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Abstract

In deep reinforcement learning (RL) systems, abnormal states pose significant risks by poten-
tially triggering unpredictable behaviors and unsafe actions, thus impeding the deployment
of RL systems in real-world scenarios. It is crucial for reliable decision-making systems to
have the capability to cast an alert whenever they encounter unfamiliar observations that
they are not equipped to handle. In this paper, we propose a novel Mahalanobis distance-
based (MD) anomaly detection framework, called MDX, for deep RL algorithms. MDX
simultaneously addresses random, adversarial, and out-of-distribution (OOD) state outliers
in both offline and online settings. It utilizes Mahalanobis distance within class-conditional
distributions for each action and operates within a statistical hypothesis testing framework
under the Gaussian assumption. We further extend it to robust and distribution-free ver-
sions by incorporating Robust MD and conformal inference techniques. Through extensive
experiments on classical control environments, Atari games, and autonomous driving scenar-
ios, we demonstrate the effectiveness of our MD-based detection framework. MDX offers a
simple, unified, and practical anomaly detection tool for enhancing the safety and reliability
of RL systems in real-world applications.

1 Introduction

Deep reinforcement learning (RL) algorithms vary considerably in their performance and are highly sensitive
to a wide range of factors, including the environment, state observations, and hyper-parameters (Jordan
et al., 2020; Patterson et al., 2020). The lack of robustness in RL algorithms and raised safety concerns
surrounding learned policies hinder their deployment in real-world scenarios, particularly in safety-critical
applications such as autonomous driving (Kiran et al., 2021; Liu et al., 2022; Hu et al., 2023). Recently,
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the reliability of RL algorithms has garnered substantial attention (Chan et al., 2020; Gu et al., 2024).
Several studies have highlighted the importance of anomaly detection as a crucial component for enabling
safe RL systems (Garcıa & Fernández, 2015; Hendrycks et al., 2021; Müller et al., 2022), emphasizing the
need for anomaly detection-based strategies to build trustworthy and safe RL systems (Sedlmeier et al.,
2020a; Danesh & Fern, 2021; Haider et al., 2023).

Practical Scenarios. Observed states often contain natural measurement errors (random noises), adver-
sarial perturbations, and out-of-distribution (OOD) observations. For instance, consider an autonomous
vehicle with malfunctioning or unreliable sensors or cameras. Under such circumstances, the collected data,
such as the vehicle’s observed location, can be contaminated by random measurement errors. Furthermore,
an autonomous car can encounter sensory inputs that have been adversarially manipulated regarding traffic
signs. For example, a stop sign maliciously altered to be misclassified as a speed limit sign (Chen et al.,
2019), increases the risk of traffic accidents. Regarding OOD samples, an RL policy trained to drive only
on sunny days will struggle with observations from rainy days, which are beyond its trained experience.
Such OOD observations can lead to safety violations, performance degradation, and potentially catastrophic
failures. All these scenarios highlight the necessity of detecting inaccurate sensor signals from noisy state
observations to ensure a vehicle’s accurate and reliable operation. Beyond autonomous driving, anomaly
detection is critical in many other applications involving sequential decision-making. In healthcare, the
RL agent might adjust treatment recommendations if it detects a sudden change in the patient’s health
condition (Hu et al., 2022). Similarly, detecting fraud and anomalous market states in financial systems is
becoming increasingly instrumental in preventing substantial financial losses from market manipulation and
fraudulent activities (Hilal et al., 2022).

Motivating Examples. Fig. 1(a) illustrates a potential collision scenario where an autonomous car, relying
on noisy location data in the red region (such as GPS coordinate errors), turns right prematurely, risking an
accident. Without anomaly detection, the car reacts incorrectly due to the location error. Fig. 1(b) highlights
how increasing measurement errors, represented by the standard deviation of Gaussian noises, dramatically
degrade policy performance. For instance, autonomous cars with RL systems may take sub-optimal or
unsafe actions when processing noisy sensory signals in deployment. In addition, incorporating excessive
noise during online training (Fig. 1(c)) can severely impair policy learning and diminish performance. These
motivating examples underscore the importance of detecting different types of abnormal states for developing
trustworthy RL systems in real-world applications.

Our research aims to provide a general framework for applying anomaly detection in deep RL problems,
including problem formulation, detection algorithms, and evaluation scenarios. This study contributes to
anomaly detection, particularly within the context of safe RL, which falls under the broader research field
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(a) Unsafe behavior in autonomous driving
under noisy sensor signals.
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(b) Performance degradation when
noises injected in policy deployment.
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(c) Performance degradation when
noises injected during policy learning.

Figure 1: (a) An autonomous car navigates using location data observed from sensors such as GPS. Without
an effective anomaly detection mechanism, inaccuracies or malfunctions in these sensors can cause the car
to prematurely turn right, leading to a collision. (b) and (c): Performance degradation occurs when noisy
states are observed in the Breakout environment. Gaussian noises with increasing standard deviations are
injected into the state observations during policy deployment (b) and policy learning (c).
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of managing distribution shift in RL; see Section 2 for detailed discussions. Specifically, we strive to develop
an effective and unified anomaly detection framework for deep RL in both offline and online settings.

1. Offline Setting. In this setting, a dataset is fixed without additional online data collection. Given
a pre-trained policy, our objective is to utilize a fixed dataset to develop a distance-based anomaly
detector tailored for a pre-trained policy. This detector aims to effectively identify whether a state
is an outlier 1, ensuring the reliable operation and stable performance of decision-making systems
in deployment.

2. Online Setting. In this setting, the RL agent interacts with a noisy environment and continuously
updates its policy. Our goal is to develop a detection strategy that identifies state outliers, which
are outside the RL system’s training experience. Removing these outliers can prevent them from
interfering with policy training, leading to a robust learning process of RL systems..

Methodologically, we first design an RL outlier detection approach using Mahalanobis Dis-
tance (MD) (De Maesschalck et al., 2000) within a statistical hypothesis test framework and extend it
to a robust MD version (Butler et al., 1993). These strategies are applied in a parametric manner under
the Gaussian assumption for state features in each class, which may not always be accurate in practice.
To address this limitation, we introduce a non-parametric conformal version of MD detection to relax the
Gaussian assumption. We empirically investigate the effectiveness of these proposed detection approaches
in both offline and online settings across a representative set of RL environments, including classical control
environments, Atari games, and autonomous driving. Our contributions can be summarized as follows:

• Our primary technical contribution is the design of RL outlier detection strategies based on the con-
cepts of Mahalanobis Distance (MD), robust MD, and conformal inference. The anomaly detection
strategies are specially developed for deep RL within a hypothesis test framework, accommodating
both parametric (Gaussian assumption) and non-parametric (conformal calibration) approaches.

• Secondly, in our online setting, our anomaly detection can be applied to a dynamic dataset, where
the RL policy continually improves when interacting with the environment. This dynamic setting
contrasts with the simpler anomaly detection in supervised learning with a static dataset. To address
this challenge, we particularly develop moving window estimation and double self-supervised detectors
for anomaly detection in the online RL setting.

• To our best knowledge, we are the first to conduct a comprehensive study on distance-based anomaly
detection in deep RL, covering all typical types of outliers. Our anomaly detectors can simultane-
ously identify random, adversarial, and out-of-distribution state outliers. We perform extensive
experiments to verify the effectiveness of our proposed methods in both offline and online settings.

2 Related Work

Anomaly Detection in Reinforcement Learning. Anomaly detection has yet to be extensively explored
in RL. The connection between anomaly detection and RL was first established in (Müller et al., 2022);
however, their work is mainly conceptual and does not propose practical detection algorithms. Change
point detection has been investigated in the tabular setting of RL, particularly in environments described as
doubly inhomogeneous under temporal non-stationarity and subject heterogeneity (Hu et al., 2022). They
focus on identifying “best data chunks” within the environment that exhibit similar dynamics for policy
learning, while our detection focuses on anomaly detection in deep RL scenarios. Prior studies have also
probed anomaly detection in specific RL contexts, such as the offline imitation learning with a transformer-
based policy network (Wang et al., 2024) and detecting adversarial attacks within cooperative multi-agent
RL (Kazari et al., 2023). However, these studies are limited to specific scenarios that do not address general
anomaly detection, even in single-agent RL. Sedlmeier et al. (2020b) introduced a simple policy entropy based

1Compared with the classical tasks of policy evaluation and learning in offline RL, our offline setting also utilizes a fixed
dataset but specifically focuses on developing detection methods given a fixed policy.
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out-of-distribution detector in one-class classification problems. Haider et al. (2023) proposed a model-based
method using probabilistic dynamics models and bootstrapped ensembles, but this approach highly relies on
the capability of the learned environment model and is also computationally expensive. Unlike the previously
mentioned detection methods tailored for specific RL areas, our research aims to further enhance this field by
developing a distance-based anomaly detection framework applicable to a broad range of deep RL scenarios.

Distance-based Anomaly Detection. Recently, there has been a growth of interest in developing anomaly
detection strategies in deep learning scenarios (Elmrabit et al., 2020; Pang et al., 2021). In image classifica-
tion, Mahalanobis distance (MD) was effectively applied by (Lee et al., 2018), who constructed a Mahalanobis
confidence score by training a logistic regression detector using validation samples. This score was evaluated
in a supervised way, relying on a validation set, and thus it is unsuitable for the RL setting. The “tied”
covariance assumption used by (Lee et al., 2018), where class-conditional distributions of pre-trained features
share the same covariance, was criticized as implausible by (Kamoi & Kobayashi, 2020) based on Gaussian
discriminant analysis (Klecka et al., 1980). In contrast, our detection framework MDX avoids the unrealistic
“tied covariance” assumption by estimating variance for each class using quadratic discriminant analysis.
This approach extends linear boundaries to quadratic ones between classes, offering a more flexible and
accurate detection (Hastie et al., 2009). Additionally, we have developed a distribution-free detection strat-
egy using conformal prediction, which eliminates the reliance on the Gaussian assumption and potentially
extends applicability across a wider range of practices.

Robust Statistics for RL. Deep RL algorithms inherently face challenges related to instability and di-
vergence due to the use of function approximation, bootstrapping, and off-policy learning (Sutton & Barto,
2018). Employing Mahalanobis distance (MD) for anomaly detection can be particularly sensitive during
unstable learning phases. The computation of MD is based on Maximum Likelihood Estimate (MLE), which
is susceptible to outliers or noisy data (Rousseeuw & Van Zomeren, 1990). Robust statistics (Huber, 2004)
have been developed to address these robustness problems, especially leveraging robust estimation techniques
that are not unduly affected by outliers. For example, Robust MD is a robust version of MD that employs
robust estimators, e.g., Minimum Covariance Determinant (MCD) (Rousseeuw, 1984; Grübel, 1988), for
location and covariance estimation (Maronna & Yohai, 2014). Our study enhances the understanding of
robust statistical approaches’ applicability across a variety of areas in RL, particularly in anomaly detection.

Conformal Prediction and Conformal Anomaly Detection. Conformal anomaly detection (Laxham-
mar & Falkman, 2011; Ishimtsev et al., 2017) is based on the conformal prediction (Angelopoulos et al.,
2021; Teng et al., 2023), a popular, modern technique for providing valid prediction intervals for arbitrarily
machine learning models. Conformal prediction has garnered increasing attention as it can provide a simple,
distribution-free, and computationally effective way of tuning the distribution threshold. Its validity relies on
the data exchangeability condition (Shafer & Vovk, 2008), where different orderings of samples are equally
likely, but recent studies have verified its applicability in scenarios involving distribution shift (Tibshirani
et al., 2019; Barber et al., 2023) and off-policy evaluation (Zhang et al., 2023b). These examples justify the
potential of using conformal inference to detect outliers in the context of RL.

Distribution Shift in RL. Developing reliable decision-making systems requires effectively addressing
distribution shifts in the RL regime. Pertinent research areas include meta RL (Nagabandi et al., 2018; Xu
et al., 2018; Ajay et al., 2022), transfer RL (Taylor & Stone, 2009; Parisotto et al., 2015; Zhu et al., 2023;
Bai et al., 2024b), continual RL (Khetarpal et al., 2022; Anand & Precup, 2024; Abel et al., 2024), and
robust generalization in RL (Boyan & Moore, 1994; Pinto et al., 2017; Zhang et al., 2020). While anomaly
detection and these subfields all need to handle distribution shifts to create trustworthy RL systems, our
work specifically focuses on detecting outliers to ensure reliable decision-making within the capacity of the
learned policy. This focus distinguishes our study from the other related subfields to tackle distribution
shifts. For a deeper discussion on their differences, please refer to (Müller et al., 2022).

3 Background

Markov Decision Process. The interaction of an agent with its environment can be modeled as a Markov
Decision Process (MDP), a 5-tuple (S, A, R, P, γ). S and A are the state and action spaces, P : S ×A×S →
[0, 1] is the environment transition dynamics, R : S × A × S → R is the reward function and γ ∈ (0, 1) is
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the discount factor. The policy π is continually updated in this online interaction paradigm. Compared to
the online setting, a recent popular paradigm for reinforcement learning is offline RL (Levine et al., 2020).
In the offline setting, RL algorithms utilize previously collected data to extract policies without additional
online data collection.

Proximal Policy Optimization (PPO). The policy gradient algorithm of Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) has achieved state-of-the-art or competitive performance on Atari
games (Bellemare et al., 2013) and MuJoCo robotic tasks (Todorov et al., 2012). Typical policy gradi-
ent algorithms optimize the expected reward function ρ (θ, s0) = Eπθ

[
∑∞

t=0 γtr (st) | s0] by using the policy
gradient theorem (Sutton & Barto, 2018). Here πθ is the θ-parameterized policy function. Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) and PPO (Schulman et al., 2017) utilize constraints
and advantage estimation to perform the update by reformulating the original optimization problem with
the surrogate loss L(θ) as:

L(θ) = Et

[
πθ (st, at)

πθold (st, at)
Aπθold

(st, at)
]

, (1)

where Aπθold
is the generalized advantage function (GAE) (Schulman et al., 2018). PPO introduces clipping

in the objective function in order to penalize changes to the policy that make πθ vastly different from πθold :

LCLIP(θ) = Et

[
min

(
πθ (st, at)

πθold (st, at)
Aπθold

(st, at) , clip
(

πθ (st, at)
πθold (st, at)

, 1 − ϵ, 1 + ϵ

)
Aπθold

(st, at)
)]

, (2)

where ϵ is a hyperparameter. We use PPO as the algorithm testbed to examine the efficacy of our anomaly
detection framework. However, our detection methods are general and can be easily applied to other RL
algorithms (Zhang & Yu, 2020) such as DQN (Mnih et al., 2015; Hessel et al., 2018), A3C (Mnih et al.,
2016), and DDPG (Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al., 2018; Bai et al., 2023).

Conformal Prediction. Conformal anomaly detection (Laxhammar & Falkman, 2011; Ishimtsev et al.,
2017) is grounded in conformal prediction (Shafer & Vovk, 2008; Angelopoulos et al., 2021), which aims to
construct a confidence band C1−α(X) for Y given a random data pair (X, Y ) ∼ P and a confidence level
1 − α. Suppose we have a pre-trained model µ̂ and a calibration dataset (X1, Y1), ..., (Xn, Yn) for conformal
prediction. We can then compute a predictive interval for the new sample Xn+1 to cover the unseen response
Yn+1 by leveraging the empirical quantiles of the residuals |Yi−µ̂(Xi)| on the calibration dataset. This further
leads to valid prediction intervals such that:

P(Yn+1 ∈ C1−α(Xn+1)) ≥ 1 − α, (3)

where the confidence band is expected to be as small as possible while maintaining the desired coverage. A
fundamental quantity in conformal prediction is the non-conformity measure, e.g., the residual |Yi − µ̂(Xi)|,
which measures how “different” an example is relative to a set of examples (Vovk et al., 2005).

4 Mahalanobis Distance-based (MDX) Detection Framework

For a deep RL agent, acting on anomalous inputs could result in hazardous situations. Therefore, developing
suitable anomaly detectors for deep RL agents is particularly important in safety-critical scenarios. Fig. 2
illustrates the operational flow of our MDX framework.

Description of Detection Framework. Our detection framework is structured around two core com-
ponents: feature extraction and detector estimation. The process begins by assessing whether a state is
anomalous, which is crucially dependent on the associated policy. A state that prompts the policy to initiate
a potentially unsafe action is labeled as an outlier. Specifically, we input the state into the policy network
and extract the feature vector from the penultimate layer of this network. We categorize states according
to the actions determined by the policy, based on the intuition that states associated with the same action
share similar features. For each action class, we estimate the mean value (µ) and covariance matrix (Σ) of
the feature vectors as the class centroid. A threshold is set as the class boundary that partitions the feature
space into inliers and outliers.
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Figure 2: The detection pipeline of MDX. We feed the state into the policy network to extract the
feature vector and identify its class. For each class, we estimate (µ, Σ) and establish a detection threshold
depicted as a dashed ellipse. To determine whether a new state is an outlier, we evaluate its features and
compute the distance to the class centroids. If the distance falls below the set threshold, the state is classified
as an inlier (green points). Conversely, the state is marked as an outlier (red points).

After the class centroids are estimated, we can determine whether a new state is an outlier by computing
its distance from the established class centroids using the Mahalanobis distance based on its feature vector.
The Mahalanobis distance is a measure of the distance between a point and a distribution, which in this case
is represented by the class centroids. A state is deemed an outlier if the distance surpasses the predefined
threshold. An appropriate threshold can balance the trade-off between false positives and false negatives,
ensuring that the detection system is both accurate and reliable. By ensuring that only states within the
policy’s capability are considered valid, MDX enhances the safety and reliability of the RL system.

Our detection framework is generic and can be applied to any agents that operates based on a learned neural
network. Based on the proposed detection framework, we instantiate two detection methods in Section 5:
distribution-based detection under the assumption of Gaussian distribution, and distribution-free detection,
which is based on conformal prediction. The former method relies on Chi-square distribution to determine the
threshold, while the latter method employs the conformity score to establish the threshold. We then extend
the detection framework to the online setting in Section 6, where the detectors are updated continuously as
the agent interacts with the environment.

5 Anomaly Detection in the Offline RL Setting

Our MDX detection framework mainly induces two kinds of detection algorithms, including distribution-
based detection under Gaussian assumption in Section 5.1 and distribution-free detection by leveraging
conformal prediction in Section 5.2. Finally, an integrated detection algorithm pipeline is provided, incor-
porating all variants of detection strategies in the RL context.

5.1 Distribution-based Detection under Gaussian Assumption

Gaussian Assumption. The given pre-trained parameterized RL policy πθ is a discriminative softmax
classifier, π(at = c|st) = exp

(
w⊤

c f(st) + bc

)
/

∑
c′ exp

(
w⊤

c′f(st) + bc′
)
, where wc and bc are the weight and

bias of the policy classifier for action class c. The function f(·) represents the output of the penultimate layer
of the policy network πθ, serving as the state feature vector. Here, C = |A| is the size of the action space, and
µc is the mean vector of f(s) corresponding to the action class c 2. If we assume that the class-conditional
distribution follows a multivariate Gaussian distribution sharing a single covariance Σ (tied covariance) in a
generative classifier, i.e., π(f(s) | a = c) = N (f(s) | µc, Σ), then the posterior distribution of f(s) matches
the form of a discriminative softmax classifier (Lee et al., 2018). This equivalence implies that f(s) fit a
Gaussian distribution under πθ. We approximate state feature vectors with a class-conditional Gaussian

2Our MDX detection framework currently focuses on environments with the discrete action spaces. For continuous action
spaces, a natural solution is to discretize the actions into several bins and then follow the same detection pipeline, which deserves
further validation.
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distribution with µc and Σc for each action class, rather than using a single "tied" covariance Σ across all
action classes (Kamoi & Kobayashi, 2020).

Vanilla MD-based Detection. An MD-based detection based on Gaussian assumption can be immediately
developed based on the mean vectors µc and the covariance matrix Σc calculated from f(s) for each action
class c. We first collect Nc state action pairs {(si, ai)}, separately for each action class c, and compute the
empirical class mean and covariance of c:

µ̂c = 1
Nc

∑
i:ai=c

f (si) , Σ̂c = 1
Nc

∑
i:ai=c

(f (si) − µ̂c) (f (si) − µ̂c)⊤
. (4)

In distance-based detection, a straightforward metric is Euclidean distance (ED). However, MD generally
outperforms ED in many tasks (Lee et al., 2018; Kamoi & Kobayashi, 2020; Ren et al., 2021), as it incorpo-
rates the additional data covariance information to normalize the distance scales. Following the estimation
in Eq. (4), we derive the class-conditional Gaussian distribution to characterize the data structure within
the state representation space for each action class. For each state s observed by the agent, we compute its
Detection Mahalanobis Distance M(s) between s and the nearest class-conditional Gaussian distribution by:

M(s) = min
c

(f(s) − µ̂c)⊤ Σ̂−1
c (f(s) − µ̂c) . (5)

Unlike the previous work Lee et al. (2018), which defined a Mahalanobis confidence score based on a binary
classifier in a validation dataset, we utilize M(s) as the detection metric within a statistical hypothesis test
framework. Proposition 1 demonstrates that M(s) follows a Chi-squared distribution under the Gaussian
assumption.
Proposition 1. (Test Distribution of Detection Mahalanobis distance M(s)) Let f(s) be the p-dimensional
state random vector for action class c. Under the Gaussian assumption P (f(s)|a = c) = N (f(s) | µc, Σc),
the Detection Mahalanobis Distance M(s) in Eq. (5) is Chi-Square distributed: M(s) ∼ χ2

p.

Please refer to Appendix A for the proof. Based on Proposition 1, we can define a threshold Θ = χ2
p(1 − α)

by selecting a α value from the specified Chi-Squared distribution to distinguish normal states from outliers.
Given a new state observation s and a confidence level 1 − α, if M(s) > Θ, s is detected as an outlier.

Robust MD-based Detection. The estimation of µc and Σc in Eq. (4) relies on Maximum Likelihood
Estimate (MLE), which is sensitive to the presence of outliers in the dataset (Rousseeuw & Van Zomeren,
1990). As the offline data collected from the environment tends to be noisy, directly introducing MD for
outlier detection in RL easily results in a less statistically effective estimation of µc and Σc, thus undermining
the detection accuracy for outliers. This vulnerability of the MD-based detector against noisy states prompts
us to instantiate MDX with a more robust estimator (Huber, 2004).

To this end, we apply the Minimum Covariance Determinant (MCD) estimator (Hubert & Debruyne, 2010)
to estimate µc and Σc by only using a subset of all collected samples. It only uses the observations where
the determinant of the covariance matrix is as small as possible. Concretely, MCD determines the subset J
of observations with a size h, while minimizing the determinant of the sample covariance matrix calculated
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Figure 3: Contours under the estimation based on MD and Robust MD across different outlier types on
Breakout. Black and red points denote inliers and outliers, respectively. The dimension of state feature
vectors after a pre-trained PPO policy is reduced by t-SNE (Van der Maaten & Hinton, 2008).
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solely from these h points. The choice of h determines the trade-off between the robustness and efficiency
of the estimator. The robust MCD mean vector µ̂rob

c and covariance matrix Σ̂rob
c in the action class c are

computed as

µ̂rob
c = 1

h

∑
i:i∈J,ai=c

f (si) , J =
{

set of h points :
∣∣∣Σ̂J

∣∣∣ ≤
∣∣∣Σ̂K

∣∣∣ for all subsets K
}

, (6)

where we set h as (number_of_samples + number_of_features + 1)/2 (Rousseeuw, 1984). K represents
the total number of subsets that contain h points. In practice, the MCD estimator can be efficiently solved
by the FAST-MCD algorithm (Hubert & Debruyne, 2010) instead of performing a brute-force search over
all possible subsets. Akin to Mahalanobis Distance, we define the Detection Robust Mahalanobis Distance
Mrob(s) as robust detection metric:

Mrob(s) = min
c

(
f(s) − µ̂rob

c

)⊤ Σ̂rob−1
c

(
f(s) − µ̂rob

c

)
. (7)

Since the robust Mahalanobis distance can still approximate the true Chi-squared distribution (Hardin &
Rocke, 2005), we still employ the threshold value Θ = χ2

p(1 − α) for detecting outliers as in the MD case.

As a motivating example, Fig. 3 displays contours computed by both MD and Robust MD detection methods
for state feature vectors in the Breakout game from the popular Atari benchmark (Bellemare et al., 2013;
Brockman et al., 2016) with different types of outliers. These results demonstrate that estimation based on
Robust MD is less vulnerable to outlying states (red points) and better fits inliers (black points) than MD.
This robust parameter estimation highlights the potential advantage of Robust MD for RL outlier detection,
where the data used for estimation tends to be noisy.

5.2 Distribution-free Detection by Conformal Inference

Although robust MD-based detection is less vulnerable to noise in RL environments, both MD and robust
MD strategies heavily rely on the Gaussian assumption to construct the detection thresholds based on
Proposition 1. This distribution assumption is often violated in practice, diminishing the effectiveness of
MD and robust MD. In contrast, conformal prediction offers a mathematical framework that provides valid
and rigorous prediction distribution without assuming a specific underlying data distribution. The resulting
conformal anomaly detection circumvents the limitation of the distribution assumption, potentially improving
the detection efficacy.

In the context of RL, conformal anomaly detection evaluates how a state conforms to a model’s current
prediction distribution, thereby discriminating abnormal states. As a distribution-free detection approach,
conformal anomaly detection can enhance the distance-based detectors by additionally tuning the anomaly
threshold in the calibration dataset. To design the conformal anomaly detection method, we leverage the
Detection Mahalanoibis Distance M(s) as the non-conformity score, which measures how dissimilar a state
is from the instances in the calibration set. Following split conformal inference (Papadopoulos et al., 2002;
Shafer & Vovk, 2008), we split the the previously collected offline dataset into the the calibration set Dcal
and the evaluation set. A simple way is to evaluate the quantiles of the resulting empirical distribution to
create the corresponding confidence band. Using the calibration set Dcal, we define the fitted quantiles Q̂c

1−α

of the conformity scores for the action class c as follows:

Q̂c
1−α = inf

q :

 1
Nc

∑
si∈Dcal,ai=c

1{Mc(si)≤q}

 ≥ 1 − α

 , (8)

where each (si, ai) is drawn from the calibration set Dcal and c is calculated by c = arg min M c(si) in M c(si)
among all action classes. Finally, we use the class-dependent and well-calibrated detection thresholding
Θ = Q̂c

1−α in conformal MD-based detection instead of χ2
p(1 − α) used in MD and Robust MD strategies.

5.3 An Integrated MD-based Detection Algorithm in the Offline Setting
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Algorithm 1 MDX Detection Framework in the Offline Setting
1: Input: The given policy πθ, the dimension of state feature vectors p, and a confidence level 1 − α.
2: Output: Detection labels {ys} for each s in the evaluation trajectory.
3: / * Step 1: Detection Design by Estimating Mean and Covariance * /
4: Given state action pairs {(si, ai)} where ai ∼ πθ(·|si).
5: for each action class c do
6: if we choose MD detection then
7: Estimate µ̂c and Σ̂c via Eq. (4). / * Approach 1: MD Detection * /
8: else if we choose Robust MD detection then
9: Estimate µ̂rob

c and Σ̂rob
c via Eqs. (6) and (7). / * Approach 2: Robust MD Detection * /

10: else
11: Estimate µ̂c, Σ̂c via Eq. (4), calibrate Q̂c

1−α via Eq. (8) / * Approach 3: Conformal MD-based
Detection * /

12: end if
13: end for
14: / * Step 2: Detection Deployment * /
15: for s in the noisy environment do
16: Compute distance d = M(s) or d = Mrob(s), and threshold Θ = χ2

p(1 − α) or Θ = Q̂c
1−α.

17: Set Detection label ys = 1 if d > Θ else ys = −1.
18: end for

In practice, it is unclear whether the collected data is noisy or to what extent the Gaussian assumption is
violated. Therefore, we provide an integrated algorithm pipeline. Algorithm 1 summarizes all the variant
detection strategies of MDX in the offline setting. We compute the (robust) mean vector and covariance
matrix among the state feature vectors in the penultimate layer of πθ for each action class. Next, given a
state observation s, we compute the detection Mahalanobis distance d = M(s) or d = Mrob(s) and compare
it with the threshold Θ = χ2

p(1 − α) under the Gaussian assumption or Θ = Q̂c
1−α from distribution-free

conformal quantiles. If d > Θ, s is detected as an outlier. Conversely, if d ≤ Θ, s is identified as an inlier.

6 Anomaly Detection in the Online RL Setting

In the online RL setting (Sutton & Barto, 2018; Dong et al., 2020), a policy is updated continuously, unlike
the fixed pre-trained policy used in our offline setting. Robust policy training with noisy states is crucial
in safe RL, as the agents are more likely to encounter state outliers during training. In this section, we
extend MDX to the online RL training scenario. Unlike the offline setting, the challenge here stems from
the dynamic nature of policy updates, requiring our detector to adapt to the evolving distribution of feature
vector outputs. The complexity increases when the improved policy starts gathering new samples through
exploration, posing a fundamental challenge in an online RL framework. An effective detection system must
differentiate between actual noisy observations and newly collected data through exploration. Training the
RL agent and estimating the detector are interleaved in a noisy online environment. Various options for
managing detected outliers during training include removing or denoising the outlier states. In our detection
framework, we focus on direct removal and assess the resulting learning curves in the presence of noisy states
during the training process. To address the challenges in detecting abnormal states in the online training
setting, we propose Moving Window Estimation and Double Self-supervised Detectors, both of which are
pivotal for the empirical success of our anomaly detection approach.

Moving Window Estimation. In the online setting, improving the policy πθ causes a shift in the data
distribution within the replay buffer as the agent interacts with the environment (Rolnick et al., 2019; Xiao
et al., 2019). To effectively utilize information from the updated data distribution, we maintain a moving
window to store experiences throughout the interaction steps. The moving window operates like a first-in-
first-out buffer, storing the most recent samples and discarding the oldest ones. Data falling outside the
window is cast away. The moving window can be adjusted to either prioritize a long historical context with
a larger window size or consider only more recent experiences with a smaller size. In our experiments, since
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Algorithm 2 MDX Detection Framework in the Online Setting, PPO Style
1: Initialize policy network πθ and estimator µ̂c and Σ̂c.
2: Initialize confidence level 1 − α, the moving window size m, inlier and outlier buffers BI , BO.
3: for iteration = 1, 2, ..., K do
4: for actor = 1, 2, ..., N do
5: Run policy πθ in environment for T timesteps.
6: Compute distance d = M(s), and threshold Θ = χ2

p(1 − α) or Θ = Q̂c
1−α.

7: if d ≤ Θ then
8: Add it to BI .
9: else

10: Add it to BO.
11: end if
12: end for
13: Optimize policy πθ using inlier trajectories.
14: Update µ̂c and Σ̂c based on data in the moving window every Nc new samples come.
15: end for

the environments we consider have finite horizons with restarts, catastrophic forgetting is not a concern. We
set a small window size of 5120 to balance past and recent data used for detection estimation. Based on the
constantly updated state feature vectors, µc and Σc are continually estimated. This continuous updating
allows us to accurately track the state feature distribution, ensuring that our detector remains sensitive to
recent and historical data shifts.

Double Self-Supervised Detectors. Our current detector is continually refined using self-detected inliers,
while any detected outliers are promptly discarded. However, a more practical approach is to leverage these
outliers to create a complementary detector for outliers. This secondary self-supervised detector validates
the detection results from the primary detector. For example, if the primary detector classifies a state
as an inlier and the secondary detector agrees that it is not an outlier, the state is confidently classified
as such. Conversely, if there is a difference between the discrimination of the two detectors, the state is
randomly classified as either an outlier or an inlier. In the event of disagreement, this random classification
is motivated by the need to avoid systematic bias that could arise from consistently favoring one detector’s
output over the other. By introducing randomness, we ensure the system remains fair and does not overly
rely on potentially flawed outputs from either detector. This approach also preserves the system’s ability
to learn and adapt over time, preventing the reinforcement of incorrect classifications. The double-detector
system thus enhances the robustness and reliability of the detection process, ensuring more accurate and
consistent identification of abnormal states.

MD-based Detection Algorithm in the Online Setting. Algorithm 2 outlines our MD-based detection
procedure for online RL, incorporating both moving window estimation and double self-supervised detectors.
To update our double detectors, inliers and outliers are stored in buffers BI and BO, respectively. For each
class, a window size m is specified. Within each class, the state-action pairs in the window are used to
estimate µ̂c and Σ̂c. These parameters are updated after every Nc newly collected data points in the window
for action class c. This adaptive updating mechanism ensures that the detectors remain responsive to evolving
data distributions.

Online Anomaly Detection Procedure. Since our detection method relies on features extracted from
the penultimate layer of the policy network, instead of training the policy from scratch, we pretrain the
policy to ensure these features capture meaningful information about the environment. This pre-trained
policy results in more meaningful state features and enhances the detection procedure, contributing to a
rapid assessment among distinct detection algorithms through their learning curves. Moreover, deploying
a randomly initialized policy in a real-world scenario is unreliable. Instead, it is common practice to use a
pre-trained policy as a warm start and then further improve it. For example, in recommendation systems, a
pre-trained policy is deployed initially to provide recommendations, and user feedback, such as click-through
rates (CTR), is used to iteratively update the online policy. Similarly, within our online detection algorithm,
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we pre-train a policy using inlier data as a warm start. After pre-training, the policy is introduced to the
noisy environment for further online learning. Throughout this process, our MDX framework is used to
identify outliers in the subsequent training phases. We then evaluate the training performance of algorithms
equipped with these detection mechanisms. This systematic approach facilitates the gradual refinement of
the policy while concurrently integrating outlier detection to enhance robustness in real-world settings.

7 Experiments

We first conduct experiments on both feature-input and image-input tasks to verify the effectiveness of our
MDX framework in both offline and online settings. For feature-input tasks, we choose two classical con-
trol environments in OpenAI gym (Brockman et al., 2016), including Mountain Car (Barto et al., 1983)
and Cart Pole (Moore, 1990). For image-input tasks, we choose six Atari games (Bellemare et al., 2013).
We divide the six Atari games into two different groups. The first group includes Breakout, Asterix, and
SpaceInvaders, which feature nearly static backgrounds. Enduro, FishingDerby, and Tutankham in the sec-
ond group have time-changing or dramatically different backgrounds, presenting more challenging scenarios.
We further conduct experiments on autonomous driving environments (Dosovitskiy et al., 2017) as one po-
tential application. We select Proximal Policy Optimization (PPO) (Schulman et al., 2017) as our baseline
RL algorithm. For feature-input classical control tasks, we use a policy network with two fully connected
layers, each containing 128 units with ReLU activation functions. For image-input tasks, we use the same
network architecture as described in the PPO paper (Schulman et al., 2017).

Three Types of Outliers. (1) Random Outliers. We generate random outliers by adding Gaussian
noise with zero mean and different standard deviations on state observations, simulating natural measurement
errors. (2) Adversarial Outliers. We perform white-box adversarial perturbations (Szegedy et al., 2013;
Goodfellow et al., 2014b; Cao et al., 2020) on state observations for the current policy, following the strategy
proposed in (Huang et al., 2017; Pattanaik et al., 2017). Particularly, we denote at

w as the "worst" action, with
the lowest probability from the current policy πt(a|s). The optimal adversarial perturbation ηt, constrained in
an ϵ-ball, can be derived by minimizing the objective function J : minη J(st +η, πt) = −

∑n
i=1 pt

i log πt(ai|st +
η), s.t.∥η∥ ≤ ϵ, where pt

w = 1 and pt
i = 0 for i ̸= w. We solve this minimization problem with the Fast

Gradient Sign Method (FGSM) (Goodfellow et al., 2014b), a typical adversarial attack method in the deep
learning literature. The resulting adversarial outliers st + η∗

t force the policy to choose at
w. (3) Out-of-

Distribution (OOD) outliers. OOD outliers arise from the disparity in data distribution across different
environments. To simulate them, we randomly select states from other environments and introduce them
to the current environment. In our experiments, we select images from other Atari games to serve as Out-
of-Distribution (OOD) outliers within the considered environment. In the autonomous driving scenario, we
designate rainy and nighttime observations as OOD outliers for the primary daytime setting on a sunny
day. This deliberate selection of diverse outlier examples enables comprehensive testing of our method’s
robustness across varied environments.

Baseline Methods. A fundamental obstacle in assessing the anomaly detection strategies in RL lies in
the scarcity of suitable baselines in deep RL settings as introduced in Section 2. To rigorously substantiate
the effectiveness of MDX, we initiate our evaluation by comparing them with the foundational baselines we
have developed ourselves and implement two non-distance-based methods. (1) Euclidean distance (ED)
assumes that all features are independent under the Gaussian assumption with one standard deviation, which
can be considered as a simplified version of our MD method with an identity covariance matrix. (2) MD with
Tied covariance (TMD) follows the tied covariance assumption in (Lee et al., 2018), where features among
all action classes share a single covariance matrix estimation. (3) PEOC is a policy entropy-based detection
method proposed in Sedlmeier et al. (2020b). The authors assume that a successful training process reduces
entropy for states encountered during training, which can then be used as a classification score to detect
OOD states. (4) EnvModel follows the model-based detection algorithm utilizing learned dynamics models
and bootstrapped ensembles (Haider et al., 2023). We train five autoencoders as environment transition
models in each environment. For the offline setting, the autoencoders are trained based on the dataset, while
for the online setting, they are continuously updated. Each autoencoder predicts the next state given the
current state and action, and the minimum prediction error among the five models serves as the anomaly
detection signal. (5) MD is our first proposed method with class-conditional Gaussian assumption. (6)

11



Published in Transactions on Machine Learning Research (10/2024)

Detection Accuracy (%) Outliers ED TMD PEOC EnvModel MD RMD MD+C

Cartpole
Random 68.0 93.9 50.0 50.0 95.4 78.9 96.2

Adversarial 51.1 93.2 50.0 50.0 94.5 78.7 94.8
OOD 87.3 94.3 50.0 93.8 96.5 79.1 97.5

MountainCar
Random 89.5 86.4 50.0 49.9 90.6 78.1 93.6

Adversarial 64.0 81.0 50.0 49.7 85.4 74.3 87.1
OOD 90.9 86.5 50.0 48.7 90.5 77.2 91.7

Average

Random 78.8 90.1 50.0 50.0 93.0 78.5 94.9
Adversarial 57.6 87.1 50.0 49.8 89.9 76.5 90.9

OOD 89.1 90.4 50.0 71.3 93.5 78.2 94.6
Average 75.1 89.2 50.0 57.0 92.1 77.7 93.5

Table 1: Average detection accuracy of MD, RMD, and MD+C compared with baselines across different
outlier types in two feature-input classical control environments in the offline setting. The averages are
computed across environments and outlier types. Accuracy is determined by applying detection techniques
to the balanced data composed equally of clean and noisy states.

Robust MD (RMD) is the robust variant of MD under the Gaussian assumption. (7) MD+C uses well-
calibrated conformality scores to construct a valid empirical distance distribution instead of relying on the
Chi-Squared distribution established upon the Gaussian assumption.

7.1 Anomaly Detection in the Offline Setting

In the offline setting, we randomly split the states from the given dataset into calibration and evaluation sets,
each containing 50% of the data. The calibration set is used to construct our detectors, and the evaluation
set is for testing. We first use PCA to reduce the state feature vectors into a 50-dimensional space. We then
apply (robust) MD to estimate mean vectors and covariances and calibrate the conformality score based on

Detection Accuracy (%) Outliers ED TMD PEOC EnvModel MD RMD MD+C

Breakout
Random 53.2 59.1 50.0 50.0 61.4 71.2 62.8

Adversarial 84.3 89.1 50.0 50.0 90.8 80.2 91.7
OOD 56.9 47.8 50.0 97.5 49.6 79.5 50.8

Asterix
Random 43.9 45.1 50.0 50.0 60.3 69.5 54.7

Adversarial 83.7 85.6 50.0 50.0 91.7 75.2 94.0
OOD 39.6 40.8 50.0 53.8 46.1 57.7 49.7

SpaceInvader
Random 51.4 63.9 50.0 50.0 70.2 79.4 68.6

Adversarial 70.9 90.3 50.0 50.0 96.1 81.1 96.5
OOD 45.3 45.9 50.0 48.8 57.0 81.0 53.6

Enduro
Random 49.0 59.0 50.0 50.0 72.7 82.4 70.2

Adversarial 92.9 91.3 50.0 50.0 96.2 83.3 97.5
OOD 57.1 74.9 50.0 47.6 80.0 83.4 63.3

FishingDerby
Random 48.9 66.4 50.0 50.0 69.8 85.7 66.5

Adversarial 86.3 92.5 50.0 50.0 97.4 87.2 97.4
OOD 51.3 56.2 50.0 61.7 59.1 81.5 58.5

Tutankham
Random 50.0 47.5 50.0 50.0 49.1 74.0 49.8

Adversarial 66.2 89.5 50.0 50.0 95.3 77.1 96.5
OOD 55.0 83.3 50.0 97.5 89.6 77.2 79.7

Average

Random 49.4 56.8 50.0 50.0 63.9 77.0 61.7
Adversarial 80.7 89.7 50.0 50.0 94.6 80.7 95.6

OOD 50.8 58.1 50.0 67.8 63.6 76.7 59.3
Average 60.3 68.2 50.0 55.7 74.0 78.1 72.2

Table 2: Average detection accuracy of MD, RMD, and MD+C compared with baselines across different
outlier types in six Atari games in the offline setting. The averages are computed across environments
and outlier types. Accuracy is determined by applying detection techniques to the balanced data composed
equally of clean and noisy states.
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the calibration dataset. Finally, we incorporate the three types of noises into the originally clean evaluation
dataset. We assess the performance of our detection methods on the entire evaluation dataset.

Main results. Tables 1 and 2 show the detection accuracy of MDX instantiated with vanilla MD, robust
MD, and conformal MD with α = 0.05 across a wide range of outlier types on each task. A higher accuracy
indicates a more successful identification of anomalies for the evaluated detection method. We conclude that:
(1) All MD-based methods, i.e., TMD, MD, RMD, and MD+C, outperform ED, confirming the usefulness
of covariance matrix information in RL outlier detection. (2) MD+C performs consistently best on classic
control tasks and excels in identifying adversarial outliers on Atari games. Robust MD generally performs
the best on Atari games, significantly surpassing MD and other methods in detecting random and OOD
outliers. Nonetheless, robust MD is not effective enough to detect adversarial outliers. We hypothesize that
the robustness advantage resulting from RMD in detector estimation is more applicable in image input or the
high-dimensional state space. (3) PEOC is almost ineffective across all considered state outliers, suggesting
that the entropy difference is useless for identifying outliers. By contrast, EnvModel is only superior to the
other approaches against some OOD outliers, which is not generally preferable. More detailed results are
provided in Tables 5 and 6 of Appendix B.1.

Sensitivity Analysis on Feature Dimension Reduction. We provide a sensitivity analysis on Atari
games regarding the number of feature dimensions reduced by PCA, showing that the detection accuracy
for all considered outliers tends to improve as the number of principal components increases. This indicates
that better detection performance can be achieved with higher feature dimensions. The detailed results are
presented in Appendix B.4.

Effectiveness of Robust MD. In robust MD analysis, it is typically concluded that outlier states are more
distinctly separated from inlier states. By comparing the Mahalanobis distance distributions between inliers
and outliers under both MD and Robust MD, we show that this conclusion also applies to the RL anomaly
detection scenario. This effect explains the detection advantage of robust MD in RL. Detailed results are
provided in Appendix B.3.

7.2 Anomaly Detection in the Online Setting

The PPO agent, utilizing multi-processes as detailed in the original PPO algorithm (Schulman et al., 2017),
runs eight independent environments in parallel, and we introduce state outliers into four of these envi-
ronments. For random and adversarial outliers, actions are determined based on the PPO policy network
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(c) OOD CartPole
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Figure 4: Performance on MountainCar across various state outliers in online learning. The first row
shows the policy performance during learning. The second row shows the relationship between the averaged
detection accuracy and performance.
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Figure 5: Performance on Tutankham across various state outliers in online learning. The first row shows the
policy performance during learning. The second row shows the relationship between the averaged detection
accuracy and achieved final performance.

πθ. For OOD outliers, due to the potential differences in action spaces between the original environment
and the OOD environment, we select OOD states from the OOD environment by taking random actions
within its own action space. For the Robust MD method, we use PCA to reduce state feature vectors into a
50-dimensional space due to the expensive computation of the robust MD method. For the other methods,
we use the original feature vectors output from the penultimate layer of πθ. Results are averaged over three
seeds with hyperparameters given in Table 7 of Appendix C.1. When our detectors identify an outlier, it is
removed from training. We compare the resulting learning curves for different detection methods.

Additional Baselines. We add another two baselines as performance upper bound and lower bound. (1)
For an ideal baseline, the method Auto automatically deletes true state outliers, showing the optimal training
performance of algorithms without the interruption from outliers. (2) At the other extreme, Random uses
a totally random detector that detects a state as an inlier or outlier with a probability of 0.5.

Main Results. Figs. 4 and 5 present the online performance on feature-input task MountainCar and image-
input Atari game Tutankham. The first row shows the learning curves of cumulative rewards based on the
PPO algorithm. To better highlight their differences, we omit the confidence bands in Fig. 5, while providing
full results with confidence bands in Appendix C.1 Figs. 14 to 21 for reference. The second row illustrates the
relationship between detection accuracy and policy performance. For Atari games, the x-axis represents the
average F1 score during learning, while the y-axis represents the final performance. For feature-input tasks
like MountainCar and CartPole, some methods can achieve the maximum score, leading to no significant
difference in final performance. We exhibit the relationship between the average F1 score and the average

Superiority Rank Outlier Type Random ED TMD PECO EnvModel MD RMD MD+C

Performance
Random 6.75 3.75 7.25 6.00 3.25 4.50 3.25 1.25

OOD 7.75 6.25 4.25 5.00 1.50 3.75 4.50 3.00
Adversarial 7.00 6.00 5.00 8.00 1.50 3.50 2.50 2.50

Average All 7.20 5.20 5.60 6.00 2.20 4.00 3.60 2.20

F1 Score
Random 8.00 4.75 5.75 6.00 3.00 4.25 3.25 1.00

OOD 8.00 5.75 4.75 5.75 1.75 4.25 4.00 1.75
Adversarial 8.00 5.50 5.50 7.00 1.00 3.00 3.00 3.00

Average All 8.00 5.30 5.30 6.10 2.10 4.00 3.50 1.70

Table 3: The average superiority rank (1 is best) of anomaly detection methods across all types of outliers.
Numbers in bold represent the best results.
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policy performance during learning, similar to previous work (Zhang et al., 2023a). We can find that higher
detection accuracy is generally associated with better policy performance. For each outlier type in Table 3,
we evaluate the superiority rank of all detectors regarding the F1 score and policy performance, where
rank 1 indicates the best performance. A smaller superiority rank implies a more effective detection. Our
conclusions are as follows: (1) Conformal MD (MD+C) generally achieves the best detection performance
across all considered baselines (except Auto). The superiority of MD+C over MD highlights the crucial
role of accurately calibrated thresholds in the online RL detection setting. (2) PECO is ineffective in most
of our experiments, which indicates that policy entropy is not a reliable indicator for detecting anomalies.
(3) While EnvModel achieves competitive performance in most tasks, it is less practical because it requires
executing the action in the environment to obtain the next state before detecting the current state. That
being said, EnvModel is a hindsight method and is less applicable in real applications.

Ablation Study on Double Self-Supervised Detectors. We conduct an ablation study of double self-
supervised detectors on Breakout with random and OOD outliers. Results in Fig. 22 of Appendix C.2 show
that double self-supervised detectors reduce detection errors and improve detection accuracy.

Ablation Study on Outlier Proportions. We also demonstrate the robust detection performance across
different proportions of outliers encountered by the agent during training. We conduct experiments on
Breakout, and the results are provided in Fig. 23 of Appendix C.3.

7.3 Autonomous Driving Environment

To verify the broader applicability of our method, we perform experiments on autonomous driving environ-
ments based on CARLA (Dosovitskiy et al., 2017) and introduce practical scenarios in which all three types
of anomalies commonly occur. Since anomaly detection in autonomous driving is more practical in the offline
setting and CARLA is a complex environment that exceeds our computational capacity for online training,
we focus on the offline setting in this section.

Random Noise. Malfunctioning sensors or cameras can introduce random noise into signal observations.
For instance, a faulty camera lens may produce distorted images, while a malfunctioning LiDAR sensor
might generate erroneous depth measurements. Such random noise can impair the reliability of perception
systems in autonomous vehicles.

Adversarial Attacks. Adversarial attacks involve intentionally manipulating input signals to disrupt the
functioning of RL systems (Bai et al., 2024a). In the context of autonomous driving, an attacker might
tamper with sensor data or traffic signs, resulting in misleading observations and potentially hazardous
driving behavior. Adversarial states thus pose a significant threat to the robustness and safety of autonomous
driving systems.

Out-of-Distribution (OOD) States. Consider a scenario where an RL policy is trained exclusively under
sunny weather. Encountering rainy weather poses a challenge, as the observations captured under these
conditions deviate from the training data distribution. Such observations are therefore considered Out-of-
Distribution (OOD) states.

(a) Original state (b) Random outlier (c) Adversarial outlier (d) OOD outlier (rainy) (e) OOD outlier (night)

Figure 6: The clean and noisy state observations in autonomous driving experiments.
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Detection Accuracy (%) ED TMD PEOC EnvModel MD RMD MD+C
Random (std ∈ [0.005, 0.07]) 50.0 62.0 50.0 50.0 68.7 72.1 60.7
Random (std ∈ (0.07, 0.3]) 50.0 95.4 50.0 50.0 95.2 73.8 95.8

Adversarial 50.0 96.4 50.0 50.0 91.0 73.8 97.5
OOD (Rain) 50.0 96.4 50.0 52.7 95.3 73.6 97.5
OOD (Night) 50.0 96.4 50.0 97.5 95.3 73.8 97.5

Table 4: Detection accuracy on the CARLA town environment over three types of outliers.

Experimental Setup. We conduct experiments using the CARLA environment (Dosovitskiy et al., 2017).
CARLA is an open-source simulator for autonomous driving research known for its high-quality rendering
and realistic physics. The environment includes 3D models of static objects, such as buildings, vegetation,
traffic signs, and infrastructure, as well as dynamic objects, such as vehicles and pedestrians. The task is to
drive safely through the town. In each episode, the vehicle must reach a given goal without collision. The
episode ends when the vehicle reaches the goal, collides with an obstacle, or exceeds the time limit.

Noisy State Observations. Following the approach used in Atari game settings, we introduce Gaussian
noise to simulate random outliers and generate adversarial outliers using adversarial perturbations. For
OOD outliers, we leverage CycleGAN-Turbo (Zhu et al., 2017; Parmar et al., 2024), a technique designed
for adapting a single-step diffusion model (Ho et al., 2020) to new tasks and domains through adversarial
learning (Goodfellow et al., 2014a). This method can perform various image-to-image translation tasks and
outperforms existing GAN-based and diffusion-based methods for various scene translation tasks, such as
day-to-night conversion and adding/removing weather effects like fog, snow, and rain (Parmar et al., 2024).
Specifically, we use CycleGAN-Turbo to create rainy and nighttime outliers. Examples of different anomaly
states are presented in Fig. 6.

Main Results. Given a fixed dataset and a pre-trained policy, we assess our detection methods across the
three types of outliers. Table 4 shows the average accuracy, with MD+C achieving the highest performance
in most scenarios, while RMD performs best in the presence of small random noises. Similar to the results in
classical control environments and Atari games, the entropy-based PEOC is still ineffective across all outlier
settings. While EnvModel is competitive in identifying nighttime outliers, it is inferior to the other methods
against the other considered outliers. These results suggest that our proposed method effectively detects
outliers for realistic problems, such as autonomous driving.

8 Discussions and Conclusion

In this paper, we present the first detailed study of a distance-based anomaly detection framework in deep
RL, considering random, adversarial, and OOD state outliers in both offline and online settings. The
primary detection backbone is based on Mahalanobis distance, and we extend it to robust and distribution-
free versions by leveraging robust estimation and conformal prediction techniques. Experiments on classical
control environments, Atari games, and the autonomous driving environment, demonstrate the effectiveness
of our proposed methods in detecting the three types of outliers. The conformal MD method achieves the
best detection performance in most scenarios, especially in the online setting. Our research contributes to
developing safe and trustworthy RL systems in real-world applications.

Limitations and Future Work. In the online setting, especially with a high proportion of outliers, it
may be preferable to denoise the detected state outliers via some neighboring smoothing techniques, e.g.,
mixup (Zhang et al., 2018; Wang et al., 2020), rather than deleting them directly as performed in this
paper. To relax the Gaussian assumption in the hypothesis test of our detection, we can consider other
non-parametric methods, such as one-class support vector machines (Choi, 2009) or isolation forests (Liu
et al., 2008). A substantial challenge that remains for future work is to devise a more informed detector
to distinguish between real “bad” outliers that can cause truly misleading actions and “good” new sam-
ples collected through exploration, which can potentially benefit the policy learning, especially for image
inputs (Zhang & Ranganath, 2023).
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A Proof of Proposition 1

Proof. We show that for each action class c, the square of Mahalanobis distance d is identically independent
Chi-squared distributed under the Gaussian assumption. Without loss of generality, we denote µ and Σ
as the mean and variance matrix of the closest class-conditional Gaussian distribution. We need to show
d = (f(s) − µ)⊤Σ−1(f(s) − µ) is Chi-squared distributed. Firstly, by eigenvalue decomposition, we have

Σ−1 =
p∑

k=1
λ−1

k uku⊤
k , (9)

where λk and uk are the k-th eigenvalue and eigenvector of Σ. Plugging it into the form of d, we immediately
obtain

d =(f(s) − µ)⊤Σ−1(f(s) − µ)

=(f(s) − µ)⊤(
p∑

k=1
λ−1

k uku⊤
k )(f(s) − µ)

=
p∑

k=1
λ−1

k (f(s) − µ)⊤uku⊤
k (f(s) − µ)

=
p∑

k=1

[
λ

− 1
2

k u⊤
k (f(s) − µ)

]2

=
p∑

k=1
X2

k,

(10)

where X2
k is a new Gaussian variable that results from the linear transform of a Gaussian distribution f(s)

where f(s) ∼ N (µ, Σ). Therefore, the resulting variance σ2
k can be derived as

σ2
k = λ

− 1
2

k u⊤
k Σλ

− 1
2

k uk = λ−1
k u⊤

k (
p∑

j=1
λjuju⊤

j )uk =
p∑

j=1
λ−1

k λju⊤
k uju⊤

j uk (11)

As the µj and µk are orthogonal if j ̸= k, the variance σ2
k can be further reduced to

σ2
k = λ−1

k λku⊤
k uku⊤

k uk = ∥uk|2∥uk|2 = 1. (12)

Each Xk is a standard Gaussian distribution. Then we have d, the square of Mahalanobis distance, Chi-
squared distributed, i.e., d ∼ χ2(p), independent of the action class c. Without loss of generality, the smallest
d among all action classes, i.e., M(s), is also a Chi-squared distribution. That is to say, M(s) ∼ χ2(p).

B Results in Offline Setting

B.1 Results across Different Noise Strengths

We provide detailed detection accuracy of various detection methods across different noise strengths. The
results on two classical control environments and six Atari games are gived in Tables 5 and 6.

B.2 Visualization of Outlier States on Six Games

We plot the outlier states on Breakout, Asterix, and SpaceInvaders games in Fig. 7 and outliers states on
Enduro, FishingDerby, and Tutankham in Fig. 8.
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Table 5: Detection accuracy (%) of our MD, Robust MD, and conformal MD strategies compared with other
baseline methods on two classical control environments with α = 0.05.

Environments Outliers Perturbation ED TMD PEOC EnvModel MD RMD MD+C

Cartpole

Random std=0.3 60.54 93.24 50.00 50.01 94.74 78.7 95.33
std=0.5 75.54 94.49 50.00 49.98 96.14 79.15 97.00

Adversarial ϵ=0.15 50.58 92.53 50.00 49.98 93.65 78.48 93.79
ϵ=0.2 51.65 93.89 50.00 50.01 95.31 78.97 95.76

OOD MountainCar 87.27 94.26 50.00 93.84 96.45 79.09 97.46

MountainCar

Random std=0.3 86.91 85.82 50.00 50.11 89.81 77.84 92.52
std=0.5 92.08 86.96 50.00 49.71 91.37 78.35 94.73

Adversarial ϵ=0.001 63.86 80.72 50.00 49.69 85.09 74.04 86.83
ϵ=0.01 64.13 81.30 50.00 49.693 85.72 74.63 87.32

OOD Cartpole 90.89 86.51 50.00 48.73 90.49 77.21 91.69

Table 6: Detection accuracy (%) of our MD, Robust MD, and conformal MD strategies compared with other
baseline methods on six Atari games with α = 0.05.

Games Outliers Perturbation ED TMD PEOC EnvModel MD RMD MD+C

Breakout

Random std=0.02 50.13 52.01 50.00 50.00 54.89 62.80 54.46
std=0.04 56.18 66.26 50.00 50.00 67.85 79.64 66.76

Adversarial ϵ=0.001 81.28 87.44 50.00 50.00 89.39 79.85 89.54
ϵ=0.01 87.36 90.67 50.00 50.00 92.23 80.57 93.87

OOD Asterix 66.80 47.91 49.99 97.50 50.32 80.73 51.15
SpaceInvaders 47.07 47.74 49.99 97.50 48.92 78.22 50.37

Asterix

Random std=0.1 42.56 42.87 50.01 49.99 48.28 63.05 49.04
std=0.2 45.29 47.37 50.01 49.99 72.31 75.86 60.31

Adversarial ϵ=0.001 83.41 85.31 50.01 50.00 91.38 75.02 93.62
ϵ=0.01 83.94 85.90 50.01 50.00 91.95 75.40 94.35

OOD Breakout 41.73 42.94 50.01 48.95 48.24 75.72 51.85
SpaceInvaders 37.38 38.61 50.01 58.55 43.92 39.62 47.50

SpaceInvaders

Random std=0.02 50.00 48.46 50.01 50.00 53.26 75.24 52.53
std=0.04 52.88 79.38 50.01 50.00 87.20 83.57 84.62

Adversarial ϵ=0.001 67.13 89.69 50.01 50.00 95.64 83.16 95.87
ϵ=0.01 74.66 90.93 50.01 50.00 96.65 79.07 97.05

OOD Breakout 45.81 45.64 50.01 48.97 56.56 78.88 54.23
Asterix 44.71 46.22 50.01 48.72 57.45 83.06 53.03

Enduro

Random std=0.1 49.42 45.27 50.00 50.00 54.03 81.65 52.24
std=0.2 48.67 72.70 50.00 49.99 91.40 83.15 88.17

Adversarial ϵ=0.001 91.86 91.26 50.00 49.99 96.24 83.27 97.48
ϵ=0.01 93.93 91.26 50.00 49.99 96.24 83.37 97.48

OOD FishingDerby 63.95 83.15 50.00 47.54 85.10 83.44 61.39
Tutankham 50.19 66.60 50.00 47.67 74.98 83.28 65.13

FishingDerby

Random std=0.2 48.80 48.20 50.00 50.00 51.65 83.77 50.82
std=0.3 49.03 84.60 50.00 50.00 87.86 87.71 82.09

Adversarial ϵ=0.001 83.44 92.48 50.00 50.01 97.31 86.90 97.33
ϵ=0.01 89.12 92.54 50.00 50.01 97.49 87.41 97.46

OOD Enduro 48.89 56.69 50.00 75.34 60.31 86.45 59.78
Tutankham 53.64 55.65 49.96 47.97 57.93 76.59 57.25

Tutankham

Random std=0.04 50.00 48.30 50.00 50.03 49.31 71.49 50.00
std=0.06 50.00 46.68 50.03 50.00 48.79 76.51 49.57

Adversarial ϵ=0.01 60.08 89.37 50.03 50.01 95.24 77.07 95.56
ϵ=0.05 72.36 89.55 50.03 50.01 95.28 77.05 97.49

OOD Enduro 49.96 89.17 50.03 97.50 95.12 77.18 91.59
FishingDerby 50.0 77.34 50.03 97.50 84.12 77.17 67.77
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(a) Breakout: Clean (b) Breakout: Random (c) Breakout: Adversar-
ial

(d) Breakout: Asterix (e) Breakout: Space

(f) Asterix: Clean (g) Asterix: Random (h) Asterix: Adversarial (i) Asterix: Breakout (j) Asterix: Space

(k) Space: Clean (l) Space: Random (m) Space: Adversarial (n) Space: Breakout (o) Space: Asterix

Figure 7: Visualization of various state outliers on Breakout, Asterix, and SpaceInvaders games.
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(a) Enduro: Clean (b) Enduro: Random (c) Enduro: Adversarial (d) Enduro: Fishing (e) Enduro: Tu-
tankham

(f) Fishing: Clean (g) Fishing: Random (h) Fishing: Adversar-
ial

(i) Fishing: Enduro (j) Fishing: Tutankham

(k) Tutankham: Clean (l) Tutankham: Ran-
dom

(m) Tutankham: Adv (n) Tutankham: En-
duro

(o) Tutankham: Fish-
ing

Figure 8: Visualization of various state outliers on Enduro, FishingDerby, and Tutankham games.
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B.3 Effectiveness of Robust MD

We take the cubic root of the Mahalanobis distances, yielding approximately normal distributions (Wilson &
Hilferty, 1931). In this experiment, 250 clean states are drawn from the replay buffer, and 50 abnormal states
are drawn from each of the three types of outliers. We reduce the state feature dimension to 2 via t-SNE
and compute Mahalanobis distances of these two kinds of states to their centrality within each action class
under the estimation based on MD or Robust MD, respectively. Fig. 9 suggests that Robust MD separates
inliers and outliers better than MD on Breakout within a random action class, indicating its effectiveness in
detecting RL evaluation. Similar results are also given in other games.

We plot the distributions of inliers and three types of outliers on SpaceInvaders and Asterix games in Figs. 10
and 11, respectively. It is worth noting that Robust MD is also capable of enlarging the separation of
distributions between inliers and both random and adversarial outliers on SpaceInvaders game, while its
benefit seems to be negligible on OOD outliers (Breakout) on SpaceInvaders games as well as in Asterix
game. We speculate that it is determined by the game’s difficulty. Specifically, the PPO algorithm can
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Figure 9: Boxplot of distributions between inliers and three types of outliers in an action class on Breakout
game.
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Figure 10: Boxplot of distributions between inliers and three types of outliers in an action class on SpaceIn-
vaders game.
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Figure 11: Boxplot of distributions between inliers and three types of outliers in an action class on Asterix
game.
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achieve desirable performance on the simple Breakout game, thus yielding informative feature space vectors.
By contrast, there is room for the generalization of PPO on both SpaceInvaders and Asterix games, such
that Robust MD might not help when handling the less meaningful state feature vectors in these two games.

B.4 Sensitivity Analysis

We provide the sensitivity analysis of Robust MD in terms of the PCA dimension in Fig. 12. The impact
of the number of principal components on the detection performance for robust MD detection is shown in
Fig. 12. The detection accuracy over all considered outliers improves as the number of principal components
increases, except for a slight decline for random and adversarial outliers (red and blue lines) on the Breakout
game. The increase implies that the subspace spanned by principal components with small explained variance
also contains valuable information for detecting anomalous states from in-distribution states, which coincides
with the conclusion in (Kamoi & Kobayashi, 2020).

The result of MD estimation manifests in Fig. 13. It suggests that there is still an ascending tendency of
detection accuracy as the number of principal components increases.
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Figure 12: Detection performance under Robust MD as the number of principal components increases.
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Figure 13: Detection performance under MD as the number of principal components increases.
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C Results in Online Setting

C.1 Setup and Full Main Results

As a supplement to the results on the main pages, we provide the whole results on two feature-input tasks
and six Atari games from Fig. 14 to Fig. 21. The "Mean Score" in the first row indicates the accumulated
rewards of PPO, and the "F1 Score" in the second row shows the detection performance during RL training.
The F1 score is computed based on precision and recall. The third row shows the relationship between the
average F1 score and policy performance during training. We can find that higher detection accuracy is
generally associated with better policy performance. We also find that the cumulative reward is not strongly
correlated with detection ability in some games. A high detection accuracy may only improve the cumulative
reward to a small degree. This suggests that we need more metrics to measure the effect of our detection
performance more effectively. Hyperparameters in our methods are shown in Table 7.

Hyperparameter Value
Confidence level (1-α) 1-0.05

Moving window size (m) 5120
Sample size (Nc) 2560

Iteration (K) ≈ 10000 (1e7 steps in total)
Environment number (N) 8

Horizon (T ) 128

Table 7: Hyper-parameters in the training phase. RL-related parameters are the same as those of the PPO
algorithm.
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Figure 14: Detection performance across various state outliers in the online training on CartPole.
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Figure 15: Detection performance across various state outliers in the online training on MountainCar.
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Figure 16: Detection performance across various state outliers in the online training on Breakout.
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Figure 17: Detection performance across various state outliers in the online training on Asterix.
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Figure 18: Detection performance across various state outliers in the online training on SpaceInvaders.
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Figure 19: Detection performance across various state outliers in the online training on Enduro.
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Figure 20: Detection performance across various state outliers in the online training on FishingDerby.
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Figure 21: Detection performance across various state outliers in the online training on Tutankham.
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C.2 Ablation Study on Double Anomaly Detectors

Fig. 22 reveals that double self-supervised detectors can help adjust the detection errors and improve the
detection accuracy compared with the single detector. MD with double detectors outperforms MD with
a single detector significantly, although RMD with double detectors is comparable to RMD with a single
detector.
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(b) OOD Asterix.

Figure 22: The detection accuracy with and without double self-supervised detectors on Breakout with
random and OOD outliers on Breakout.

C.3 Ablation Study on Number of Noisy Environments

We train PPO in two, four, or six noisy environments with random and OOD outliers among all eight parallel
environments. We use PCA to reduce the feature vectors to 50 dimensions and estimate the detector using
Robust MD. Fig. 23 illustrates that compared with the Auto baseline, our RMD method is robust when
encountering different ratios of outliers, especially with a higher contamination ratio. The dashed lines in
different colors represent Auto baselines that correspond to the different number of noisy environments.
The training performance with our detection method gradually approaches the ideal baselines, i.e., Auto.
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(b) OOD Asterix.

Figure 23: Training performance under Robust MD detection under different proportions of outlier exposure
on Breakout (2, 4, 6 out of 8 environments).

38


	Introduction
	Related Work
	Background
	Mahalanobis Distance-based (MDX) Detection Framework
	Anomaly Detection in the Offline RL Setting
	Distribution-based Detection under Gaussian Assumption
	Distribution-free Detection by Conformal Inference
	An Integrated MD-based Detection Algorithm in the Offline Setting

	Anomaly Detection in the Online RL Setting
	Experiments
	Anomaly Detection in the Offline Setting
	Anomaly Detection in the Online Setting
	Autonomous Driving Environment

	Discussions and Conclusion
	Proof of Proposition 1
	Results in Offline Setting
	Results across Different Noise Strengths
	Visualization of Outlier States on Six Games
	Effectiveness of Robust MD
	Sensitivity Analysis

	Results in Online Setting
	Setup and Full Main Results
	Ablation Study on Double Anomaly Detectors
	Ablation Study on Number of Noisy Environments


