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ABSTRACT

Steady-state visual evoked potential based brain–computer interfaces (SSVEP-
BCIs) have attracted wide attention for their high information transfer rate (ITR)
and non-invasiveness. However, existing deep learning methods for SSVEP-BCI
decoding have reached a performance bottleneck, as they struggle to fully extract
the complex neural signal features required for robust performance. Motivated
by advances in vision and time series modeling, here we present a VIsion Trans-
former Based Expert network (VIBE), a multistage deep learning framework for
SSVEP classification. VIBE integrates a Vision Transformer (ViT) module to
generate rich spatiotemporal representations with data and network enhancement
modules in a decoder for frequency recognition. We evaluate VIBE on two large
benchmark datasets, including the Benchmark and the BETA dataset spanning
105 subjects. Notably, with just 0.4 seconds of stimulation, our VIBE achieves
an ITR of 263.8 bits per minute (bpm) and 202.7 bpm on the Benchmark and
BETA datasets, respectively. Experimental results demonstrate that VIBE consis-
tently outperforms state-of-the-art baselines in offline experiments, highlighting
its effectiveness as a high-performance decoding strategy for SSVEP-BCIs.

1 INTRODUCTION

Brain–computer interfaces (BCIs) provide a direct communication pathway between the brain and
external devices, enabling interaction without relying on neuromuscular activity. BCIs have emerged
as effective tools for augmentative communication and human-machine interaction, with broad po-
tential applications ranging from neuroprosthesis (Willett et al., 2021; 2023) to the next-generation
form of human-computer interaction (Gao et al., 2025). Among noninvasive paradigms, steady-state
visual evoked potential based BCIs (SSVEP-BCIs) stand out for their non-invasiveness, high ITR,
robustness, and scalability. SSVEPs are frequency-tagged neural responses that can be evoked by
periodic visual stimulation, including flickering squares, reversing checkerboards, and moving grat-
ings, and they are elicited over occipital cortex at the stimulation frequency and its harmonics. These
frequency-tagged responses exhibit a high signal-to-noise ratio (SNR), enabling SSVEP-BCIs to
implement high-speed spellers (Chen et al., 2015b), robotic control, and smart home systems. How-
ever, achieving high decoding accuracy under short time windows remains challenging in learning
effective neural representations from noisy, data-constrained EEG recordings with complex spa-
tiotemporal and spectral dynamics.

Advancements in SSVEP-BCI decoding have been driven by both traditional linear methods and
emerging deep learning models. Early approaches such as canonical correlation analysis (CCA) (Bin
et al., 2009) and its filter-bank extension (FBCCA) Chen et al. (2015a) established training-free plug-
and-play frequency recognition, while subsequent training-based methods like task-related compo-
nent analysis (TRCA) Nakanishi et al. (2017) and task-discriminant component analysis (TDCA)
(Liu et al., 2021b) designed sophisticated spatial filters using individually calibrated data to signifi-
cantly boost the decoding performance. However, these linear methods remain limited in capturing
the nonlinear and hierarchical patterns of EEG signals. To overcome this, convolutional neural net-
works (CNNs) and, more recently, Transformer-based models have been introduced to learn richer
spatio-temporal representations directly from data, showing notable improvements over baselines
(Li et al., 2020; Song et al., 2022). Despite these advances, challenges remain in jointly exploiting
local inductive biases and global dependencies, motivating the development of new architectures
tailored for high-throughput SSVEP-BCIs.
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To overcome these limitations, we introduce VIBE (Vision Transformer Based Experts Network),
a multistage framework that unifies transformer-based sequence modeling with expert-driven spe-
cialization. VIBE employs a ViT module to perform temporal generation, expanding short input se-
quences into richer representations that preserve multi-scale temporal dependencies. It integrates a
Mixture of Experts (MoE) decoder, where experts specialize in different subband–channel–temporal
dynamics, and a load-balancing loss ensures diverse expert utilization for better generalization. On
top of these architectural innovations, VIBE employs a staged training scheme that progressively
pretrains and fine-tunes the ViT-based temporal generation and MoE-based decoding modules,
adapting from population data to subject-specific dynamics. It further integrates data augmenta-
tion strategies, including temporal stitching, channel chunk shuffling, random temporal cropping,
and decorrelation, to regularize training and enhance representation learning for EEG.

We evaluate VIBE on two large benchmark datasets, the Benchmark and the BETA datasets, span-
ning 105 subjects. Results show that VIBE consistently outperforms both classical and deep learning
baselines, achieving higher accuracy and ITR under short time windows. These findings establish
VIBE as an effective decoding strategy for high-throughput SSVEP-BCIs.

In summary, our main contributions are threefold:

1. A novel hybrid framework that combines ViT-based temporal generation with MoE-based
subband-channel-temporal decoding enhancement for SSVEP classification.

2. A staged training scheme that progressively adapts temporal generation and decoding mod-
ules from population to subject-specific data.

3. A suite of data augmentation methods designed for EEG, improving robust representation
learning from limited and noisy neural data.

2 RELATED WORK

Traditional methods. Early research focused on traditional frequency recognition methods, which
can be broadly divided into training-free and training-based approaches. Canonical correlation anal-
ysis (CCA) (Bin et al., 2009) and its filter-bank extension (FBCCA) (Chen et al., 2015a) became
widely used due to their plug-and-play traning-free capability. Prior studies using individually cal-
ibrated data introduced multiset CCA (MsetCCA) (Zhang et al., 2014), L1-regularized multiway
CCA (L1MCCA) (Zhang et al., 2013), and extended CCA (eCCA) (Nakanishi et al., 2014), which
improved robustness by leveraging richer reference structures and regularization strategies. More
sophisticated spatial filter based methods were developed to further boost accuracy. Task-related
component analysis (TRCA) (Nakanishi et al., 2017) significantly improved SSVEP decoding by
maximizing trial-to-trial reproducibility. To further address redundancy in TRCA’s ensemble de-
sign, task-discriminant component analysis (TDCA) (Liu et al., 2021b) eliminated the training of
spatial filters class by class and leveraged spatio-temporal neural dynamics, making it a state-of-
the-art method for enabling high-speed brain spellers. Despite these advances, traditional methods
remain linear and limited in their ability to capture nonlinear, hierarchical representations of EEG.

Deep learning methods. Motivated by these limitations, recent research has turned toward learn-
ing complex representations from noisy signals in an end-to-end manner. Convolutional neural
networks (CNNs) enabled data-driven feature extraction, analogous to filtering in EEG signal pro-
cessing, and advances such as convolutional correlation analysis (ConvCA) (Li et al., 2020) and
deep neural network classifiers (Guney et al., 2021) have surpassed linear baselines. Extensions
incorporated fixed and dynamic template networks (Xiao et al., 2022), bidirectional Siamese corre-
lation networks (Zhang et al., 2022), and multiscale CNNs with squeeze-and-excitation blocks (Jin
et al., 2024). More recently, Transformer-based architectures leveraging self-attention to capture
long-range temporal dependencies have been applied to EEG (Song et al., 2022; Wan et al., 2023),
including SSVEPformer (Chen et al., 2023), DG-Conformer (Liu et al., 2024), SSVEPPoolformer
(Li et al., 2025a) and MTSNet (Lan et al., 2025) for cross-subject SSVEP classification. Hybrid
approaches such as TRCA-Net (Deng et al., 2023) and discriminant compacted network (Li et al.,
2025b) combine spatial filters with neural networks, while ConsenNet (Zhang et al., 2024) leverage
a teacher-student framework to further improve performance. Most recently, Mamba-based models
such as SUMamba (Dong et al., 2026) integrated multi-scale feature fusion to facilitate classifi-
cation. However, CNNs remain limited in capturing global dependencies, and Transformers often
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neglect inductive biases specific to EEG, leaving the representation learning problem unresolved for
high-throughput SSVEP-BCIs.

3 METHOD

We first define the notation used throughout this work. The multi-channel EEG signal is represented
as X ∈ RB×C×T , where B denotes the number of filter banks, C the number of EEG electrodes
(channels), and T the total number of sampled timestamps. In our experiments, we consider B = 3
sub-bands extracted by band-pass filtering, and C = 9 channels selected from classical montage for
SSVEP classification (Chen et al., 2015b).
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Figure 1: Framework of our proposed VIBE method. In the ViT Generation (a) Pretrain stage, the
ViT module learns to generate extended temporal representations from short SSVEP EEG segments.
In the ViT Fine-tune stage, subject-specific data are fed into the pretrained ViT, and both train/test
data are concatenated with the regenerated temporal data. In the MoE Decoder (e) Pretrain stage,
the concatenated data from all subjects, together with three forms of augmented data, are used
to train the decoder. Finally, in the Decoder Fine-tune stage, only subject-specific data (without
augmentation) are used for calibration. The decoder output corresponds to the classification result.

3.1 VIT-BASED TEMPORAL GENERATION.

The first component of our framework is a ViT (Dosovitskiy et al., 2021) adapted for temporal
sequence generation. We represent the multi-band EEG data as an image tensor X ∈ RB×C×Tin ,
where the three dimensions correspond to sub-bands (B = 3), channels (C), and time samples
(Tin). Following the ViT formulation, the signal is partitioned into non-overlapping patches of size
(B,C, t), where t denotes a small temporal window (e.g., t = 10 samples ≈ 0.04 s). Each patch
is then flattened and linearly projected into a latent embedding, forming a sequence of tokens. Like
standard ViTs, we include positional embeddings added to the patchified embedding. A learnable
class token is attached to the sequence, which serves to expand the representation to match the
target output length Tout. This latent sequence is then processed by a transformer-based decoder
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(also implemented as a ViT), and the resulting patches are unpatchified to reconstruct the output
sequence X̂ ∈ RB×C×Tout , with Tout > Tin. The model was optimized using the mean squared error
(MSE) loss. We clip the extended sequence of shape RB×C×(Tout−Tin), which represents the newly
generated temporal samples. This generated segment was concatenated with the original input X ,
forming the final output representation.

3.2 MOE WITH CHANNEL-SUBBAND TEMPORAL DECODER

The second part of our framework is a decoder that jointly models subband, channel, and temporal
dependencies using a MoE design.

3.2.1 MOE

MoE (Shazeer et al., 2017) mechanism is designed to increase model capacity while keeping com-
putational cost manageable through sparse activation. MoE has also been successfully applied to
EEG decoding tasks (Yang et al., 2025). Instead of applying a single shared transformation to all in-
puts, an MoE layer maintains a set of E experts {f1, f2, . . . , fE}, each parameterized as a learnable
function (e.g., convolutional filters in our case). For each input token x, a gating network produces
a probability distribution over experts, and only the top-k experts are selected to process the input.
Specifically, we take the mean over temporal domain as the input of the gating network, where the
network consist of two layers of MLP and one ReLU as activation. The final output is then obtained
as a weighted combination of the selected experts’ outputs, where the gating scores act as mixture
coefficients. This strategy enables different experts to specialize on distinct temporal or spectral
patterns in the EEG signal, enhancing both representation power and generalization.

Auxiliary Load-Balancing Loss. To encourage balanced utilization of experts and prevent over-
fitting, we introduce an auxiliary load-balancing loss. For each MoE layer, the gating network
computes a probability distribution over E experts for each input token. Let G ∈ RB×E denote the
gate probabilities for a batch of B inputs, with Gij representing the probability of assigning input i
to expert j. The mean usage of each expert is then ūj = 1

B

∑B
i=1 Gij . We define the auxiliary loss

as the Kullback-Leibler (KL) divergence between the mean expert usage and a uniform distribution:

Laux = λaux KL
(
log(ū) ∥U

)
where U is a uniform vector of length E, and λaux is a weighting coefficient. This loss encourages
all experts to be used approximately equally, preventing collapse onto a small subset of experts and
improving generalization.

3.2.2 CHANNEL-SUBBAND FUSED TEMPORAL DECODER

The decoder first integrates information across sub-bands and channels by treating the data as a com-
bined subband-channel dimension of shape (B ∗ C, 1, T ). A convolutional layer with kernel (1, 1)
is applied to extract higher-level spectral-channel features. Next, a subband-channel-temporal block
is applied that consists of two convolutional layers: one over the subband-channel dimension and
one over the temporal dimension. This block pools information separately from the spectral-channel
and temporal dimensions. The block is repeated twice to progressively capture richer patterns across
channels, sub-bands, and time. Nonlinearities and dropout are applied between layers for regular-
ization. Finally, the extracted features are flattened and passed through a fully connected layer to
produce the class logits. In our model, we replace the last temporal convolution layer with a MoE
layer, where experts in the networks employ the original temporal conv.

3.3 DATA AUGMENTATION

In the following section, the dataset is denoted as X ∈ RS×B×N×M×T×C , where S is the number
of subjects, B the number of subbands, N the number of trials, M the number of targets, T the
temporal length, and C the number of EEG channels.

4
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Cross-Subject Temporal Stitching As a generalization of (Lotte, 2015), the EEG signals are first
divided into short temporal segments, or chunks, across the time dimension. For each chunk, we
randomly select a segment of the same duration from any subject and trial in the dataset, preserving
the original subband, channel, and target labels. The selected segments are combined across time to
form a new synthetic trial, maintaining the original subband, channel, and target structure. This ap-
proach allows the creation of entirely new temporal patterns by sampling from different subjects and
trials, rather than modifying the original trial. Namely, ⊕iXsi,:,ni,:,iτ :τ(i+1),: ∈ R1×B×1×M×T×C is
a generated piece of data of, where {0, τ, 2τ, ...} is the time chunk sequence and each si, ni is ran-
domly selected among S,N ,

Channel Chunk Shuffle Given a random subject, input data is first divided into consecutive
chunks along the time dimension. For each chunk, with a certain probability, two channels are
randomly selected and swapped, while all other dimensions—including subbands, trial, target labels
remain unchanged. Explicitly, given a subject’s trial and target,if time chunks (tiτ, tjτ) are selected
to shuffle with (ci0 , ci1), (cj0 , cj1) ∈ Sc are transpositions corresponding to ti, tj as channel swap,
Xs,:,n,m,tiτ :ti+1τ,ci0

replaces the channel ci1 and similarly for tj , (cj0 , cj1).

Random Temporal Crop Inspired by (Liu et al., 2021b), a Random Temporal Crop (RTC) aug-
mentation is utilized to increase temporal diversity in the training data. For any chosen subject, we
preserve the original trial, target label, subband, and channel structure.With a given probability, we
randomly select a short segment of time (e.g. 0.03s) from the data, keeping only the latter portion
and discarding the former. The cropped segment is zero-padded at the end to restore the trial to its
original temporal length.

Channel Decorrelation We adopt a covariance-based whitening procedure across channels, con-
ditioned on each subject and subband. For each subject and subband, we first compute the mean trial
across all training trials to obtain a representation. This mean trial is used to estimate the channel
covariance, from which a whitening matrix is derived (He & Wu, 2019; Liu et al., 2021a). The
whitening matrix is applied to both training and test data, effectively reducing subject, trial-level
variability while preserving the temporal and target-related structure of the signals. The decorrela-
tion procedure emphasizes stable patterns across different subject and subband.

3.4 TRANSFER LEARNING.

Following the transfer learning strategy of (Guney et al., 2021), we adopt a staged training procedure
to strengthen representation ability. Our model comprises two main components: a ViT encoder for
temporal length generation and a MoE-based decoder for subband-channel and temporal integration.
Thus, the transfer learning process is added to these component.

In the first stage, the ViT encoder is trained in a generative manner, reconstructing the temporal
sequence from shorter inputs. In the second stage, this encoder is fine-tuned separately for each
subject, where the global model parameters are re-initialized and adapted using only subject-specific
data. The decoder is trained in a similar two-step fashion: first, a global MoE decoder is optimized
using the pooled training data across all subjects, and subsequently, a subject-specific fine-tuning
step is applied to adapt the decoder to individual variability.

4 EXPERIMENTS

4.1 DATASET

The experiments were carried out on two public 40-target SSVEP datasets: the Benchmark dataset
(Wang et al., 2016) and the BETA dataset (Liu et al., 2020). Both datasets employed the joint
frequency and phase modulation (JFPM) method to encode target stimuli. The data acquisition
equipment for the Benchmark and BETA datasets is identical; however, the Benchmark dataset was
collected in a controlled laboratory environment within an electromagnetic shielding room, whereas
the BETA dataset was recorded in a more naturalistic setting, reflecting real-world conditions. All
experiments, including comparisons with state-of-the-art methods, were performed on these two

5
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datasets. This allows us to evaluate the performance of our decoding approach under both controlled
and realistic acquisition conditions.

4.2 PREPROCESSING

The same preprocessing pipeline was applied to both datasets. Nine electrodes (Pz, PO5, PO3, POz,
PO4, PO6, O1, Oz, and O2) were selected for analysis. The EEG signals were downsampled to
250 Hz. To account for visual response latency, we considered delays of 0.14 s for Benchmark and
0.13s for BETA, consistent with previous studies (Chen et al., 2015b). For each trial, data segments
of length t seconds were extracted in the time windows [0.14, 0.14 + t] s and [0.13, 0.13 + t] s after
stimulus onset for Benchmark and BETA, respectively.

We apply a filter-bank approach as a preprocessing step to enhance SSVEP signals (Chen et al.,
2015a). Data passes through three band-pass filters with frequency ranges (8N, 90) Hz, where
N = 1, 2, 3, and filtered signals are concatenated along the sub-band dimension. This procedure
captures multiple harmonics and improves the signal representation for subsequent decoding.

4.3 BASELINE MODELS

Deep Learning Models. DNN (Guney et al., 2021) is a dense convolutional neural network that
processes time-series data and incorporates a fine-tuning stage to boost performance. SSVEPformer
(Chen et al., 2023) is a transformer-based neural network that takes complex spectra as input, lever-
aging a transformer encoder and fully connected layer to extract phase and frequency features. TR-
CANet (Deng et al., 2023) applies TRCA-based spatial filtering to the input data, followed by a
DNN for feature learning.

Traditional Models. TDCA (Liu et al., 2021b) addresses the redundancy of stimulus-specific spa-
tial filters in TRCA and the underutilization of temporal information. It enhances the performance
of individually calibrated SSVEP-BCIs by learning task-discriminative spatiotemporal components.
TRCA (Nakanishi et al., 2017) derives spatial filters by maximizing SSVEP reproducibility across
trials, while eTRCA extends this by ensembling filters across all frequencies. eCCA (Nakanishi
et al., 2014) introduces a combination of spatial filters derived from canonical correlation analysis
(CCA) and employs a user-specific target identification algorithm based on individual calibration
data. msTRCA (Wong et al., 2020) extends TRCA with a multi-stimulus learning scheme that
leverages data from both target and non-target stimuli.

4.4 EXPERIMENTAL SETUP

We employed k-fold cross-validation, with k = 6 for Benchmark and k = 4 for BETA. For each sub-
ject, one block of EEG data was designated as the test set, while the remaining blocks were used for
training within that fold. All training follows the four-stage procedure: ViT generative pretraining,
ViT subject-specific fine-tuning, MoE decoder pretraining, and MoE subject-specific fine-tuning.
Further implementation details are provided in the relevant subsectionA.1 of the Appendix.

5 RESULT

To evaluate the performance of algorithms among different data lengths, we report both classification
accuracy and ITR. The ITR, measured in bpm, is defined as (Wolpaw et al., 2002):

ITR(P, T ) =
(
log2 M + P log2 P + (1− P ) log2

1− P

M − 1

)
60

T
,

Here, M denotes the number of target classes, P denotes the classification accuracy, and T (in
seconds) represents the total selection duration, including gaze time and a fixed gaze shift of 0.5 s.

Figures 2 and 3 present the average classification accuracy and ITR of the proposed VIBE network
evaluated on Benchmark and BETA across different data lengths. At the shortest data length (0.2
s), VIBE achieved the largest accuracy advantage over all other methods, highlighting its superior
capability for rapid SSVEP decoding (Benchmark: 65.5% vs. 58.8%; BETA: 53.7% vs. 46.2%).
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Figure 2: The left panel shows the mean classification accuracy, and the right panel shows the mean
information transfer rate (ITR) across all 35 subjects in the Benchmark dataset. Shaded regions
indicate the standard errors for subjects.
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Figure 3: The left panel shows the mean classification accuracy, and the right panel shows the mean
ITR across all 70 subjects in the BETA dataset. Shaded regions indicate the standard errors for
subjects.

The maximum ITR for VIBE was observed at 0.4 s, reaching 263.8 ± 11.7 bpm for Benchmark
and 202.7± 8.9 bpm for BETA, exceeding the corresponding values of the DNN baseline (248.8±
11.8 bpm and 190.1 ± 8.4 bpm, respectively). For a 1 s data length, VIBE maintained superior
classification performance compared with DNN (Benchmark: 97.4±0.7% vs. 95.7±1.1%; BETA:
86.3±1.3% vs. 83.7±1.6%). Collectively, these results demonstrated that VIBE effectively decodes
SSVEP responses across a range of time windows, with particularly pronounced benefits under short
observation periods.

The performance of each method was evaluated in terms of decoding accuracy and ITR across
data lengths. A two-way (method × data length) repeated-measures ANOVA (Greenhouse–Geisser
corrected) revealed a statistically significant interaction between method and data length for both
datasets (Benchmark: F (56, 1904), p < 0.001; BETA: F (56, 3864), p < 0.001). The eight methods
included in this analysis correspond to those described in the Experiments Section. The detailed
results are provided in Appendix Table 5. These findings indicate that the effect of data length
on decoding performance depended on the method used, and vice versa, highlighting significant
differences in performance trends across methods and data lengths.

For both Benchmark and BETA, paired t-tests revealed that our proposed VIBE method achieved
significantly higher decoding accuracies than the deep learning baseline (DNN) and the traditional
method (TDCA) across all evaluated data lengths (all: p < 0.05). The details of these results
are summarized in Table 6, in Appendix. The advantage of VIBE was especially pronounced at
short data lengths (e.g., 0.2 s, Benchmark: VIBE vs. DNN: p = 1.0 × 10−12; VIBE vs. TDCA:
p = 2.2 × 10−14; BETA: VIBE vs. DNN: p = 4.8 × 10−18; VIBE vs. TDCA: p = 3.3 × 10−25),
demonstrating that our method was more robust under very short EEG segments. As data length
increases, all methods converged towards similar performance, but VIBE consistently maintained a
significant edge, indicating its effectiveness in both short- and long-window SSVEP decoding.
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5.1 ABLATION STUDY

To better understand the contribution of each component in our framework, we conducted an ablation
study on the Benchmark dataset with a 0.2 s data length. A brief summary of the ablation is presented
in Table 8. The original model achieved an accuracy of 65.5%.

MoE Removing the MoE module resulted in an accuracy of 64.2%, highlighting its importance.
Further analysis of MoE placement across different layers is provided in Appendix A.3.

ViT regeneration. Removing the ViT regeneration module led to a performance drop to 61.8%,
highlighting its essential role in feature representation. Further exploration of the effect of varying
ViT generation time length is provided in Appendix A.3, which indicated that the optimal generation
time depended on the input trial length: longer generation times benefited short trials, while shorter
generation times were preferable for longer trials.

Data augmentation. Two augmentation strategies were employed: a decorrelation-based augmen-
tation and an additional data generation module (the three methods described in Section 3.3) for the
MoE decoder. When only the decoder-specific augmentation was removed, the accuracy decreased
to 63.5%; when both strategies were removed, the accuracy further dropped to 62.1%. Further
analysis of the effect of removing each augmentation is provided in Appendix A.3.

These results confirm that each module contributes positively, with all these three blocks play critical
roles, and that the optimal ViT generation time length is data-length dependent.

5.2 FEATURE VISUALIZATION VIA T-SNE

To explore the reasons behind the superior performance of our model, we applied t-distributed
Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008) to visualize the features learned
from the final fully connected layer. We examined only our model, comparing the full version with
an ablated version in which the ViT, data augmentation, and MoE were removed, using a data length
of 0.6 s. In Appendix Figure 4, dots of the same color in the full model (left) formed more compact
and dense clusters than in the ablated model (right). The circled clusters highlighted representative
examples. This increased density indicated that the three key modules contributed to generating
more discriminative and tightly grouped feature representations.

5.3 SUBJECT-WISE ITR VISUALIZATION

In Appendix Figure 5, we visualized the ITR for each subject using radar plots to compare our model
(VIBE) with baseline methods (DNN and TDCA) at a data length of 0.2 s. Four radar plots were
presented, corresponding to the Benchmark and BETA datasets, and comparing VIBE with DNN and
TDCA, respectively. Each spoke in the radar plot represented an individual subject, and the distance
from the center indicated the ITR value. Across both datasets, VIBE consistently achieved higher
ITR values for most subjects compared to the baseline models, illustrating its superior performance
and robustness in short-duration SSVEP decoding.

6 DISCUSSION

6.1 NEURAL UNDERPINNINGS OF THE PROPOSED MODULES

In our study, the effectiveness of ViT-based regeneration can be attributed to the temporal nature
of the SSVEP signals. Thus, the regenerated segments effectively extended the temporal window
available to the decoder, which provided richer frequency-level information (target frequencies lie
within the 8-15 Hz range). The regeneration step ensured that the decoder could access more com-
plete frequency cycles, especially when the original data length was short. Although each ViT patch
embedding only encoded a tiny fraction of data length (e.g. 0.04 s), it preserved additional temporal
information for the decoder to facilitate classification.

Data augmentation plays a crucial role in enhancing the robustness of the model by introducing
variability and simulating real-world scenarios. Several techniques have been implemented in this
study, each inspired by physiological and contextual considerations related to EEG signals. First,

8
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the random temporal crop augmentation addresses inter-subject and task-dependent variability in
SSVEP latency. While the standard latency is incorporated in the data preprocessing pipeline, the
actual latency for each individual can differ, so this augmentation randomly samples temporal seg-
ments within each trial to learn latency-tolerant features rather than overfitting to a fixed window,
improving generalization. Second, the channel chunk shuffle augmentation is motivated by the
dipole-source origin of EEG and distortions from volume conduction and other artifacts, and it ran-
domly shuffles chunks of channels to simulate varied electrode placements and signal quality. This
promotes invariance to sensor positioning and improves generalization across hardware setups and
individuals. Third, cross-subject temporal stitching encourages the decoder to focus on frequency-
level information rather than subject-specific features by stitching trials across subjects, exposing
it to diverse temporal patterns and yielding generalized frequency responses that reflect underlying
physiology. This reduces overfitting to individual trials and strengthens subject-independent repre-
sentations, improving generalization to unseen subjects.

The MoE mechanism is particularly valuable in the final temporal convolution layer of the model,
where different experts can specialize in learning distinct temporal patterns relevant to specific task
targets. Some experts may focus on shorter, rapid temporal responses, while others may specialize
in longer, more sustained patterns, enabling the model to better capture the full range of temporal
dynamics. This adaptability allows the model to allocate different experts to process different parts
of the temporal signal.

6.2 TRAINING AND TESTING TIME ANALYSIS

For VIBE, the two pretraining stages were performed using data from all subjects (excluding test
data), while the fine-tuning stage employed data from a single subject. Table 7 in the Appendix
summarizes the training times for each stage and the testing time for a single 0.4 s trial, with all
experiments conducted on an NVIDIA RTX 4090 GPU. The pretraining stages accounted for the
majority of the training time, whereas fine-tuning for a specific subject could be completed in ap-
proximately 17 seconds for BETA and 1 minute for Benchmark. The difference in training time
between the two datasets is due to the differing number of epochs in each stage. Testing a single
trial required less than 1 ms, which is negligible compared to the data duration. These findings indi-
cate that VIBE provides a practical and efficient solution for SSVEP decoding in BCI applications.

6.3 LIMITATION AND FUTURE DIRECTION

One limitation of this work is that certain subjects exhibit performance that deviates markedly from
the overall distribution, underscoring the need for more generalized approaches capable of handling
inter-subject variability. Future investigations could therefore benefit from conducting experiments
in alternative evaluation settings, such as performing cross-validation across subjects rather than
across trials, or evaluate on other EEG decoding tasks (Song et al., 2024; Jiang et al., 2024; Wang
et al., 2023), to provide a more rigorous assessment of generalization. Finally, an important direction
for future research is the implementation of online experiments, wherein new patients are directly
evaluated, to provide a realistic assessment of the model’s effectiveness in practical BCI applications.

7 CONCLUSION

VIBE enhances SSVEP-BCI decoding by integrating a ViT-MoE architecture, decorrelation strate-
gies, and a novel data augmentation approach that leverages knowledge from multiple subjects in
model design. Evaluations on two benchmark datasets demonstrate that VIBE significantly improves
both decoding accuracy and ITR. Further analyses indicate that the method effectively incorporates
cross-subject information, highlighting its potential as a robust approach for SSVEP decoding. Over-
all, these results establish VIBE as a strong candidate for SSVEP decoding and support continued
progress in BCI research.

8 REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available and open-sourced. To facilitate reproducibility,
we provide the complete code for our models and experiments alongside the submission. Detailed
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descriptions of model architectures, training procedures, and data preprocessing steps are included
in the main text, Appendix, ensuring that independent researchers can replicate our results.

9 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All datasets used are publicly available and open-
sourced. Specifically, the Benchmark and BETA datasets were collected under protocols approved
by the respective institutions; For example, the BETA dataset protocol was approved by the Ethics
Committee of Tsinghua University (No. 20190002) as reported in the original publication. No
additional human subjects were involved in this study. The study focuses on computational modeling
and analysis, without potential for harmful applications. All authors have read and complied with
the ICLR Code of Ethics.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

For both ViT stages, the patch temporal length is set to 10 and the hidden dimension to 48, with
a dropout rate of 0.8. For all trial durations except 0.2 s, the generative time length is 0.04 s,
while for trials of 0.2 s, the generative time length equals 0.2 s. In the MoE decoder stage, the
MoE is applied only to the second temporal layer, using 4 experts. The gating network consists
of two MLPs, each with an intermediate dimension of 100, and only the top expert is selected.
For implementation convenience, the input data is reshaped to (B × C, 1, T ), where B represents
the subband dimension. Consequently, all subband-channel layers use a kernel size of (1, 1), and
the two temporal convolution layers use a kernel size of 10. The output channels are 200 for all
subband-channel layers and 120 for temporal layers. All dropout layers have a probability of 0.1,
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except for the layer before the final flattening and MLP, which uses 0.95. During fine-tuning, the
dropout probability of all intermediate layers is reset to 0.5.

For data augmentation, cross-subject temporal stitching is performed with a time chunk of 30. For
channel chunk shuffling, the chunk size is 20 with a swap probability of 0.3. Random temporal
cropping is applied with an activation probability of 0.4, selecting a short segment of 0.02 s to 0.06
s. For each augmentation method, additional data corresponding to 20% of the original dataset size
is generated.

The ViT learning rate is set to 0.0001 during general pretraining and 0.00001 during subject-specific
fine-tuning, while the decoder learning rate is fixed at 0.0001. The Adam optimizer is used with a
weight decay of 0.0001, and an L2 regularization penalty of 0.001 is applied to the decoder. The
batch size for both datasets is 32.

The number of training epochs for each stage differs between the Benchmark and BETA datasets,
as summarized in Table 1.

Table 1: Stage-wise training epochs for Benchmark and BETA datasets.
Dataset ViT Pretrain ViT Transfer Decoder Pretrain Decoder Transfer

Benchmark 300 1000 1500 1000
BETA 300 500 500 700

A.2 DECORRELATION DETAILS

For each subject s and subband b, we first compute the mean across training trials:

µ(s,b) =
1

N

∑
n∈train trials

X(s,b)
n,:,:,: ∈ RM×T×C .

The aggregated mean activity is reshaped into µ(s,b) ∈ RC×(M ·T ), and used to compute the channel
covariance matrix:

Cov(s,b) =
1

M · T
µ(s,b)

(
µ(s,b)

)⊤
∈ RC×C .

The whitening matrix is defined as

W (s,b) =
(
Cov(s,b)

)− 1
2 ,

and decorrelation is applied to both training and test data as

X̃(s,b)
n,:,:,: = W (s,b)X(s,b)

n,:,:,:, ∀n.

By using the trial-averaged activity to construct the covariance, this procedure reduces trial-level
variability while preserving target and temporal structure, and ensures that whitening is guided by
stable patterns rather than noisy single-trial fluctuations.

A.3 FURTHER ABLATION STUDY

MoE The results of applying the MoE module at different layers are summarized in Table 2. When
MoE was applied to the first subband–channel layer, the accuracy was 65.0%, and applying it to the
second subband–channel layer yielded 65.2%. In contrast, applying MoE to the first temporal layer
resulted in a lower accuracy of 63.9%, while placing it on the second temporal layer achieved an
accuracy of 64.8%. These results suggest that the second temporal layer and the subband layer were
particularly important for MoE, as they contributed more significantly to improving performance
compared to other layers. This highlights the importance of capturing frequency and temporal dy-
namics at these stages of the model.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MoE Type Subband 1 Subband 2 Both Temporal Temporal 1
Accuracy (%) 65.0 65.2 64.8 63.9

Table 2: MoE Ablation Study: Different MoE Configurations. The Subbands listed refer to the
Sub-band channel Conv layer in Subband-channel temporal blocks. Tested on Benchmark for 0.2s.

Data Augmentation The impact of different data augmentation strategies is summarized in Table
3. Removing temporal stitching, channel shuffle, or temporal crop resulted in minor decreases in
accuracy of around 1%, while omitting decorrelation caused the largest drop to 63.3%. These results
indicate that all augmentation components contributed to model performance, with decorrelation
having the most significant effect. Notably, removing all three data generation methods resulted
in a 2% decrease, suggesting that each method provided complementary benefits along different
dimensions.

Augmentation No Stitching No Channel Shuffle No Temp Crop No Decorrelation
Accuracy (%) 64.5 64.9 64.7 63.3

Table 3: Data Augmentation Ablation Study: Different Data Augmentation Configurations. Tested
on Benchmark for 0.2s.

Effect of ViT Generation Time Length Table 4 shows the impact of varying the ViT generation
time length on classification accuracy. On the Benchmark dataset at 0.2 s, performance improved
steadily from 64.5% (0.04s) to 65.5% (0.2 s). On the BETA dataset, a similar trend was observed,
with accuracy increasing from 52.47% (0.04 s) to 53.74% (0.2 s). We note that for other data
lengths (0.3 s to 1.0 s), the generated data augmentation achieving the best result was fixed at 0.04
s. To illustrate the effect of longer generation times, we performed the same experiment on the 0.4
s data length. The shortest generation time of 0.04 s achieved the highest accuracy (Benchmark:
83.85%, BETA: 70.85%), while increasing the generation time gradually decreased performance
across other settings by up to 1.5%.

Table 4: Effect of ViT generation time length on classification accuracy (%).
Dataset 0.04 s 0.08 s 0.12 s 0.16 s 0.20 s
Benchmark (0.2 s) 64.50 64.91 65.28 65.01 65.50
BETA (0.2s) 52.47 52.64 52.72 53.26 53.74
Benchmark (0.4 s) 83.85 83.14 82.60 82.64 82.71
BETA (0.4s) 70.85 70.50 69.96 69.17 69.50

A.4 SUPPLEMENTARY TABLES AND FIGURES
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Figure 4: t-SNE visualization of learned features for a representative subject from the Benchmark
dataset, using a data length of 0.6 s. Left: full model; Right: ablated model (without ViT, data
augmentation, or MoE).

Figure 5: Subject-wise ITR plot. The methods were evaluated at a data length of 0.2s.

Table 5: Greenhouse–Geisser corrected two-way repeated-measures ANOVA results for the interac-
tion effect between data length and method.

Effect Benchmark (Accuracy) Benchmark (ITR) BETA (Accuracy) BETA (ITR)
F 22.598 22.336 25.256 32.494
pGG 3.45×10−7 6.17×10−7 7.05×10−8 4.86×10−10
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Table 6: Paired t-test p-values comparing VIBE with DNN and TDCA for Benchmark and BETA
across data lengths (0.2–1.0 s).

Data length (s) Benchmark BETA
VIBE vs DNN VIBE vs TDCA VIBE vs DNN VIBE vs TDCA

0.2 1.044× 10−12 2.211× 10−14 4.821× 10−18 3.305× 10−25

0.3 1.713× 10−11 1.947× 10−7 7.752× 10−13 1.880× 10−17

0.4 2.147× 10−7 5.304× 10−7 1.144× 10−7 8.812× 10−13

0.5 1.269× 10−6 1.073× 10−5 2.888× 10−9 1.010× 10−14

0.6 2.425× 10−7 4.578× 10−5 1.933× 10−10 1.638× 10−14

0.7 8.017× 10−5 5.435× 10−3 1.100× 10−8 7.185× 10−11

0.8 1.284× 10−3 8.630× 10−3 1.463× 10−9 1.445× 10−11

0.9 1.398× 10−3 2.856× 10−2 6.985× 10−10 7.206× 10−9

1.0 2.875× 10−3 3.825× 10−2 1.275× 10−6 4.638× 10−7

Table 7: Training and testing times for VIBE on two datasets for time data length 0.4s. Times are in
seconds, except for the test stages, which are in milliseconds.

Dataset ViT MoE Decoder

Train (s) Finetune (s) Test (ms) Train (s) Finetune (s) Test (ms)

Benchmark 270.8 19.4 0.7 4180.3 43.2 0.09
BETA 328.9 5.7 0.7 1681.1 11.8 0.09

Model No ViT No MoE No Data Augmentation
Accuracy(%) 61.8 64.2 62.1

Table 8: Ablation General Results: No ViT, No MoE, and No Data Augmentation. Tested on
Benchmark for 0.2s.
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A.5 LLM USAGE

Large language models (LLMs) were used solely for proofreading this manuscript to improve lan-
guage clarity and readability. They were not involved in generating ideas, designing experiments,
implementing methods, or analyzing results. All scientific contributions are entirely the work of the
authors.
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