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Abstract

Multimodal Large Language Models (MLLMs)001
are renowned for their superior instruction-002
following and reasoning capabilities across di-003
verse problem domains. However, existing004
benchmarks primarily focus on assessing fac-005
tual and logical correctness in downstream006
tasks, with limited emphasis on evaluating007
MLLMs’ ability to interpret pragmatic cues008
and intermodal relationships. To address this009
gap, we assess the competency of MLLMs010
in performing Multimodal Discourse Analysis011
(MDA) using Coherence Relations. Our bench-012
mark, CORDIAL, encompasses a broad spec-013
trum of Coherence Relations across 3 different014
discourse domains at varying levels of granular-015
ity. Through our experiments on 10+ MLLMs016
employing different prompting strategies, we017
show that even top models like Gemini 1.5 Pro018
and GPT-4o fail to match the performance of019
simple classifier-based baselines. This study020
emphasizes the need to move beyond similarity-021
based metrics and adopt a discourse-driven022
framework for evaluating MLLMs, providing023
a more nuanced assessment of their capabili-024
ties. The benchmark and evaluation code will025
be released upon publication.026

1 Introduction027

The recent advancements in Multimodal Large Lan-028

guage Models (MLLMs) enable them to effectively029

capture diverse representations of problem domains030

(Alayrac et al., 2022; Chen et al., 2024c; Pichai,031

2024; Liu et al., 2024a). These MLLMs are capable032

of adapting to various downstream tasks with lim-033

ited data through Parameter-Efficient Fine-Tuning034

(PEFT) (Hu et al., 2021) and In-Context Learning035

(ICL) (Brown et al., 2020) approaches. Existing036

Vision-based MLLM benchmarks assess different037

aspects of model performance such as Perception,038

Cognition, and Reasoning (Li et al., 2024) through039

various downstream tasks.040

Current benchmark design strategies often focus041

on evaluating the ability of MLLMs to utilize the 042

intersection of input sources to solve a common 043

problem (Kruk et al., 2019). Although this helps 044

assess the model’s ability to interpret its inputs 045

factually and logically, it does not fully capture 046

the model’s understanding of the relationships be- 047

tween these modalities. Similarly, benchmarks that 048

evaluate the alignment between images and text 049

(Thrush et al., 2022), utilize curated or syntheti- 050

cally generated image-text pairs. These methods 051

focus solely on literal relations that measure the 052

level of overlap between the image and text. On the 053

other hand, pragmatic cues provide information on 054

non-literal relations where the true intent/message 055

of an example may not be directly referenced in 056

both modalities as shown in Figure 1. These cues 057

are leveraged routinely in real-world multimodal 058

discourses, which are characterized by the use of 059

multiple modes of communication to convey dif- 060

ferent components of a message. Multimodal Dis- 061

course Analysis (MDA) studies how the interaction 062

between these different modes can create semiotic 063

meaning (Kress, 2009). 064

To operationalize the assessment of these inter- 065

modal relationships, we turn to theories of Dis- 066

course Coherence (Hobbs, 1978), which offer a 067

way to quantify the organization and flow of ideas 068

across information sources. From these theories, 069

we focus on the concept of Coherence Relations 070

(Alikhani and Stone, 2019), which provides a finite 071

structure to link different parts of a discourse. Re- 072

cent studies have extended these traditionally text- 073

only theories to multimodal discourses, showing 074

that Coherence Relations can be effectively applied 075

to image-text pairs (Alikhani et al., 2020). With 076

Coherence Relations being a fundamental aspect 077

of human communication, we evaluate whether 078

MLLMs can effectively predict and verify these 079

relations. 080

In this work, we propose the CORDIAL 081

(COherence Relations in Discourse for Images 082
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Figure 1: CORDIAL presents a combination of literal and pragmatic relations for analyzing the intermodal
reasoning capabilities of MLLMs. We evaluate MLLMs on the task of Multimodal Discourse Analysis through the
prediction and verification of Coherence Relations across three different discourse domains.

And Language), the first benchmark for evaluating083

MLLMs on the task of MDA. CORDIAL consists084

of a diverse set of Coherence Relations across three085

different discourse domains: Disaster Management,086

Social Media, and Online Articles. Each domain087

also offers different levels of complexity in the eval-088

uated Coherence Relations, from binary relations to089

more challenging settings such as multi-class and090

multi-label relations assigned by human annotators.091

We evaluate the performance of 10+ MLLMs on092

CORDIAL, focusing on three research questions:093

RQ1: Can MLLMs predict Coherence Relations094

effectively?095

RQ2: Can MLLMs verify Coherence Relations096

accurately?097

RQ3: Can we teach MLLMs to understand Co-098

herence Relations better?099

Our analysis reveals that both Coherence Rela-100

tion prediction (RQ1) and verification (RQ2) are101

challenging tasks for MLLMs when these relations102

focus on pragmatic cues. Although larger MLLMs103

perform better than their smaller, open-source coun-104

terparts, traditional classifier baselines consistently105

outperform them across discourse domains. To106

summarize, our key takeaways are as follows:107

• We propose CORDIAL, the first benchmark for108

evaluating MLLMs for Multi-modal Discourse109

Analysis (MDA) using Coherence Relations.110

• Our experiments show that MLLMs struggle to111

predict and verify Coherence Relations, espe-112

cially when these relations are more pragmatic.113

• We demonstrate the need for coherence-aware 114

fine-tuning approaches to improve intermodal 115

reasoning capabilities of MLLMs. 116

2 Related Work 117

Multimodal Large Language Models MLLMs 118

are fundamentally generative models that com- 119

bine Large Language Models (LLM) (Brown et al., 120

2020) with multimodal encoders (Dosovitskiy et al., 121

2021). In recent years, several new MLLMs have 122

been released, based on various proprietary (Ope- 123

nAI et al., 2024; Anthropic; Pichai, 2024) and open- 124

source LLM backbones (Liu et al., 2023; Wu et al., 125

2024; Bai et al., 2023). These models have shown 126

impressive performance on a variety of downstream 127

reasoning tasks, including Visual Question Answer- 128

ing (Wu and Xie, 2024), Document Analysis (Lv 129

et al., 2023), Embodied AI agents (Shek et al., 130

2024), etc. 131

MLLM Reasoning Benchmarks Recent works 132

that have proposed benchmarks evaluating vision 133

language reasoning, focus on assessing different 134

facets of their input modalities. Visual Reason- 135

ing benchmarks measure the capability of these 136

models to understand spatial and object-level re- 137

lations among image components (Kamath et al., 138

2023; Rajabi and Kosecka, 2024; Nie et al., 2024; 139

Thrush et al., 2022; Kamoi et al., 2024). Contextual 140

Reasoning benchmarks demonstrate how MLLMs 141

interpret in-context examples and compositional 142

language prompts (Zong et al., 2024; Wu and Xie, 143
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Dataset Examples

DisREL Part of my pile of branches after
#HurricaneIrma - still no power

in #Orlando

Floridians rescue stranded
manatees as Irma sucks water

from shores

Coherence Relation:
Similar

Coherence Relation:
Complementary

Tweet Subtitles Fresh never frozen
jumbo wings tossed in a

housemade buffalo
sauce. Yum!

Freshly picked off my
allotment today,
well chuffed.
(strawberry)

Cartel leader whose
arrest sparked killings is
sentenced to prison in

Dallas court

Amazon Prime delivers
anything these days!

(delivering a cat)

Eiffel Tower shuts down
as snow, freezing rain

pummel France

Coherence Relation:
Concretization

Coherence Relation:
Insertion

Coherence Relation:
Projection

Coherence Relation:
Extension

Coherence Relation:
Restatement

CLUE A path winds through an
ancient bamboo forest

A model walks the
runway for the

collection during,
fashion week

A city in winter is such
a beautiful city

People know that curb
appeal is not a thing to

take lightly when
remodeling a home

Seals fighting for a spot
to sleep on the rocks

Coherence Relations:
Visible

Coherence Relations:
Visible, Meta, Action

Coherence Relations:
Subjective, Story

Coherence Relations:
Story

Coherence Relations:
Action

Table 1: Examples from each dataset for all Coherence Relations. The words in red are important cues present in the
caption, while the words in orange show pragmatic cues inferred from the image-text pair. The relations highlighted
in blue are the selected relations for CLUE Single-Label.

2024; Shao et al., 2024; Zeng et al., 2024). Fi-144

nally, Knowledge-based reasoning assesses how145

models recall knowledge from intrinsic and extrin-146

sic sources to answer factual and logical questions147

(Johnson et al., 2016; Xenos et al., 2023; Lu et al.,148

2022). Although these benchmarks measure how149

multimodal prompts can be efficiently understood150

to solve a candidate task, intermodal reasoning with151

real-world discourses has been less studied.152

Image-Text Relationships Quantifying image-153

text relationships accurately has been an active area154

of research in the era of Vision Language Mod-155

els (VLMs). Traditional VLMs translate images156

and text into a common representation space and157

compute the degree of similarity based on the dis-158

tance between these embeddings (Radford et al.,159

2021; Jia et al., 2021; Caron et al., 2021; Hessel160

et al., 2021). However, these methods failed to cap-161

ture human preferences in image-text matching ac-162

curately across different task domain benchmarks163

(Anantha Ramakrishnan et al., 2024b; Ross et al.,164

2024; Anantha Ramakrishnan et al., 2024a). To165

include human feedback in the process of predict-166

ing similarity scores, content-based models trained 167

on human-annotated similarity scores were intro- 168

duced (Wu et al., 2023; Kirstain et al., 2023; Xu 169

et al., 2023). Apart from similarity scores, tax- 170

onomies have been proposed to quantify different 171

types of linkages between image-text pairs (Marsh 172

and White, 2003; Vempala and Preoţiuc-Pietro, 173

2019; Kruk et al., 2019; Bateman, 2014). In par- 174

ticular, multimodal coherence relations have been 175

shown to sufficiently capture different aspects of 176

image-text intents for various vision-language tasks 177

(Alikhani et al., 2019; Inan et al., 2021; Alikhani 178

et al., 2023, 2020; Xu et al., 2022). 179

3 The CORDIAL Benchmark 180

3.1 Motivation 181

With Coherence Relations providing a finite repre- 182

sentation of image-text linkages, we aim to mea- 183

sure MLLM performance through relation classifi- 184

cation and verification tasks. Traditional alignment 185

benchmarks often evaluate models using similar- 186

ity scores. But multiple states of alignment be- 187

tween image-text pairs can exist, at the object-level, 188
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Figure 2: An overview of the Image-Text label (i.e., Coherence Relations) distributions across CORDIAL

scene-level, or even at the discourse-level (Xu et al.,189

2022). A pragmatic understanding of the context190

surrounding these pairs informs our ability to de-191

scribe this alignment accurately. Thus, similarity192

scores alone may not be sufficient to capture the193

true performance of MLLMs. Additionally, with194

Coherence Relations being context-driven, the type195

of relations present in a discourse can vary across196

different domains. This necessitates the evalua-197

tion of MLLMs on multiple real-world discourse198

domains to assess their generalization capabilities.199

With MLLMs-as-a-judge (Chen et al., 2024a) be-200

coming more popular in tasks where acquiring hu-201

man judgment is expensive and time-consuming,202

the importance of this task is further highlighted.203

We carefully pick and curate real-world image-text204

pairs with expert human annotations with the pre-205

processing details described in Appendix Section206

A. The three different discourse domains we evalu-207

ate are: Disaster Management, Social Media, and208

Online Articles.209

3.2 Coherence Relations210

Each dataset we include in CORDIAL assesses211

a unique set of Coherence Relations. To under-212

stand how communication in a discourse can be213

quantified by Coherence Relations, we turn to the214

Theory of Coherence (Hobbs, 1978). We define215

communication as the transfer of information and216

ideas from a speaker to a listener. For success-217

ful communication, a discourse needs to satisfy 4218

conditions: (1) The message contents should be219

present in the discourse (2) The message must be220

relevant to the overall context of the discourse (3)221

Any new/unpredictable attributes of the message222

must build on the listener’s existing world knowl-223

edge (4) The speaker must provide cues to guide224

the listener to graph their intended meaning. The225

goal of defining Coherence Relations is to serve226

any of the above-mentioned communicative func-227

tions. This way, for tasks such as MDA, we can 228

analyze the communicative patterns present in a 229

multimodal discourse. We consider Coherence Re- 230

lations to be a constrained set of connections that 231

describe the structural and causal relationships be- 232

tween different parts of a discourse. Consider the 233

examples from Table 1, certain relations such as 234

Visible and Concretization deal with presenting 235

the same message content across modalities. On 236

the other hand, relations such as Insertion and Ex- 237

tension require the reader to understand the union 238

of information along with the context surrounding 239

each modality to get the full message. 240

3.3 Data Sources 241

To construct our benchmark, we leverage existing 242

datasets that provide image-text pairs along with 243

human-annotated Coherence Relations across dif- 244

ferent discourse domains. We select three datasets 245

that offer a diverse set of Coherence Relations: Dis- 246

Rel (Disaster Management), Tweet Subtitles (So- 247

cial Media), and CLUE (Online Articles). 248

DisRel This dataset (Sosea et al., 2021) explores 249

the relationship of image-text pairs from disaster- 250

related tweets, with labels collected through crowd- 251

sourcing on Amazon MTurk. The dataset contains 252

4600 multimodal tweets with a test set size of 500 253

examples with a 50% split between the two classes: 254

• Similar: The image and text share the same fo- 255

cus and attempt to convey the same message. 256

There exists a significant overlap in the informa- 257

tion conveyed between modalities. 258

• Complementary: The image and text do not 259

share the same focus, but one modality helps 260

understand the other better. Both modalities pro- 261

vide independent information which when com- 262

bined, provide a more complete picture of the 263
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message/event. There may be divergence in the264

information conveyed between modalities.265

Tweet Subtitles To measure cross-modal coher-266

ence relations between image and text, this dataset267

(Xu et al., 2022) contains 16000 image-text pairs268

sourced from Twitter on open-domain topics. The269

test set for this dataset consists of 1600 examples,270

which is 10% of the entire dataset. The dataset271

provides single-label annotations from expert anno-272

tators on 3 entity-level and 2 scene-level relations:273

• Insertion (Entity-level): Both the text and the274

image focus on the same visual entity but it is275

not explicitly mentioned in the text.276

• Concretization (Entity-level): Both the text and277

image contain a mention of the main visual entity278

but may differ in types of details shared.279

• Projection (Entity-level): The main entity men-280

tioned in the text is implicitly related to the visual281

objects present in the image. The image contains282

a reference to objects related to the main entity283

rather than the entity itself.284

• Restatement (Scene-level): The text directly285

describes the image contents. Both modalities286

convey the same message.287

• Extension (Scene-level): The image expands288

upon the story or idea in the text, presenting new289

elements or elaborations, effectively filling in290

narrative gaps left by the text.291

CLUE This dataset presents a novel conceptual-292

ization of image-text relations by extending text-293

only coherence relations to the multimodal set-294

ting (Alikhani et al., 2020). The publicly avail-295

able version of the dataset contains 4770 image-296

text pairs sourced from the Conceptual Captions297

Dataset (Sharma et al., 2018). The samples were298

provided multi-label annotations by expert annota-299

tors for 5 different relationship types:300

• Visible: The text presents information that is301

intended to recognizably characterize what is302

depicted in the image.303

• Action: The text describes an extended, dynamic304

process in which the moment captured in the305

image is a representative snapshot.306

• Meta: The text allows the reader to draw infer-307

ences not just about the scene depicted in the308

image but about the production and presentation309

of the image itself.310

• Subjective: The text provides information about 311

the speaker’s reaction to, or evaluation of, what 312

is depicted in the image. 313

• Story: The text provides a freestanding descrip- 314

tion of the circumstances depicted in the image, 315

analogous to including instructional, explanatory, 316

and other background relations. 317

We evaluate this dataset in two different settings: 318

Multi-Label (ML) and Single-Label (SL). In the 319

ML setting, we treat the dataset as a multi-label 320

classification task where MLLMs predict all appli- 321

cable labels. For CLUE SL, we follow the original 322

dataset’s label mapping strategy to select the most 323

applicable label from the present annotations for 324

each sample (Alikhani et al., 2020). This provides 325

two different settings for evaluating MLLM’s un- 326

derstanding of coherence relations on the same 327

image-text pairs with 1183 examples in the test set. 328

3.4 Baseline Classifier 329

Our goal of including a baseline classifier is to cap- 330

ture the existing signal in our datasets and to pro- 331

vide a reference point for MLLM performance. Un- 332

derstanding that human annotations can be noisy, 333

we utilize this simple, generalizable classifier to 334

identify relations where MLLMs are particularly 335

under-performing on our benchmark. We employ 336

CLIP Text and Image encoders to extract multi- 337

modal embeddings in a zero-shot manner (Radford 338

et al., 2021). We then train a Multi-Layer Percep- 339

tron (MLP) classifier using these embeddings on 340

the train sets of each of these datasets to predict 341

Coherence Relations. This ensures that our clas- 342

sifier is not biased towards any specific domain 343

and can generalize across different discourse con- 344

texts. More details about the classifier are present 345

in Appendix Section F. 346

4 Experiments 347

To answer our research questions, we conduct ex- 348

periments on the CORDIAL benchmark with top 349

open-source and proprietary MLLMs. For (RQ1), 350

we evaluate the performance of 12 MLLMs from 351

9 different model families across our benchmark 352

along with a classifier baseline. The 4 settings in 353

our benchmark are structured with increasing dif- 354

ficulty, with DisRel and Tweet Subtitles being the 355

simpler settings while CLUE Single-Label (SL) 356

and CLUE Multi-Label (ML) are more complex. 357

To answer (RQ2), we pick a selection of MLLMs 358
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Figure 3: % Loss/Gain after fine-tuning Llama 3.2-V.
Fine-tuning shows significant performance gains, either
on zero-shot or few-shot prompts across all 4 settings

and investigate their ability to verify coherence re-359

lations as correct or incorrect when provided along360

with image-text pairs. This provides a measure of361

the model’s grasp of concepts such as discourse co-362

herence and intermodal reasoning. For understand-363

ing (RQ3), we evaluate the effectiveness of differ-364

ent prompting strategies in enabling these MLLMs365

to discern coherence relations. We also fine-tune an366

MLLM on our benchmark to see if it can enhance367

its intermodal reasoning capability.368

4.1 Models Evaluated369

We evaluate 4 proprietary MLLMs: GPT-4o370

(OpenAI et al., 2024), Gemini 1.5 Flash (Pichai,371

2024), Gemini 1.5 Pro (Pichai, 2024), and Claude372

3.5 Sonnet v2 (Anthropic) and 8 open-source373

MLLMs: LLaVA 1.6 (7B, 13B, 34B) (Liu et al.,374

2024b), LLaVA OneVision 7B (Li et al., 2025),375

Qwen2-VL-7B (Wang et al., 2024), Llama 3.2 11B376

Instruct (Meta AI), Phi3.5 Vision Instruct (Abdin377

et al., 2024), and InternVL 2.5 26B (Chen et al.,378

2024b). We selected these model families as they379

demonstrated acceptable prompt adherence as de-380

scribed in Appendix Sections B, C. We also include381

a pre-trained classifier fine-tuned for the task of co-382

herence relation prediction. We selected GPT-4o,383

Gemini 1.5 Pro, and Claude 3.5 Sonnet v2 as they384

were among the better-performing MLLMs on our385

benchmark for verification, with more details pro-386

vided in Appendix Section D.387

4.2 Evaluation Metrics388

On the task of coherence relation prediction, we389

report the per-class F1 score and overall F1 score390

Model Prompt Sim Compl Macro F1

Random Guess Baseline 0.490 0.478 0.484

LLaVA 1.6 7B Zero 0.253 0.541 0.397
CoT 0.544 0.489 0.516 ↑30.0%

LLaVA 1.6 13B Zero 0.666 0.000 0.333
CoT 0.408 0.675 0.542 ↑62.8%

LLaVA 1.6 34B
Zero 0.000 0.666 0.333
Few 0.139 0.679 0.409 ↑22.8%
CoT 0.353 0.571 0.462 ↑38.7%

LLaVA OneVision 7B
Zero 0.626 0.391 0.509
Few 0.549 0.541 0.545 ↑7.1%
CoT 0.549 0.601 0.575 ↑13.0%

Qwen2-VL 7B
Zero 0.654 0.268 0.461
Few 0.664 0.148 0.406 ↓11.9%
CoT 0.446 0.602 0.524 ↑13.7%

Llama 3.2 Vision 11B
Zero 0.388 0.635 0.512
Few 0.509 0.479 0.494 ↓3.5%
CoT 0.292 0.615 0.453 ↓11.5%

Phi3.5 Vision 4.2B
Zero 0.655 0.177 0.416
Few 0.409 0.662 0.536 ↑28.8%
CoT 0.549 0.601 0.575 ↑38.2%

InternVL 2.5 26B
Zero 0.618 0.698 0.658
Few 0.633 0.633 0.633 ↓3.8%
CoT 0.393 0.670 0.531 ↓19.3%

GPT-4o
Zero 0.025 0.667 0.346
Few 0.443 0.667 0.555 ↑60.4%
CoT 0.361 0.676 0.519 ↑50.0%

Gemini 1.5 Flash
Zero 0.714 0.715 0.715
Few 0.363 0.688 0.525 ↓26.6%
CoT 0.593 0.699 0.646 ↓9.7%

Gemini 1.5 Pro
Zero 0.719 0.679 0.699
Few 0.611 0.727 0.669 ↓4.3%
CoT 0.630 0.717 0.673 ↓3.7%

Claude 3.5 Sonnet v2
Zero 0.722 0.615 0.669
Few 0.710 0.559 0.634 ↓5.2%
CoT 0.603 0.703 0.653 ↓2.4%

CLIP Classifier Baseline 0.750 0.715 0.733

Table 2: Results for Coherence Relation Prediction on
DisRel. The coherence relations predicted are Similar
(Sim) and Complementary (Compl).

Dataset CR Claude Gemini GPT4o

DisREL
Similar 70.4% 57.2% 14.8%

Complementary 91.2% 10.8% 96.8%
Overall 80.8% 34.0% 55.8%

Tweet
Subtitles

Insertion 20.59% 0.0% 11.76%
Concretization 74.1% 57.35% 37.61%

Projection 81.82% 0.0% 15.91%
Restatement 65.73% 64.34% 21.68%
Extension 66.29% 0.0% 38.29%

Overall 70.44% 47.69% 34.56%

CLUE
SL

Visible 83.37% 90.21% 75.4%
Subjective 58.0% 20.0% 52.0%

Action 72.73% 9.09% 54.55%
Story 29.12% 3.85% 35.71%
Meta 9.98% 0.0% 0.8%

Overall 42.77% 35.0% 36.52%

CLUE
ML Overall 48.82% 32.71% 44.21%

Table 3: Accuracy of MLLMs in verifying each Coher-
ence Relation (CR) of every dataset.

across all 4 settings. We select Macro F1 for overall 391

performance as it treats all classes equally, which 392

is important for our benchmark as it contains im- 393

balanced classes. We report response accuracy for 394

measuring performance on the verification task. 395
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Model Prompt Ins Concr Proj Restmt Ext Macro F1
Random Guess Baseline 0.094 0.340 0.068 0.123 0.165 0.158

LLaVA 1.6 7B
Zero 0.000 0.693 0.062 0.066 0.082 0.181
CoT 0.019 0.822 0.081 0.050 0.114 0.217 ↑19.9%

LLaVA 1.6 13B
Zero 0.085 0.044 0.000 0.000 0.095 0.045
CoT 0.070 0.477 0.000 0.122 0.054 0.145 ↑222.2%

LLaVA 1.6 34B
Zero 0.000 0.176 0.094 0.104 0.253 0.125
Few 0.026 0.630 0.198 0.060 0.211 0.225 ↑80.0%

CoT 0.024 0.063 0.108 0.154 0.169 0.104 ↓16.8%

LLaVA OneVision 7B
Zero 0.023 0.000 0.066 0.125 0.032 0.049
Few 0.067 0.000 0.087 0.071 0.177 0.081 ↑65.3%

CoT 0.062 0.005 0.057 0.124 0.101 0.070 ↑42.9%

Qwen2-VL 7B
Zero 0.000 0.728 0.121 0.142 0.011 0.201
Few 0.094 0.148 0.078 0.144 0.068 0.106 ↓47.3%

CoT 0.156 0.167 0.068 0.170 0.000 0.112 ↓44.3%

Llama 3.2 Vision 11B
Zero 0.000 0.779 0.000 0.093 0.000 0.175
Few 0.035 0.388 0.000 0.092 0.113 0.126 ↓28.0%

CoT 0.097 0.421 0.055 0.167 0.086 0.165 ↓5.7%

Phi3.5 Vision 4.2B
Zero 0.043 0.790 0.109 0.171 0.030 0.229
Few 0.183 0.179 0.000 0.159 0.093 0.123 ↓46.3%

CoT 0.025 0.745 0.164 0.156 0.022 0.223 ↓2.6%

InternVL 2.5 26B
Zero 0.101 0.389 0.090 0.090 0.011 0.136
Few 0.090 0.002 0.041 0.292 0.000 0.085 ↓37.5%

CoT 0.118 0.450 0.102 0.199 0.083 0.190 ↑39.7%

GPT-4o
Zero 0.126 0.564 0.111 0.200 0.167 0.234
Few 0.171 0.599 0.131 0.268 0.199 0.274 ↑17.1%

CoT 0.076 0.346 0.146 0.217 0.187 0.194 ↓17.1%

Gemini 1.5 Flash
Zero 0.172 0.783 0.138 0.183 0.011 0.257
Few 0.027 0.681 0.139 0.257 0.193 0.259 ↑0.8%

CoT 0.068 0.734 0.133 0.259 0.071 0.253 ↓1.6%

Gemini 1.5 Pro
Zero 0.200 0.692 0.141 0.290 0.034 0.271
Few 0.113 0.661 0.247 0.270 0.000 0.258 ↓4.8%

CoT 0.102 0.657 0.101 0.278 0.022 0.232 ↓14.4%

Claude 3.5 Sonnet v2
Zero 0.132 0.764 0.183 0.328 0.175 0.316
Few 0.144 0.567 0.122 0.285 0.246 0.273 ↓13.6%

CoT 0.180 0.725 0.138 0.316 0.256 0.323 ↑2.2%

CLIP Classifier Baseline 0.542 0.866 0.286 0.388 0.514 0.519

Table 4: Results for Coherence Relation Prediction on
Tweet Subtitles. The Coherence Relations predicted
are Insertion (Ins), Concretization (Concr), Projection
(Proj), Restatement (Restmt) and Extension (Ext).

4.3 Prompting Strategies and Fine-tuning396

In addition to zero-shot evaluation, we also inves-397

tigate the contribution of few-shot and Chain-of-398

Thought (CoT) prompting strategies in enabling399

MLLMs to learn coherence relations better. For400

few-shot, we include one example per coherence401

relation in each prompt as examples in the 3 single-402

label classification settings. For multi-label clas-403

sification on CLUE ML, we include 6 different404

examples covering different combinations of rela-405

tions in our prompt. To perform CoT, we include a406

reasoning step in our prompt that asks the model to407

generate a rationale before predicting the coherence408

relation. More details about the prompt templates409

used for each of the tasks are present in Sections410

C.1 and D.1 of our appendix. We fine-tune the411

Llama 3.2 11B Instruct model on our benchmark412

to measure the impact of task-specifc fine-tuning413

in open-source MLLMs with hyperparameter se-414

lection described in Appendix Section E.415

4.4 Main Results416

MLLMs Struggle with Coherence Relations417

From our results in Tables 2, 4, 5, 6 we observe that418

no MLLM shows improvements over our baseline419

Model Prompt Visible Subj Action Story Meta Macro F1
Random Guess Baseline 0.233 0.069 0.030 0.162 0.266 0.152

LLaVA 1.6 7B
Zero 0.484 0.135 0.000 0.158 0.096 0.174
CoT 0.534 0.198 0.068 0.043 0.004 0.169 ↓2.9%

LLaVA 1.6 13B
Zero 0.541 0.027 0.039 0.158 0.000 0.153
CoT 0.529 0.043 0.054 0.034 0.016 0.135 ↓11.8%

LLaVA 1.6 34B
Zero 0.545 0.000 0.000 0.012 0.004 0.112
Few 0.457 0.097 0.058 0.318 0.086 0.203 ↑81.3%

CoT 0.537 0.143 0.062 0.210 0.004 0.191 ↑70.5%

LLaVA OneVision 7B
Zero 0.541 0.000 0.087 0.043 0.000 0.134
Few 0.146 0.000 0.025 0.172 0.243 0.117 ↓12.7%

CoT 0.535 0.000 0.048 0.092 0.000 0.135 ↑0.7%

Qwen2-VL 7B
Zero 0.533 0.068 0.000 0.034 0.000 0.127
Few 0.539 0.000 0.000 0.000 0.004 0.109 ↓14.2%

CoT 0.530 0.156 0.057 0.080 0.004 0.166 ↑30.7%

Llama 3.2 Vision 11B
Zero 0.537 0.136 0.098 0.023 0.000 0.159
Few 0.542 0.000 0.026 0.000 0.000 0.114 ↓28.3%

CoT 0.533 0.189 0.026 0.083 0.020 0.170 ↑6.9%

Phi3.5 Vision 4.2B
Zero 0.542 0.038 0.053 0.104 0.000 0.147
Few 0.485 0.256 0.021 0.255 0.162 0.236 ↑60.5%

CoT 0.534 0.000 0.087 0.083 0.000 0.141 ↓4.1%

InternVL 2.5 26B
Zero 0.558 0.273 0.071 0.312 0.027 0.248
Few 0.498 0.211 0.048 0.253 0.127 0.228 ↓8.1%

CoT 0.537 0.333 0.052 0.254 0.087 0.252 ↑1.6%

GPT-4o
Zero 0.544 0.345 0.064 0.178 0.065 0.239
Few 0.549 0.352 0.023 0.390 0.134 0.289 ↑20.9%

CoT 0.558 0.321 0.054 0.324 0.024 0.256 ↑7.1%

Gemini 1.5 Flash
Zero 0.543 0.215 0.091 0.168 0.020 0.207
Few 0.543 0.380 0.054 0.402 0.071 0.290 ↑40.1%

CoT 0.557 0.300 0.000 0.329 0.072 0.252 ↑21.7%

Gemini 1.5 Pro
Zero 0.559 0.329 0.039 0.440 0.112 0.296
Few 0.531 0.391 0.070 0.451 0.253 0.339 ↑14.5%

CoT 0.558 0.330 0.000 0.350 0.057 0.259 ↓12.5%

Claude 3.5 Sonnet v2
Zero 0.516 0.408 0.070 0.439 0.113 0.309
Few 0.467 0.430 0.077 0.434 0.338 0.349 ↑12.9%

CoT 0.537 0.378 0.058 0.382 0.119 0.295 ↓4.5%

CLIP Classifier Baseline 0.548 0.270 0.150 0.479 0.687 0.427

Table 5: Results for Coherence Relation Prediction on
CLUE Single-Label. The Coherence Relations pre-
dicted are Visible, Subjective (Subj), Action, Story and
Meta

classifier on Macro F1 scores across all settings. 420

When strictly looking at zero-shot prompts, Claude 421

3.5 Sonnet v2 performs the best on Tweet Subtitles, 422

CLUE ML, and CLUE SL while Gemini 1.5 Flash 423

performs the best on DisRel. However, the CLIP 424

Classifier can outperform these MLLMs by 2.4% 425

on DisRel, 64.1% on Tweet Subtitles, 38.6% on 426

CLUE SL, and 5.6% on CLUE ML in terms of 427

Macro F1 score. This shows that although these 428

datasets have clearly discernible visual and text fea- 429

tures that help in predicting coherence relations, 430

MLLMs aren’t able to comprehend them effec- 431

tively. The trend extends to both proprietary and 432

open-source MLLMs regardless of their size. Our 433

results reiterate the need for benchmarks such as 434

CORDIAL to evaluate the intermodal reasoning 435

capabilities of MLLMs. 436

Pragmatic Relations are Challenging In single- 437

label prediction settings, we observe that MLLMs 438

come close to the baseline classifier’s scores on 439

DisRel, containing the image-text relations that 440

are more literal (Similar, Complementary). On the 441

other hand, there exists a significant gap in per- 442

formance in other single-label datasets. Looking 443

into per-relation F1 scores, pragmatic relation cate- 444
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gories such as Insertion, Projection, and Extension445

are particularly challenging for MLLMs. A simi-446

lar trend is observed in CLUE SL and CLUE ML447

where MLLMs struggle with relation categories448

such as Story and Meta.449

Verification Accuracy Depends on Settings An-450

alyzing the verification performance of MLLMs451

in Table 3, we observe that the performance of452

MLLMs on the verification task is highly depen-453

dent on the setting. Across all settings, Claude454

3.5 Sonnet v2 performs the best, with an accuracy455

of 80.8% on DisRel, 70.4% on Tweet Subtitles,456

42.8% on CLUE SL and 48.5% on CLUE ML. This457

shows that MLLMs are able to verify coherence458

relations better in settings where the relations are459

more literal and easier to understand. However, the460

performance of MLLMs on the verification task is461

significantly lower in settings where the relations462

are more non-literal and pragmatic.463

Inconsistency of Prompting Strategies In our464

experiments with few-shot and CoT prompting465

strategies, we observe that the performance of466

MLLMs is inconsistent across different settings467

and model families. Across DisRel, Tweet Subti-468

tles, CLUE SL and CLUE ML, a total of 7, 8, 10469

and 10 MLLMs respectively show improvements in470

performance with either few-shot or CoT prompt-471

ing strategies. However, only 2 MLLMs: LLaVA472

OneVision 7B and GPT-4o show improvements473

across all settings. Overall, we observe that in the474

more difficult settings (CLUE SL and CLUE ML),475

more number of models are able to leverage one476

of these alternate prompting strategies to improve477

their performance. But, even with additional ex-478

amples or reasoning steps, MLLMs are not able to479

outperform the baseline classifier. This shows that480

Coherence Relation Prediction is a fundamentally481

difficult task that cannot be taught to MLLMs only482

through prompting strategies.483

Fine-tuning Improves MLLM Reasoning484

Looking at Figure 3, we observe that fine-tuning485

the Llama 3.2 Vision model on our benchmark486

proves beneficial for coherence relation prediction.487

In both DisRel and Tweet Subtitles, we see gains488

in both zero-shot and few-shot prompt scores with489

Llama 3.2 Vision up to 18.42% compared to its490

original performance. On both CLUE ML and491

SL, we see improvements in either zero-shot or492

few-shot performance with minimal performance493

loss on the other. This shows that MLLMs are494

able to learn to recognize coherence relations 495

better when fine-tuned on a task-specific dataset. 496

Coherence-aware fine-tuning can be a promising 497

direction for improving their reasoning and 498

cognition abilities. 499

Model Biases Inhibit Prediction Performance 500

Looking at the per-class F1 scores across MLLMs, 501

we observe they are biased towards certain rela- 502

tion categories. This includes the prediction of 503

only a small subset of relations across all samples 504

in an evaluation setting. From Figure 2, we ac- 505

knowledge that the distribution of relation cate- 506

gories in our benchmark is imbalanced. However, 507

this response imbalance of MLLMs is observed 508

even on majority classes such as Concretization in 509

Tweet Subtitles and Meta relations in CLUE SL 510

and ML. This shows that despite providing few- 511

shot examples and prompt optimization strategies, 512

MLLMs display biases towards certain relation cat- 513

egories. When we look at the results of our fine- 514

tuned model, we can see that prediction results on 515

relations ignored by the base model are improved. 516

This shows that fine-tuning can help mitigate these 517

reasoning biases in MLLMs. 518

5 Conclusions 519

We propose CORDIAL, a novel benchmark to 520

evaluate how MLLMs perform MDA using Coher- 521

ence Relations. Our experiments show existing 522

state-of-the-art MLLMs struggle to match simple 523

baseline classifiers in predicting Coherence Rela- 524

tions across different discourse domains. We also 525

show the impact of evaluating different prompt 526

strategies and the importance of using diverse 527

datasets to probe intermodal reasoning capabili- 528

ties of MLLMs. Finally, we show that fine-tuning 529

MLLMs on coherence relations can help allevi- 530

ate model biases and improve their performance 531

on these tasks. This work highlights the need for 532

MLLM benchmarks to evolve beyond factual & 533

perceptual assessment tasks and focus on under- 534

standing both literal and pragmatic relationships 535

between multimodal components of real-world dis- 536

courses. We hope that CORDIAL will serve as 537

a stepping stone for future research in MDA and 538

encourage the community to explore new methods 539

to improve MLLMs on these tasks. 540
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Limitations541

While our proposed benchmark provides a com-542

prehensive assessment of intermodal reasoning in543

current MLLMs, several limitations must be ac-544

knowledged. Firstly, the benchmark is currently545

limited to analyzing coherence relations in single-546

turn discourses. This is due to a lack of publically547

available datasets that provide multi-turn image-548

text pairs with annotated coherence relations. We549

plan to extend our benchmark to include multi-550

turn discourse relations as future work. Secondly,551

although we analyze different discourse domains552

in our benchmark, we lack a unified set of coher-553

ence relations that can be applied across all do-554

mains. The difficulty in defining a universal set555

of coherence relations is due to the varying nature556

of discourse in different domains. This limits our557

ability to analyze the inter-domain performance558

of MLLMs on the same set of relations. Finally,559

our benchmark is currently limited to the English560

language and must be extended to multi-lingual561

discourses as well.562
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Appendix1058

Model Prompt Visible Subj Action Story Meta Macro F1

LLaVA 1.6 7B
Zero 0.864 0.117 0.113 0.048 0.029 0.234
CoT 0.848 0.245 0.247 0.058 0.013 0.282 ↑20.5%

LLaVA 1.6 13B
Zero 0.869 0.147 0.389 0.115 0.401 0.384
CoT 0.849 0.095 0.237 0.090 0.048 0.264 ↓31.2%

LLaVA 1.6 34B
Zero 0.868 0.165 0.470 0.369 0.298 0.434
Few 0.859 0.000 0.471 0.453 0.166 0.390 ↓10.1%

CoT 0.858 0.117 0.317 0.175 0.163 0.326 ↓24.9%

LLaVA OneVision 7B
Zero 0.820 0.034 0.380 0.024 0.000 0.252
Few 0.757 0.109 0.510 0.150 0.000 0.305 ↑21.0%

CoT 0.856 0.150 0.349 0.213 0.154 0.345 ↑36.9%

Qwen2-VL 7B
Zero 0.864 0.045 0.211 0.086 0.013 0.244
Few 0.864 0.162 0.461 0.368 0.017 0.374 ↑53.3%

CoT 0.865 0.082 0.094 0.080 0.021 0.228 ↓6.6%

Llama 3.2 Vision 11B
Zero 0.869 0.157 0.424 0.349 0.284 0.417
Few 0.828 0.248 0.571 0.443 0.499 0.518 ↑24.2%

CoT 0.850 0.183 0.391 0.420 0.371 0.443 ↑6.2%

Phi3.5 Vision 4.2B
Zero 0.866 0.000 0.092 0.036 0.013 0.201
Few 0.527 0.226 0.311 0.490 0.036 0.318 ↑58.2%

CoT 0.819 0.047 0.475 0.294 0.064 0.340 ↑69.2%

InternVL 2.5 26B
Zero 0.822 0.291 0.448 0.324 0.029 0.383
Few 0.496 0.266 0.491 0.400 0.128 0.356 ↓7.0%

CoT 0.757 0.397 0.444 0.331 0.059 0.397 ↑3.7%

GPT-4o
Zero 0.858 0.451 0.453 0.291 0.060 0.423
Few 0.874 0.495 0.561 0.525 0.123 0.515 ↑21.7%

CoT 0.865 0.506 0.357 0.354 0.084 0.433 ↑2.4%

Gemini 1.5 Flash
Zero 0.875 0.368 0.554 0.355 0.065 0.443
Few 0.847 0.420 0.648 0.480 0.163 0.512 ↑15.6%

CoT 0.871 0.419 0.308 0.358 0.109 0.413 ↓6.8%

Gemini 1.5 Pro
Zero 0.884 0.485 0.544 0.313 0.106 0.467
Few 0.866 0.532 0.668 0.464 0.206 0.547 ↑17.1%

CoT 0.880 0.403 0.180 0.278 0.090 0.366 ↓21.6%

Claude 3.5 Sonnet v2
Zero 0.891 0.535 0.681 0.479 0.220 0.561
Few 0.829 0.503 0.643 0.553 0.360 0.578 ↑3.0%

CoT 0.876 0.515 0.596 0.389 0.174 0.510 ↓9.1%

CLIP Classifier Baseline 0.905 0.176 0.627 0.615 0.642 0.593

Table 6: Results for Coherence Relation Prediction on
the CLUE Multi-Label dataset. The Coherence Rela-
tions predicted are Visible, Subjective (Subj), Action,
Story and Meta with multiple relations being applicable
to a single image-text pair.

A Data Preparation1059

This section sheds light on the methods used while1060

preparing all the datasets mentioned in this paper1061

for model evaluation. We verify all three datasets1062

used to construct this benchmark have a permis-1063

sive license that allows usage for research purposes1064

without restrictions (DisRel - MIT License, Tweet1065

Subtitles - MIT License, CLUE - Sourced from1066

Conceptual Captions and free for research use).1067

A.1 DisREL1068

Due to limited number of samples in the Unre-1069

lated category, these image-text pairs were dis-1070

carded from our train and test set. All placeholder1071

instances of <URL> were removed from the text as1072

a part of our data cleaning.1073

A.2 Tweet Subtitles1074

This dataset contains two types of captions for1075

tweets: actual and text generated by an image cap-1076

tioning model. We use only the actual caption as1077

part of our evaluation.1078

Figure 4: An overview of the Image-Text Label (i.e.,
Coherence Relations) distribution across CLUE ML

A.3 CLUE 1079

The labels other than the ones mentioned in Section 1080

3.3 were disregarded from our train and test set for 1081

both settings, due to the lack of examples. We 1082

construct the CLUE Single-Label dataset with the 1083

same heuristic used by Alikhani et al. (2020): 1084

Step 1: If the set contains a Meta relation, assign 1085

it to the image-text pair. Else, proceed to 1086

the next step. 1087

Step 2: If the set contains a Visible relation and 1088

doesn’t contain either a Meta or Subjective 1089

relation, assign it to the image-text pair. 1090

Else, proceed to the next step. 1091

Step 3: If none of the above rules are met, ran- 1092

domly sample one relation from the 5 avail- 1093

able, and assign it to the pair. 1094

B Model Availability 1095

This section focuses on the details of model avail- 1096

ability and parameters, that we use in Section 1097

4.1. For all models, we set temperature to 0 or 1098

do_sample=False, maximum output tokens to 512 1099

and the random seed set to 42, wherever possible 1100

to ensure reproducibility. The model responses in 1101

this paper were collected between January 12, 2025 1102

and February 12, 2025. 1103

B.1 Proprietary Models 1104

OpenAI GPT: We access the GPT-4o model 1105

via the official OpenAI API. We evaluate 1106

gpt-4o-2024-08-06. 1107
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Anthropic Claude: We access Claude 3.5 Son-1108

net v2 via the Vertex AI API, using Google Cloud.1109

We evaluate claude-3-5-sonnet-v2@20241022.1110

Google Gemini: We access Gemini 1.51111

Flash and Gemini 1.5 Pro via the Ver-1112

tex AI API, using Google Cloud. We1113

evaluate gemini-1.5-flash-002 and1114

gemini-1.5-pro-002.1115

B.2 Open Source Models1116

We evaluate models published on Huggingface Hub.1117

LLaVA 1.6 34B and Llama 3.2 11B Vision were1118

evaluated using the LMDeploy 1 framework. We1119

evaluate Qwen2-VL using code released by the1120

authors. All other models, were evaluated using1121

the VLLM 2 framework. Refer to Table 7 for the1122

models we evaluate.1123

Model Model ID

InternVL 2.5 26B OpenGVLab/InternVL2_5-26B
Llama 3.2 Vision 11B meta-llama/Llama-3.2-11B-Vision-Instruct

LLaVA 1.6 7B llava-hf/llava-v1.6-mistral-7b-hf
LLaVA 1.6 13B llava-hf/llava-v1.6-vicuna-13b-hf
LLaVA 1.6 34B liuhaotian/llava-v1.6-34b

LLaVA OneVision 7B llava-hf/llava-onevision-qwen2-7b-ov-hf
Phi 3.5 Vision microsoft/Phi-3.5-vision-instruct
Qwen2-VL-7B Qwen/Qwen2-VL-7B-Instruct

Claude 3.5 Sonnet v2 claude-3-5-sonnet-v2@20241022
GPT-4o gpt-4o-2024-08-06

Gemini 1.5 Flash gemini-1.5-flash-002
Gemini 1.5 Pro gemini-1.5-pro-002

Table 7: MLLMs we evaluate in this paper. For open-
source models, this table shows the model names in
Huggingface.

C MLLM Evaluation Details1124

This section provides details about the evaluation1125

task (RQ1) mentioned in Section 4.1.1126

1127

C.1 Prompt Templates1128

As mentioned in Section 4.3, we make use of Zero-1129

Shot, Few-Shot and Chain of Thought prompting1130

for evaluation. Every prompting strategy utilizes1131

three different messages:1132

• System Message: We explain the task and1133

the definitions of each Coherence Relation1134

present in the dataset being evaluated.1135

• User Message: This message is used to reit-1136

erate the task again, along with the required1137

output format. The image and text that need1138

to be evaluated, is also added here.1139

1https://github.com/InternLM/lmdeploy
2https://github.com/vllm-project/vllm

• Assistant Message: We use this optional mes- 1140

sage for certain models, to guide its responses 1141

towards the intended output format. 1142

The different prompts and system messages used 1143

on each data source as mentioned in Section 3.3, is 1144

present in the appendix. 1145

C.2 Few Shot Prompting 1146

In this prompting strategy, we utilize user-assistant 1147

message pairs that are inserted right after the 1148

user message which specifies output format. For 1149

the Tweet Subtitles and CLUE Single-Label 1150

datasets, we utilize 5-shot examples to include 1151

all possible coherence relations. In the case of 1152

CLUE Multi-Label and DisREL, we utilize 6-shot 1153

examples and 2-shot examples respectively. 1154

1155

We do not evaluate LLaVA 1.6 7B and 13B using 1156

this prompting technique, as our prompt (text + 1157

multimodal tokens) does not fit into the context 1158

length (4096) of these models. 1159

C.3 Chain-of-Thought Prompting 1160

We instruct the model to analyze the image-text 1161

pair, before assigning a Coherence Relation in this 1162

prompting strategy. We incorporate the instruc- 1163

tion "Let’s think step by step", to make the model 1164

respond with concise sentences that detail its rea- 1165

soning process. 1166

C.4 Preprocessing Images for Claude 1167

We noticed that some images were above the 5 MB 1168

per file size limit imposed by Anthropic for their 1169

API. As per their recommendations, we evaluate 1170

Claude on images that are resized to 1.3 megapix- 1171

els, while preserving the aspect ratio. 1172

C.5 Postprocessing MLLM Responses 1173

In the case of single-label datasets, we remove 1174

instances of the phrase "Coherence Relation:" 1175

along with other punctuation and whitespace. If 1176

there exists only one occurrence of a particular 1177

coherence relation, we use that as the prediction 1178

result for the image-text pair. 1179

1180

While working with CLUE Multi-Label 1181

responses, we remove instances of the phrase 1182

"Coherence Relations:". All valid JSON in the 1183

response is parsed using regular expressions. If the 1184

output format is comma-separated values, those 1185

responses are parsed appropriately. 1186

1187
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After this, if we cannot find any valid label for1188

an image-text pair from the MLLM’s response, we1189

discard the sample from our test set. To ensure test1190

set consistency, we discarded around 200 samples1191

across all datasets and calculated the final evalua-1192

tion metrics as mentioned in Section 4.2.1193

D MLLM Verification Details1194

This section provides details about the verification1195

task (RQ2) mentioned in Section 4.1.1196

D.1 Prompt Templates1197

For this task, we utilize a Chain-of-Thought1198

prompting strategy. Each model is given the same1199

system message as before, but along with the1200

image-text pair, we also give the ground truth Co-1201

herence Relation. The model is then asked to re-1202

spond with a True/False answer, along with its ra-1203

tionale for its response.1204

D.2 Preprocessing Images for Claude1205

We use the same strategy as mentioned in Section1206

C.4, only for the images that don’t come under the1207

file size limit.1208

D.3 Postprocessing MLLM Responses1209

We parse boolean values from each MLLM re-1210

sponse, and assign False to an image-text pair, only1211

if there is any occurrence of the same. For CLUE1212

ML, we provide only overall verification accuracies1213

since it is a multi-label verification problem.1214

E Fine-tuning Details1215

We fine-tune LLaMA 3.2 Vision 11B Instruct1216

(unsloth/Llama-3.2-11B-Vision-Instruct in1217

Huggingface) using the Unsloth3 framework. We1218

opted for this framework due to its memory effi-1219

ciency and rapid fine-tuning. We perform Parame-1220

ter Efficient Fine-Tuning (PEFT) of all layers (Vi-1221

sion & Language) and modules (Attention & MLP)1222

present. We use the hyperparameters mentioned in1223

Section E.1 on each dataset for fine-tuning. Other1224

parameters have been initialized to their default1225

values.1226

E.1 Hyperparameters1227

Common Parameters1228

• LoRA Parameters: r=161229

• num_train_epochs = 31230

3https://unsloth.ai/blog/vision

Model Prompt Sim Compl Macro F1

FT-Llama 3.2 Vision 11B Zero 0.629 0.620 0.625
Few 0.673 0.327 0.500 ↓20.0%

Llama 3.2 Vision 11B Zero 0.388 0.635 0.512
Few 0.509 0.479 0.494 ↓3.5%

Table 8: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
DisRel dataset. The coherence relations predicted are
Similar and Complementary.

Model Prompt Ins Concr Proj Restmt Ext Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.440 0.853 0.045 0.042 0.148 0.306
Few 0.231 0.752 0.213 0.100 0.254 0.310 ↑1.3%

Llama 3.2 Vision 11B
Zero 0.000 0.779 0.000 0.093 0.000 0.175
Few 0.035 0.388 0.000 0.092 0.113 0.126 ↓28.0%

Table 9: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
Tweet Subtitles dataset. The Coherence Relations pre-
dicted are Insertion (Ins), Concretization (Concr), Pro-
jection (Proj), Restatement (Restmt) and Extension
(Ext).

Model Prompt Visible Subj Action Story Meta Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.547 0.074 0.042 0.045 0.004 0.142
Few 0.516 0.230 0.053 0.228 0.155 0.236 ↑66.2%

Llama 3.2 Vision 11B
Zero 0.537 0.136 0.098 0.023 0.000 0.159
Few 0.542 0.000 0.026 0.000 0.000 0.114 ↓28.3%

Table 10: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
CLUE Single-Label dataset. The Coherence Relations
predicted are Visible, Subjective (Subj), Action, Story
and Meta

Model Prompt Visible Subj Action Story Meta Macro F1

FT-Llama 3.2 Vision 11B
Zero 0.864 0.228 0.520 0.287 0.431 0.466
Few 0.864 0.158 0.586 0.282 0.549 0.488 ↑4.7%

Llama 3.2 Vision 11B
Zero 0.869 0.157 0.424 0.349 0.284 0.417
Few 0.828 0.248 0.571 0.443 0.499 0.518 ↑24.2%

Table 11: Per-class Coherence Relation Prediction of
Fine-tuned LLama 3.2 Vision 11B (FT-Llama) on the
CLUE Multi-Label dataset. The Coherence Relations
predicted are Visible, Subjective (Subj), Action, Story
and Meta with multiple relations being applicable to a
single image-text pair.

• warmup_steps = 100 since our train sets are 1231

relatively small. 1232

• per_device_train_batch_size = 32 1233

• gradient_accumulation_steps = 1 1234

• dtype = torch.bfloat16 1235

• optim = adamw_torch 1236

• weight_decay = 0.01 1237

• lr_scheduler_type = cosine 1238
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DisREL1239

• LoRA Parameters: lora_alpha=161240

• Learning Rate = 1e−51241

Tweet Subtitles1242

• LoRA Parameters: lora_alpha=161243

• Learning Rate = 1e−51244

CLUE Single-Label1245

• LoRA Parameters: lora_alpha=161246

• Learning Rate = 1e−51247

CLUE Multi-Label1248

• LoRA Parameters: lora_alpha=81249

• Learning Rate = 1e−71250

E.2 Train Set Preparation for CLUE1251

During experimentation, we noticed that models1252

fine-tuned on CLUE Single-Label and Multi-Label,1253

tend to skew their responses towards the majority1254

classes (Visible, Story and Meta) in the dataset. In1255

order to curb this behavior, we decided to randomly1256

sample 200 examples from the CLUE Single-Label1257

train set for these coherence relations alone. The1258

same image-text pairs were used for the multi-label1259

setting as well.1260

F Baseline Classifier Details1261

As mentioned in Section 3.4, we em-1262

ploy CLIP Text and Image Encoders1263

(openai/clip-vit-large-patch14 in Hug-1264

gingface) in a zero-shot manner to extract1265

multi-modal embeddings. These embeddings are1266

then concatenated together, to form a tensor of1267

size 1536. This multi-modal tensor is then passed1268

through a Multi-Layer Perceptron with two hidden1269

layers of size 512 and 256, along with an output1270

layer equal to the number of Coherence Relations1271

in each dataset. The MLP uses RELU in between1272

each layer for introducing non-linearity, and a1273

Dropout of 0.2 between the first two layers.1274

1275

A validation split of 10% was created from1276

the train sets. The DisREL, Tweet Subtitles and1277

CLUE Single-Label classifiers were trained using1278

the Cross Entropy Loss, whereas the CLUE Multi-1279

Label classifier used the Binary Cross Entropy Loss1280

along with a Sigmoid Layer. Due to the large1281

class imbalance in CLUE Single-Label, we use 1282

a weighted loss function in that classifier alone. 1283

Every model was trained with a batch size of 32, 1284

using the Adam Optimizer and a learning rate of 1285

1e−5. Table 12 shows the number of epochs, for 1286

which each classifier was trained in every setting. 1287

Dataset Number of Epochs
DisREL 15

Tweet Subtitles 25
CLUE Single-Label 25
CLUE Multi-Label 50

Table 12: Number of epochs for which each classifier
was trained.

G Computational Resources 1288

To evaluate and fine-tune open-source models, we 1289

use 2 NVIDIA H100 80GB HBM3 and 2 NVIDIA 1290

A100 SXM4 GPUs for around two days worth of 1291

computation. 1292
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System Message for DisREL

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:
- Similar: The image and text provide the same information and share the same focus. There exists
significant overlap in information conveyed between modalities.
- Complementary: The image and text do not provide the same information or share the same
focus but one modality helps understand the other better.

System Message for Tweet Subtitles

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:
- Insertion: The salient object described in the image is not explicitly mentioned in the text.
- Concretization: Both the text and image contain a mention of the main visual entity.
- Projection: The main entity mentioned in the text is implicitly related to the visual objects
present in the image.
- Restatement: The text directly describes the image contents.
- Extension: The image expands upon the story or idea in the text, presenting new elements or
elaborations, effectively filling in narrative gaps left by the text.

System Message for CLUE Single-Label and Multi-Label

You are an expert linguist and your task is to predict the Coherence Relations of a given
image-text pair. A coherence relation captures the structural, logical, and purposeful relationships
between an image and its text, capturing the author’s intent.

These are the possible coherence relations you can assign to an image-text pair:

- Visible: The text presents information that is intended to recognizably characterize what is
depicted in the image.
- Action: The text describes an extended, dynamic process of which the moment captured in the
image is a representative snapshot.
- Meta: The text allows the reader to draw inferences not just about the scene depicted in the
image but about the production and presentation of the image itself.
- Subjective: The text provides information about the speaker’s reaction to, or evaluation of, what
is depicted in the image.
- Story: The text provides a free-standing description of the circumstances depicted in the image,
analogous to including instructional, explanatory and other background relations.
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Zero/Few Shot Prompt for DisREL, Tweet Subtitles and CLUE Single-Label

System
<insert-system-message>

User
Based on provided information, predict the most applicable Coherence Relation for the next
image-text pair. Output only one relation (<insert-coherence-relations) and do not include any
other information in your response.

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to finetuned LLaMA 3.2 Vision’s prompt in CLUE Single-Label, to enhance output
format adherence.)

<add-few-shot-examples>

<insert-image-text-pair>

Assistant
Coherence Relation:

CoT Prompt for DisREL, Tweet Subtitles and CLUE Single-Label

System
<insert-system-message>

User
Before assigning a coherence relation, let’s think step by step and analyze the image-text pair in
depth.

<insert-image-text-pair>

Assistant
Analysis: <add-analysis-from-model>

User
Based on provided information, predict the most applicable Coherence Relation for the next
image-text pair. Output only one relation (<insert-coherence-relations>) and do not include any
other information in your response.

Assistant
Coherence Relation:
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Zero/Few Shot Prompt for CLUE Multi-Label

System
<insert-system-message>

User
Based on provided information, predict the correct Coherence Relations for the next image-text
pair. Output them as a JSON value to the key labels" and do not include any other information in
your response. (Default output format for all models)

Give your predicted labels as comma separated values. Do not include any other information in
your response.
(Alternate output format for LLaMA 3.2, Phi 3.5, Qwen2-VL and LLaVA-OneVision)

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to LLaVA 1.6 13B prompt to enhance output format adherence.)

<add-few-shot-examples>

<insert-image-text-pair>

Assistant
Coherence Relations:
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CoT Prompt for CLUE Multi-Label

System
<insert-system-message>

User
Before assigning a coherence relation, let’s think step by step and analyze the image-text pair in
depth.

<insert-image-text-pair>

Assistant
Analysis: <add-analysis-from-model>

User
Now, using your analysis, predict the correct Coherence Relations for the image-text pair. Output
them as a JSON value to the key labels" and do not include any other information in your
response. (Default output format for all models)

Give your predicted labels as comma separated values. Do not include any other information in
your response.
(Alternate output format for LLaMA 3.2, Phi 3.5, Qwen2-VL and LLaVA OneVision)

Use the format "Coherence Relation: <insert-coherence-relation>" for your response.
(Added to LLaVA 1.6 13B prompt to enhance output format adherence.)

Assistant
Coherence Relations:

Verification Prompt Template

System
<insert-system-message>

User
Based on provided information, reply True (if appropriate) or False (if not appropriate) for the
following image-text pair. Give your rationale behind it.

<insert-image-text-pair>
<insert-coherence-relation>

Sample Assistant Response
<True/False>
Rationale: <model-response>
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