily bijective) map.

5 Related Work

Sampling as Optimisation. The connection between sampling and optimisation has a long history,
dating back to [46], which established that the evolution of the law of the Langevin diffusion
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Algorithm 3 Coin MIED

Input: target density π, mollifier ϕϵ, particles ωn
0 = (xi

0)
N
i=1.

for t = 1, . . . , T do

For i ∈ [N ], xi
t = xi

0 −
∑t−1

s=1 ∇xi
s
logEϵ(ω

n
s )

t

(
1−

∑t−1
s=1⟨∇xi

s
logEϵ(ω

n
s ), x

i
s − xi

0⟩
)

.

return (xi
T )

N
i=1.

corresponds to the WGF of the KL divergence. In recent years, there has been renewed interest in
this perspective [99]. In particular, the viewpoint of existing algorithms such as LMC [23, 24, 33, 34]
and SVGD [32, 63] as discretisations of WGFs has proved fruitful in deriving sharp convergence
rates [6, 34, 52, 78, 83, 85]. It has also resulted in the rapid development of new sampling algorithms,
inspired by ideas from the optimisation literature such as proximal methods [100], coordinate descent
[29, 30], Nesterov acceleration [18, 25, 67], Newton methods [68, 84, 98], and coin betting [80, 81].

Sampling in Constrained Domains. Recent interest in constrained sampling has resulted in a range
of general-purpose algorithms for this task [e.g., 43, 60, 82, 103, 104]. In cases where it is possible
to explicitly parameterise the target domain in a lower dimensional space, one can use variants of
classical methods, including LMC [98], rejection sampling [28], Hamiltonian Monte Carlo (HMC)
[13], and Riemannian manifold HMC [55, 73]. Several other approaches are based on the use of
mirror map. In particular, [43] proposed mirrored Langevin dynamics and its first-order discretisation.
[103], and an earlier draft of [43], introduced the closely related mirror Langevin diffusion and the
mirror Langevin algorithm, which has since also been studied in [1, 19, 44, 61]. Along the same
lines, [82] introduced two variants of SVGD suitable for constrained domains based on the use of a
mirror map, and established convergence of these schemes to the target distribution; see also [86].
In certain cases [e.g., 56, 58] one cannot explicitly parameterise the manifold of interest. In this
setting, different approaches are required. [12] introduced a constrained version of HMC for this case.
Meanwhile, [102] proposed a constrained Metropolis-Hastings algorithm with a reverse projection
check to ensure reversibility; this approach has since been extended in [57, 59]. Other, more recent
approaches suitable for this setting include MIED [60] (see Sec. 4.3), and O-SVGD [104].

6 Numerical Results

In this section, we perform an empirical evaluation of Coin MSVGD (Sec. 6.1 - 6.2) and Coin
MIED (Sec. 6.3). We consider several simulated and real data experiments, including sampling
from targets defined on the simplex (Sec. 6.1), confidence interval construction for post-selection
inference (Sec. 6.2), and inference in a fairness Bayesian neural network (Sec. 6.3). We compare
our methods to their learning-rate-dependent analogues, namely, MSVGD [82] and MIED [60].
We also include a comparison with Stein Variational Mirror Descent (SVMD) [82], and projected
versions of Coin SVGD [81] and SVGD [63], which include a Euclidean projection step to ensure
the iterates remain in the domain. We provide additional experimental details in App. F and
additional numerical results in App. G. Code to reproduce all of the numerical results can be found at
https://github.com/louissharrock/constrained-coin-sampling.

6.1 Simplex Targets

Following [82], we first test the performance of our algorithms on two 20-dimensional targets defined
on the simplex: the sparse Dirichlet posterior of [73] and the quadratic simplex target of [1]. We
employ the IMQ kernel and the entropic mirror map [7]; and use N = 50 particles, T = 500
iterations. In Fig. 1 and Fig. 6 - 7 (App. F.1), we plot the energy distance [87] to a set of surrogate
ground truth samples, either obtained i.i.d. (sparse Dirichlet target) or using the No-U-Turn Sampler
(NUTS) [42] (quadratic target). After T = 500 iterations, Coin MSVGD has comparable performance
to MSVGD and SVMD with optimal learning rates but significantly outperforms both algorithms for
sub-optimal learning rates (Fig. 1). In both cases, the projected methods fail to converge. For the
sparse Dirichlet posterior, Coin MSVGD converges more rapidly than MSVGD and SVMD, even for
well-chosen values of the learning rate (Fig. 6a in App. F.1). Meanwhile, for the quadratic target,
Coin MSVGD generally converges more rapidly than MSVGD but not as fast as SVMD [82], which
takes advantage of the log-concavity of the target in the primal space (Fig. 6a in App. F.1).

7

https://github.com/louissharrock/constrained-coin-sampling


10 5 10 4 10 3 10 2 10 1 100

Learning Rate

10 3

10 2

10 1

100

En
er

gy
 D

ist
an

ce
Coin MSVGD
Proj. Coin SVGD
MSVGD
SVMD
Proj. SVGD

(a) Sparse Dirichlet Posterior.
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(b) Quadratic Target.

Figure 1: Results for the simplex targets in [73] and [1]. Posterior approximation quality for Coin
MSVGD, MSVGD, projected Coin SVGD, projected SVGD, and SVMD.

6.2 Confidence Intervals for Post Selection Inference

We next consider a constrained sampling problem arising in post-selection inference [54, 88]. Suppose
we are given data (X, y) ∈ Rn×p × Rn. We are interested in obtaining valid confidence intervals
(CIs) for regression coefficients obtained via the randomised Lasso [89], defined as the solution of

β̂ = argmin
β∈Rp

[
1

2
||y −Xβ||22 + λ||β||1 − ω⊤β +

ε

2
||β||22

]
, (13)

where λ, ε ∈ R+ are penalty parameters and ω ∈ Rp is an auxiliary random vector. Let β̂E ∈ Rq rep-
resent the non-zero coefficients of β̂ and ẑE = sign(β̂E) for their signs. If the support E were known
a priori, we could determine CIs for βE using the asymptotic normality of β̄E = (X⊤

EXE)
−1X⊤

E y.
However, when E is based on data, these ‘classical’ CIs will no longer be valid. In this case,
one approach is to condition on the result of the initial model selection, i.e., knowledge of E and
ẑE . In practice, this means sampling from the so-called selective distribution, which has support
D = {(β̂E , ẑ−E) : sign(β̂E) = ẑE , ||ẑ−E ||∞ ≤ 1}, and density proportional to [e.g., 90, Sec. 4.2]

ĝ(β̂E , ẑ−E) ∝ g
(
ε(β̂E , 0)

⊤ −X⊤(y −XE β̂E) + λ(ẑE , ẑ−E)
⊤
)
. (14)

Synthetic Example. We first consider the model setup described in [79, Sec. 5.3]; see App. F.2 for
full details. In Fig. 2, we plot the energy distance between samples obtained using Coin MSVGD and
projected Coin SVGD, and a set of 1000 samples obtained using NUTS [42], for a two-dimensional
selective distribution. Similar to our previous examples, the performance of MSVGD is very sensitive
to the choice of learning rate. If the learning rate is too small, the particle converge rather slowly;
on the other hand, if the learning rate is too big, the particles may not even converge. Meanwhile,
Coin MSVGD converges rapidly to the true target, with no need to tune a learning rate. Similar to the
examples considered in Sec. 6.1, the projected methods once again fail to converge to the true target,
highlighting the need for the mirrored approach.

0 200 400 600 800 1000
Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

En
er

gy
 D

ist
an

ce

Coin MSVGD
MSVGD (LR=0.1)
MSVGD (LR=0.05)
MSVGD (LR=0.01)
MSVGD (LR=0.005)

(a) Coin MSVGD.
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(b) Projected Coin SVGD.

Figure 2: Results for a two-dimensional post-selection inference target. Energy distance versus
iterations for (a) Coin MSVGD and MSVGD and (b) projected Coin SVGD and projected SVGD, for
a selective distribution of the randomised Lasso in which two features are selected.
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Figure 3: Coverage results for post-selection inference. Coverage of the post-selection confidence
intervals obtained by Coin MSVGD, MSVGD, and SVMD, for 100 repeats of the simulation in [79,
Sec. 5.3].

In Fig. 3, we plot the coverage of the CIs obtained using Coin MSVGD, MSVGD, SVMD, and the
norejection MCMC algorithm in selectiveInference [91], as we vary the nominal coverage
or the total number of samples. For MSVGD and SVMD, we use RMSProp [92] to adapt the learning
rate, with an initial learning rate of γ = 0.1, following [82]. As the nominal coverage varies, Coin
MSVGD achieves similar coverage to MSVGD and SVMD; and significantly higher actual coverage
than norejection (Fig. 3a). Meanwhile, as the number of samples varies, Coin MSVGD, MSVGD,
and SVMD consistently all obtain a higher coverage than the fixed nominal coverage of 90% (Fig. 3b).
This is important for small sample sizes, where the standard approach undercovers. The performance
of MSVGD and SVMD is, of course, highly dependent on an appropriate choice of learning rate. In
Fig. 11 (App. G.3), we provide additional plots illustrating how the coverage of the CIs obtained
using MSVGD and SVMD can deteriorate when the learning-rate is chosen sub-optimally.

Real Data Example. We next consider a post-selection inference problem involving the HIV-1 drug
resistance dataset studied in [8, 75]; see App. F.2 for full details. The goal is to identify statistically
significant mutations associated with the response to the drug Lamivudine (3TC). The randomised
Lasso selects a subset of mutations, for which we compute 90% CIs using 5000 samples and five
methods: ‘unadjusted’ (the unadjusted CIs), ‘standard’ (the method in selectiveInference),
MSVGD, SVMD, and Coin MSVGD. Our results (Fig. 4) indicate that the CIs obtained by Coin
MSVGD are similar to those obtained via the standard approach, which we view as a benchmark,
as well as by MSVGD and SVMD (with a well chosen learning rate). Importantly, they differ
from the CIs obtained using the unadjusted approach (see, e.g., mutation P65R or P184V in Fig.
4). Meanwhile, for sub-optimal choices of the learning rate (Fig. 4b and Fig. 4c, Fig. 12 in App.
G.3), the CIs obtained using MSVGD and SVMD differ substantially from those obtained using the
baseline ‘standard’ approach and by Coin MSVGD, once more highlighting the sensitivity of these
methods to the choice of an appropriate learning rate.
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(a) γ = 0.01.

P41L P62V P65R0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Coin MSVGD
MSVGD
SVMD
Unadjusted
Standard

(b) γ = 0.001.
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(c) γ = 1.0.

Figure 4: Real data results for post-selection inference. Confidence intervals for the mutations
selected by the randomised Lasso as candidates for HIV-1 drug resistance. We report (a) all mutations
when MSVGD and SVMD use a well chosen learning rate (γ = 0.01) and (b) - (c) a subset of
mutations when MSVGD and SVMD use a smaller (γ = 0.001) or larger (γ = 1.0) learning rate.
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Figure 5: Results for the fairness Bayesian neural network. (a) Trade-off curves showing dis-
parate impact versus test accuracy for MIED, Coin MIED, and the methods in [65]. (b) - (c)
Cov(x,y,z)∼D[z, ŷ(x; θ)]

2 and MIE versus the number of iterations, for different values of t, for
MIED and Coin MIED.

6.3 Fairness Bayesian Neural Network

Finally, following [60, 64, 65, 69], we train a fairness Bayesian neural network to predict whether
an individual’s income is greater than $50,000, with gender as a protected characteristic. We use
the Adult Income dataset [50]. The dataset is of the form D = {xi, yi, zi}ni=1, where xi denote the
feature vectors, yi denote the labels (i.e., whether the income is greater than $50,000), and zi denote
the protected attribute (i.e., the gender). We train a two-layer Bayesian neural network ŷ(x;w) with
weights w and place a standard Gaussian prior on each weight independently. The fairness constraint
is given by g(θ) = Cov(x,y,z)∼D[z, ŷ(x; θ)]

2 − t ≤ 0 for some user-specified t > 0. In testing, we
evaluate each method using a Calder-Verwer (CV) score [14], a standard measure of disparate impact.
We run each method for T = 2000 iterations and use N = 50 particles.

In Fig. 5a, we plot the trade-off curve between test accuracy and CV score, for t ∈
{10−6, 10−5, 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2}. We compare the results for Coin MIED,
MIED, and the methods in [65], using the default implementations. In this experiment, Coin MIED is
clearly preferable to the other methods, achieving a much larger Pareto front. In Fig. 5b and Fig. 5c,
we plot the constraint and the MIE versus training iterations for both coin MIED and MIED. Once
again, coin MIED tends to outperform MIED, achieving both lower values of the constraint and lower
values of the energy.

7 Discussion

Summary. In this paper, we introduced several new particle-based algorithms for constrained
sampling which are entirely learning rate free. Our first approach was based on the coin sampling
framework introduced in [81], and a perspective of constrained sampling as a mirrored optimisation
problem on the space of probability measures. Based on this perspective, we also unified several
existing constrained sampling algorithms, and studied their theoretical properties in continuous time.
Our second approach can be viewed as the coin sampling analogue of the recently proposed MIED
algorithm [60]. Empirically, our algorithms achieved comparable or superior performance to other
particle-based constrained sampling algorithms, with no need to tune a learning rate.

Limitations. We highlight three limitations. First, like any mirrored sampling algorithm, mirrored
coin sampling (e.g., Coin MSVGD), necessarily depends on the availability of a mirror map that can
appropriately capture the constraints of the problem at hand. Second, Coin MSVGD has a cost of
O(N2) per update. Finally, even in the population limit, establishing the convergence of mirrored coin
sampling under standard conditions (e.g., strong log-concavity or a mirrored log-Sobolev inequality)
remains an open problem. We leave this as an interesting direction for future work.
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A Calculus in the Wasserstein Space

We recall the following from [2, Chapter 10]. Suppose µ ∈ P2(Rd) and ξ ∈ L2(µ). Let F be a
proper and lower semi-continuous functional on P2(Rd). We say that ξ ∈ L2(µ) belongs to the
Fréchet subdifferential of F at µ and write ξ ∈ ∂F(µ) if, for any ν ∈ P2(Rd),

lim inf
ν→µ

F(ν)−F(µ)−
∫
Rd⟨ξ(x), tνµ(x)− x⟩µ(dx)
W2(ν, µ)

≥ 0, (15)

where tνµ : Rd → Rd denotes the optimal transport map from µ to ν [2, Chapter 7.1]. Under mild
conditions [2, Lemma 10.4.1], the subdifferential ∂F is single-valued, ∂F(µ) = {∇W2

F(µ)}, and
∇W2

F(µ) ∈ L2(µ) is given by

∇W2
F(µ) = ∇∂F(µ)

∂µ
(x) for µ-a.e. x ∈ Rd, (16)

where ∂F(µ)
∂µ : Rd → R denotes the first variation of F at µ, that is, the unique function such that

lim
ε→0

1

ε
(F(µ+ εζ)−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)ζ(dx), (17)

where ζ = ν − µ, and ν ∈ P2(Rd). We will refer to ∇W2
F(µ) as the Wasserstein gradient of F at µ.

B Examples of Mirrored Wasserstein Gradient Flows

In this section, we outline several algorithms which arise as special cases of the MWGF introduced
in Sec 3.2, namely

∂ηt
∂t

+∇ · (wtηt) = 0 , µt = (∇ϕ∗)#ηt, (18)

where (wt)t≥0 are vector fields chosen to ensure the convergence of (ηt)t≥0 to ν = (∇ϕ)#π.

We will assume, throughout this section, that π ∝ e−V and that ν = (∇ϕ)#π ∝ e−W . The
Monge-Ampere equation determines the relationship between W and V . In particular, we have [e.g.,
43]

e−V = e−W◦∇ϕdet∇2ϕ , e−W = e−V ◦∇ϕ∗
det∇2ϕ∗. (19)

Thus, the potential W (y) of the mirrored target ν evaluated at y = ∇ϕ(x) can be expressed in terms
of the potential V (x) of the original target π evaluated at x, as

W (y) = V (x) + log det∇2ϕ(x). (20)

B.1 Mirrored Langevin Dynamics

Suppose that F(η) = KL(η||ν), where, as elsewhere, ν = (∇ϕ)#π is the dual target. In addition, let
wt = −∇W2

F(ηt). In this case, it is straightforward to show that [e.g. 2, Chapter 10] ∇W2
F(η) =

∇ log
(
η
ν

)
. Thus, for this choice of (wt)t≥0, the MWGF in (18) reads

∂ηt
∂t

−∇ ·
(
∇ log

(ηt
ν

)
ηt

)
= 0, µt = (∇ϕ∗)#ηt. (21)

Substituting ∇ log ν = −∇W , and using the fact that ηt∇ log(ηt) = ∇ηt, this can also be written as
∂ηt
∂t

−∇ · (ηt∇W +∇ηt) = 0, µt = (∇ϕ∗)#ηt. (22)

This PDE is nothing more than the Fokker-Planck equation describing the evolution of the law of the
overdamped Langevin SDE with respect to the mirrored target ν ∝ e−W . In particular, suppose that
x0 ∼ µ0, y0 = ∇ϕ(x0) ∼ η0, and that (xt)t≥0 and (yt)t≥0 are the solutions of

dyt = −∇W (yt)dt+
√
2dbt , xt = ∇ϕ∗(yt), (23)

where b = (bt)t≥0 is a standard Brownian motion. Then, if we let (µt)t≥0 and (ηt)t≥0 denote the
laws of (xt)t≥0 and (yt)t≥0, it follows that (µt)t≥0 and (ηt)t≥0 satisfy (22). This is precisely the
mirrored Langevin dynamics (MLD) introduced in [43]. We remark that, using (20), the MLD in
(23) can also be written as

dyt = −∇2ϕ(xt)
−1(∇V (xt) +∇ log det∇2ϕ(xt))dt+

√
2dbt, xt = ∇ϕ∗(yt). (24)
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Remark 1. It is worth distinguishing between the mirrored Langevin dynamics in (23) and the
so-called mirror Langevin diffusion [e.g., 44, Equation 2], which refers to the solution of

dyt = −∇V (xt)dt+
√
2
[
∇2ϕ(xt)

] 1
2 dbt, xt = ∇ϕ∗(yt) (25)

These dynamics, and the corresponding Euler-Maruyama discretisation, known as the mirror
Langevin algorithm or mirror Langevin Monte Carlo, were first studied in [103], and have since also
been analysed in [1, 44, 61]. An alternative time discretisation has also been studied in [19].

In this case, one can show that the law (µt)t≥0 of the solution of the mirror Langevin diffusion in
(25) satisfies the Fokker-Planck equation [e.g., 44, App. A.2]

∂µt

∂t
+∇ · (µtvt) = 0, vt = −[∇2ϕ]−1∇ log

µt

π
. (26)

Recalling that ∇W2
KL(µt||π) = ∇ log µt

π , one can view (26) as a special case of the so-called
Wasserstein mirror flow (WMF), defined according to [e.g. 1, App. C]

∂µt

∂t
+∇ · (vtµt) = 0, vt = −(∇2ϕ)−1∇W2

F(µt). (27)

The WMF is rather different from the MWGF in (18). In particular, the WMF in (27) describes
the evolution of µt according to the Wasserstein tangent vector −(∇2ϕ)−1∇W2

F(µt), where F
is a functional minimised at π, while the MWGF in (18) describes the evolution of the mirrored
ηt := (∇ϕ)#µt according to the tangent vector −∇W2F(ηt), where F is now a functional minimised
at ν = (∇ϕ)#π. We refer to [19] for a detailed discussion of the mirror Langevin diffusion from this
perspective; and [26] for a more general formulation of the WMF.

B.1.1 Continuous Time Results

We now study the properties of the dynamics in (23) in continuous time, starting with the dissipation
of KL(µt|π) and χ2(µt|π) along the MLD. These results are a natural extension of existing results
in the unconstrained case to our setting.
Proposition 1. The dissipation of KL(·||π) along the MWGF in (21) is given by

dKL(µt||π)
dt

= −
∣∣∣∣∣∣[∇2ϕ]−1∇ log

(µt

π

)∣∣∣∣∣∣2
L2(µt)

. (28)

Proof. Using differential calculus in the Wasserstein space and the chain rule, we have that
dKL(ηt||ν)

dt
=
〈
wt,∇ log

(ηt
ν

)〉
L2(ηt)

= −
∣∣∣∣∣∣∇ log

(ηt
ν

)∣∣∣∣∣∣2
L2(ηt)

. (29)

By [43, Theorem 2], we have that KL(η||ν) = KL(µ||π). To deal with the term on the RHS, first
note that, using the formula for the change of variable in a probability density, we have that

η(y) = µ(∇ϕ∗(y))|det∇2ϕ(∇ϕ∗(y))|−1 , ν(y) = π(∇ϕ∗(y))|det∇2ϕ(∇ϕ∗(y))|−1. (30)
Thus, in particular, if y = ∇ϕ(x), then we have that

log
(η
ν

)
(y) = log

(µ
π

)
(∇ϕ∗(y)) = log

(µ
π

)
(x). (31)

Using this, and the fact that η = (∇ϕ)#µ, we can now compute∣∣∣∣∣∣∇ log
(ηt
ν

)∣∣∣∣∣∣2
L2(ηt)

=

∫ ∣∣∣∣∣∣∇y log
(ηt
ν

)
(y)
∣∣∣∣∣∣2 dηt(y) (32)

=

∫ ∣∣∣∣∣∣∇y log
(ηt
ν

)
(y)
∣∣∣∣∣∣2 d((∇ϕ)#µt)(y) (33)

=

∫ ∣∣∣∣∣∣∇y log
(ηt
ν

)
(∇ϕ(x))

∣∣∣∣∣∣2 dµt(x) (34)

=

∫ ∣∣∣∣∣∣∇y log
(µt

π

)
(x)
∣∣∣∣∣∣2 dµt(x) (35)

=

∫ ∣∣∣∣∣∣[∇2ϕ(x)]−1∇x log
(µt

π

)
(y)
∣∣∣∣∣∣2 dµt(y) (36)

=
∣∣∣∣∣∣[∇2ϕ(y)]−1∇y log

(µt

π

)
(y)
∣∣∣∣∣∣2
L2(µt)

. (37)
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The conclusion now follows.

Proposition 2. The dissipation of χ2(·||π) along the MWGF in (21) is given by

dχ2(µt||π)
dt

= −2
∣∣∣∣∣∣[∇2ϕ]−1∇µt

π

∣∣∣∣∣∣2
L2(π)

. (38)

Proof. The proof is rather similar to the previous one. In this case, using the fact that ∇W2
X 2(η||ν) =

2∇ η
ν , we have

dχ2(ηt||ν)
dt

=
〈
−∇ log

(ηt
ν

)
, 2∇ηt

ν

〉
L2(ηt)

= −2
∣∣∣∣∣∣∇ηt

ν

∣∣∣∣∣∣2
L2(ν)

.

We next observe, using now the fact that η
ν (y) =

µ
π (x) which follows from (30), that

χ2(ηt||ν) =
∫ (ηt

ν
(y)− 1

)2
dν(y) =

∫ (ηt
ν
(y)− 1

)2
d((∇ϕ)#π)(y) (39)

=

∫ (ηt
ν
(∇ϕ(x))− 1

)2
dπ(x) =

∫ (µt

π
(x)− 1

)2
dπ(x) = χ2(µt||π). (40)

In addition, based on a very similar argument, we have that∣∣∣∣∣∣∇(ηt
ν

)∣∣∣∣∣∣2
L2(ν)

=

∫ ∣∣∣∣∣∣∇y

(ηt
ν

)
(y)
∣∣∣∣∣∣2 dν(y) = ∫ ∣∣∣∣∣∣∇y

(ηt
ν

)
(y)
∣∣∣∣∣∣2 d((∇ϕ)#π)(y) (41)

=

∫ ∣∣∣∣∣∣∇y

(ηt
ν

)
(∇ϕ(x))

∣∣∣∣∣∣2 dπ(x) = ∫ ∣∣∣∣∣∣∇y

(µt

π

)
(x)
∣∣∣∣∣∣2 dπ(x) (42)

=

∫ ∣∣∣∣∣∣[∇2ϕ(y)]−1∇y

(µt

π

)
(y)
∣∣∣∣∣∣2 dπ(y) = ∣∣∣∣∣∣[∇2ϕ(y)]−1∇y

(µt

π

)
(y)
∣∣∣∣∣∣2
L2(π)

.

(43)

This completes the proof.

Since the RHS of both (28) and (38) are non-positive, these results show that KL(µt|π) and χ2(µt|π)
decrease along the MLD. As an immediate corollary, we have the following continuous time conver-
gence rate for the time-average of ||[∇2ϕ]−1∇ log(µt

π )||2L2(µt)
and ||[∇2ϕ]−1∇(µt

π )||2L2(π).

Proposition 3. For any t ≥ 0, it holds that

min
0≤s≤t

∣∣∣∣∣∣[∇2ϕ]−1∇ log
(µt

π

)∣∣∣∣∣∣2
L2(µt)

≤ 1

t

∫ t

0

∣∣∣∣∣∣[∇2ϕ]−1∇ log
(µs

π

)∣∣∣∣∣∣2
L2(µs)

ds ≤ KL(µ0||π)
t

.

(44)
Proposition 4. For any t ≥ 0, it holds that

min
0≤s≤t

∣∣∣∣∣∣[∇2ϕ]−1∇
(µt

π

)∣∣∣∣∣∣2
L2(π)

≤ 1

t

∫ t

0

∣∣∣∣∣∣[∇2ϕ]−1∇
(µs

π

)∣∣∣∣∣∣2
L2(π)

ds ≤ χ2(µ0||π)
t

. (45)

Proof. These results follow straightforwardly from integration of (28) or (38) and the non-negativity
of the KL or χ2 divergence.

To obtain stronger convergence results, we will require additional assumptions on the target measure.
In the first case, we can assume that the target satisfies what we will refer to as a mirrored logarithmic
Sobolev inequality (LSI).
Proposition 5. Assume that π satisfies a mirrored LSI with constant λ > 0. In particular, for all
µ ∈ P2(X ), there exists λ > 0 such that

KL(µ||π) ≤ 1

2λ

∣∣∣∣∣∣[∇2ϕ]−1∇ log
(µ
π

)∣∣∣∣∣∣2
L2(µ)

. (46)

Then the KL divergence converges exponentially along the MWGF in (21):

KL(µt||π) ≤ e−2λtKL(µ0||π). (47)
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Proof. Substituting the mirrored LSI (46) into (28), we have that

dKL(µt||π)
dt

= −
∣∣∣∣∣∣[∇2ϕ]−1∇ log

(µt

π

)∣∣∣∣∣∣2
L2(µt)

≤ −2λKL(µt||π). (48)

The conclusion now follows straightforwardly from Grönwall’s inequality [39].

Alternatively, under the assumption that the target satisfies a mirrored Poincaré inequality (PI), we
can obtain exponential convergence in a number of metrics.
Proposition 6. Assume that π satisfies a mirrored PI with constant κ > 0. In particular, for all
locally Lipschitz g ∈ L2(π), there exists κ > 0 such that

Varπ [g] ≤
1

κ

∣∣∣∣[∇2ϕ]−1∇g
∣∣∣∣2
L2(π)

(49)

Then the total variation distance, Hellinger distance, KL divergence, and the χ2 divergence all
converge exponentially along the MWGF in (21):

max(2||µt−π||2TV, H2(µt, π),
λ

2
W 2

2 (µt, π), KL(µt||π), χ2(µt||π)) ≤ e−2κtχ2(µ0||π). (50)

Proof. The proof proceeds similarly to above. In particular, this time substituting the mirrored PI
(49) with g = µt

π − 1 into (38), we have

dχ2(µt||π)
dt

= −2
∣∣∣∣∣∣[∇2ϕ]−1∇µt

π

∣∣∣∣∣∣2
L2(π)

≤ −2κχ2(µt||π).

The result for the χ2 divergence follows via an application of Grönwall’s inequality. The remaining
bounds follow from standard comparison inequalities [e.g., 93, Sec. 2.4].

Remark 2. The assumption that π satisfies the mirrored LSI in (46) or the mirrored PI in (49) is
precisely equivalent to the assumption that the mirrored target ν = (∇ϕ)#π satisfies the classical LSI
or the classical PI, respectively. The LSI holds, for example, for all strongly log-concave distributions,
with constant equal to the reciprocal of the strong convexity constant of the potential [4]. The class
of measures satisfying the PI is even larger, including all strongly log-concave measures and, more
generally, all log-concave measures [10, 17, 47].
Remark 3. The mirrored LSI in (46) and the mirrored PI in (49) are distinct from the so-called
mirror LSI [44, Assumption 2] and mirror PI [19, Definition 1]. These assumptions are used in [44,
Proposition 1] and [19, Theorem 1], respectively, to establish exponential convergence of the mirror
Langevin diffusion [e.g., 44, Equation 2], which we recall is distinct from the mirrored Langevin
diffusion in (23); see Remark 1.
Remark 4. In Propositions 5 - 6 above, and also in Proposition 7 below, our assumptions on the
target π are, in some sense, better viewed as assumptions on the mirrored target ν = (∇ϕ)#π.
Indeed, by construction, the imposed assumptions are equivalent to the assumptions that the mirrored
target ν satisfies a LSI (Proposition 5, 7), or that the mirrored target ν satisfies a PI (Proposition 6).

In some sense, it would be preferable to establish such results under more direct assumptions on the
target π itself. One possibility is to assume that the target π is strongly log-concave. In this case,
[43, Proof of Theorem 3] guarantees the existence of a mirror map such that the mirrored target
ν = (∇ϕ)#π is also strongly log-concave. Thus, in particular, the mirrored target satisfies a LSI and
a PI or, equivalently, the target π satisfies a mirrored LSI and a mirrored PI. Thus, Propositions 5 - 7
all still hold.

B.1.2 Discrete Time Results

In practice, of course, it is necessary to discretise the dynamics in (23) in time. Applying a standard
Euler-Maruyama discretisation to (23), or equivalently a forward-flow discretisation to (21) [e.g., 99],
one arrives at the mirrored Langevin algorithm (MLA) from [43], viz

yt+1 = yt − h∇W (yt) +
√
2hξt, xt+1 = ∇ϕ∗(yt+1) (51)

where h > 0 is the step size or learning rate and where (ξt)t∈N are a sequence of i.i.d. standard
normal random variables.
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Proposition 7. Suppose that π satisfies the mirrored LSI with constant λ > 0. In addition, suppose
that π is mirror-L-smooth.2 Then, if 0 < γ ≤ λ

4L2 , the iterates (xt)t≥0 in (51) satisfy

KL(µt||π) ≤ e−λγtKL(µ0||π) +
8γdL2

λ
. (52)

Proof. By [43, Theorem 2], and (32) - (37) in the proof of Proposition 1, if π satisfies a mirrored LSI
with constant λ > 0, then ν = (∇ϕ)#π satisfies a LSI with the same constant λ. In addition, by
definition, if π is mirror-L-smooth, then ν is L-smooth. Thus, it follows from [94, Theorem 1] that

KL(ηt||ν) ≤ e−λγtKL(η0||ν) +
8γdL2

λ
. (53)

Finally, using the invariance of the KL divergence under the mirror map ∇ϕ [43, Theorem 2], the
result follows.

Remark 5. Using a similar approach, one can also obtain bounds on χ2(µt||π) under a mirrored
LSI [35, Theorem 4], and for the Renyi divergence Rq(µt||π) under a mirrored LSI [94, Theorem 2]
or a mirrored PI [94, Theorem 3].
Remark 6. One could also consider a forward Euler discretisation of the dynamics in (21), which
leads to a mirrored version of the so-called deterministic Langevin Monte Carlo algorithm [40].

B.2 Mirrored Stein Variational Gradient Descent

We now turn our attention to the MSVGD dynamics given in Sec. 3.2.1, which we recall are defined
by the continuity equation

∂ηt
∂t

−∇ · (Pηt,kϕ
∇ log

(ηt
ν

)
ηt) = 0, µt = (∇ϕ∗)#ηt, (54)

where, as previously, kϕ is the kernel defined according to kϕ(y, y
′) = k(∇ϕ∗(y),∇ϕ∗(y′)), given

some base kernel k : X × X → R.

B.2.1 Continuous Time Results

We now study the convergence properties of the continuous-time MSVGD dynamics. We note that a
similar set of results can also found in [82, App. H]. We provide them here to highlight the analogues
with the convergence results obtained for the MLD in Sec. B.1.
Proposition 8. The dissipation of the KL along the mirrored SVGD gradient flow is given by

dKL(µt||π)
dt

= −
∣∣∣∣∣∣Sµt,k[∇2ϕ]−1∇ log

(µt

π

)∣∣∣∣∣∣2
Hd

k

. (55)

Proof. The proof is similar to the proof of Proposition 1. In particular, using differential calculus on
the Wasserstein space and the chain rule, we have

dKL(ηt||ν)
dt

=
〈
wt,∇ log

(ηt
ν

)〉
L2(ηt)

= −
∣∣∣∣∣∣Sηt,kϕ

∇ log
(ηt
ν

)∣∣∣∣∣∣2
Hd

kϕ

. (56)

By Theorem 2 in [43], we have that KL(η||ν) = KL(µ||π). In addition, using (31), we can compute∣∣∣∣∣∣Sηt,kϕ
∇ log

(ηt
ν

)∣∣∣∣∣∣2
Hd

kϕ

(57)

=

∫ ∫
k(∇ϕ∗(y),∇ϕ∗(y′))

〈
∇y log

(ηt
ν

)
(y),∇y′ log

(ηt
ν

)
(y′)

〉
dηt(y)dηt(y

′) (58)

=

∫ ∫
k(x, x′)

〈
∇y log

(µt

π

)
(x),∇y′ log

(µt

π

)
(x′)

〉
dµt(x)dµt(x

′) (59)

=

∫ ∫
k(x, x′)

〈
[∇2ϕ(x)]−1∇x log

(µt

π

)
(x), [∇2ϕ(x′)]−1∇x′ log

(µt

π

)
(x′)

〉
dµt(x)dµt(x

′)

=
∣∣∣∣∣∣Sµt,k[∇2ϕ]−1∇ log

(µt

π

)∣∣∣∣∣∣2
Hd

k

. (60)

2We say that π ∝ e−V is mirror-L-smooth if ν ∝ e−W is L-smooth. This holds, in particular, if W =
−V ◦ ∇ϕ∗ + log det∇2ϕ∗ has Hessian bounded by L.

21



Remark 7. The quantity on the RHS of (55) is referred to in [86] as the mirrored Stein Fisher
information of µ with respect to π, with mirror map ∇ϕ. This quantity represents the Stein Fisher
information [32] between (∇ϕ)#µ and (∇ϕ)#π, given the kernel kϕ(·, ·) = k(∇ϕ∗(·),∇ϕ∗(·)).

Similar to before, a straightforward consequence of this result is a continuous time convergence rate
for the average of the mirrored stein discrepancy along the continuous-time MSVGD dynamics.

Proposition 9. For all t ≥ 0, it holds that

min
0≤s≤t

∣∣∣∣∣∣Sµs,k[∇2ϕ]−1∇ log
(µs

π

)∣∣∣∣∣∣2
Hd

k

≤ 1

t

∫ t

0

∣∣∣∣∣∣Sµs,k[∇2ϕ]−1∇ log
(µs

π

)∣∣∣∣∣∣2
Hd

k

ds ≤ KL(µ0||π)
t

.

(61)

Proof. We integrate (55), and use the non-negativity of the KL divergence.

To obtain stronger convergence guarantees, we must once again assume some additional properties on
the target. Here, a natural choice is the mirrored Stein LSI, the analogue of the Stein LSI introduced
in [32] in the mirrored setting; see also [82, Definition 2].

Proposition 10. Assume that π satisfies the mirrored Stein LSI with constant λ > 0. In particular,
for all µ ∈ P2(X ), there exists λ > 0 such that

KL(µ||π) ≤ 1

2λ

∣∣∣∣∣∣Sµ,k[∇2ϕ]−1∇ log
(µ
π

)∣∣∣∣∣∣2
Hd

k

. (62)

Then the KL divergence converges exponentially along the continuous-time MSVGD dynamics:

KL(µt||π) ≤ e−2λtKL(µ0||π). (63)

Proof. The result is a straightforward consequence of (55) and (62). In particular, substituting (62)
into (55), we have

dKL(µt||π)
dt

= −
∣∣∣∣∣∣Sµt,k[∇2ϕ]−1∇ log

(µt

π

)∣∣∣∣∣∣2
Hd

k

≤ 2λKL(µt||π). (64)

We conclude by applying Grönwall’s inequality.

Remark 8. The assumption that π satisfies the mirrored Stein LSI is equivalent to the assumption that
ν = (∇ϕ)#π satisfies the classical Stein LSI with kernel kϕ. The Stein LSI is rather less well known
than the classical LSI, and holds for a much smaller class of targets. In particular, this condition fails
to hold if the kernel k is too regular with respect to the target π, e.g., if π has exponential tails and
the derivatives of the kernel k and the potential V grow at most polynomially [32, 52]. It remains an
open problem to establish conditions for which this conditions holds.

B.2.2 Discrete Time Results

In discrete time, [86] recently established a descent lemma and a complexity bound for MSVGD in
the population limit. For completeness, we recall one of these results here.

Theorem 1 (Corollary 1 in [86]). Suppose that the following assumptions hold:

(1) The mirror function ϕ : X → (−∞,+∞) is strongly K-convex.

(2) There exist B1, B2 > 0 such that for all x ∈ X , k(x, x′) ≤ B2
1 and ∂xi∂xjk(x, x

′)|x=x′ ≤
B2

2 for all i ∈ [d], j ∈ [d].

(3) There exist L0, L1 ≥ 0 such that ||∇2W (y)|| ≤ L0 + L1||∇W (y)||.

(4) There exists p ≥ 1, y0 ∈ Rd, and s > 0 such that
∫
exp [s||y − y0||p] dν(y) < ∞.

(5) There exists p ≥ 1, Cp > 0 such that ||∇W (y)|| ≤ Cp (||y||p + 1) for any y ∈ Rd.
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Then, provided γ satisfies [86, Equation 21], then

1

T

T−1∑
t=0

∣∣∣∣∣∣Sµt,k[∇2ϕ]−1∇ log
(µt

π

)∣∣∣∣∣∣2
Hd

k

≤ 2KL(µ0||π)
Tγ

. (65)

Remark 9. The results in [86] are obtained by extending the proofs used to establish convergence
of SVGD in [85] to the mirrored setting. In this case, essentially all of the same arguments can
be applied (in the dual space), provided suitable assumptions are imposed on the mirrored target
ν = (∇ϕ)#π. The disadvantage of this approach is that the required assumptions are specified in
terms of the mirrored target ν, rather than the target π.

Following a similar approach to [43, Theorem 3], let us show how to recover this result under a
standard assumption on π itself. Suppose we replace [86, Assumption 4] by the assumption that π is
strongly log-concave. Under this assumption, [43, Proof of Theorem 3] guarantees the existence of a
mirror map such that ν is also strongly log-concave. By the Bakry-Emery criterion [4], it follows
that the T2 inequality is satisfied by the dual target ν, and thus so too is the T1 inequality. Finally,
the T1 inequality is necessary and sufficient for [86, Assumption 4] by [95, Theorem 22.10]. Thus,
[86, Corollary 1] holds whenever the target π is strongly log-concave.

B.3 Mirrored Laplacian Adjusted Wasserstein Gradient Descent

We now consider the MWGF of the chi-squared divergence; see also [20, Sec. 3] or [2, Theorem
11.2.1] in the unconstrained case. Following similar steps to [20], we will then obtained a mirrored
version of the Laplacian Adjusted Wasserstein Gradient Descent (LAWGD) algorithm.

B.3.1 MWGF of the Chi-Squared Divergence

Suppose that F(η) = χ2(η||ν) with ∇W2
F(η) = 2∇

(
η
ν

)
. Setting wt = −∇W2

F(ηt) in (4), we are
interested in the following MWGF

∂ηt
∂t

− 2∇ ·
(
∇
(ηt
ν

)
ηt

)
= 0, µt = (∇ϕ)#ηt. (66)

Similar to before, we will begin by studying the convergence properties of this MWGF in continuous
time.
Proposition 11. The dissipation of KL(·||π) along the MWGF in (66) is given by

dKL(µt||π)
dt

= −2
∣∣∣∣∣∣[∇2ϕ]−1∇µt

π

∣∣∣∣∣∣2
L2(π)

. (67)

Proof. The proof is essentially identical to the proof of Proposition 2, although the roles of the
Lyapunov functional and the Wasserstein gradient are now reversed. In particular, we now have

dKL(ηt||ν)
dt

=
〈
2∇ηt

ν
,−∇ log

(ηt
ν

)〉
L2(ηt)

= −2
∣∣∣∣∣∣∇ηt

ν

∣∣∣∣∣∣2
L2(ν)

.

By Theorem 2 in [43] and (41) - (43) in the proof of Proposition 2, we have that KL(ηt||ν) =

KL(µt||π) and
∣∣∣∣∇ (ηt

ν

)∣∣∣∣2
L2(ν)

=
∣∣∣∣[∇2ϕ]−1∇

(
µt

π

)∣∣∣∣2
L2(π)

, from which the conclusion follows.

Proposition 12. The dissipation of χ2(·||π) along the MWGF in (66) is given by

dχ2(µt||π)
dt

= −4
∣∣∣∣∣∣[∇2ϕ]−1∇

(µt

π

)∣∣∣∣∣∣2
L2(µt)

. (68)

Proof. Similar to the last result, the proof follows very closely the proof of Proposition 1. On this
occasion, we have

dχ2(ηt||ν)
dt

=
〈
wt, 2∇

(ηt
ν

)〉
L2(ηt)

= −4
∣∣∣∣∣∣∇(ηt

ν

)∣∣∣∣∣∣2
L2(ηt)

. (69)

Arguing as in (39) - (40) and (41) - (43) in the proof of Proposition 2, we have that χ2(η||ν) =

χ2(µ||π) and
∣∣∣∣∇ (ηt

ν

)∣∣∣∣2
L2(ηt)

=
∣∣∣∣[∇2ϕ]−1∇

(
µt

π

)∣∣∣∣2
L2(µt)

, from which the conclusion follows.
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Similar to before, we can also obtain exponential convergence to the target under a mirrored functional
inequality.
Proposition 13. Assume that π satisfies a mirrored PI with constant κ > 0. In particular, for all
locally Lipschitz g ∈ L2(π), there exists κ > 0 such that

Varπ [g] ≤
1

κ

∣∣∣∣[∇2ϕ]−1∇g
∣∣∣∣2
L2(π)

(70)

Then the KL divergence converges exponentially along the MWGF in (66):

KL(µt||π) ≤ KL(µ0||π)e−2λt. (71)

Furthermore, for t ≥ 1
2λ , the following convergence rate holds:

KL(µt||π) ≤ (KL(µ0||π) ∧ 2) e−2λt. (72)

Proof. The proof follows closely the proof of [20, Theorem 1]. In particular, substituting the mirrored
PI (70) with g = µt

π − 1 into (67), we have that

dKL(µt||π)
dt

= −
∣∣∣∣∣∣[∇2ϕ]−1∇

(µt

π

)∣∣∣∣∣∣2
L2(µt)

≤ −2λχ2(µt||π) ≤ −2λKL(µt||π), (73)

where in the final inequality we have used the fact that KL(·||π) ≤ χ2(·||π) (e.g., [93, Sec. 2.4]).
The first bound now follows straightforwardly from Grönwall’s inequality.

For the second bound, we will instead use the inequality KL(·||π) ≤ log
(
1 + χ2(·||π)

)
(e.g., [93,

Sec. 2.4]), which implies that eKL(·||π) − 1 ≤ χ2(·||π). Using this in (73), it follows that

d

dt

(
1− e−KL(µt||π)

)
≤ −2λ

(
1− e−KL(µt||π)

)
. (74)

Applying Grönwall’s lemma, we then have that(
1− e−KL(µt||π)

)
≤ e−2λt

(
1− e−KL(µt||π)

)
≤ e−2λt, (75)

where in the final line we have used the elementary inequality g(x) = 1 − e−x ≤ 1, for x ≥ 0.
Finally, observe that if t ≥ 1

2λ , then
(
1− e−KL(µt||π)

)
≤ e−2λt ≤ e−1. Combining this with the

fact that x ≤ 2g(x) whenever g(x) ≤ e−1, we have that

KL(µt||π) ≤ 2
(
1− e−KL(µt||π)

)
≤ 2e−2λt (76)

for t ≥ 1
2λ . Alongside the bound in (71), this completes the proof of (72).

B.3.2 Kernelised MWGF of the Chi-Squared Divergence

In [20], the authors provide an interpretation of SVGD as a kernelised WGF of the χ2 divergence.
Similarly, we can interpret MSVGD as a kernelised MWGF of the χ2 divergence; see also [82, App.
H]. In particular, observe that [20, Sec. 2.3]

Pηt,kϕ
∇ log

(ηt
ν

)
=

∫
k(x, ·)∇ log

(ηt
ν
(x)
)
dηt(x) (77)

=

∫
k(x, ·)∇

(ηt
ν
(x)
)
dν(x) = Pν,kϕ

∇
(ηt
ν

)
. (78)

It follows that the continuous-time MSVGD dynamics in (5) or (54) can equivalently be written as

∂ηt
∂t

−∇ ·
(
Pν,kϕ

∇
(ηt
ν

)
ηt

)
= 0, µt = (∇ϕ∗)#ηt. (79)

Comparing (79) and (66), it is clear that, up to a factor of two, MSVGD can be interpreted as the
MWGF obtained by replacing the gradient of chi-squared divergence, ∇

(
ηt

ν

)
, by Pν,kϕ

∇
(
ηt

ν

)
. In

[82, App. H], the authors obtain continuous-time convergence results for this scheme, under a
mirrored Stein PI. Here, we proceed differently, based on the approach in [20].
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B.3.3 Mirrored Laplacian Adjusted Wasserstein Gradient Descent (MLAWGD)

Following [20], suppose now that we replace Pν,kϕ
∇
(
ηt

ν

)
by the vector field ∇Pν,kϕ

(
ηt

ν

)
. The

new dynamics, which we refer to as the mirrored Laplacian adjusted Wasserstein gradient flow
(MLAWGF), are then given by

∂ηt
∂t

−∇ ·
(
∇Pν,kϕ

(ηt
π

)
ηt

)
= 0, µt = (∇ϕ∗)#ηt. (80)

The dynamics in (80) can essentially be viewed as a change of measure of the standard LAWGD
dynamics in [20, Sec. 4], designed to converge to the dual target ν = (∇ϕ)#π.

Suppose, in addition, that the kernel kϕ were chosen such that Pν,kϕ
= −L−1

ν , where Lν,kϕ
denotes

the infinitesimal generator of the Langevin SDE with stationary distribution ν. Thus, in particular,

Lνfϕ(y) = −⟨∇W (y),∇fϕ(y)⟩+∆fϕ(y). (81)

where fϕ : Rd → R denotes the function fϕ(·) = f(∇ϕ∗(·)), given some base function f : X → R.
Letting y = ∇ϕ(x), using (20), and then the chain rule, we can rewrite this as

Lvf(x) = −⟨
[
∇2ϕ(x)

]−1 [∇V (x) +∇ log det∇2ϕ(x)
]
,
[
∇2ϕ(x)

]−1 ∇f(x)⟩ (82)

+Tr
[
−[∇2ϕ(x)]−1∇3ϕ(x)[∇2ϕ(x)]−2∇f(x) + [∇2ϕ(x)]−2∇2f(x)

]
. (83)

We will denote this kernel kLν
. In practice, computing kLν

requires computing the spectral decom-
position of the operator Lν , which is challenging even in the moderate dimensions. Nonetheless,
following [20, Theorem 4], for this choice of kernel we can show that the MLAWGF converges
exponentially fast to the target distribution, at a rate independent of the Poincaré constant.
Proposition 14. Assume that π satisfies a mirrored PI with some constant κ > 0. In addition,
suppose that Lν has a discrete spectrum. Then the KL divergence converges exponentially along the
MLAWGF, with a rate independent of κ:

KL(µt||π) ≤ (KL(µ0||π) ∧ 2) e−t. (84)

Proof. Using standard rules for calculus on the Wasserstein space, and the integration by parts
formula Eν⟨∇f,∇g⟩ = Eν [fLνg] [e.g., 5], we have

dKL(ηt||ν)
dt

= −
〈
∇
(ηt
ν

)
,∇Pν,kLν

(ηt
ν

)〉
L2(π)

=

∫
ηt
ν
LνPν,kLν

ηt
ν
dν(x) = −

∣∣∣∣∣∣ηt
ν

∣∣∣∣∣∣2
L2(ν)

.

By [43, Theorem 2] and (41) - (43) in the proof of Proposition 2, we have that KL(ηt||ν) = KL(µt||π)
and

∣∣∣∣∇ (ηt

ν

)∣∣∣∣2
L2(ν)

=
∣∣∣∣[∇2ϕ]−1

(
µt

π

)∣∣∣∣2
L2(π)

, which implies that

dKL(µt||π)
dt

= −
∣∣∣∣∣∣µt

π

∣∣∣∣∣∣2
L2(π)

= −
∣∣∣∣∣∣(µt

π
− 1
)∣∣∣∣∣∣2

L2(π)
= −X 2(µt||π) ≤ −KL(µt||π), (85)

where in the final line we have once again used the fact that KL(·||π) ≤ X 2(·||π). The conclusion
now follows via Grönwall’s inequality.

To obtain an implementable algorithm, observe that the vector field in the continuity equation can be
rewritten as [20]

−∇Pν,kLν

ηt
ν
(·) = −

∫
∇1kLν

(·, y)ηt
ν
(y)dν(y) = −

∫
∇1kLν

(·, y)dη(y). (86)

Next, using a forward Euler discretisation in time, we arrive at

ηt+1 =
(
id− γ∇Pν,kLν

ηt
ν

)
#
ηt, µt+1 = (∇ϕ)#ηt+1. (87)

Finally, we approximate the expectations in (87) with samples. In particular, after initialising a
collection of particles xi

0
i.i.d.∼ µ0 for i ∈ [N ], we set yi0 = ∇ϕ(xi

0) for i ∈ [N ], and then update

yit+1 = yit − γ
1

N

N∑
j=1

∇yikLν (y
i
t, y

j
t ), xi

t+1 = ∇ϕ∗(yit+1). (88)

This algorithm, which we refer to as the mirrored LAWGD (MLAWGD) algorithm, is summarised in
Alg. 4.
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Algorithm 4 Mirrored LAWGD

input: target density π, kernel kLν
, mirror function ϕ, particles (xi

0)
N
i=1 ∼ µ, step size γ.

initialise: for i ∈ [N ], yi0 = ∇ϕ(xi
0).

for t = 0, . . . , T − 1 do
For i ∈ [N ], yit+1 = yit − γ 1

N

∑N
j=1 ∇yikLν

(yit, y
j
t ).

For i ∈ [N ], xi
t+1 = ∇ϕ∗(yit+1).

return (xi
T )

N
i=1.

B.4 Mirrored Kernel Stein Discrepancy Descent

Finally, we consider the MWGF of the kernel Stein discrepancy (KSD) [21, 38, 62]. In so doing, we
will obtain a mirrored version of the kernel Stein discrepancy descent (KSDD) algorithm in [51].

B.4.1 MWGF of the Kernel Stein Discrepancy

We begin by defining F(η) = 1
2KSD2

ϕ(η|ν), where KSDϕ(η|ν) is the mirrored KSD, which we
define as

KSDϕ(η|ν) =

√∫
Rd

∫
Rd

kν,ϕ(y, y′)dη(y)dη(y′), (89)

where kν,η is the mirrored Stein kernel, defined in terms of the score sν = ∇ log ν of the mirrored
target ν = (∇ϕ)#π, and the positive semi-definite kernel kϕ as

kν,ϕ(y, y
′) = ∇y log ν(y)

⊤kϕ(y, y
′)∇y′ log ν(y′) +∇y log ν(y)

⊤∇y′kϕ(y, y
′)

+∇yk
⊤
ϕ (y, y

′)∇ log ν(y′) + ⟨∇ykϕ(y, ·),∇y′kϕ(·, y′)⟩Hd
kϕ

, (90)

and where, as before, kϕ is the kernel defined according to kϕ(y, y
′) = k(∇ϕ∗(y),∇ϕ∗(y′)), for

some base kernel k : X ×X → R. The MKSD is nothing more than the KSD between η = (∇ϕ)#µ
and ν = (∇ϕ)#π, with respect to the kernel kϕ.

In this case, one can show that ∇W2
F(η) = Ey∼η[∇2kν,ϕ(y, ·)] [51, Proposition 2]. We can thus

define the MKSD gradient flow according to

∂ηt
∂t

−∇ · (Ey∼ηt [∇2kν,ϕ(y, ·)]ηt) = 0, µt = (∇ϕ∗)#ηt. (91)

Similar to the previous sections, we would like to study the properties of this scheme in continuous
time.

Proposition 15. The dissipation of 1
2KSD2

ϕ(ηt|ν) along the MWGF in (91) is given by

d 1
2KSD2

ϕ(ηt|ν)
dt

= −Ey′∼ηt

[
||Ey∼ηt

[∇y′kν,ϕ(y, y
′)]||2

]
(92)

Proof. The result follows straightforwardly using the chain rule. In particular, we have

d 1
2KSD2

ϕ(ηt|ν)
dt

=
〈
wt,∇W2

1

2
KSD2(ηt|ν)

〉
L2(ηt)

(93)

= −Ey′∼ηt

[
||Ey∼ηt

[∇y′kν,ϕ(y, y
′)]||2

]
. (94)

Remark 10. Unlike elsewhere (i.e., Propositions 1 - 2, Proposition 8, and Propositions 11 - 12)
this dissipation result is given in terms of the mirrored densities (ηt)t≥0 and the mirrored target
ν = (∇ϕ)#π, rather than densities (µt)t≥0 and the target π. The crucial difference here is that
the objective functional 1

2KSD2(ηt|ν) is not equal to 1
2KSD2(µt|π), whereas previously it was true

that, e.g., KL(ηt||ν) = KL(µt||π) or χ2(ηt||ν) = χ2(µt||π). Nonetheless, it is possible to give a
dissipation result in terms of the target π.
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Algorithm 5 Mirrored KSDD

input: target density π, kernel k, mirror function ϕ, particles (xi
0)

N
i=1 ∼ µ, step size γ.

initialise: for i ∈ [N ], yi0 = ∇ϕ(xi
0).

for t = 0, . . . , T − 1 do
For i ∈ [N ], yit+1 = yit − γ 1

N2

∑N
j=1 ∇yikν,ϕ(y

j
t , y

i
t).

For i ∈ [N ], xi
t+1 = ∇ϕ∗(yit+1).

return (xi
T )

N
i=1.

We begin by rewriting the LHS of (92). Recall that the squared KSD between µ and π is identical to the
Stein Fisher information between µ and π [e.g., 62, Theorem 3.6]. This also holds for η = (∇ϕ)#µ
and ν = (∇ϕ)#π in the mirrored space, and thus we have

KSD2
ϕ(η|ν) =

∣∣∣∣∣∣Sµ,kϕ
∇ log

(η
ν

)∣∣∣∣∣∣2
Hd

kϕ

=
∣∣∣∣∣∣Sµ,k[∇2ϕ]−1∇ log

(µ
π

)∣∣∣∣∣∣2
Hd

k

, (95)

where in the second equality we have used the result obtained in (57) - (60); see the proof of
Proposition 8. Thus, in particular, F(η) is equal to the mirrored Stein Fisher information, up to a
factor half.

We now turn our attention to the RHS of (92). We would like to simplify ∇y′kν,ϕ(y, y
′), as defined

in (90). Let y = ∇ϕ(x) and y′ = ∇ϕ(x′). Using the definition of kϕ, we have kϕ(y, y
′) = k(x, x′).

Using also the chain rule, we have

∇ykϕ(y, y
′) = [∇2ϕ(x)]−1∇xk(x, x

′) , ∇y′kϕ(y, y
′) = [∇2ϕ(x′)]−1∇x′k(x, x′) (96)

Similarly, it holds that

⟨∇ykϕ(y, ·),∇y′kϕ(·, y′)⟩Hd
kϕ

= ⟨
[
∇2ϕ(x)

]−1 ∇xk(x, ·),
[
∇2ϕ(x′)

]−1 ∇x′k(·, x′)⟩Hd
k
. (97)

Finally, due to (20), we have ∇y log ν(y) = [∇2ϕ(x)]−1
[
∇x log π(x)−∇x log det∇2ϕ(x)

]
.

Putting everything together, we thus have that

kν,ϕ(y, y
′) =

(
[∇2ϕ(x)]−1[∇x log π(x)−∇x log det∇2ϕ(x)]

)⊤
k(x, x′)

·
(
[∇2ϕ(x)]−1[∇x log π(x)−∇x log det∇2ϕ(x)]

)
+
(
[∇2ϕ(x)]−1[∇x log π(x)−∇x log det∇2ϕ(x)]

)⊤(
[∇2ϕ(x)]−1∇xk(x, x

′)
)

+
(
[∇2ϕ(x′)]−1∇x′k(x, x′)

)⊤(
[∇2ϕ(x)]−1[∇x log π(x)−∇x log det∇2ϕ(x)]

)
+ ⟨[∇2ϕ(x)]−1∇xk(x, ·), [∇2ϕ(x′)]−1∇x′k(·, x′)⟩ := k̃π,ϕ(x, x

′). (98)

Using (95) and (98) we thus have the following dissipation result for the mirrored Stein Fisher
information in terms of the target π:

d

dt

∣∣∣∣∣∣Sµt,k[∇2ϕ]−1∇ log
(µt

π

)∣∣∣∣∣∣2
Hd

k

= −2Ex′∼µt

[∣∣∣∣∣∣Ex∼µt

[
k̃π,ϕ(x, x

′)
]∣∣∣∣∣∣2] . (99)

B.4.2 Mirrored Kernel Stein Discrepancy Descent (MKSDD)

To obtain an implementable MKSDD algorithm, it is, of course, necessary to discretise in time and
in space. In this case, following [51], we will first discretise in space, replacing the measure η by a
discrete approximation η̂ = 1

N

∑N
j=1 δyj . This yields, writing ωN = {y1, . . . , yn},

F
(
ωN
)
:= F(η̂) =

1

2N2

N∑
i,j=1

kν,ϕ(y
i, yj), ∇yiF

(
ωN
)
:= F(η̂) =

1

N2

N∑
j=1

∇2kν,ϕ(y
j , yi).

(100)
The mirrored KSDD algorithm thus takes the following form. Initialise a collection of particles
xi
0

i.i.d.∼ µ0 for i ∈ [N ], and set yi0 = ∇ϕ(xi
0) for i ∈ [N ]. Then, update

yit+1 = yt − γ
1

N2

N∑
j=1

∇2kν,ϕ(y
j
t , y

i
t) , xi

t+1 = ∇ϕ∗(yit+1). (101)
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C Convergence of Mirrored Coin Wasserstein Gradient Descent

Proposition 16. Suppose that π is strongly log-concave and that ||∇W2
F(ηt)(yt)|| ≤ L for all

t ∈ [T ]. In addition, suppose that (ηt)t∈N0
and ν satisfy [81, Assumption B.1]. Then there exists a

mirror map ϕ such that

KL

(
1

T

T∑
t=1

µt

∣∣∣∣∣
∣∣∣∣∣π
)

≤ L

T

[
1 +

∫
X
||∇ϕ(x)||

√
T ln

(
1 + 96K2T 2 ||∇ϕ(x)||2

)
π(dx)

+

∫
X
||∇ϕ(x)||

√
T ln

(
1 + 96T 2 ||∇ϕ(x)||2

)
µ0(dx)

]
, (102)

where K > 0 is the constant defined in [81, Assumption B.1].

Proof. First note, using Jensen’s inequality, and [43, Theorem 2], that

KL

(
1

T

T∑
t=1

µt

∣∣∣∣∣
∣∣∣∣∣π
)

≤ 1

T

T∑
t=1

KL ( µt||π) (103)

=
1

T

T∑
t=1

[KL(ηt||ν)−KL(ν||ν)] (104)

:=
1

T

T∑
t=1

F (ηt)−F(ν), (105)

where in the final line we have defined F(η) := KL(η||π). Now, under the assumption that
π is strongly log-concave, [43, Proof of Theorem 3] guarantees the existence of a mirror map
ϕ : X → R ∪ {∞} such that the mirrored target ν = (∇ϕ)#π is also strongly log-concave. It
follows, in particular, that F(η) := KL(η||π) is geodesically convex [e.g., 2, Chapter 9]. Thus,
arguing as in the proof of [81, Proposition 3.3], with w0 = 1, it follows that

1

T

T∑
t=1

F (ηt)−F(ν) ≤ L

T

[
1+

∫
Rd

||y||
√
T ln

(
1 + 96K2T 2 ||y||2

)
ν(dy)

+

∫
Rd

||y||
√
T ln

(
1 + 96T 2 ||y||2

)
η0(dy)

]
. (106)

Finally, once more using the definition of the mirror map and in particular the fact that ν = (∇ϕ)#π
and η0 = (∇ϕ)#η0, we can rewrite the RHS in (106) as the RHS in (102). This completes the
proof.

D Other Mirrored Coin Sampling Algorithms

In this section, we provide some other mirrored coin sampling algorithms besides Coin MSVGD.
Recall, from Sec. 4.2, the general form of the mirrored coin sampling algorithm. Let x0 ∼ µ0 ∈
P2(X ), and y0 = ∇ϕ(x0) ∈ Rd. Then, for t ∈ N, update

yt = y0 +

∑t−1
s=1 cηs

(ys)

t

(
1 +

t−1∑
s=1

⟨cηs
(ys), ys − y0⟩

)
, xt = ∇ϕ∗(xt), (107)

where cηt
(yt) = −∇W2

F(ηt)(yt), or some variant thereof. As noted in Sec. 4.2, for different
choices of F and (cηt

)t∈N0
, one obtains learning-rate free analogues of different mirrored ParVI

algorithms.

In Sec. 4.2, we provided the Coin MSVGD algorithm (Alg. 2), which corresponds to F = KL(·|ν)
and (cηt)t∈N0 = (−Pηt,kϕ

∇ log(ηt

ν ))t∈N0 . This can be viewed as the coin sampling analogue of
MSVGD (Sec. 3.2.1 and App. B.2). We now provide two more mirrored coin sampling algorithms,
which correspond to the coin sampling analogues of MLAWGD (App. B.3) and MKSDD (App. B.4).
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D.1 Coin MLAWGD

Algorithm 6 Coin MLAWGD

input: target density π, kernel kLν
, mirror map ϕ, initial particles (xi

0)
N
i=1 ∼ µ0.

initialise: for i ∈ [N ], yi0 = ∇ϕ(xi
0).

for t = 1, . . . , T do
For i ∈ [N ],

yit = yi0 −
∑t−1

s=1
1
N

∑N
j=1 ∇yikLν (y

i
s, y

j
s)

t

1−
t−1∑
s=1

⟨ 1
N

N∑
j=1

∇yikLν (y
i
s, y

j
s), y

i
s − yi0⟩


xi
t = ∇ϕ∗(yit).

where kLν
is the mirrored LAWGD kernel defined in (81).

return (xi
T )

N
i=1.

D.2 Coin MKSDD

Algorithm 7 Coin MKSDD

input: target density π, kernel k, mirror map ϕ, initial particles (xi
0)

N
i=1 ∼ µ0.

initialise: for i ∈ [N ], yi0 = ∇ϕ(xi
0).

for t = 1, . . . , T do
For i ∈ [N ]

yit = yi0 −
∑t−1

s=1
1

N2

∑N
j=1 ∇yikν,ϕ(y

j
s, y

i
s)

t

1−
t−1∑
s=1

⟨ 1

N2

N∑
j=1

∇yikν,ϕ(y
j
s, y

i
s), y

i
s − yi0⟩


xi
t = ∇ϕ∗(yit).

where kν,ϕ is the mirrored Stein kernel defined in (90).
return (xi

T )
N
i=1.

E Adaptive Coin MSVGD

In Sec. 4.1 - 4.2, we described a betting strategy which is valid under the assumption that the sequence
of outcomes (ct)t∈N := (cηt(yt))t∈N are bounded by one, in the sense that ||cηt(y

i
t)|| ≤ 1 for all

t ∈ [T ] and for all i ∈ [N ] [see also 81, Sec. 3.4]. In practice, this may not be the case. If, instead,
||cηt

(yit)|| ≤ L for some constant L, then one can simply replace cηt
(yt) by its normalised version,

namely ĉηt
(yt) = cηt

(yt)/L in Alg. 2.

If, on the other hand, the constant L is unknown in advance, then one can use a coordinate-wise
empirical estimate Li

t,j which is adaptively updated as the algorithm runs, following [72] and later
[81, App. D].3 We provide full details of this version of Coin MSVGD in Alg. 8. One can also obtain
an analogous version of Coin MIED; we omit the full details here in the interest of brevity.

Finally, when we use a coin sampling algorithm to perform inference for a (fairness) Bayesian neural
network (see Sec. 6.3), we alter the denominator of the betting fraction in Alg. 8 such that it is at least
100Li

t,j . Thus, the update equation in Alg. 8 (or, analogously, the update equation in the adaptive
version of Coin MIED) now reads as

yit,j = yi0,j +

∑t−1
s=1 c

i
s,j

max(Gi
t,j + Li

t,j , 100L
i
t,j)

(1 +
Ri

t,j

Li
t,j

). (108)

This modification, recommended in [72, Sec. 6], has the effect of restricting the value of the particles
in the first few iterations. We should emphasise that these adaptive algorithms, which in practice we
use in all experiments, are still free of any hyperparameters which need to be tuned by hand.

3Here, i ∈ [N ] indexes the particle, and j ∈ [d] indexes the dimension (see Alg. 8).
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Algorithm 8 Adaptive Coin MSVGD

input: target density π, kernel k, mirror map ϕ, initial particles (xi
0)

N
i=1 ∼ µ0.

initialise: for i ∈ [N ], yi0 = ∇ϕ(xi
0); for i ∈ [N ] and j ∈ [d], Li

0,j = 0, Gi
0,j = 0, Ri

0,j = 0.
for t = 1 to T do

For i ∈ [N ],

cit−1 = −Pη̂t,kϕ
∇ log

(
η̂t−1

ν

)
(yit−1) , η̂t−1 =

1

N

N∑
k=1

δyk
t−1

(compute SVGD gradient)

For i ∈ [N ], j ∈ [d],

Li
t,j = max(Li

t−1,j , |cit−1,j |) (update max. observed scale)

Gi
t,j = Gi

t−1,j + |cit−1,j | (update sum of abs. value of gradients)

Ri
t,j = max(Ri

t−1,j + ⟨cit−1,j , y
i
t−1,j − yi0,j⟩, 0) (update total reward)

yit,j = yi0,j +

∑t−1
s=1 c

i
s,j

Gi
t,j + Li

t,j

(1 +
Ri

t,j

Li
t,j

). (update the particles)

For i ∈ [N ], xi
t = ∇ϕ∗(yit).

output: (xi
T )

N
i=1.

Computational Cost. It is worth noting that, in terms of computational and memory cost, the adaptive
Coin MSVGD algorithm is no worse than MSVGD when the latter is paired, as is common, with a
method such as Adagrad [31], RMSProp [92], or Adam [48]. The computational cost per iteration is
O(N2), due to the kernelised gradient. Meanwhile, in terms of memory requirements, it is necessary
to keep track of the maximum observed absolute value of the gradients (component-wise), the sum of
the absolute value of the gradients (component-wise), and the total reward (component-wise). This
is similar to, e.g., Adam, which keeps track of exponential moving averages of the gradient and the
(component-wise) squared gradient [48].

F Additional Experimental Details

In this section, we provide additional details relevant to the experiments carried out in Sec. 6. We im-
plement all methods using Python 3, PyTorch, and TensorFlow. We use the existing implementations
of MSVGD and SVMD [82] and MIED [60] to run these methods. We perform all experiments using
a MacBook Pro 16" (2021) laptop with Apple M1 Pro chip and 16GB of RAM.

For the experiments in Sec. 6.1 and 6.2, we use the inverse multiquadric (IMQ) kernel
k(x, x′) = (1 + {||x− x′||22/h2)−

1
2 due to its favourable convergence control properties (e.g., [38]).

Unless otherwise stated, the bandwidth h is determined using the median heuristic [36, 63]. For
the experiment in Sec. 6.3, following [60], we use the s-Riesz family of mollififiers {ϕs

ϵ} with
s = d+ 10−4 and ϵ = 10−8.

F.1 Simplex Targets

For both experiments in Sec. 6.1, we initialise all methods with i.i.d samples from a Dirichlet(5)
distribution and use the entropic mirror map

ϕ(x) =

d∑
k=1

xk log xk + (1−
d∑

k=1

xk) log(1−
d∑

k=1

xk). (109)

We run all methods for T = 500 iterations using N = 50 particles. In the interest of a fair
comparison, we run all of the learning-rate dependent methods (MSVGD, SVMD, projected SVGD)
using RMSProp [92], an extension of the Adagrad algorithm [31], to adapt the learning rates.
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Sparse Dirichlet Posterior. We first consider the sparse Dirichlet posterior in [73], which is given by

π(x) =
1

Z

d+1∏
k=1

xnk+αk−1
k , x ∈ int(∆), (110)

for parameters α1, . . . , αd+1 > 0 and observations n1, . . . , nd+1, where nk is the number of observa-
tions of category k. We consider the sparse regime, in which most of the nk are zero and the remaining
nk are large, e.g., of order O(d). In particular, as in [82], we set αk = 0.1 for k ∈ {1, . . . , 20}
and use count data n1 = 90, n2 = n3 = 5, and nj = 0 for j > 3. This target is used to replicate
the multimodal sparse conditionals that arise in Latent Dirichlet Allocation (LDA) [9]. While this
distribution is not log-concave, the dual-target is strictly log-concave under the entropic mirror map.

Quadratic Target. We next consider the quadratic simplex target introduced in [1]. In this case, the
target takes the form

π(x) =
1

Z
exp

(
− 1

2σ2
x⊤Ax

)
, (111)

where A ∈ Rd×d is a symmetric positive semidefinite matrix with all entries bounded in magnitude
by 1. Following [82], we set σ = 0.01 and generate A by normalising products of random matrices
with i.i.d. elements drawn from Unif[−1, 1].

F.2 Confidence Intervals for Post Selection Inference

Given data (X, y) ∈ Rn×p × Rn, the randomised Lasso is defined as the solution of [89, Sec. 3.1]

β̂ = argmin
β∈Rp

[
1

2
||y −Xβ||22 + λ||β||1 − ω⊤β +

ε

2
||β||22

]
, (112)

where λ is the ℓ1 penalty parameter, ε ∈ R+ is a ridge term, and ω ∈ Rp is an auxiliary random vector
drawn from some distribution G with density g. We choose G to be a zero-mean independent Gaussian
distribution. The scale of this distribution, and the parameter ε, are both determined automatically by
the randomizedLasso function in the selectiveInference package. The distribution of interest
has density proportional to (e.g., [90, Sec. 4.2])

ĝ(β̂E , ẑ−E) ∝ g
(
ε(β̂E , 0)

⊤ −X⊤(y −XE β̂E) + λ(ẑE , ẑ−E)
⊤
)
, (113)

with support D = {(β̂E , ẑ−E) : sign(β̂E) = ẑE , ||ẑ−E ||∞ ≤ 1}. In all experiments, following [89],
we integrate out ẑ−E analytically and reparameterise β̂E as ẑE ⊙ |β̂E |. This yields a log-concave
density for |β̂E |, with domain given by the non-negative orthant in Rq . We then use the mirror map

ϕ(x) =

d∑
k=1

(xk log xk − xk) . (114)

Synthetic Example. We consider the simulation in [79, Sec. 5.3], with n = 100 and p = 40. The
design matrix X is generated from an equi-correlated model. In particular, for i = 1, . . . , n, the
rows xi

i.i.d.∼ N (0,Σ), where Σij = δi,j + ρ(1− δi,j), with ρ = 0.3. We also normalise the columns
of X to have norm 1. Meanwhile, the response is distributed as y ∼ N (0, In), independent of
X . That is the true parameter β = 0. We set ε = σ̂2

√
n

, where σ̂ denotes the empirical standard
deviation of the response. We set λ using the default value returned by theoretical.lambda in
the selectiveInference package, multiplied by a factor of 0.7n. This adjustment reduces the ℓ1
regularisation, ensuring that a reasonable subset of the p = 40 features are selected.

We run each algorithm for T = 1000 iterations. For Coin MSVGD, MSVGD, and SVMD, we
use N = 50 particles, and generate Ntotal samples by aggregating the particles from Ntotal/N
independent runs. For the norejection method, we generate Ntotal samples by running the
algorithm for Ntotal iterations after burn-in. Finally, following [82], in Fig. 3 the error bars for the
actual coverage levels correspond to 95% Wilson intervals [101].

HIV-1 Drug Resistance. We use the vitro measurement of log-fold change under 3TC as the response
and include mutations that appear more than 10 times in the dataset as predictors. The resulting
dataset consists of n = 633 cases and p = 91 predictors. In the selection stage, we apply the ran-
domised Lasso, setting the regularisation parameter to the theoretical value in selectiveInference,
multiplied by a factor of n. We implement SVMD and MSVGD using RMSProp [92], with an initial
learning rate of γ = 0.01 following [82]. We implement each method for T = 2000 iterations, using
N = 50 particles.
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F.3 Fairness Bayesian Neural Network

We use a train-test split of 80% / 20%, as in [60, 65]. We implement the methods in [60, 65] using
their source code, using the default hyperparameters. We run all algorithms for T = 2000 iterations,
and using N = 50 particles. Similar to [60], we found that one of the algorithms (Control + SVGD)
in [64] got stuck after initialisation, with accuracy close to 0.75 and did not improve during training.
We thus omit the results for this method in Fig. 5.

G Additional Numerical Results

G.1 Simplex Targets

In Fig. 6 and Fig. 7, we provide additional results for the sparse Dirichlet posterior [73] and the
quadratic simplex target [1] considered in Sec. 6.1. In particular, in Fig. 6a and Fig. 7a, we plot
the energy distance to a set of ground truth samples either obtained i.i.d. (sparse Dirichlet target)
or using NUTS [42] (quadratic target) versus the number of iterations for Coin MSVGD, MSVGD,
SVMD, and projected versions of Coin SVGD and SVGD. Meanwhile, in Fig. 6b and Fig. 7b, we
compare the performance of Coin MSVGD with the performance of MSVGD, for multiple choices
of the learning rate.
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Figure 6: Additional results for the sparse dirichlet posterior in [73]. (a) Energy distance vs.
iterations for Coin MSVGD, MSVGD, SVMD, projected Coin SVGD, and projected SVGD; and (b)
energy distance vs iterations for Coin MSVGD and MSVGD, using five different learning rates.
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Figure 7: Additional results for the quadratic simplex target in [1]. (a) Energy distance vs.
iterations for Coin MSVGD, MSVGD, SVMD, projected Coin SVGD, and projected SVGD; and (b)
energy distance vs iterations for Coin MSVGD and MSVGD, using five different learning rates.
As observed in Sec. 6.1, for the sparse Dirichlet posterior, Coin MSVGD converges more rapidly
than MSVGD and SVMD, even for well-chosen values of the learning rate (Fig. 6). Meanwhile, for
the quadratic target, Coin MSVGD generally converges more rapidly than MSVGD but not as fast as
SVMD [82], which leverages the log-concavity of the target in the primal space (Fig. 7). In both
cases, for poorly chosen values of the learning rate, MSVGD (e.g., γ = 5 × 10−1 in Fig. 6b and
γ = 1× 10−4, γ = 1× 10−3, or γ = 5× 10−1 in Fig. 7b) entirely fails to converge to the true target.
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Results for Different Numbers of Particles. In Fig. 8 and Fig. 9, we provide additional results
for the two simplex targets, now varying the number of particles N . The results are similar to those
reported in Sec. 6.1. In particular, Coin MSVGD has comparable performance to MSVGD and
SVMD with optimal learning rates, but significantly outperforms both algorithms for sub-optimal
learning rates. In addition, as expected, the posterior approximation quality of Coin MSVGD, as
measured by the energy distance, improves as a function of the number of particles N (Fig. 8d and
Fig. 9d).
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(c) N = 100.
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Figure 8: Additional results for the sparse Dirichlet posterior in [73]. (a) - (c) Energy distance vs
learning rate, for several values of N , for Coin MSVGD, MSVGD, SVMD, projected Coin SVGD,
and projected SVGD. (d) Energy distance vs N , for several different values of the learning rate, for
Coin MSVGD and MSVGD. We run each algorithm for T = 250 iterations.
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(a) N = 10.
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(c) N = 100.
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Figure 9: Additional results for the quadratic target in [1]. (a) - (c) Energy distance vs learning
rate, for several values of N , for Coin MSVGD, MSVGD, SVMD, projected Coin SVGD, and
projected SVGD. (d) Energy distance vs N , for several different values of the learning rate, for Coin
MSVGD and MSVGD. We run each algorithm for T = 500 iterations.
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G.2 Sampling from a Uniform Distribution

In this section, we consider the task of sampling from the uniform distribution on the unit square,
namely Unif[−1, 1]2. For MSVGD and Coin MSVGD, we once again use the entropic mirror map.
We also now use the RBF kernel, with a fixed bandwidth of h = 0.01.4 For MIED and Coin MIED,
following [60], we reparameterise the particles using tanh to eliminate the constraint. We show
results for several choices of mollifiers, in each casing choosing the smallest ϵ which guarantees the
optimisation remains stable. We initialise all methods with particles drawn i.i.d. from U [−0.5, 0.5]2.
For both methods, in the interest of a fair comparison, we adapt the learning rates using RMSProp
[92]. We use N = 100 particles and run each experiment for T = 250 iterations. We then assess the
quality of the posterior approximations by computing the energy distance to a set of 1000 samples
drawn i.i.d. from the true target distribution.

The results for this experiment are shown in Fig. 10. Similar to our previous synthetic examples,
Coin MSVGD is competitive with the optimal performance of MSVGD. Meanwhile, for sub-optimal
choices of the learning rate, the coin sampling algorithm is clearly preferable. The same is also
true for Coin MIED which, depending on the choice of mollifier, obtains comparable or superior
performance to MIED with the optimal choice of learning rate.
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Figure 10: Results for the uniform target: Unif[−1, 1]2. Energy distance vs learning rate after 250
iterations for (a) Coin MSVGD and MSVGD; and (b) - (d) Coin MIED and MIED, for three different
choices of mollifier.

G.3 Post-Selection Inference

In this section, we provide additional results for the post-selection inference examples considered
in Sec. 6.2. In Fig. 11, we once again plot the coverage of the CIs obtained using Coin MSVGD,
MSVGD, SVMD, and the norejection algorithm in selectiveInference [91], as we vary either
the nominal coverage or the total number of samples. Now, however, we consider two sub-optimal
choices of the learning rate for MSVGD and SVMD. In particular, we now use an initial learning rate
of γ = 0.001 (Fig. 11a - 11b) or γ = 0.1 (Fig. 11c - 11d) for RMSProp [92], rather than γ = 0.01 as
in Fig. 3 (see Sec. 6.2).

4In this example, the use of an adaptive kernel (e.g., with the bandwidth chosen according to the median
rule), can cause the samples from MSVGD to collapse [60].
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In this case, we see that the performance of both MSVGD and SVMD deteriorates. In particular, they
both now obtain significantly lower coverage than Coin MSVGD. As noted in the main text, this
increased coverage is of particular importance for smaller sample sizes (see Fig. 11b and Fig. 11c),
and for greater nominal coverage levels (see Fig. 11a and 11c), where the standard CIs generally
undercover.

0.80 0.85 0.90 0.95 1.00
Nominal coverage

0.75

0.80

0.85

0.90

0.95

1.00

Ac
tu

al
 c

ov
er

ag
e

Coin MSVGD
MSVGD
SVMD
Standard

(a) Actual vs Nominal Coverage (γ = 0.001).
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(b) Coverage vs No. of Samples (γ = 0.001).
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(c) Actual vs Nominal Coverage (γ = 0.1).
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(d) Coverage vs No. of Samples (γ = 0.1).

Figure 11: Additional coverage results for the post-selection inference. Coverage of post-selection
confidence intervals for Coin MSVGD, MSVGD, and SVMD, using sub-optimal learning rates.

Finally, in Fig. 12, we perform a similar experiment for the real-data example involving the HIV-1
drug resistance dataset. In particular, we compute 90% CIs for the subset of mutations selected by
the randomised Lasso, using 5000 samples and the same five methods as before: ‘unadjusted’ (the
unadjusted CIs), ‘standard’ (the method in selectiveInference), MSVGD, SVMD, and Coin
MSVGD. Now, however, we use sub-optimal choices of the initial learning rate in RMSProp, namely,
γ = 0.001 (Fig. 12a) and γ = 1.0 (Fig. 12b), compared to γ = 0.01 in the main paper.

Similar to the synthetic example, the impact of using a sub-optimal choice of learning rate is clear.
In particular, CIs obtained using MSVGD and SVMD now differ substantially from those obtained
by Coin MSVGD and the standard approach. This means, in particular, that several mutations are
now incorrectly flagged as significant by MSVGD and SVMD (e.g., mutation P41L, P62V, P70R, or
P215Y in Fig. 12b), when in reality there is insufficient evidence after conditioning on the selection
event.
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(a) γ = 0.001.
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(b) γ = 1.0.

Figure 12: Additional real data results for post-selection inference. Unadjusted and post-selection
confidence intervals for the mutations selected by the randomised Lasso as candidates for HIV-1 drug
resistance, for two sub-optimal choices of the learning rate γ.
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