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Abstract

Accurate prediction of drug—drug interactions (DDI) is critical to patient safety.
Graph-based models show promise for DDI link prediction, with prior work explor-
ing both structure-only encoders and those augmented with semantic information.
However, there is limited evaluation of whether semantic priors enable smaller
encoders to reach the performance of larger models. We investigate whether
domain-aware biomedical text embeddings, that are task-optimized and used for
node initialization, enable compact encoders to achieve predictive accuracy com-
parable to that of much larger graph-based models. We precompute drug node
embeddings by encoding DrugBank text with a frozen SciBERT, refine these
embeddings with a small contrastive MLP, and use the resulting task-oriented
embeddings to initialize node representations in a Graph Neural Network. During
training, the model learns structural information on top of this semantic prior, with
node embeddings regularized to remain close to their initial values. On the ogbl-ddi
benchmark, our model attains test performance approaching the best published
structure-only result, while using only 0.52% of the parameters (5.08 million vs.
976 million). Among published models on ogbl-ddi, our approach lies on the Pareto
frontier of performance versus size and outperforms 94% of the existing entries.
These findings suggest that semantic priors from pretrained scientific language
models with task-optimized refinement can support resource-efficient, competitive
encoders for DDI link prediction.

1 Introduction

The simultaneous administration of multiple drugs, commonly known as polypharmacy, is widespread
in clinical practice, especially among older adults [[1]. Large-scale studies estimate that nearly 40%
of adults aged 65 years and older in developed countries are prescribed five or more medications
concurrently, with prevalence continuing to rise each year [2, 13 4]]. Polypharmacy increases the risk
of drug-drug interactions (DDIs), which can alter efficacy or cause severe adverse drug reactions
(ADRs) [3]]. As a consequence, ADRs contribute to preventable hospitalizations, higher healthcare
costs, and significant patient morbidity [6, [7].

Identifying unknown DDIs in advance remains a fundamental challenge for drug development, clinical
care, and reducing healthcare costs [7]]. Predicting novel drug—drug interactions has traditionally
relied on experimental and observational methods, including in vitro and in vivo studies and analyses
of prior clinical data [8}|9]. These approaches are costly and do not scale [8,[10]. The number of pairs
grows quadratically with the number of drugs, and higher-order combinations grow combinatorially
[L1]. Even for 1,000 drugs, exhaustive pairwise screening would require 499,500 tests. Moreover,
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since many DDI databases are incomplete and slow to incorporate new drugs and indications, they
constrain the detection of novel interactions and limit the ability to integrate pharmacokinetic and
pharmacodynamic variability [12} [13}[14}[15]]. This necessitates the use of computational methods to
predict unknown interactions from partially observed data [9} (10, [16].

In many studies, DDI identification is treated as a link prediction problem on drug-drug interaction
network graphs [9, 110, [17]. Graph Neural Networks (GNN5s) are especially suited for this problem.
GNNs aggregate both local and global information, so that nodes with similar structural roles learn
similar embeddings. The drug network, which serves as input to the GNN, represents drugs as nodes
and observed interactions as edges. GNN-based models have shown strong results on biomedical
prediction tasks, including DDIs, drug—target interaction, and drug repurposing, and they perform
well on benchmarks such as ogbl-ddi [[16} [18]].

A common approach for GNN-based link prediction uses only graph topology and topology-derived
features [[19, 20, 21} 22]]. Other methods incorporate external domain knowledge from auxiliary
sources, such as knowledge graphs or embeddings produced by pretrained language models [23} 24}
25]]. Although these methods can improve performance, they often incur substantial computational
and memory costs, either from large model sizes or from expensive pretraining and inference, thereby
limiting training and deployment in settings with limited computational capacity [26, 27]. For
clinical applications, compact encoders are especially important, as they lower the computational
burden, reduce memory requirements, and decrease energy and serving costs [28 29, 30, 131]]. These
constraints motivate thorough, parameter-matched evaluations of whether augmenting structural
models with semantic priors can yield compact encoders without sacrificing performance. To the best
of our knowledge, prior work does not report parameter-matched head-to-head comparisons between
structure-only models and models initialized with pretrained scientific language model embeddings
with task-optimized refinement for DDI link prediction.

The main contributions of our paper are as follows.

1. Preoptimized embeddings for training a compact GNN. We start from frozen embeddings
of a pretrained scientific language model, SciBERT [32], and refine them with a small two-
layer contrastive MLP. These preoptimized embeddings initialize the GNN for DDI link
prediction, keeping the GNN’s parameter count unchanged. During training, structural
features are learned on top of task-optimized semantic priors, while a proximal regularizer
maintains node states near their initialization. This results in a compact model that performs
competitively with the best, significantly larger prior models.

2. Pareto Frontier of Size Versus Performance. Our method achieves performance within
2.19% of the leading structure-only model on the ogbl-ddi benchmark while using only
0.52% of its parameters. On the ogbl-ddi public leaderboard [33]], our model ranks third out
of 28, and achieves performance within 0.24% of the second-ranked entry while using less
than half the parameters. Compared to the third-ranked model, ours achieves 2.1% higher
performance with a smaller parameter count. Among published models, our approach lies on
the Pareto frontier of performance versus size, outperforming 94% of all published entries.

3. Resource-Efficient and Clinically Practical. Our approach yields compact models that
support efficient training and inference under computational and memory constraints while
maintaining near-SoTA performance on DDI prediction, making the method well-suited for
constrained clinical environments.

2 Related Work

Most research on GNNs for link prediction follows two main directions. The first focuses on message
passing architectures and training methods that improve accuracy on topology-only benchmarks.
Notable models include MPNNs, GCNs, GraphSAGE, and GAT, which are commonly evaluated on
standardized topology-only benchmarks such as the Open Graph Benchmark (OGB), which provides
unified splits and evaluation metrics [[16} 20} |34} 35} (36} 37, [38]].

The second focuses on incorporating GNNSs into larger machine learning systems tailored for domain-
specific applications, including biomedicine, chemistry, and recommender systems [39} 40, 41} 142].
These works often integrate graphs with other modalities or domain priors and are benchmarked on
specialized datasets. Domain-specific pipelines commonly follow four main approaches.



1. Statistical and topology-only embeddings to initialize and train GNNs. A common recipe learns
node and edge representations purely from structure, then trains a predictor [21} 43| 44]. Random-
walk and factorization methods provide proximity and co-occurrence priors that are widely used for
link prediction and as initializations for downstream GNNs [19}45].

2. Frozen, domain-aware language model embeddings to train GNNs. Cascaded designs precompute
text embeddings to inject domain semantics, keep them frozen, and then train only the graph model
[23]. In biomedicine, BERT-derived features or similarity graphs from literature or clinical text are
paired with Graph Convolution Networks or GNN back ends, improving accuracy without enlarging
the graph-based models or co-training the text model [46} 47].

3. Joint training of language models or knowledge graphs with graph encoders. These approaches
optimize auxiliary representations together with the graph encoder to inject knowledge end to end,
which typically increases parameter count and training cost. Examples include KEPLER, CoLAKE,
and systems that co-train language models with GNNs at scale [48] 149].

4. MLPs regularized by pretrained knowledge graphs. PLATO targets high-dimensional tabular
settings (d > n) by regularizing a small MLP with an auxiliary knowledge graph [50]. It infers
the first-layer weights from knowledge-graph node embeddings via a lightweight message passing
module, so inference remains inexpensive and no GNN is used.

Across the first three approaches, the main goal has been maximizing predictive accuracy, irrespective
of the encoder size. The fourth approach, PLATO, also targets compact inference. However, its
pipeline pretrains knowledge graph embeddings and depends on a large heterogeneous knowledge
graph, which adds a nontrivial training phase even if the predictor is small at test time. Constructing
comparable knowledge graphs for new benchmarks often requires multi-source integration and
extensive corpus curation that are domain and dataset-specific [50].

We build on these patterns but emphasize compact GNN encoders that leverage domain knowledge
from language models, with training and inference designed for deployability in resource-constrained
clinical settings. In contrast to knowledge-graph pretraining pipelines such as PLATO, we package
domain knowledge as language-model-derived representations and refine them contrastively, making
them portable and avoiding custom knowledge graph construction while preserving the inductive
biases that make GNNs effective. For comparability and rigor, we follow OGB practices with
standardized splits and evaluators.

3 Methods

3.1 Overview

We study link prediction with the premise that task-optimized domain-aware node initialization
provides a strong prior for compact graph encoders. Our method comprises three main steps.
First, we extract text-derived node features by passing DrugBank drug names [18] through a frozen
SciBERT encoder. Next, these node features are refined by a two-layer MLP, trained with a contrastive
objective. The resulting embeddings are then used to initialize a Graph Neural Network that both
learns structural signals and is regularized to remain close to its semantic prior. This approach allows
us to disentangle the effect of semantic priors from learned structural features.

We evaluate our work on the ogbl-ddi dataset, a network where nodes correspond to DrugBank
compounds and edges represent drug pairs whose combined effect is different from independent
action. The benchmark provides disjoint train, validation, and test edge splits Eiain, Evaiid, Prest
(positives), which are evaluated based on Hits @K. To avoid sampling held-out positives as negatives,
we define the negative edge set with respect to the union of all positive edges across splits, F,; =
U(FEain U Eyalia U Elegt). During training, positive labels are only provided from FEi,, while Eyyig
and Fie are held out.

3.2 Text-Derived Node Initialization

For each drug node, we concatenate the associated DrugBank name and description to form an input
sequence t,,, which is encoded by a frozen SciBERT model to produce a vector embedding e,, € R%.
All embeddings are then stacked into a matrix £ € R"*¢ for the n drugs. We do not fine-tune
SciBERT during subsequent training. We train a two-layer MLP g : R? — RP using a contrastive
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Figure 1: Task-optimized domain-aware link-prediction pipeline. (a) Text-derived semantic node
embeddings from a frozen SciBERT refined by a contrastively trained two-layer MLP. (b) Statistical
(Xavier) node embeddings. (c) Compact GNN encoder (GraphSAGE-mean with edge-aware mes-
sages, Jumping Knowledge (max), Proximal Regularization, Sparse Hard-negative edge sample). (d)
Link prediction with ogbl-ddi evaluator using the chosen embeddings.

loss, where positive drug pairs are sampled from the known DDI network and negatives are drawn
from the disjoint negative set defined over F,;. For each anchor, k negatives are drawn from this
disjoint set. Additional details on the negative sampling can be found in Appendix [A.4.T] Our MLP
outputs unit-normalized p-dimensional embeddings for each drug. These downstream features are
stacked to form the matrix X € R"*512_ which is precomputed and saved. The initial embedding
matrix Fy = X is used as the anchor for the proximal regularizer during GNN training. More details
on the architecture and objective can be found in Appendices[A.4.2]and [A.4.3] respectively.

3.3 Graph Neural Network with Proximal-Anchored Fine-Tuning

We initialize each drug node with the matrix X € R™*512 of unit-normalized embeddings obtained
from our contrastive MLP. These serve as the initial node features for the graph neural network. Let
h(®) = X represent the input features. Our graph neural network is composed of L layers. Each
layer uses a GraphSAGE mean aggregator with edge-aware message passing. At every layer, node
features are updated by aggregating information from neighboring nodes and their associated edges.
Each layer applies layer normalization, ReLU activation, and dropout. Where necessary, residual
connections are added before dropout layers to preserve signal propagation. Detailed equations for
each layer can be found in Appendix [A.5.1] After L layers, we obtain a sequence of representations
for each node. To aggregate information across different layers, we apply max-pooling Jumping
Knowledge aggregation to these layer outputs. This results in a final node summary 27 for each node
1. For link prediction, we compute a feature vector for each candidate pair (u, v) by concatenating
the elementwise product h, ® hX, the absolute difference |k} — h’|, and the node summaries 2} and
hZ. This concatenated vector is passed through a shallow MLP, which produces a logit ¢(u, v). The
probability of an interaction is given by the sigmoid of this logit, o(¢(u,v)).

During training, node representations are computed once per batch over the edge set Ey,;, and then
used to score all pairs in the batch. For every observed positive edge (u;, v;r ), we draw R negative
samples (u;,v; ) i.i.d. from E,;. To better separate challenging cases, we employ hard-negative
mixing. For each batch, the s negative pairs with the largest predicted logits are selected and
replicated to emphasize them in the loss calculation. Our training objective is a weighted sum of
three terms: a pairwise Bayesian Personalized Ranking (BPR) loss, a pointwise binary cross-entropy
loss, and a proximal penalty that encourages the learned node representations to remain close to their
initial semantic values. The loss for a mini-batch is

L = Lppr + 0.15Lpce + M| Xs — Eo(S)|2 ¢h)

where S indexes the nodes present in the batch and Ej is the matrix of initial semantic embeddings.
This regularization ensures that structural learning in the GNN is anchored to the semantic prior
established by text-derived features. Detailed formulations of the loss components and training
procedures are provided in Appendix



3.4 Ablations Used

We perform two ablation experiments as follows.

1. Xavier initialization: As a control, we replace X in the GNN with a trainable table of
Xavier node features. The proximal penalty term is omitted from the loss.

2. MLP-only scorer: Here, node embeddings are obtained by training the two-layer MLP g
as described above. After training, the matrix Z = g(FE) € R™*? is fixed. Link prediction
is performed by computing the cosine similarity r(u,v) = Z,| Z, for each drug pair. No
Graph Neural Network layers are used in this setting. Additional evaluation details are
provided in the Appendix [A.3.1]

4 Results

We compare the performance of our models against those on the ogbl-ddi public leaderboard [33]]. All
leaderboard models are structure-only and do not leverage domain-specific priors. Leaderboard ranks
models by Test Hits@20 for link prediction. Our structure+semantic model, as shown in[Table 1| uses
0.52% of the 976 million parameters used by the top-ranked model shown in Appendix while
achieving Hits @20 within 2.19% of that model. Compared to the second-ranked model, our model
reaches within 0.24% of its performance with 51.7% fewer parameters. Additionally, our model
outperforms the third-ranked baseline by 2.1% despite using fewer parameters. Our results show that
adding semantic priors from pretrained scientific language models with task-optimized refinement
allows our model to achieve strong link prediction accuracy with much lower model complexity.

Table 1: Comparing structure-only, semantic-only, and structure+semantic models. Details on how the
parameter sizes were chosen for size-controlled comparisons are provided in Appendix[A.2] Across
all our parameter-matched tests, the structure+semantic models outperformed the structure-only
models at Test Hits @20.

Ablation Model Components Test Hits@20  Parameters
Structure-only Xavier embeddings + GNN 0.9292 5,079,041
Semantic-only SciBERT + contrastive MLP 0.9411 525,057
Structure+Semantic  SciBERT + MLP embeddings + GNN 0.9753 5,079,041

We conducted ablations that isolate the contributions of the semantic and structural components. The
semantic-only model encodes DrugBank text with SciBERT, learns a contrastive objective with a two-
layer MLP, and predicts links without any graph neural network layers. The structure-only model, on
the other hand, consists of a Graph Neural Network with Xavier-initialized node embeddings, trained
with Bayesian Personalized Ranking loss, hard negative sampling, edge-aware message passing,
and Jumping Knowledge aggregation layers. Our semantic-only model achieves a 1.2% higher Test
Hits @20 performance than our structure-only baseline while using 90% fewer parameters. Despite
the simpler architecture, the higher performance of the compact semantic-only model, indicates that
language representations are able to efficiently learn features that are directly relevant for predicting
drug-drug interactions, even in the absence of explicit structural learning.

Our semantic+structure model shares the GNN backbone, and training setup with the structure-
only model, but initializes nodes with contrastively refined SciBERT embeddings and applies a
proximal penalty that encourages node representations to remain close to their initial values. The
structure+semantic model achieves 3.6% higher Hits @20 performance than the semantic-only model,
indicating that interaction topology provides a complementary signal beyond text-derived semantics.
Compared to the structure-only model, the structure+semantic model improves Hits@20 by 4.9% for
the same parameter count. This can be attributed to the fact that statistical initialization forces the
GNN to infer semantics solely from network topology. In contrast, combining contrastively refined,
domain-aware embeddings with a proximal anchoring penalty establishes a near-fixed semantic prior,
allowing message passing to learn structural residuals relative to this prior more efficiently. This
approach results in more accurate DDI predictions than using semantic or structural learning alone.

We assess the trade-off between model accuracy and parameter size by conducting a Pareto analysis
across all published results on the ogbl-ddi leaderboard, as shown in Figure[2] Both our semantic-
only and structure+semantic models lie on the Pareto frontier of performance versus size. Our
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Figure 2: Pareto analysis of model performance versus model size for all published structure-only
models on the ogbl-ddi benchmark. For clarity, the outlier corresponding to the top-ranked model
(976M parameters, 10,000 on the x-axis) is omitted. Only non-Pareto points with a performance
above 0.8 are included. More details can be found in the Appendix [A.T]

semantic-only model establishes a new efficiency benchmark outperforming 81% of the leaderboard
entries while using between 63.1% to 99.97% fewer parameters than any other existing model. The
structure+semantic model extends the Pareto frontier at higher accuracy, outperforming 94% of
the published models. These results suggest that semantic priors, combined with graph structure,
can enable more efficient learning than purely structure-based models across model sizes in the
performance-efficiency trade-off space.

5 Discussion

We show that compact GNNs, when initialized with task-optimized, domain-aware biomedical
text embeddings, attain competitive accuracy on DDI link prediction compared to much larger
structure-only GNNs. On the ogbl-ddi benchmark, our structure+semantic model achieves almost
comparable performance, while using only 0.52% of the 976 million parameters of the highest
performing model. We attribute this efficiency to encoding pharmacological semantics directly into
node representations instead of inferring them solely from graph topology. In addition, our semantic-
only model, outperforms our structure-only baseline. This result shows that biomedical text provides
meaningful information for predicting drug interactions, even when graph-topology is not used. Both
the semantic-only and structure+semantic models lie on the Pareto frontier of accuracy versus size
when compared to prior work. These results suggest that semantic priors makes GNN-based DDI
link prediction feasible in resource-constrained settings without sacrificing accuracy.

Our current approach relies on DrugBank descriptions and a SciBERT language model. These sources
can miss important pharmacological properties and may carry biases from the original corpus. As
biomedical and scientific language models and curated corpora continue to advance, text-derived
priors are likely to become increasingly informative and further improve model performance.

Future directions of our work include the following. First, we aim to extend language-based encoding
by incorporating descriptions of DDIs from more sources, such as clinical monographs and other
scientific language models. Using this information, we will construct edge embeddings that capture
pair-specific details and evaluate whether including these additional edge-level embeddings improves
the link prediction performance of compact GNNs. Second, we aim to assess generalization and
transfer by applying our semantic initialization approach to other related tasks, including drug-target
interaction, adverse event prediction, and drug repurposing. Insights from these studies could further
improve the design of compact models for resource-constrained biomedical environments.
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A Technical Appendices and Supplementary Material

A.1 Pareto Analysis
Table 2] shows the inputs for the Pareto analysis of model performance versus size.

Table 2: Pareto analysis of ogbl-ddi models from the leaderboard and our ablations. The first
three rows correspond to our ablation variants. The last three columns, namely Model Size, ML
performance (ML Perf), and hardware capacity (HW scale), serve as inputs to the Pareto analysis and
are normalized to the maximum Test Hits (0.9972), Parameters (976 M), and TFLOPs (82.6) values
shown below. Out of the 32 current entries in the leaderboard only models with a Test Hits @20 score
above 0.5 are included in the table.

Rank Method Test Hits Contact Params Hardware TFLOPs Model Size ML Perf. HW Scale
- Xavier + GNN 0.9292 A.Viswesh 5.08M  A10040G 19.5 52.04 0.932 0.236
- Scibert 0.9411 A.Viswesh 0.53M  A100 40G 19.5 5.38 0.944 0.236
- Scibert+GNN 0.9753 A.Viswesh 5.08M  A100 40G 19.5 52.04 0.978 0.236
1 HyperFusion 0.9972 X. Zhang 976M  RTX 3080 29.8 10000 1.000 0.360
2 ELGNN 0.9777 Z.H. Wong 10.5M  A100 80G 19.5 107.7 0.980 0.236
3 GCN 0.9549 S. Liang 5.13M P6000 12.6 52.51 0.958 0.153
4 GIDN 0.9549 Z. Wang 3.51M  DepGraph n/a 35.93 0.958 0.153
5 AGDN 0.9538 C. Sun 351M V100 16G 16.4 35.93 0.956 0.199
6 Refined-GAE 0.9443 W. Ma 13.8M  RTX 4090 82.6 141.6 0.947 1.000
7 PSG 0.9284 J.Lv 3.50M V100 32G 16.4 35.85 0.931 0.199
8 PLNLP 0.9088 Z. Wang 3.50M P40 12.0 35.83 0911 0.145
9 GDNN 0.9037 H. Zhou 3.76M A40 374 38.54 0.906 0.453
10 GraphSAGE+E 0.8781 J. Yang 3.76M V100 32G 16.4 38.54 0.881 0.199
11 CFLP 0.8608 T. Zhao 0.84M 2080 Ti 13.4 8.58 0.863 0.162
12 GraphSAGE+A 0.8239 B.Li 3776M V100 16G 16.4 38.53 0.826 0.199
13 NCN 0.8232 X. Wang 1.41M  RTX 4090 82.6 14.47 0.826 1.000
14 ELPH 0.7704  B. Chamberlain 291M K80 8.7 29.82 0.773 0.105
15 DEA+JKNet 0.7672 Y. Yang 1.76M T4 8.1 18.07 0.769 0.098
16 BUDDY 0.7654  B. Chamberlain 2.71M K80 8.7 27.80 0.768 0.105
17 GraphSAGE+EPS  0.7495 Q. Huang 1.42M 2080 Ti 134 14.56 0.752 0.162
18 LRGA+GCN 0.7385 C. Chen 102M V100 32G 16.4 104.9 0.741 0.199
19 MAD Learning 0.6781 Y. Luo 1.23M 1080 Ti 11.3 12.59 0.680 0.137

20 LRGA+GCN 0.6230 O. Puny 1.58M P100 9.3 16.15 0.625 0.113
21 GCN+JKNet 0.6056 H. He 1.42M 1080 Ti 11.3 14.56 0.607 0.137
22 NGNN+SAGE 0.5770 Y. Song 1.62M V100 16G 15.7 16.58 0.579 0.190
23 NGNN+GCN 0.5483 Y. Song 1.49M V100 16G 15.7 15.24 0.550 0.190
24 GraphSAGE 0.5390 M. Fey 1.42M  RTX 2080 10.1 14.56 0.541 0.122

A.2 Ablations for Parameter Size Selection

Table 3: Ablations performed to select parameter sizes across model families for size-controlled
comparisons. Best configurations are bolded. Additional ablations were evaluated but did not
outperform those shown and are not included.

Ablation Model Components Test Hits@2(0  Parameters
Semantic-only SciBERT + contrastive MLP 0.9411 525,057
Semantic-only SciBERT + contrastive MLP 0.9332 787,713
Structure-only Xavier embeddings + GNN 0.9203 4,816,685
Structure-only Xavier embeddings + GNN 0.9292 5,079,041
Structure-only Xavier embeddings + GNN 0.9300 5,344,769
Structure+Semantic SciBERT + MLP embeddings + GNN 0.9671 4,816,685
Structure+Semantic SciBERT + MLP embeddings + GNN 0.9753 5,079,041
Structure+Semantic SciBERT + MLP embeddings + GNN 0.9709 5,344,769

Table 3| presents the ablations we performed to select parameter sizes for size-controlled comparisons.
Performance was measured by Test Hits@20. For the semantic-only model, best performance was
obtained at our smallest feasible configuration. Performance decreased with additional capacity. For
the structure+semantic model, increasing capacity beyond 5.079M did not yield further gains in
performance. The structure-only model had only a slight increase of 0.08% in performance for a
5.32% greater parameter size (5.079M versus 5.344M). Therefore, for size-controlled comparisons,
we fixed the parameter count at 5.079M, for both the structure-only and structure+semantic models.
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Across all parameter-matched settings, the structure+semantic model consistently outperformed the
structure-only baseline on Test Hits @20.

A.3 Common Setup
A.3.1 Evaluation

Hits@K is reported using the official ogbl-ddi evaluators. It supports two negative formats: flat (a
single list of negatives) and grouped (each positive paired with R negatives). Our routine detects both
and computes probabilities accordingly. For G validation (or test) positives with associated negatives,

G
1
HitsQK = 521[rank(yj) <K],

i=1

where yf denotes the positive score and rank(-) is computed among the corresponding negative set.

A.3.2 Environment

Our experiments use PyTorch 2.6. Torch Dynamo/compile/JIT paths are disabled to avoid incidental
non-determinism, seeds are fixed for Python/NumPy/Torch (and CUDA where applicable), cuDNN
benchmarking is turned off, and deterministic algorithms are enabled where available. Deserialization
uses torch.load with weights_only=False. Training was performed on a single NVIDIA A100
(40 GB) GPU.

A.4 Additional Details for Frozen SciBERT + Contrastive MLP
A.4.1 Negative Sampling

Let NV (u) be the undirected neighbors of v in the union edge set (trainUvalidUtest). For each training
anchor u, we precompute a reservoir N~ (u) € V'\ ({u} UN(u)) by uniform sampling without
replacement up to budget S. During training, a round-robin picker returns exactly & negatives per
anchor; when a reservoir is exhausted it shuffles and wraps. Anchors with empty reservoirs are
skipped in that mini-batch.

A.4.2 MLP Architecture

Given a frozen SciBERT embedding e,,, the two-layer MLP g computes

h = ReLU(Wiey + b1), z = Wa Dropout(h) + ba, z= € RP,

1]l

A.4.3 Contrastive Objective

Given positives {(u;,v;")}2 , and per-anchor negatives {vs, ~}F_,, we compute unit-normalized
projections 2 = g(e) and cosine scores by inner product. For each anchor u; we form logits and
optimize cross-entropy with the positive at index 0. The scale s is learned. We parameterize
s = exp(y) where v initializes to log(1/7) with 7 = 0.07. It is clamped before exponentiation
for stability. An optional symmetric term swaps anchors/targets; the loss is the mean of the two
directions. Full expressions are shown below.

Per anchor u; logits and scale are defined as

b= 8[2y 545 By - ;...;2;2v/fk] e RM™F s =exp(y), v € [log(1/100),log(100)].

Ui v, 4
The one-sided cross-entropy is
B
1 exp(io)
EI\_{CE:EZ(_IOg—k‘ !
=1 > j—oexp(li ;)
The symmetric loss is

Lnce = 3 (Lxee + Lice)-
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Due to resource constraints, the projector outputs a 256-dimensional, £»-normalized vector z,,. After
training, a lightweight decoder D : R?%6 — R5!2 expands z, to x,, = D(z,) with a cosine-similarity
target of 0.995. Stacking x,, yields X € R™"*512; X is saved, and an epoch-0 snapshot Fy = X is
retained for proximal anchoring.

A.4.4 Optimization and Scheduling

We use AdamW with two parameter groups: (i) the two-layer MLP projector g with weight decay and
(ii) a learnable temperature 7 with no weight decay. Learning rates warm up linearly for 7, = 10
epochs and then follow cosine decay with 7,y = 0.05 770 (no restarts).

A.4.5 Hyperparameters

Unless stated otherwise hyperparameters used for MLP are as follows. We use a hidden dimension of
512, projection dimension of 256, two layers, dropout probability of 0.05, 500 epochs, and a batch
size of 4096. We also use 400 negatives per anchor, a reservoir size of S = 4500, a base learning
rate of 79 = 10~* warmup T, = 10 then cosine annealing with 7,;, = 0.05 17, weight decay
5 x 10~*; temperature initialization 7,;; = 0.07, and an early-stopping patience of 40. Symmetric
loss is enabled.

A.5 Additional Training Details - GNN
A.5.1 Encoder Equations and Regularization

Let h(9) = X. Each layer forms edge-aware messages

mj—>1 = RQLU( (e-1) + W( azj)a
aggregates by mean and applies a root update
1 ~ _
RO - S 20 S WO RO 4 1 WO Y,
N@| 4=
JEN (D)

Per layer, we apply LayerNorm—ReLU, add a residual if dimensions match, then dropout. During
training, DropEdge randomly masks each edge with probability pegee = 0.05. After L layers, we
apply JK-max:

hY = JKmax(Bi", . ),

optionally followed by a linear projection to the final hidden dimension.

A.5.2 Losses(full expressions)

Let batch size be B, negatives per anchor R, and S the set of node indices touched by positives and
negatives in the batch.

Pairwise ranking (BPR)
| BR
— +\ ) -
LBpr = BRZZ_:Z: oftplus( (p(us,v;") ¢(u1,vl’r))>.

Aucxiliary pointwise BCE
B

£Bcgz—ﬁ2{loga B(u;,v; +Zlog (1= o(A(ui,v ”)))}

i=1

Proximal penalty (SciBERT+Contrastive MLP Node Embeddings) With epoch-0 snapshot E,
7?/prox =A HXS - E0<S)||§

Total loss

L = Lpr+0.15 Lce+Rprox (proximal penalty only for SciBERT+Contrastive MLP Embeddings).
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A.5.3 Optimization and Scheduling

We use AdamW with a lower learning rate for the node-embedding table than for the encoder and
predictor. Learning rates warm up linearly for 7, = 10 epochs and then follow cosine decay (no
restarts). Training uses mixed precision (AMP) and gradient-norm clipping at 1.0. To stabilize
propagation, node embeddings are frozen during warmup and unfrozen afterward.

A.5.4 Hyperparameters

Unless stated otherwise hyperparameters we use are as follows. We use a hidden dimension d = 512,
depth L = 2, dropout probability 0.2, epochs = 500, DropEdge probability pegee = 0.05, R = 2
negatives per positive, AdamW learning rates of 10~2 (encoder/predictor) and 5 x 10~* (embeddings),
weight decay as 0.01, batch size as 65,536, warmup T, = 10, early-stopping patience as 40, mixed
precision (AMP), and gradient-norm clipping as 1.0.

13



	Introduction
	Related Work
	Methods
	Overview
	Text-Derived Node Initialization
	Graph Neural Network with Proximal-Anchored Fine-Tuning
	Ablations Used

	Results
	Discussion
	Acknowledgements
	Technical Appendices and Supplementary Material
	Pareto Analysis
	Ablations for Parameter Size Selection
	Common Setup
	Evaluation
	Environment

	Additional Details for Frozen SciBERT + Contrastive MLP
	Negative Sampling
	MLP Architecture
	Contrastive Objective
	Optimization and Scheduling
	Hyperparameters

	Additional Training Details - GNN
	Encoder Equations and Regularization
	Losses(full expressions)
	Optimization and Scheduling
	Hyperparameters



