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ABSTRACT

Implicit Neural Representations (INRs) as a versatile representation paradigm
have achieved success in various computer vision tasks. Due to the spectral bias of
the vanilla multi-layer perceptrons (MLPs), existing methods focus on designing
MLPs with sophisticated architectures or repurposing existing training techniques
for highly accurate INRs. In this paper, we delve into the linear dynamics model of
MLPs and theoretically identify the empirical Neural Tangent Kernel (eNTK) ma-
trix as a reliable link between spectral bias and training dynamics. Based on eNTK
matrix, we propose a practical inductive gradient adjustment method, which could
purposefully improve the spectral bias via inductive generalization of eNTK-based
gradient transformation matrix. We evaluate our method on different INRs tasks
with various INR architectures and compare to existing training techniques. The
superiority representation performance clearly validate the advantage of our pro-
posed method. Armed with our gradient adjustment method, better INRs with
more enhanced texture details and sharpened edges can be learned from the train-
ing data by tailored improvements on spectral bias.

1 INTRODUCTION

The main idea of implicit neural representations (INRs) is using neural networks such as multi-layer
perceptrons (MLPs) to parameterize discrete signals in an implicit and continuous manner. Bene-
fiting from the continuity and implicit nature, INRs have gained great attention as a versatile signal
representation paradigm and achieved state-of-the-art performance across a wide range of computer
vision tasks such as signal representation (Sitzmann et al., 2020; Liang et al., 2022; Saragadam et al.,
2023; Guo et al., 2023), 3D shape reconstruction (Cai et al., 2024; Shi et al., 2024a; Zhu et al., 2024)
and novel view synthesis (Mildenhall et al., 2021; Müller et al., 2022; Fathony et al., 2020).

However, obtaining high-precision INRs is non-trivial, MLPs with ReLU activation function often
fails to represent high-frequency details. Such tendency of MLPs to represent simple patterns of
target function is referred to spectral bias (Rahaman et al., 2019; Xu, 2018). To improve the per-
formance of INRs, great efforts have been made to alleviate or overcome this bias of MLPs. These
efforts have primarily focused on how MLPs are constructed such as complex input embeddings
(Tancik et al., 2020; Xie et al., 2023; Müller et al., 2022) and sophisticated activation functions
(Sitzmann et al., 2020; Saragadam et al., 2023). Recently, two studies find that training modifica-
tions based on existing training techniques, i.e., Fourier reparameterized training (FR) (Shi et al.,
2024a) and batch normalization (BN) (Cai et al., 2024), can improve training dynamics, thereby
overcoming the spectral bias without altering inference structures.

Despite these works serendipitously discover that such FR and BN training could alleviate the spec-
tral bias and lead to better representation performance, the mechanism behind their improvement
is still unclear. Moreover, there is no clear guidance on the choice of Fourier bases matrix for
reparameterization or batch normalization layer to confront spectral bias with varying degrees in a
variety of INR tasks. Lack of reliable insight and guidance results in sub-optimal improvements
in their broader applications. Therefore, how to adjust training dynamics of MLPs to purposefully
overcome spectral bias remains an open and valuable research challenge.

In this paper, we delve into the linear dynamics model of MLPs and propose an effective training
dynamics adjustment strategy guided by theoretical derivation to purposefully alleviate the spectral
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bias issue. Our strategy allows for tailored impacts on spectral bias based on the spectrum of tar-
get signals, thereby achieving more precise INRs. Specifically, these impacts on spectral bias are
tailored by purposefully adjusting the spectrum of the Neural Tangent Kernel (NTK) matrix (Jacot
et al., 2018), which closely connects the spectral bias with training dynamics. Given that NTK ma-
trix is not available in most cases, we theoretically identify the empirical NTK matrix as a tractable
surrogate. Empirical results corroborate this theoretical results. Based on eNTK matrix, we fur-
ther propose an inductive gradient adjustment (IGA) method which could purposefully improve the
spectral bias via inductive generalization of eNTK-based gradient transformation matrix with mil-
lions of data points. We give both theoretical and empirical analysis of our method, demonstrating
how it tailors impacts on spectral bias. Besides, our IGA method can work with previous struc-
tural improvement methods such as positional encoding (Tancik et al., 2020) and periodic activation
function (Sitzmann et al., 2020). We validate our method in various vision applications of INRs
and compare it to previous training dynamics adjustment methods. Experimental results shows the
superiority of training dynamics adjustment strategy. Our contributions are summarized as follows:

• We connect spectral bias with linear dynamics model of MLPs and derive an training dy-
namics adjustment strategy guided by a theoretical standpoint to purposefully improve the
spectral bias, i.e., tailored impacts on spectral bias based on the spectrum of target signals.

• We propose a practical inductive gradient adjustment method which could purposefully
mitigate spectral bias of MLPs even with millions of data points. Theoretical and empirical
analyses show how our method tailors impacts on spectral bias.

• We provide detailed experimental analyses across a wide range of implicit neural repre-
sentation tasks. Comparing to previous training dynamics methods, our method allows for
tailored improvement on spectral bias of commonly MLPs and provides implicit neural
representations with more high-frequency details.

2 RELATED WORK

Implicit neural representations. Recently, implicit neural representations (INRs) representing the
discrete signal as an implicit continuous function by MLPs have gained lots of attention. Comparing
to traditional grid-based signal representation method, INRs have shown the remarkable represen-
tation accuracy and memory-efficient property in a wide range of representation tasks such as 1D
audio representation (Sitzmann et al., 2020; Kim et al., 2022), 2D image representation (Klocek
et al., 2019; Strümpler et al., 2022) , 3D shape representation (Park et al., 2019; Martel et al., 2021),
novel view synthesis (Mildenhall et al., 2021; Saragadam et al., 2023) and virtual reality (Deng
et al., 2022). However, vanilla MLPs with ReLU activation function fails to represent complex sig-
nals. Therefore, various modifications have been studied. One category modifications focus on the
embedings of inputs. Mildenhall et al. (2021) find that using positional encoding (PE) as inputs en-
hances the representation of high-frequency details in neural radiance fields. Further, Takikawa et al.
(2021); Martel et al. (2021); Xie et al. (2023) adopt learned features to encode inputs, achieving bet-
ter INRs. A different category of modifications concentrates on activation functions. Sitzmann et al.
(2020) found that periodic functions, such as Sine function, can obtain more accurate representation
than ReLU activation function. Sine functions are also explored by Fathony et al. (2020) in mul-
tiplicative filter networks. Saragadam et al. (2023) adopt a complex Gabor wavelet activation and
achieve robust and accurate representations. Considering a broader framework, the aforementioned
work can be summarized as efforts to construct implicit neural representation models or MLPs with
more powerful representational capacity (Yüce et al., 2022). Recently, another category, distinct
from those previously discussed, focuses on the training process of MLPs. Shi et al. (2024a) find
that learning parameters in the Fourier domain, i.e., Fourier reparameterized training (FR), can im-
prove approximation accuracy of INRs without altering the inference structure. Cai et al. (2024)
repurpose that the classic batch normalization layer (BN) can also improve performance of INRs.

Spectral bias. Spectral bias typically refers to a learning bias of MLPs that MLPs tend to learn
simple patterns of training data or the low-frequency components of the target function. Great ef-
forts have been made to dissect this bias. Rahaman et al. (2019) find that spectral bias varies with
the width and depth of MLPs and the complexity of input manifold by experimental and theoretical
analyses. Generally, wider or deeper MLPs can learn high frequency information more efficiently,
and increasing the complexity of input manifolds serves a similar purpose. Xu (2018) attribute this
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bias of MLPs with Tanh activation function to the uneven distribution of gradients in the frequency
domain through Fourier decomposition. From the perspective of linear dynamics of MLPs, spectral
bias is induced by the uneven distributed eigenvalues of the corresponding Neural Tangent Kernel
(NTK) matrix (Jacot et al., 2018; Arora et al., 2019; Ronen et al., 2019). Inspired by this theoretical
result, Tancik et al. (2020); Shi et al. (2024a); Cai et al. (2024) try to elucidate spectral bias of differ-
ent models by observing eigenvalue distribution and find that PE, FR and BN help to attain a more
uniform eigenvalue distribution of the NTK matrix. Similarly, Geifman et al. (2023) theoretically
discuss impacts of modifying the NTK matrix spectrum in infinitely wide networks.

In this paper, we adopts the insight of attaining more uniform eigenvalue distribution of the NTK
matrix to overcome the spectral bias. For the first time, we show that modifying the eNTK matrix
spectrum can have the similar impacts on spectral bias and propose a practical inductive gradient
adjustment method for improving the spectral bias of INRs.

3 METHOD

In this section, we firstly review the linear dynamics model of MLPs, indicating the potential of
adjusting the spectrum of NTK matrix to purposefully improve the spectral bias. Then we analyze
the NTK-based adjustment method and show that the intractability of the NTK matrix renders it
impractical. By further theoretical analysis, we identify empirical NTK matrix as a tractable proxy,
but it succumbs to dimensionality challenges as the data size increases. Therefore, we propose
a practical gradient adjustment method, which could purposefully improve the spectral bias via
inductive generalization of eNTK-based gradient adjustments.

3.1 BACKGROUND: CONNECTING SPECTRAL BIAS WITH TRAINING DYNAMICS

Considering a discrete signal S = {(xi, yi)}Ni=1 over Rd0 × R1, the INR of this signal de-
noted as f(x,Θ). An MLP with constant width m is adopted to parameterize f(x,Θ). Pa-
rameters Θ are optimized via gradient descent under the supervision of the squared error loss
L(x; Θ) = 1

2

∑N
i=1(f(xi; Θ) − yi)

2. We denote the residual (f(xi; Θt)− yi)
n
i=1 at time step

t as rt. Training dynamics of rt can be approximated by the linear dynamics model when the
width m is large enough and learning rate η is small enough (Du et al., 2018; Arora et al., 2019;
Lee et al., 2019; Geifman et al., 2023): rt = (I − ηK)rt−1, where K is the NTK matrix on
S defined by K = EΘ0

[∇Θf(X; Θ0)
⊤∇Θf(X; Θ0)]. With the eigenvalue decomposition of

K =
∑N

i=1 λiviv
⊤
i , training dynamics of rt can be characterized as follows (Arora et al., 2019):

||rt||2 =

√∑N

i=1
(1− ηλi)2t(v⊤

i y)
2. (1)

Equation 1 shows that convergence rate of f(x,Θ) at the projection direction v⊤
i with larger λi will

be faster. For vanilla MLPs, projection directions related to high frequencies are consistently as-
signed to small eigenvalues, while those related to low frequencies correspond to larger eigenvalues
(Ronen et al., 2019; Bietti & Mairal, 2019; Heckel & Soltanolkotabi, 2020). The uneven spectrum of
K lead to extremely slow convergence to the high frequency components of signal thereby leading
to lower Peak Signal-to-Noise Ratio (PSNR) values in INRs. Following this insight, recent works
(Tancik et al., 2020; Bai et al., 2023; Shi et al., 2024a; Cai et al., 2024) suggest that MLPs with
balanced eigenvalues of K are less affected by spectral bias and achieve better PSNR values.

3.2 IMPROVING SPECTRAL BIAS VIA TRAINING DYNAMICS SHARING

As previously discussed, eigenvalues of K almost governs convergence rates of MLPs to different
components, and uneven spectrum of K lead to slow convergence of high frequency components.
It is natural to adjust the spectrum of K purposefully to tailor the improvement of spectral bias.
Following this intuition, we focus on the adjustment of eigenvalues of K. This can be naturally
achieved by constructing a transformation matrix S that has the same eigenvectors as K as follows:

Θt+1 = Θt − η∇Θf(X; Θ)Srt, (2)

where S =
∑N

i=1(gi(λi)/λi)viv
⊤
i ; {gi(λi)}Ni=1 denotes the desired spectrum. Geifman et al.

(2023) theoretically analyze spectral impacts of equation 2 on K and validate it using a toy MLP
with limited synthetic data.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

However, equation 2 is practically infeasible in a broad spectrum of INRs tasks. The first
challenge is that an analytical expression for K is difficult to derive (Xu et al., 2021; Novak
et al., 2022; Wang et al., 2023; Shi et al., 2024b). Specifically, the analytical expression for
Ef∼N (0,Σ)[σ̇(f(x))σ̇(f(x

′))], which is the key of K, becomes intractable as the depth of the net-
work increases. The second challenge is that the size of matrix K grows quadratically with the
increase of the number of data points (Mohamadi et al., 2023). Considering Kodak image fitting
task, it requires to store and decompose a matrix containing about 1 trillion entries, which takes over
eight terabytes in memory if stored in double precision.

To overcome the first challenge, we try to adjust eigenvalues of empirical NTK (eNTK) matrix K̃
as K̃ inherently exists in the linear dynamics model of MLPs with arbitrary width. Despite numer-
ous studies (Xu et al., 2021; Novak et al., 2022; Mohamadi et al., 2023) exploring the connection
between K̃ and K, impacts on spectral bias by K̃-based adjustment are not evidently equivalent
to K-based adjustment. Through our theoretical analysis in Theorem 4.1, we prove that projection
directions of K̃ as well as eigenvalues converge to the corresponding parts of K as the network
width increases. By this theoretical result, impacts on spectral bias by K̃-based adjustment can be
approximately equivalent to that of K-based adjustment. We construct the transformation matrix S̃
based on K̃ and adjust the gradients as follows:

Θt+1 = Θt − η∇Θt
f(X; Θt)S̃rt, (3)

where S̃ =
∑N

i=1(gi(λ̃i)/λ̃i)ṽiṽi
⊤; K̃ = ∇Θtf(X; Θt)

⊤∇Θtf(X; Θt) =
∑N

i=1 λ̃iṽiṽ
⊤
i . Thus,

K̃ not only links spectral bias with network training dynamics but also serves as a tractable estimate.

Although K̃ avoids intractability, it still encounters the curse of dimensionality as N increases. In
Theorem 4.2, we have that training dynamics of rt could be estimated via inductive generalization of
the linear dynamics model of sampled data points and analyzable error. Inspired by this theoretical
foundation, we propose a practical inductive gradient adjustment method. Specifically, assumed that
{(xi, yi)}Ni=1 have been sorted based on the proximity of input samples, we divide these samples into
n groups, where each group is Xj = {(xj

i , y
j
i )}

p
i=1. Then we sample one point from each group

to form the sample set Xe. We denote the eNTK matrix on Xe as the empirical inductive NTK
matrix K̃e and construct the corresponding transformation matrix S̃e. Then inductive adjustments
are generalized to gradients of whole data points as follows:

Θt+1 = Θt − η

p∑
i=1

∇Θt
f(Xi,Θt)S̃er

i
t, (4)

where Xi = {(xj
i , y

j
i )}nj=1 and rit denotes the corresponding residual vector at time step t; S̃e =∑N

i=1(gi(
˜̃
λi)/

˜̃
λi) ˜̃vi

˜̃v⊤
i ; K̃e = ∇Θt

f(Xe; Θt)
⊤∇Θt

f(Xe; Θt) =
∑N

i=1
˜̃
λi

˜̃vi
˜̃v⊤
i . As shown in

equation 4, all rti are linearly transformed by St
tds. Please note that for each vector rti (where

i = 1, . . . , p), its j-th element is scaled by the j-th column of the matrix S̃e. And the j-th element of
these vectors rti all belong to the shared interval Xj . Therefore, our inductive gradient adjustments
are generalized to other data points in each group Xj . From our Theorem 4.2, although the inductive
generalization by K̃ introduces errors; these errors can be reduced by increasing data similarity,
and wider MLPs also provide a chance to reduce these errors. Further, in most INR tasks, our
experimental results illustrate that these errors could be neglected.

3.3 IMPLEMENTATION DETAILS

Construction Strategy. As we have introduced in equation 2, we construct the transformation ma-
trix by the desired spectrum. We have that K̃e =

∑m
i=1 λiviv

⊤
i and assume that λ1 > · · · > λm >

0. To purposefully improve the spectral bias, we balance the eigenvalues of different eigenvectors;
impacts are tailored by managing the number of balanced eigenvalues. For vanilla gradient descent,
we have S̃ as follows:

S̃e =

end∑
i=start

λstart

λi
viv

⊤
i +

∑
i/∈[start,end]

λiviv
⊤
i . (5)
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Generally, start is fixed at 1; end represents the controlled spectral range. The larger the value of
end, the stronger impacts over spectral bias.

Due to the introduction of adaptive learning rates and momentum in Adam, training dynamics of
MLPs becomes exceptionally challenging and remains an open problem. Intuitively, momentum is
the linear combination of previous gradients, which implies that momentum has the similar direction
with current adjusted gradients. This inspires us to extends the equation 4 to Adam. Adaptive
learning rates typically result in larger update steps for parameters (Kingma, 2014; Wilson et al.,
2017; Reddi et al., 2019). Therefore, we utilize λend to balance eigenvalues in equation 5 for better
convergence. Experiments show its promising performance.

Sampling Strategy. As illustrated in Sec. 3.2, we need to sample data points from groups to
compute K̃. Discussing all sampling strategies is beyond the scope of our work. For coordinate
inputs, We partition inputs by Euclidean distance of samples into n groups with p points and largest
residual points in each group are sampled. Details of hyperparameters n and p for different settings
will be introduced in the experimental section. We provide ablation experiments in our Appendix B
to analyze the effect of group size p and points.

Multidimensional output approximation. In practical INRs tasks, the output of MLPs is multidi-
mensional in certain scenarios, such as color images. Comparing to the dimension of data points,
it is trivial but still affects the efficiency. Therefore, we simply compute the Jacobian matrix by
sum-of-logits which has been proved efficient in (Mohamadi et al., 2023; Shi et al., 2024b).

4 THEORETICAL ANALYSIS

In this section, we firstly introduce our analysis framework, referring to previous works (Du et al.,
2018; Arora et al., 2019; Lee et al., 2019; Geifman et al., 2023). Building on this, we prove that
adjustments based on eNTK matrix asymptotically converge to those based on NTK matrix as the
network width increases. Then we delve into the estimate of training dynamics via sharing the linear
dynamics model of few data points and give a theoretical analysis to its potential error.

Analysis Framework. For better analysis of NTK matrix, we refer previous works (Du et al., 2018;
Arora et al., 2019; Lee et al., 2019; Geifman et al., 2023) and perform a theoretical analysis on
the basis of the following settings: assuming that the training set {xi, yi}Ni=1 is contained in some
compact set, a two-layer network f(x; Θ) with m neurons is formalized as follows to fit these data:

f(x; Θ) = (1/
√
m)

∑m

r=1
arσ(w

⊤
r x+ br), (6)

where the activation function σ satisfies that |σ(0)|, ∥σ′∥∞, supx ̸=x′ |σ′(x)−σ′(x′)|/|x−x′| < ∞.
The detailed initialization scheme can be found in our Appendix A.1. The loss function is
1
2

∑N
i=1(f(xi,Θt) − yi)

2. We assume that K, K̃ are full rank indicating that they are posi-
tive definite. This assumption generally holds due to the complexity of neural networks. Then
we have the following standard orthogonal spectral decomposition: K =

∑N
i=1 λiviv

⊤
i and

K̃ =
∑N

i=1 λ̃iṽiṽi
⊤, which eigenvalues are indexed in descending order of magnitude. We

construct the corresponding transformation matrices as S =
∑N

i=1(gi(λi)/λi)viv
⊤
i and S̃ =∑N

i=1(gi(λ̃i)/λ̃i)ṽiṽ
⊤
i . Although limm→∞ ∥K − K̃∥F = 0 (Jacot et al., 2018; Lee et al., 2019;

Geifman et al., 2023), it is non-trivial to show that S, S̃ have the similar impacts on the spectrum.
Thanks to the well-established theory of matrix perturbation analysis (Yu et al., 2015; Davis & Ka-
han, 1970; Baumgärtel, 1984), we have the following Theorem 4.1.
Theorem 4.1. The following standard orthogonal spectral decomposition exists: K =∑N

i=1 λiviv
⊤
i and K̃ =

∑N
i=1 λ̃iṽiṽi

⊤, satisfying that v⊤
i ṽi > 0 for i ∈ [N ]. We denoted

min{λi − λi+1, λi+1 − λi+2} as G. Let {gi(x)}Ni=1 be a set of Lipschitz continuous functions,
with the Supremum of their Lipschitz constants denoted by k, with η < min{((max(g(λ)) +

min(g(λ)))−1, (max(g(λ̃)) + min(g(λ̃)))−1}, for ϵ > 0, there always exists M > 0, such that
m > M , for i ∈ [N ], we have that |g(λi)−g(λ̃i)| < ϵ1, ∥vi− ṽi∥ < ϵ2; furthermore, we have that:

|(1− ηg(λ̃i))
2(ṽi

⊤rt)
2 − (1− ηg(λi))

2(v⊤
i rt)

2| < ϵ3, ∥rt+1 − r̃t+1∥ < ϵ4,

where ϵ1 = kϵ; ϵ2 = (23/2ϵ)/G; ϵ3 = 8R0

G2 (kηϵ3 + (v + 1)ϵ2 + (v2 + Gv)ϵ); ϵ4 = ϵN(( 16vR0

G +

ηkv2R0) + ϵ2) + 2ϵ; v, k,R0 are constants.
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The detailed proof of Theorem 4.1 can be found in our Appendix A.3. Theorem 4.1 shows that
eNTK-based gradient adjustment (S̃) exhibits almost the same level of control as NTK-based ad-
justment (S) across different feature directions as width increases, thereby leading to almost the
same training dynamics of rt+1 and r̃t+1. More fundamentally, eigenvectors of K̃ converge one-
to-one to eigenvectors of K, thus ensuring that S̃ impact the similar convergence directions as S.
In Theorem 4.2, we show that training dynamics could be estimated by inductive generalization of
the linear dynamics model of sampled data points.
Theorem 4.2. X = {xi}Ni=1 are partitioned by order into n shared groups, where each group is
Xj = {xj

1, . . . ,x
j
p} and N = np. For each group, one data point is sampled denoted as xj and

these n data points form Xe = {xj}nj=1, n ≪ N . There exists ϵ > 0, for j = 1, . . . , n and any
1 ≤ i1, i2 ≤ p, such that |(f(xj

i1
,Θt)−yji1)−(f(xj

i2
,Θt)−yji2)|, ∥∇Θt

f(xj
i1
)−∇Θt

f(xj
i2
)∥ < ϵ.

Then, for any xi, assumed that xi belongs to Xji , such that:

|∆f(xi,Θt)−∇Θt
f(xji)⊤[p

n∑
j=1

∇Θt
f(xj)(f(xj)− yj)]| < ϵ(

(κ+ n3/2)R0 + κ2

√
m

) +
ηκ3R2

0

m3/2
,

where ∆f(xi,Θt) = (rt+1 − rt)i denotes the dynamics of f(xi,Θ) at time step t; R0, κ are
constants; ∇Θt

f(xji ,Θ)⊤∇Θt
f(xj) is the entry in K̃e(i, j).

The detailed proof can be found in our Appendix A.4. Theorem 4.2 offers us a new perspective
that training dynamics can be estimated by inductive generalization of the linear dynamics model of
sampled data points. Moreover, this error decreases as the similarity of data increases, and increasing
m provides a chance to reduce this error. Inspired by this, we construct the transformation matrix
S̃e based on K̃e to purposefully improve the spectral bias. Practically, our empirical results show
that this error is trivial to purposefully improve the spectral bias.

5 EMPIRICAL ANALYSIS ON SIMPLE FUNCTION APPROXIMATION

In this experiment, we firstly give an empirical validation to our Theorem 4.1 that impacts on spectral
bias guided by K and K̃ are similar. Then, we demonstrate that our inductive gradient adjustment
method can purposefully improve the spectral bias of MLPs by managing the number of balanced
eigenvalues of K̃e.

To better analyze, we follow previous works (Xu, 2018; Shi et al., 2024a) and compute the relative
error ∆k between target signal g and outputs fΘ at frequency k to show spectral bias:

∆k =
|FD[g](k)−FD[fΘ](k)|

|FD[g](k)|
, (7)

where FD denotes the discrete Fourier transform.

Experiment 1. In this experiment, we aim to corroborate our theoretical results from the previous
section, specifically: impacts of K̃-based gradient adjustment on spectral bias are similar to that of
K-based gradient adjustment, and the differences decrease as the network width increases; inductive
generalization via K̃e for gradient adjustment is effective, and increasing width helps reduce the
estimate error. Therefore, the accurate computation of K is the key for validation. Given that the
accurate computation of K is non-trivial, we adopt a two-layer MLP with a fixed last layer in Arora
et al. (2019); Ronen et al. (2019), whose Kij can be computed by the formula 1

4π (x
⊤
i xj + 1)(π −

arccos(x⊤
i xj)). This architecture facilitates theoretical analysis but has limited representational

capacity for representing complex functions. To better demonstrate the spectral bias of MLPs, we
constructed the following simple function f : S1 → R1 that has been widely adopted by previous
works (Ronen et al., 2019; Geifman et al., 2023):

f(θ) = f(cos(θ), sin(θ)) = sin(0.4πθ) + sin(0.8πθ) + sin(1.6πθ) + sin(3.2πθ). (8)

Then the two-layer MLP in Arora et al. (2019) is employed to parameterize this function with N =
1024 input samples by sampling θ in [0, 2π]. We vary the width of the MLP from 1024 to 8192.
We adopt the Identity matrix I (i.e., vanilla gradient) and a series of S, S̃, S̃e that start = 1 and

6
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Figure 1: Evolution of approximation error with training iterations on time domain and Fourier
domain. Line plots visualize the MSE loss curves of MLPs with 1024 and 4096 neurons optimized
by four methods. Heatmaps show the relative error ∆k on four frequency bands.

end ranges from 11 to 15. The groups of our IGA method are partitioned by the order of θ and the
size is 8, indicating that S̃e is only 1/64 the size of S, S̃. All MLPs are trained separately with the
same fixed learning rates by SGD for 20000 iterations. We visualize results of baseline model and
adjustments with end = 15 in Fig. 1. More results can be found in our Appendix C.

Analysis of Experiment 1. In Fig. 1, line plots on a gray background show the convergence
trends of MLPs by NTK-based (S), eNTK-based (S̃) and NTK-based (S̃e) gradient adjustments.
Vanilla gradient (I) is also compared. The heat maps with a consistent color scale visualize their
impacts on the spectrum, where darker colors indicate higher errors. Note that initial colorbars of
vanilla gradients (I) darken with increasing frequency index. This means that the MLP optimized
by vanilla gradient suffers severe spectral bias. With gradient adjustments, there are more lighter
shades over the second and third largest frequency, indicating that these adjustments effectively
improve the spectral bias. Therefore, MLPs with gradient adjustments have faster convergence rate
in MSE loss as shown in line plots. Please note that although adjustments by S, S̃ and S̃e exhibit
slight difference in trends and impacts on spectrum when the network width is 1024, the difference
is barely noticeable when the width is 4096. This is consistent with our Theorem 4.1 and the analysis
of our Theorem 4.2. Moreover, despite the presence of difference when the network width is 1024,
S̃ and S̃e effectively improve spectral bias and the approximation accuracy, indicating that K̃ links
spectral bias with training dynamics and our IGA method is effective.

Experiment 2. In this experiment, we aims to show that our IGA method can tailor impacts on
spectral bias of general architectures by managing the number of balanced eigenvalues and analyze
tailored impacts under varying group sizes. Therefore, we apply our method on two practical INR
models, i.e., MLPs with ReLU (ReLU) and MLPs with Sin (SIREN) (Sitzmann et al., 2020) like Shi
et al. (2024a). To analyze impacts under varying sizes, we draw on settings in Rahaman et al. (2019)
and construct a 1D function f : R1 → R1 with abundant spectrum as follows:

f(x) = sin(20πx) + sin(40πx) + sin(60πx) + sin(80πx) + sin(100πx) + sin(120πx). (9)

SIREN is trained to regress the f(x) with 2048 discrete values uniformly sampled in the interval
[−1, 1]. For ReLU, we halve the frequency of each component due to its limited representation
capacity (Yüce et al., 2022). For our IGA method, we partition data points using two interval
lengths of 4 and 8 to compute K̃e and varies end from 2 to 8 to construct a series of S̃e. ENTK-
based gradient adjustment is considered. All gradient adjustments are conducted across multiple
MLPs with a four-hidden-layer, 256-width architecture, optimized by Adam for 10,000 iterations
with a fixed learning rate of 5e− 5.

Figure 2: Progressively amplified impacts on spectral bias of ReLU and SIREN by increasing the
number of balanced eigenvalues of S̃e when the group size is 8. ReLU denotes that the MLP with
ReLU optimized using vanilla gradients; ReLU-S̃e-2 denotes that the MLP with ReLU optimized
using gradients adjusted by S̃e with end = 2. More results can be found in our Appendix C.
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Figure 3: Comparison of group sizes with varying balanced eigenvalues on Relative Error at 40 Hz.
IGA-1 denotes that the group size is 1, i.e., the eNTK-based gradient adjustment; IGA-4 denotes
that the group size is 4; Baseline denotes that the MLP is optimized by vanilla gradients. Results on
other frequencies can be found in Appendix C.

Analysis of Experiment 2. In Fig. 2 and 3, with more balanced eigenvalues, the proportion of
lighter regions in heatmaps of both ReLU and SIREN grows, while the curve of relative error de-
creases more rapidly. These observations clearly illustrate that impacts on spectral bias by our IGA
method can be amplified by increasing the number of balanced eigenvalues. Further, as shown in
Fig. 3, despite the relative error curves of ReLU exhibit subtle differences as the group size in-
creases, our IGA method effectively amplifies impacts on spectral bias by increasing the number of
balanced eigenvalues.

6 EXPERIMENT ON VISION APPLICATIONS

In this section, we apply our IGA method to various practical applications of INRs in computer
vision, demonstrating the superiority of IGA.

6.1 2D COLOR IMAGE APPROXIMATION

It is well known that natural images simultaneously encompass rich low- and high-frequency com-
ponents (Chan & Shen, 2005). Therefore, single natural image fitting has become an ideal test bed
for INR models (Sitzmann et al., 2020; Saragadam et al., 2023; Xie et al., 2023; Shi et al., 2024a).
Meanwhile, spatial correlations and local features repetition of natural images are also embedded in
the complexity of this image, indicating that the use of inductive generalization is reasonable.

In this experiment, we attempt to parameterize the function ϕ : R2 → R3,x → ϕ(x) that represents
a discrete image. Following the previous work (Saragadam et al., 2023), we establish four-layer
MLPs with 256 hidden features. We conduct experiments on three MLPs archetectures, i.e., MLPs
with ReLU activation function (ReLU), ReLU with Positional encoding (PE) (Tancik et al., 2020)
and MLPs with periodic activation function Sine (SIREN) (Sitzmann et al., 2020). These three
models are classic baselines in the field of INRs and are widely used for comparison (Sitzmann
et al., 2020; Saragadam et al., 2023; Shi et al., 2024a). We test on the first 8 images from the Kodak
24 dataset, each with a resolution of 768 × 512 pixels. For these images, K has approximately 1011

entries, rendering decomposition and multiplication infeasible during training. For our IGA method,
we partition each image into non-overlapping 32× 32 patches as groups and points with the largest
residuals are sampled to form the sample set Xe. We construct the corresponding transformation
matrix S̃e with end = 20 for SIREN and PE and end = 25 for ReLU due to its severe spectral
bias. Therefore, we generalize the inductive gradient adjustments of less than 0.1% of total data
points. For all architectures, we train baseline with vanilla gradients and with our inductive gradient
adjustments (+IGA) by Adam optimizer. The learning rate schedule follows (Shi et al., 2024a),
which maintains a fixed rate for the first 3000 iterations and then reduces it by 0.1 for another
7000 iterations. We set initial learning rates as 5e − 3 for ReLU activation function and 1e − 3
for Sine activation function. For all baseline models, we set initial learning rates as 1e − 3 due
to poor performances observed with 5e − 3. Current training adjustments methods, i.e., Fourier
reparameterization (+FR) (Shi et al., 2024a) and batch normalization (+BN) (Cai et al., 2024) are
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PE (24.60dB) PE+FR (26.63dB) PE+BN (27.42dB) PE+IGA (28.06dB)
Figure 4: Visual examples of 2D color image approximation results by different training dynamics
methods. Enlarged views of the regions labeled by red boxes are provided. The residuals of these
regions in the Fourier domain are visualized through heatmaps at the top right corner. The increase
in error corresponds to the transition of colors in the heatmaps from blue to red.

also compared. Their hyperparameters follow publicly available codes and we make every effort to
achieve optimal performance. Full-batch training is adopted. In Table 1 , we report three average
metrics of different INRs over the first 8 images of Kodak 24, where LPIPS values are measured by
the ’alex’ from Zhang et al. (2018).

As shown in Fig. 4, PE with our IGA method not only achieves best improvements on PSNR values
comparing to PE, PE+FR and PE+BN, but also facilitates a more precise representation of high-
frequency details instead of being overly smooth like other methods. Concretely, as shown in the
spectra at the top right corner of Fig. 4, improvements of IGA are uniformly distributed across most
frequency bands. In contrast, while BN and FR increase PSNR values, most improvements are near
the origin, i.e., in the low-frequency range. This observation indicates that our IGA method allows
for more balanced convergence rates of a wide spectral range with millions of data points. More
visualization can be found in our Appendix D.
Table 1: Average metrics of 2D color image approximation results by different methods. The de-
tailed settings can be found in Sec. 6.1. Per-image results are provided in our Appendix D.

Average ReLU PE SIREN
Metric Vanilla +FR +BN +IGA Vanilla +FR +BN +IGA Vanilla +FR +BN +IGA

PSNR ↑ 21.78 22.14 22.55 23.00 28.64 29.74 31.65 32.46 32.65 32.61 32.35 33.48
SSIM ↑ 0.483 0.492 0.505 0.513 0.783 0.817 0.870 0.882 0.898 0.899 0.894 0.912
LPIPSalex↓ 0.630 0.631 0.595 0.555 0.222 0.187 0.114 0.090 0.081 0.081 0.102 0.067

6.2 3D SHAPE REPRESENTATION

3D shape representation by Signed Distanced Functions (SDFs) has the advantage of modeling
complex topologies. Therefore, representing SDFs has been widely adopted to test INRs models
(Sitzmann et al., 2020; Saragadam et al., 2023; Cai et al., 2024; Shi et al., 2024a). In this section, we
evaluate IGA on this task. Five 3D objects from the public dataset (Martel et al., 2021; Zhu et al.,
2024) are utilized by previous settings of (Saragadam et al., 2023; Shi et al., 2024a), which sample
data points over a 5123 grid. We unfold these data points dimensionally and partition them into
numerous groups, each containing 256 points. For each iteration, we randomly draw 512 groups
and generalize the inductive gradient adjustments on these groups. The sampling strategy and MLP
architecture are consistent with Experiment 6.1. We use Adam optimizer to minimize the ℓ2 loss
between voxel values and INRs approximations. For fair comparison, the same training strategy are
adopted for FR, BN and IGA. The detailed training strategy can be found in our Appendix E.

Table 2: Intersection over Union (IOU) of 3D shape representation by different methods. The
detailed settings can be found in Sec. 6.1. The results for each scenario are provided in the Appendix.

Average ReLU PE SIREN
Metric Vanilla +FR +BN +IGA Vanilla +FR +BN +IGA Vanilla +FR +BN +IGA

IOU ↑ 9.647e-1 9.654e-1 9.542e-1 9.733e-1 9.942e-1 9.961e-2 9.938e-1 9.970e-1 9.889e-1 9.866e-1 9.825e-1 9.897e-1

In Table 2, we report the average intersection over union (IOU) metrics of five objects for reference.
Under our training settings, baseline models optimized by vanilla gradient has converged to a fa-
vorable optimum, significantly outperforming prior works (Saragadam et al., 2023; Cai et al., 2024;
Shi et al., 2024a). Nevertheless, our IGA method enables models to explore superior optima by
purposefully improving the spectral bias, thereby leading to further improvements in representation
accuracy such as more sharper edges. More results in our Appendix E.
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Ground truth PE (0.9897) PE+FR (0.9929) PE+BN (0.9912) PE+IGA (0.9943)Thai

Figure 5: Visual examples of 3D shape representation results by different training dynamics meth-
ods. Five images on the right correspond to the enlarged views of the red-boxed area of five models.

6.3 LEARNING 5D NEURAL RADIANCE FIELDS

Learning neural radiance fields for novel view synthesis, i.e., NeRF, is the main application of INRs
(Mildenhall et al., 2021; Saragadam et al., 2023; Xie et al., 2023; Shi et al., 2024a). The main
process of NeRF is to build a neural radiance field from a 5D coordinate space to RGB space by
a MLP f(x,Θ). Specifically, given a ray i from the camera into the scene, the MLP takes the 5D
coordinates (3D spatial locations and 2D view directions) of N points along the ray as the inputs
and outputs the corresponding color c and volume density σ. Then c and σ are combined using
numerical volume rendering to obtain the final pixel color of the ray i. We set each ray as one group
. For each group, we sample the point with the maximum integral weight. We apply our method
to the original NeRF (Mildenhall et al., 2021). The ”NeRF-pytorch” codebase (Yen-Chen, 2020) is
used and we follow its default settings for all methods. More details can be found in Appendix F.

Table 3: Average metrics of 5D neural radiance
fields by different methods. Detailed settings can
be found in Sec. 6.3. Per-scene results are pro-
vided in our Appendix F.

Metrics NeRF NeRF+FR NeRF+BN† NeRF+TDS

PSNR ↑ 31.23 31.35 31.37 31.47
SSIM ↑ 0.953 0.954 0.956 0.955
LPIPS ↓ 0.029alex 0.028alex 0.050 0.027alex

† Use values reported on the paper (Cai et al., 2024).

Table 3 lists average metrics of four methods
on the down-scaled Blender dataset (Milden-
hall et al., 2021). Our methods achieves the
best results among these methods. The average
improvement of our method is up to 0.21dB,
which is nearly twice that of FR and BN. Vi-
sualization results in our Appendix F show that
our IGA enables NeRF to capture more accu-
rate and high-frequency reconstruction results,
thereby improving PSNR values.

7 CONCLUSION

In this paper, we propose an effective gradient
adjustment strategy to purposefully improve the spectral bias of multi-layer perceptrons (MLPs) for
better implicit neural representations (INRs). We delve into the linear dynamics model of MLPs
and theoretically identify that the empirical Neural Tangent Kernel (eNTK) matrix connect spectral
bias with the linear dynamics of MLPs. Based on eNTK matrix, we propose our inductive gradient
adjustment method via inductive generalization of gradient adjustments from sampled data points.
Both theoretical and empirical analysis are conducted to validate impacts of our method on spectral
bias. Further, we validate our method on various real-world vision applications of INRs. Our method
can effectively tailor improvements on spectral bias and lead to better representation for common
INRs network architectures. We hope our study could inspire future works to focus on controlling
the bias of neural networks by adjusting training dynamics and yield better performance.
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A PROOFS FOR SECTION 4

In this section, we give proofs of theorem in the section 4 and more detailed explanation of our
theoretical results.

A.1 ANALYSIS FRAMEWORK

For the sake of simplicity and to focus on the core aspects of the problem, we follow the previous
works (Lee et al., 2019; Geifman et al., 2023; Arora et al., 2019), and perform a theoretical analysis
on the basis of the following framework: assuming that the training set {xi, yi}Ni=1 is contained in
some compact set, a two-layer network f(x; Θ) with m neurons is formalized as follows to fit these
data:

f(x; Θ) =
1√
m

m∑
r=1

arσ(w
⊤
r x+ br), (10)

where the activation function σ satisfies that |σ(0)|, ∥σ′∥∞, supx ̸=x′ |σ′(x)−σ′(x′)|/|x−x′| < ∞.
The parameters of f(x; Θ) are randomly initialized with N (0, cσ

m ), except for biases initialized with
N (0, cσ), where cσ = 1/Ez∼N (0,1)[σ(z)

2]. The loss function is 1
2

∑N
i=1(f(xi,Θt) − yi)

2. Then,
the NTK matrix K and the empirical NTK matrix K̃ is defined as follows:

K = EΘ0
[∇Θ0

f(X; Θ0)
⊤∇Θ0

f(X; Θ0)] (11)

K̃ = ∇Θt
f(X; Θt)

⊤∇Θt
f(X; Θt), (12)

where ∇Θf(X; Θ) ∈ Rq×N ; q is the number of parameters. We assume that K, K̃ are full rank
indicating that they are positive definite. Then we have the following standard orthogonal spectral
decomposition: K =

∑N
i=1 λiviv

⊤
i and K̃ =

∑N
i=1 λ̃iṽiṽi

⊤, which eigenvalues are indexed in
descending order of magnitude. We construct the corresponding transformation matrices as S =∑N

i=1
g(λi)
λi

viv
⊤
i and S̃ =

∑N
i=1

g(λ̃i)

λ̃i
ṽiṽ

⊤
i . From Jacot et al. (2018); Du et al. (2018); Arora et al.

(2019); Geifman et al. (2023), we have that:

lim
m→∞

∥K − K̃∥F = 0. (13)

A.2 BASIC LEMMAS

In this section, we show some basic lemmas. Lemma 1 describes the local properties of f(x,Θ).
Based on Lemma 1, we derive Lemma 2, 3 and 4, which characterize training dynamics of f(x,Θ)
under different adjusted gradients.

Lemma 1. (Modified from Lemma A.1 of Geifman et al. (2023)) For bounded matrices, i.e., I,S, S̃,
there is a κ > 0 such that for every C > 0, with high probability over random initialization the
following holds: ∀Θ, Θ̃ ∈ B(Θ0, Cm− 1

2 ) at time step t:

∥(∇Θf(X)−∇Θ̃f(X))A∥F ≤ κ√
m
∥Θ− Θ̃∥F (14)

∥∇Θf(X)A∥F ≤ κ√
m

(15)

where A can be I,S, S̃.

As discussed in Lee et al. (2019); Geifman et al. (2023), the core of Lemma 1 is the requirement
that matrix A is bounded. Therefore, Lemma 1 clearly holds.
Lemma 2. The parameters are updated by: Θt+1 = Θt − η∇Θtf(X,Θt)Srt with η <

2
min(g(λ))+max(g(λ)) . For ϵ > 0, there always exists M > 0, when m > M , such that with high
probability over the random initialization, we have that :

∥rt+1∥22 =

N∑
i=1

(1− ηg(λi))
2(v⊤

i rt)
2 ± ξ(t), (16)

where rt = (f(xi,Θt)− yi)
N
i=1 and |ξ(t)| < ϵ

14
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Proof. By the mean value theorem with respect to parameters Θ, we can have that:

rt+1 = rt+1 − rt + rt = ∇Θ′
t
f(X)⊤(Θt+1 −Θt) + rt = ∇Θ′

t
f(X)⊤(−η∇Θt

f(X)Srt) + rt

= (I − ηKS)rt + η(K − K̃)Srt︸ ︷︷ ︸
A

+ η(∇Θt
f(X)−∇Θ′

t
f(X))⊤∇Θt

f(X)Srt︸ ︷︷ ︸
B

,

where Θ′
t lies on the line segment ΘtΘt+1. We define that ξ′(t) = A+B. For ∥A∥, we have that:

∥A∥ ≤ η∥(K − K̃)Srt∥ ≤ η∥K − K̃∥F ∥S∥F ∥rt∥2
≤(1) ηLR0∥K − K̃∥F ≤(2) ϵ

2

where (1) follows Geifman et al. (2023) that S and rt are bounded by constants L and R0, respec-
tively; (2) follows the equation 13.

For ∥B∥, we have that:

∥B∥ ≤ η∥∇Θt
f(X,Θt)−∇Θ′

t
f(X,Θ′

t)∥F ∥∇Θt
f(X)S∥F ∥rt∥2 ≤ ηκ2R0

m
∥Θt −Θ′

t∥2

≤ ηκ2R0

m
∥Θt −Θt+1∥2 ≤ ηκ2R0

m
∥η∇Θtf(X,Θt)Srt∥ ≤(1) η2κ3R2

0

m3/2

where (1) follows the Lemma 1. Therefore, we have that rt+1 =
∑N

i=1(1−ηg(λi))(v
⊤
i rt)vi±ξ′(t);

there always exits M1 > 0, such that m > M1, ∥ξ′(t)∥ ≤ ∥A∥+ ∥B∥ < ϵ. Further, we have that:

∥rt+1∥22 =

N∑
i=1

(1− ηg(λi))
2(v⊤

i rt)
2 + ∥ξ′(t)∥22 ± 2ξ′(t)⊤

N∑
i=1

(1− ηg(λi))(v
⊤
i rt)vi

=

N∑
i=1

(1− ηg(λi))
2(v⊤

i rt)
2 + ∥ξ′(t)∥22 ± 2ξ′(t)⊤(rt ± ξ′(t))︸ ︷︷ ︸

ξ(t)

For ξ(t), as rt+1 is bounded by R0, there always exists M > M1, such that:

|ξ(t)| ≤ 3∥ξ′(t)∥22 + 2R0∥ξ′(t)∥22 < ϵ.

Lemma 3. The parameters are updated by: Θt+1 = Θt − η∇Θt
f(X,Θt)S̃rt with η =

2
max(g(λ̃))+min(g(λ̃))

. For ϵ > 0, there always exists M > 0, when m > M , such that with high
probability over the random initialization , we have that :

∥r̃t+1∥22 =
N∑
i=1

(1− ηg(λ̃i))
2(ṽi

⊤rt)
2 ± ξ̃(t), (17)

where rt = (f(xi,Θt)− yi)
N
i=1 and |ξ̃(t)| < ϵ

Proof. By the mean value theorem with respect to parameters Θ, we can have that:

rt+1 = rt+1 − rt + rt = ∇Θ′
t
f(X,Θ′

t)
⊤(Θt+1 −Θt) + rt = ∇Θ′

t
f(X,Θ′

t)
⊤(−η∇Θt

f(X,Θt)S̃rt) + rt

= (I − ηKtS̃)rt + η(∇Θtf(X,Θt)−∇Θ′
t
f(X,Θ′

t))
⊤∇Θtf(X)S̃rt︸ ︷︷ ︸

ξ̃′(t)

.

For ξ̃′(t), we follow the same technique in the proof of 2. Then we can have that:

∥ξ̃′(t)∥ ≤ η∥∇Θt
f(X)−∇Θ′

t
f(X)∥F ∥∇Θt

f(X)St||F ||rt||2 ≤ η
κ2

m
∥Θt −Θ′

t∥2

≤ ηκ2R0

m
∥Θt −Θt+1∥2 ≤ η2κ2R2

0

m3/2
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Therefore, we have that rt+1 =
∑N

i=1(1 − ηg(λ̃i))(ṽ
⊤
i rt)ṽi ± ξ̃′(t); there always exits M1 > 0,

such that m > M2, ∥ξ̃′(t)∥ < ϵ. Further, we have that:

∥rt+1∥22 =

N∑
i=1

(1− ηg(λ̃i))
2(ṽ⊤

i rt)
2 + ∥ξ̃′(t)∥22 ± 2ξ̃′(t)⊤

N∑
i=1

(1− ηg(λ̃i))(ṽi
⊤rt)ṽi

=

N∑
i=1

(1− ηg(λ̃i))
2(ṽ⊤

i rt)
2 + ∥ξ̃′(t)∥22 ± 2ξ̃′(t)⊤(rt ± ξ̃′(t))︸ ︷︷ ︸

ξ̃(t)

For ξ(t), as rt+1 is bounded by R0, there always exists M > M2, such that:

|ξ̃(t)| ≤ 3∥ξ̃′(t)∥22 + 2R0∥ξ̃′(t)∥22 < ϵ.

Lemma 4. The parameters are updated by vanilla gradient descent. For ϵ > 0, there always exists
M > 0, when m > M , such that with high probability over the random initialization, we have that:

f(xi,Θt+1)− f(xi,Θt) = −η∇Θt
f(xi,Θt)

⊤
N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)± ξ′i(t), (18)

where |ξ′i(t)| < ϵ.

Proof. By the mean value theorem with respect to parameters Θ, we can have that:

f(xi,Θt+1) = ∇Θ′
t
f(xi,Θ

′
t)

⊤(Θt+1 −Θt) + f(xi,Θt)

= ∇Θ′
t
f(xi,Θ

′
t)

⊤[−η

N∑
j=1

∇Θt
f(xi,Θt)(f(xj ,Θt)− yj)] + f(xi,Θt)

= −η∇Θt
f(xi,Θt)

⊤
N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj) + f(xi,Θt) + ξ′i(t).

For ξ′i(t), we have that:

|ξ′i(t)| = |(∇Θ′
t
f(xi,Θ

′
t)−∇Θt

f(xi,Θt))
⊤

N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)|

≤ ∥∇Θ′
t
f(xi,Θ

′
t)−∇Θt

f(xi,Θt)∥2∥
N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)∥2

≤ ∥∇Θ′
t
f(xi,Θ

′
t)−∇Θtf(xi,Θt)∥2∥∇Θtf(X,Θt)∥2∥rt∥2

≤(1) κ2R0

m
∥Θt+1 −Θt∥2 ≤(2) ηκ3R2

0

m3/2
,

where (1), (2) follow the Lemma 1 and rt is bounded by R0; Therefore, there exists M > 0, such
that m > M , we have that |ξ′i(t)| < ϵ

Lemma 2 and lemma 3 show the training dynamics of the residual rt by K-based and K̃-based
gradient adjustments. Equation 16 shows that g(λi) controls the decay rates of different frequency
components of the residual rt as eigenvectors of K are the spherical harmonics (Ronen et al.,
2019). Despite K̃-based and K-based gradient adjustment have the similar form, they differ in
the eigenvector directions ṽi, which leads to errors. We give a theoretical analysis to this error in
4.1.
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A.3 PROOF OF THEOREM 4.1

Theorem A.1. (Theorem 4.1 from the paper) The following standard orthogonal spectral decom-
position exists: K =

∑N
i=1 λiviv

⊤
i and K̃ =

∑N
i=1 λ̃iṽiṽi

⊤, satisfying that v⊤
i ṽi > 0 for

i ∈ [N ]. We denoted as maxi{min{λi − λi+1, λi+1 − λi+2}} = G. Let {gi(x)}Ni=1 be a set
of Lipschitz continuous functions, with the Supremum of their Lipschitz constants denoted by k, with
η < min{(max(g(λ)) +min(g(λ)))−1, (max(g(λ̃)) +min(g(λ̃)))−1}, for ϵ > 0, there always
exists M > 0, such that m > M , for i ∈ [N ], we have that |g(λi) − g(λ̃i)| < ϵ1, ∥vi − ṽi∥ < ϵ2;
furthermore, we have that:

|(1− ηg(λ̃i))
2(ṽi

⊤rt)
2 − (1− ηg(λi))

2(v⊤
i rt)

2| < ϵ3, ∥rt+1 − r̃t+1∥ < ϵ4,

where ϵ1 = kϵ; ϵ2 = (23/2ϵ)/G; ϵ3 = 8R0

G2 (kηϵ3 + (v + 1)ϵ2 + (v2 + Gv)ϵ); ϵ4 = ϵN(( 16vR0

G +

ηkv2R0) + ϵ2) + 2ϵ; v, k,R0 are constants.

Proof. We define that the perturbation of K as E = K−K̃. As previously discussed, we have that
limm→∞ ∥K − K̃∥F = 0. Therefore, for any 0 < ϵ there always exists M0, such that m > M0,
we have that ∥E∥F < ϵ. As K, K̃ are real symmetric matrices, E is still a real symmetric matrix.
This indicates that:

∥E∥2 =
√
λ′
1
2 ≤

√√√√ N∑
i=1

λ′
i
2 =

√
trace(E⊤E) = ∥E∥F

where λ′
i is the largest eigenvalue of E.

By Wely’s inequality, when m > M0, for i = 1, . . . , N , we have that |λi − λ̃i| ≤ ∥E∥2 < ϵ. As
gi(λ) is a Lipschitz continuous function with the Lipschitz constant k, for i ∈ [N ], we have that:

|g(λi)− g(λ̃i)| ≤ k|λi − λ̃i| < kϵ

Therefore, for any 0 < ϵ, there always exists M0, such that |g(λi)− g(λ̃i)| < kϵ. By the Corollary
3. of Yu et al. (2015) that a variant of Davis-Kahan theorem, we have that:

∥ṽi − vi∥ ≤ 23/2∥E∥2
G

<
23/2ϵ

G
, i ∈ [N ]

Then, we have that:

|(1− ηgi(λi))
2(v⊤

i rt)
2 − (1− ηgi(λ̃i))

2(ṽi
⊤rt)

2|
=|(1− ηgi(λi))

2(v⊤
i rt)

2 − (1− ηgi(λi))
2(ṽ⊤

i rt)
2 + (1− ηgi(λi))

2(ṽ⊤
i rt)

2 − (1− ηgi(λ̃i))
2(ṽi

⊤rt)
2|

< |(1− ηgi(λi))(v
⊤
i rt + ṽ⊤

i rt)(v
⊤
i rt − ṽ⊤

i rt)|︸ ︷︷ ︸
A

+ |η(gi(λ̃i)− gi(λi))(ṽ
⊤
i rt)

2|︸ ︷︷ ︸
B

.

For A, we have that:

A < |1− ηgi(λi)| · ∥v⊤
i + ṽ⊤

i ∥2∥v⊤
i − ṽ⊤

i ∥2∥rt∥22

< |1− ηgi(λi)| · (2∥v⊤
i ∥+ ∥ṽ⊤

i − vi∥2)∥ṽ⊤
i − vi∥2∥rt∥22 < ϵ

8R2
0(G∥v⊤

i ∥+ ϵ)

G2

As S is fixed, we have that a constant v to bound ∥vi∥, for i ∈ [N ] . Therefore, for ϵ > 0, there
always exists M , such that m > M0, we have that A <

8R2
0(ϵGv+ϵ2)

G2 .

For B, we have that:

B < η|gi(λ̃i)− gi(λi)|(ṽ⊤
i rt)

2 < ϵkη(∥ṽ⊤
i − v⊤

i ∥∥rt∥+ ∥vi∥∥rt∥)2 < ϵkηR0(
23/2

G
ϵ+ v)2

Further, we have that:

|(1− ηgi(λi))
2(v⊤

i rt)
2 − (1− ηgi(λ̃i))

2(ṽi
⊤rt)

2| < 8R0

G2
(kηϵ3 + (v + 1)ϵ2 + (v2 +Gv)ϵ)

17
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Following these analytical approaches, it is trivial to have the following result:

|(1− ηg(λi))(v
⊤
i rt)vi − (1− ηg(λ̃i))(ṽi

⊤rt)ṽi| < ϵ(
16vR0

G
+ ηkv2R0) + ϵ2.

Combing this result with the Lemma 2 and 3, there always exists M > max{M0,M1,M2}, we
have that:

∥rt+1 − r̃t+1∥ = ∥
N∑
i=1

[(1− ηg(λi))(v
⊤
i rt)vi − (1− ηg(λ̃i))(ṽi

⊤rt)ṽi]± ξ′(t)± ξ̃′(t)∥

< ϵN((
16vR0

G
+ ηkv2R0) + ϵ2) + ∥ξ′(t)∥+ ∥ξ̃′(t)∥

< ϵN((
16vR0

G
+ ηkv2R0) + ϵ2) + 2ϵ

A.4 PROOF OF THEOREM 4.2

Theorem A.2. (Theorem 4.2 from the paper) X = {xi}Ni=1 are partitioned by order into n shared
groups, where each group is Xj = {xj

1, . . . ,x
j
p} and N = np. For each group, one data point

is sampled denoted as xj and these n data points form Xe = {xj}nj=1, n ≪ N . There exists
ϵ > 0, for j = 1, . . . , n and any 1 ≤ i1, i2 ≤ p, such that |(f(xj

i1
,Θt) − yji1) − (f(xj

i2
,Θt) −

yji2)|, ∥∇Θt
f(xj

i1
)−∇Θt

f(xj
i2
)∥ < ϵ. Then, for any xi, assumed that xi belongs to Xji , such that:

|∆f(xi,Θt)−∇Θt
f(xji ,Θt)

⊤[p

n∑
j=1

∇Θt
f(xj ,Θt)(f(x

j)−yj)]| < ϵ(
(κ+ n3/2)R0√

m
)+

ηκ3R2
0

m3/2
,

where ∆f(xi,Θt) = (rt+1 − rt)i denotes the dynamics of f(x,Θ) at time step t; R0, κ are con-
stants; ∇Θt

f(xji ,Θ)⊤∇Θt
f(xj ,Θ) is the entry in K̃e(i, j).

Proof. From the equation 18 of lemma 4, we consider the following error:

|∇Θt
f(xi,Θt)

⊤
N∑
i=1

∇Θt
f(xi,Θt)(f(xi,Θt)−yi)−∇Θt

f(xji ,Θt)
⊤[p

n∑
j=1

∇Θt
f(xj ,Θt)(f(x

j)−yj)]|.

Following previous analysis technique, this error can be bounded by A+B. For A, we have that:

A = ∥(∇Θt
f(xi,Θt)

⊤ −∇Θt
f(xji ,Θt)

⊤)

N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)∥

≤ ∥∇Θt
f(xi,Θt)−∇Θt

f(xji ,Θt)∥∥
N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)∥

≤ ϵ∥∇Θt
f(X,Θt)Irt∥ ≤ ϵ

κR0√
m

For B, we have that:

B = ∥∇Θt
f(xji ,Θt)

⊤(

N∑
j=1

∇Θt
f(xj ,Θt)(f(xj ,Θt)− yj)− p

n∑
j=1

∇Θt
f(xj ,Θt)(f(x

j)− yj))∥

≤ ∥∇Θt
f(xji ,Θt)

⊤∥ ·
p∑

j=1

n∑
i=1

∥∇Θt
f(xj ,Θt)(f(x

j ,Θt)− yj)−∇Θt
f(xj

i ,Θt)(f(x
j
i ,Θt)− yji )∥

(19)

≤ ∥∇Θtf(x
ji ,Θt)

⊤∥ ·
p∑

j=1

n∑
i=1

ϵ(|f(xj ,Θt)− yj |+ ∥∇Θtf(x
j
i ,Θt)∥)

≤ ϵ∥∇Θt
f(xji ,Θt)

⊤∥(n3/2R0 +
κ√
m
) ≤ ϵ(

n3/2R0κ√
m

+
κ2

m
).

18
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We define that ϵ′ = A+B. By the lemma 4, we have that:

f(xi,Θt+1)− f(xi,Θt) = ∇Θtf(x
ji ,Θt)

⊤[p

n∑
j=1

∇Θtf(x
j ,Θt)(f(x

j)− yj)]± ϵ′ ± ξ′i(t),

where |ϵ′| ≤ ϵ(κR0√
m

+ n3/2R0κ√
m

+ κ2

m ) ≤ ϵ( (κ+n3/2)R0+κ2

√
m

); |ξ′i(t)| ≤
ηκ3R2

0

m3/2 . Based on this, the
following vector form can be derived:

rit+1 = pK̃er
e
t ± ϵ′ ± ξ′(t) (20)

, where rit+1 = (f(xj
i ,Θt)− yji )

m
j=1, r

e
t = (f(xj ,Θt)− yj).

Further, from the derived expression equation 19, we observe that for different rit+1 we can replace
ret with rit as the the pairwise cancellation of some error terms.

B ABLATION STUDIES OF SAMPLING STRATEGY

As discussed in Sec. 3.3 , we conduct ablation studies about the effect of sampling points and the
size p of sampling group. All experiments are conducted on the first three images of Kodak 24
dataset and the average PSNR values are reported for reference.

B.1 THE EFFECT OF SAMPLING POINTS

In this subsection, we examine sampling point selection. We randomly sample one point from each
group in each iteration, referring to the resulting MLPs as randomly sampling (RI). Additionally, we
implement a variant where random sampling occurs only at the beginning, denoting these MLPs as
randomly sampling initially (RSI). We also introduce sampling based on the largest residual, termed
SLR. Table 4 presents the average PSNR results while remain the same settings as in Experiment
6.1, demonstrating that our method significantly improves various sampling strategies, with SLR
yielding the best average performance. Consequently, we adopt SLR for sampling strategy.

Table 4: Ablation experiments on the effect of sampling points. SLR denotes the sampling based
on the largest residual in each iteration. RSI denotes the random sampling initially. RI denotes the
random sampling in each iteration.

Method ReLU+IGA PE+IGA SIREN+IGA Average

SLR 25.44 34.09 34.85 31.46
RSI 25.52 33.77 33.76 31.02
RI 25.19 34.05 33.69 30.98

Vanilla 24.09 30.46 33.70 29.42

B.2 SAMPLING GROUP AND TRAINING TIME

The size p of the sampling group influences the level of data similarity within the group and hard-
ware requirements. Intuitively, a smaller sampling group size reduces errors in estimating training
dynamics and allows for more accurate tailored impacts on spectral bias, leading to improved repre-
sentation performance. However, this leads to a larger matrix K̃, which results in longer run times
and greater memory usage.

To further explore the effect of different sizes of sampling groups, we follow the MLP architecture
in Experiment 6.1. All training settings are remained. We vary the size from 16× 16 to 128× 128.
Larger sizes correspond to coarser estimates of the dynamics. We report the average training time
of each iteration.

As shown in Table 5, our method under all sampling sizes has the significant improvement com-
paring to the baseline models. Particularly, when the size is 128 × 128 that means that the size
of K is only 24 × 24, it still improves the representation performance. That means that relatively
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low-precision estimates are sufficient to achieve representation improvements. Further, as the sam-
pling interval decreases, representation accuracy improves; however, the extent of this improvement
gradually diminishes with smaller intervals. Specifically, reducing the sampling size from 642 to
322 nearly doubles the average increment ∆avg. In contrast, the increment becomes negligible when
reducing from 322 to 162, while the time required for 162 increases fivefold. This indicates that,
in practical applications, there is no need to consider more precise sampling intervals; a relatively
coarse partition suffices to achieve substantial improvements while maintaining efficiency.

Table 5: Ablation experiments on sampling group size p. ∆avg denotes the average increment across
three model architectures.

p ReLU+IGA PE+IGA SIREN+IGA ∆avg Time (ms)

162 25.49 34.25 34.87 +2.12 256.51
322 25.44 34.09 34.85 +2.04 56.33
642 25.19 32.54 34.10 +1.19 39.76
1282 25.06 32.08 33.75 +0.88 39.61

Vanilla 24.09 30.46 33.70 - 30.00

C EMPIRICAL ANALYSIS ON SIMPLE FUNCTION APPROXIMATION

In this section, we first visualize more experimental results Experiment 1 in our paper. Subse-
quently, we examine impacts on spectral bias of ReLU and SIREN with varying numbers of balanced
eigenvalues under different group sizes from Experiment 2.

As can been seen in Fig. 7, the same trend as our observations in our paper, with the width increases,
the differences on MSE curves and spectrum between gradient adjustments by S, S̃ and S̃e gradually
diminish when end = 13, 15. This is consistent with our Theorem 4.1 and the analysis of our
Theorem 4.2. As shown in Fig. 7, 8 and 9, impacts on spectral bias are gradually amplified by
increasing the number of balanced eigenvalues of S̃e, which is also consistent with the observations
in our paper. The above empirical results corroborate our theoretical results and illustrate that how
our inductive gradient adjustment method tailor impacts on spectral bias.

D PER-SCENE RESULTS OF 2D COLOR IMAGE APPROXIMATION

In this section, we provide metrics of each image and give more visualization. Peak signal to noise
ratio (PSNR) of 2D color image approximation results are shown in Table 6. Structural Similarity
Index Measure (SSIM) of 2D color image approximation results are shown in Table 7. Learned
Perceptual Image Patch Similarity (LPIPS) by the ’alex’ in Zhang et al. (2018) of 2D color image
approximation results are also reported in Table 8. We visualize the representation results of all
methods on Kodak 5 and Kodak 6 in Fig. 10.

As can be seen in Table 6, 7 and 8, our IGA method achieve the best average results in three metrics
across three model architectures. And better representation results can be found in Fig. 10.

E EXPERIMENTAL DETAILS AND PER-SCENE RESULTS OF 3D SHAPE
REPRESENTATION

In this section, we firstly introduce the detailed training strategy. Then we provide the intersection
over union (IOU) metric value of each 3D shape and give more visualization.

Following previous works (Saragadam et al., 2023; Shi et al., 2024a; Cai et al., 2024), we train
all models for 200 epochs with a learning rate decay exponentially to 0.1 of initial rates. We set
the initial learning rate as 2e − 3 for ReLU and PE; For SIREN, we set the initial learning rate as
5e − 4. FR, BN and our IGA method are adopted the same learning rate with baseline models. We
set end = 7 for ReLU and PE; For SIREN, we set end = 14. The per-scene results are reported in
Table 11. It can be observed that our IGA method achieves improvements in IOU metrics across all
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Figure 6: Evolution of approximation error with training iterations on time domain and Fourier
domain. Line plots visualize the MSE loss curves of MLPs. Heatmaps show the relative error ∆k

on four frequency bands, where the frequency indices are labeled in ascending order based on their
frequency values. SGD-S̃e-11 denotes that the MLP with ReLU optimized using gradients adjusted
by S̃e with end = 11 and group size p = 8.

Table 6: Peak signal to noise ratio (PSNR ↑) of 2D color image approximation results by different
methods. The detailed settings can be found in Sec. 6.1.

Method Kodak1 Kodak2 Kodak3 Kodak4 Kodak5 Kodak6 Kodak7 Kodak8 Average

ReLU 19.78 26.62 25.88 24.70 17.70 21.98 21.52 16.07 21.78
ReLU+FR 19.96 26.63 26.53 25.31 18.05 22.03 22.13 16.52 22.14
ReLU+BN 20.21 27.24 27.24 25.52 18.55 22.26 22.66 16.75 22.55
ReLU+IGA 20.42 27.71 28.20 26.17 18.81 22.69 22.96 16.99 23.00

PE 26.07 32.51 32.80 31.37 24.60 27.28 31.74 22.79 28.64
PE+FR 26.95 32.23 33.92 32.14 26.63 28.49 32.71 24.85 29.74
PE+BN 29.22 35.03 35.67 33.96 27.42 30.03 35.54 26.36 31.65
PE+IGA 29.17 35.18 37.91 35.07 28.06 31.27 36.60 26.41 32.46

SIREN 29.61 35.19 36.31 35.10 29.74 31.01 36.73 27.50 32.65
SIREN+FR 30.00 34.73 36.95 34.87 29.72 30.79 36.31 27.52 32.61
SIREN+BN 29.11 34.75 36.86 34.74 29.33 30.41 36.53 27.08 32.35
SIREN+IGA 30.10 35.85 38.60 35.80 30.13 31.94 37.68 27.73 33.48

objects, and achieves the best performance in average metrics of all objects. We visualize the Thai
and Lucy objects in Fig. 11.

F EXPERIMENTAL DETAILS AND PER-SCENE RESULTS OF LEARNING
NEURAL RADIANCE FIELDS

In this section, we firstly introduce some training details. Then we provide metrics of each scenario
and give more visualization. As previously discussed in Experiment 6.3, we apply our method on
the original NeRF model (Mildenhall et al., 2021). The original NeRF model adopts two models:
“coarse” and “fine” models. We adjust the gradients of the “fine” model as it captures more high-
frequency details and remain gradients of the “coarse” model. The “NeRF-pytorch” codebase (Yen-
Chen, 2020) is used and we follow its default settings. Besides, we also compare to previous training
dynamics methods, i.e., FR and BN. Their hyperparaemters follows their publicly codes. Generally,
we set the end = 25. For more complex scenes, such as the branches and leaves of the ficus, we set
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Figure 7: Progressively amplified impacts on spectral bias of ReLU and SIREN by increasing the
number of balanced eigenvalues of S̃e when the group size is 8. ReLU denotes that the MLP
with ReLU optimized using vanilla gradients; ReLU-S̃e-2-IGA-8 denotes that the MLP with ReLU
optimized using gradients adjusted by S̃e with end = 2 and group size is 8. Results of other numbers
of balanced eigenvalues can be found in the Appendix.

the end = 30 to achieve better learning of high frequencies. We report per-scene results in Table 10
and visualize several scenes in Fig. 12.
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Figure 8: Comparison of group sizes with varying balanced eigenvalues on Relative Error at 5, 10,
15, 20, 25, 30Hz of ReLU. IGA-1 denotes that the group size is 1, i.e., the eNTK-based gradient
adjustment; IGA-4 denotes that the group size is 4 for IGA; Baseline denotes MLPs with ReLU
activation function optimized by vanilla gradients.

Table 7: Structural Similarity Index Measure (SSIM ↑) of 2D color image approximation results by
different methods. The detailed settings can be found in Sec. 6.1.

Method Kodak1 Kodak2 Kodak3 Kodak4 Kodak5 Kodak6 Kodak7 Kodak8 Average

ReLU 0.2978 0.6455 0.7235 0.6199 0.2797 0.4531 0.5681 0.2785 0.4833
ReLU+FR 0.3063 0.6450 0.7310 0.6302 0.2920 0.4546 0.5789 0.2972 0.4919
ReLU+BN 0.3177 0.6548 0.7426 0.6375 0.3164 0.4660 0.5979 0.3044 0.5047
ReLU+IGA 0.3298 0.6628 0.7564 0.6387 0.3195 0.4753 0.5946 0.3232 0.5126

PE 0.7193 0.8126 0.8634 0.8077 0.7371 0.7553 0.8911 0.6790 0.7832
PE+FR 0.7653 0.8082 0.8819 0.8266 0.8074 0.7953 0.8947 0.7546 0.8167
PE+BN 0.8473 0.8803 0.9137 0.8783 0.8395 0.8531 0.9372 0.8097 0.8699
PE+IGA 0.8458 0.8806 0.9402 0.8994 0.8542 0.8778 0.9462 0.8132 0.8822

SIREN 0.8715 0.8948 0.9168 0.9060 0.9040 0.8689 0.9534 0.8643 0.8975
SIREN+FR 0.8781 0.8869 0.9308 0.9011 0.8971 0.8797 0.9536 0.8654 0.8991
SIREN+BN 0.8595 0.8818 0.9366 0.9002 0.8958 0.8661 0.9545 0.8552 0.8937
SIREN+TDS 0.8830 0.9070 0.9492 0.9173 0.9110 0.8996 0.9606 0.8688 0.9121
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Figure 9: Comparison of group sizes with varying balanced eigenvalues on Relative Error at 10, 20,
30, 40, 50, 60Hz of SIREN. IGA-1 denotes that the group size is 1, i.e., the eNTK-based gradient
adjustment; IGA-4 denotes that the group size is 4 for IGA; Baseline denotes the SIREN optimized
by vanilla gradients.

Table 8: Learned Perceptual Image Patch Similarity (LPIPS ↓) of 2D color image approximation
results by different methods. The detailed settings can be found in Sec. 6.1.

Method Kodak1 Kodak2 Kodak3 Kodak4 Kodak5 Kodak6 Kodak7 Kodak8 Average

ReLU 0.7571 0.5392 0.4000 0.5547 0.7788 0.5854 0.6172 0.8089 0.6302
ReLU+FR 0.7692 0.5513 0.3871 0.5362 0.7829 0.6110 0.6131 0.8008 0.6315
ReLU+BN 0.7332 0.5230 0.3530 0.4900 0.7115 0.5956 0.5652 0.7849 0.5945
ReLU+IGA 0.6857 0.4770 0.2927 0.4730 0.6695 0.5609 0.5278 0.7527 0.5549

PE 0.2803 0.2092 0.1062 0.2128 0.2643 0.2517 0.1218 0.3322 0.2223
PE+FR 0.2547 0.2278 0.0905 0.1897 0.1566 0.2179 0.1154 0.2426 0.1869
PE+BN 0.1378 0.1023 0.0545 0.1257 0.1435 0.1430 0.0455 0.1579 0.1138
PE+IGA 0.1363 0.0938 0.0256 0.0956 0.1056 0.1068 0.0310 0.1559 0.0938

SIREN 0.1052 0.0878 0.0661 0.0994 0.0654 0.0967 0.0271 0.0980 0.0807
SIREN+FR 0.0928 0.0888 0.0465 0.1121 0.0661 0.1258 0.0317 0.0865 0.0813
SIREN+BN 0.1289 0.1338 0.0424 0.1242 0.0847 0.1407 0.0313 0.1268 0.1016
SIREN+IGA 0.0895 0.0746 0.0246 0.0858 0.0628 0.0853 0.0199 0.0921 0.0668
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Figure 10: Visualization of 2D color image approximation results and PSNR values on Kodak 5
(top) and Kodak 6 (bottom). ReLU+IGA denotes that the MLPs with ReLU activation function are
optimized by our IGA method.

Table 9: Intersection over Union (IOU) of 3D shape representation by different methods. The
detailed settings can be found in Sec. 6.2 and Appendix E.

Method Thai Armadillo Dragon Bun Lucy Average

ReLU 0.9379 0.9756 0.9708 0.9924 0.9467 0.9647
ReLU+FR 0.9428 0.9756 0.9707 0.9914 0.9465 0.9654
ReLU+BN 0.9260 0.9677 0.9612 0.9873 0.9286 0.9542
ReLU+IGA 0.9563 0.9805 0.9793 0.9931 0.9571 0.9733

PE 0.9897 0.9956 0.9953 0.9985 0.9920 0.9942
PE+FR 0.9929 0.9979 0.9964 0.9990 0.9945 0.9961
PE+BN 0.9912 0.9960 0.9941 0.9987 0.9892 0.9938
PE+IGA 0.9943 0.9979 0.9975 0.9990 0.9961 0.9970

SIREN 0.9786 0.9908 0.9937 0.9953 0.9862 0.9889
SIREN+FR 0.9731 0.9935 0.9905 0.9972 0.9785 0.9866
SIREN+BN 0.9788 0.9931 0.9612 0.9970 0.9823 0.9825
SIREN+IGA 0.9802 0.9920 0.9938 0.9958 0.9868 0.9897
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Figure 11: Visualization of 3D shape representation results and IOU values on the Thai (top) and
the Lucy (bottom). ReLU+IGA denotes that the MLPs with ReLU activation function are optimized
by our IGA method.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 10: Per-scene results of learning 5D neural radiance fields by different methods. Details can
be found in Sec. 6.3 and Appendix F.

Methods Ship Materials Chair Ficus Hotdog Drums Mic Lego Average
PS

N
R
↑ NeRF 29.30 29.55 34.52 29.14 36.78 25.66 33.37 31.53 31.23

NeRF+FR 29.50 29.70 34.54 29.35 37.08 25.74 33.35 31.55 31.35
NeRF+IGA 29.49 29.87 34.69 29.38 37.22 25.80 33.48 31.83 31.47

SS
IM

↑ NeRF 0.8693 0.9577 0.9795 0.9647 0.9793 0.9293 0.9783 0.9626 0.9526
NeRF+FR 0.8729 0.9600 0.9797 0.9665 0.9792 0.9304 0.9786 0.9626 0.9537
NeRF+IGA 0.8716 0.9619 0.9807 0.9667 0.9801 0.9315 0.9791 0.9648 0.9546

L
PI

PS
↓ NeRF 0.077 0.021 0.011 0.021 0.012 0.052 0.022 0.019 0.029

NeRF+FR 0.071 0.020 0.011 0.019 0.013 0.050 0.021 0.019 0.028
NeRF+IGA 0.074 0.019 0.010 0.019 0.011 0.049 0.020 0.017 0.027

Ground truth NeRF (25.66dB) NeRF+IGA (25.80dB)

Ground truth

Ground truth

NeRF (31.53dB) NeRF+IGA (31.83dB)

NeRF (33.37dB) NeRF+IGA (33.48dB)

Figure 12: Visual examples of novel view synthesis results of NeRF and NeRF+IGA.
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