Under review as submission to TMLR

Concept Flow Models: Anchoring Concept-Based Reasoning
with Hierarchical Bottlenecks

Anonymous authors
Paper under double-blind review

Abstract

Concept Bottleneck Models (CBMs) enhance interpretability by projecting learned features
into a human-understandable concept space. Recent approaches leverage vision-language
models to generate concept embeddings, reducing the need for manual concept annotations.
However, these models suffer from a critical limitation: as the number of concepts approaches
the embedding dimension, information leakage increases, enabling the model to exploit
spurious or semantically irrelevant correlations and undermining interpretability. In this
work, we propose Concept Flow Models (CFMs), which replace the flat bottleneck with a
hierarchical, concept-driven decision tree. Each internal node in the hierarchy focuses on
a localized subset of discriminative concepts, progressively narrowing the prediction scope.
Our framework constructs decision hierarchies from visual embeddings, distributes
semantic concepts at each hierarchy level, and trains differentiable concept weights through
probabilistic tree traversal. Extensive experiments on diverse benchmarks demonstrate
that CFMs match the predictive performance of flat CBMs, while substantially mitigating
information leakage by reducing effective concept usage. Furthermore, CFMs yield stepwise
decision flows that enable transparent and auditable model reasoning with hierarchical
class structures.

1 Introduction

Deep Neural Networks have revolutionized many fields, yet their opaque decision-making poses significant
challenges to reliability, interpretability, and traceability, especially in safety-critical applications (Adadi &
Berrada, 2018} Rudin) 2019). Concept Bottleneck Models (CBMs) (Koh et al.l 2020) offer a step toward
interpretability by first predicting a set of human-understandable concepts, which are then used to predict
the final label. The original CBMs (see Fig. [1)) typically relied on feature extractors and manual concept
annotations to supervise concept prediction during training. Despite improving interpretability, CBMs face
two primary issues that limit their broader applicability: first, their reliance on manually labeled concepts
restricts scalability; second, they are prone to information leakage (Margeloiu et al., |2021; Mahinpei et al.l
2021; Havasi et al., [2022} [Parisini et al., [2025]), a phenomenon where learned concept representations
encode unintended information about the task label or other concepts beyond their predefined
semantics. This enables the model to achieve high accuracy by exploiting spurious correlations
in concept activations rather than their semantic content, thereby compromising interpretability.

To address these limitations, post-hoc CBMs (Yuksekgonul et al.l [2022) leverage pre-trained vision-language
models (VLMs) to embed a set of task-specific linguistic concept descriptions. By comparing these concept
embeddings with image feature embeddings, the model obtains concept activations, which are subsequently
weighted via a linear layer to generate the final prediction. In the remainder of this paper, we refer to this
VLM-based variant as “CBM?” for brevity, unless otherwise specified. While this approach removes the
need for explicit concept learning and costly manual annotation, the problem of information
leakage persists: pre-trained VLM embeddings inherently encode rich information beyond their
intended concept semantics, and the linear layer may exploit or misuse these embeddings to
achieve high accuracy. For example, when classifying images of cats, the model may rely on vehicle-related
concepts such as “body paint” or “doors”, which are unrelated to animals but spuriously correlate with the

Under review as submission to TMLR

target class. Previous studies (Yan et al., [2023; Shang et all [2024) have shown that as the number of concept
embeddings approaches the feature embedding dimension, even random concepts—those entirely unrelated to
the task—can allow the model to maintain high accuracy, thereby severely undermining interpretability.

: - Lz C b v
2 i - : 2 | 2 c .
Yoy = o 9 | = |
[| : H
e | 2l 2
- : L E a0
Original CBM .: Post-hoc CBM E CFM (Ours)

Figure 1: Illustration of concept-based model structures: Original Concept Bottleneck Models (left),
Post-hoc Concept Bottleneck Models (center), and our proposed Concept Flow Models (right). Rounded
rectangles represent concepts, trapezoids represent the feature extractor, circles denote classes, Z indicates
the feature embedding, and C' represents the concept matrix.

Recent works have sought to mitigate information leakage by discovering and selecting more compact concept
sets (Yan et al., 2023; Yang et al., 2023; Schrodi et al., 2024; Shang et al., 2024) or by enforcing sparsity on the
concept-to-label linear layer (Yuksekgonul et all 2022; |Oikarinen et al. 2023). These approaches aim to
reduce the number of concepts onto which feature embeddings are projected during prediction,
as fewer active concepts limit the model’s capacity to exploit semantically irrelevant concepts,
thereby reducing the risk of information leakage. To quantify this, [Srivastava et al.| (2024)) introduced
the Number of Effective Concepts (NEC), which measures the average number of concepts used to predict each
class. However, as task complexity grows, the required number of concepts inevitably increases, heightening
the risk of leakage. This raises the question: instead of projecting feature embeddings onto the entire concept
space, can we partition the concept space into subspaces and route predictions only through the relevant
ones, thereby isolating unrelated concepts from the decision path? Building on this intuition, we propose
Concept Flow Models (CFMs) (see Fig. [I)), which replace the flat bottleneck with hierarchical bottlenecks
where each class prediction follows a unique path from root to leaf. This design decomposes prediction into a
sequence of localized, concept-driven subproblems, offering three advantages: reduced concept dimensionality
at each node—each step projects features onto a small, node-specific subset of concepts, limiting exposure
to unrelated information; reduced total concept usage per class—each prediction aggregates concepts only
along its decision path; and traceable reasoning—the tree structure yields step-by-step decision pathways,
enhancing interpretability and enabling systematic auditing.

Our contributions are summarized as follows:

o We propose the Concept Flow Model (CEM), a concept-based model with hierarchical bottlenecks
that decomposes decisions into step-by-step, interpretable paths. To support this, we develop a
pipeline that constructs decision hierarchies using pretrained vision-language models, selects
discriminative concepts without requiring manual concept annotation, and enables end-to-end model
training.

e We provide both theoretical and empirical analysis demonstrating that CFMs mitigate accuracy
gains from random, task-irrelevant concepts and increase reliance on meaningful semantic ones, while
matching the accuracy of flat CBMs under the same concept budget and structurally reducing the
number of effective concepts per prediction, thereby reducing information leakage.

2 Related work

The paradigm of predicting intermediate concepts before final label prediction originated in early interpretabil-
ity research (Kumar et all,2009; [Lampert et al 2009), where attribute-based classifiers improved transparency

Under review as submission to TMLR

at the cost of accuracy. [Koh et al.| (2020) formalized Concept Bottleneck Models (CBMs), demonstrating that
concept-based prediction can enable human-in-the-loop interaction while maintaining competitive accuracy.
Subsequent extensions improved CBM utility through concept editing, interactive mechanisms,
and enhanced concept representations (Chauhan et al., [2023; |Steinmann et al., 2023; Hu
et al., |2024; Espinosa Zarlenga et al., |2022; |2023]). Another direction models cross-concept
dependencies within the bottleneck layer. Havasi et al.| (2022)) introduce autoregressive concept
predictors that sequentially predict each concept conditioned on previous ones, capturing
inter-concept correlations to improve concept accuracy and mitigate leakage. Vandenhirtz et al.
(2024) propose stochastic formulations that propagate interventions through learned covariance
structures, improving intervention effectiveness. |[Dominici et al. (2024) learn explicit causal
graphs over concepts, enabling do-interventions and counterfactual reasoning for enhanced
causal transparency. These approaches model dependencies within a flat concept layer, whereas
our method achieves concept sparsity structurally by distributing concepts across a class
hierarchy, a complementary mechanism that could potentially be combined with dependency
modeling.

Despite these advances, they still rely on human-annotated concept sets, which limits scalability in domain-
specific applications. To overcome this limitation, [Yuksekgonul et al.| (2022) leveraged multimodal models
to generate concept embeddings from natural-language prompts, utilizing ConceptNet (Speer et al.l 2017)
and predefined concept sets to reduce manual annotation effort. Later works (Oikarinen et al., |2023; [Yang
et al., 2023) improved scalability by generating domain-specific concepts with large language models, enabling
open-vocabulary concept acquisition. However, these approaches face a critical challenge (Yan et al., [2023;
Shang et al. 2024} Srivastava et al., [2024)): as concept count grows toward the embedding dimension, even
random concepts can induce linear separability, allowing models to preserve accuracy through spurious
correlations rather than semantic grounding. Recent efforts focus on selecting or discovering high-quality
concepts using Elastic Net regularization (Yuksekgonul et al., 2022)), submodular selection (Yang et al.l
2023)), incremental discovery (Shang et al., [2024), dictionary learning (Yan et al., 2023 and open-domain
object detectors (Srivastava et al., 2024)). Nonetheless, the required concept count inevitably grows with
task complexity. Our method introduces a human-aligned decision hierarchy to decompose the task, which
structurally reduces per-node concept demand and enforces hierarchical sparsity constraints, thereby mitigating
information leakage and enhancing the utility of semantic concepts in classification.

Another line of work enhances interpretability through hierarchical structures. Some models dynamically
route inputs through tree-like architectures (Murdock et all [2016; [Mullapudi et al.| [2018; |Cai et al., 2021)),
but rely on impure leaves and yield stochastic, uninterpretable paths. Others (Deng et al.| 2014; [Redmon,
& Farhadil, 2017, [Brust & Denzler, [2019)) use predefined hierarchies like WordNet (Miller et al., {1990)),
which introduce biases when conceptual similarity misaligns with visual discriminativeness. Neural-Backed
Decision Trees (NBDTs) (Wan et al.l |2020) train networks with path probabilities and extract hierarchies
by clustering final-layer weights, assigning node labels using WordNet. While our method shares a similar
training objective to NBDT, it differs by incorporating concept-level semantics directly into the decision nodes
and learning the tree hierarchy end-to-end, enabling inherently interpretable, concept-driven inference paths.
Recent work has explored combining decision trees with concept-based models for different
purposes. Rodriguez et al.| (2024)) replace the CBM label predictor with a differentiable soft
decision tree to enhance decision transparency, though each node receives the full concept
vectors and all leaves contribute probabilistically to predictions. [Ragkousis & Parbhoo| (2024)
use decision trees to inspect and quantify information leakage by comparing hard versus soft
concept representations, enabling localized leakage control but requiring ground-truth concept
annotations. Other approaches introduce hierarchies within concept representations rather than
over classes: [Sun et al.| (2024) augment perceptual concepts with descriptive attributes using
class-specific subsets and an intervention matrix, while Pittino et al.| (2023) organize concepts
into multiple categories whose features are concatenated for final classification, allowing all
concept types to jointly influence predictions. In contrast, our method constructs a hierarchy
over classes, distributes concepts to internal nodes such that each prediction uses only path-
specific subsets, and operates without manual concept annotation, providing structural isolation
that complements these approaches.

Under review as submission to TMLR

3 Method

Dog LLm

> .
Truck 0.03% : J%%
9% Car 0.04% : i

Dog (97.02%)

1
1
1
1
1
o 1
D
Cat S :
. Text |
<o Encoder 1
Airplane :
L !
Truck |
1
Car !
1
o m e i
) : Decision Concept !
| Dog 97.02% : Path Contributions !
[
| :
| Root (1.00) :
z
: Cat 1.98% s |
! = 99% 1
©
| < !
5 1
!) 3 Animal (99%) |
| Airplane 0.03% i |
1
1
1
1
1
1
1
[
1
[
1
1
[

Figure 2: Building Concept Flow Models: Our framework consists of three phases: (1) Hierarchy
Ezxtraction & Semantic Annotation: Construct a decision hierarchy from CLIP embeddings, prune low-
separation nodes, and label internal nodes using LLMs. (2) Concept Generation & Allocation: Generate
LLM-based candidate concepts, select discriminative ones, and allocate them to hierarchical bottlenecks.
(3) Differentiable Concept Flow Training: Train the model end-to-end with hierarchical path traversal loss,
enabling traceable predictions through concept-weighted transitions.

As illustrated in Fig[2] our approach differs from Concept Bottleneck Models, which expose all concepts in
a flat bottleneck layer. Instead, we extract a semantically coherent tree hierarchy from CLIP embeddings
(Sec and allocate LLM-generated concepts to its internal nodes (Sec, train them with concept-driven
probabilistic flows (Sec, thereby constraining each class prediction to rely primarily on concepts along
the most probable decision path, while reducing the influence of unrelated concepts and yielding traceable,
interpretable predictions.

3.1 Problem setup

We consider a multi-class classification task over a dataset D = {(z,y)} where € X’ denotes input images
and y € Y = {1,...,|L|} represents class labels. The core challenge lies in constructing an interpretable
decision tree hierarchy T' = (V, E) where leaf nodes L C V correspond to target classes), while internal
nodes encode hierarchical relationships by representing localized subspaces of the overall concept space.
Unlike CBMs that compress decisions through a single layer with uncoordinated concepts, we distribute
discriminative concepts across multiple hierarchical nodes. Each internal node v € V' \ L maintains: (1) a
set of human-interpretable concepts, (2) learned importance weights for these concepts, and (3) transition
probabilities to child nodes based on concept relevance. The tree constrains each class to follow a unique
decision path from the root to the corresponding leaf node, thus minimizing the influence of concepts assigned
to nodes outside this path. The learning objective minimizes the cross-entropy loss through concept-weighted
hierarchy traversal:

min B,y [~ 1og po(y1)] (1)

where 6 denotes all concept importance weights in the hierarchy, and pe(y|z) represents the probability of
reaching the ground-truth class y through concept-driven transitions (detailed in Sec. [3.4)).

Under review as submission to TMLR

3.2 Tree hierarchy extraction

Our approach builds on a pretrained VLM, CLIP (Radford et al., |2021)), which comprises an image encoder
®; : X — R? and a text encoder &7 : T — R? projecting inputs from both modalities into a shared
d-dimensional semantic space. The cross-modal alignment of CLIP ensures that semantically related images
and texts are embedded closely together, resulting in a structured representation space that supports both
hierarchical clustering and concept-based reasoning (Bhalla et all [2024; Stein et al., [2024)). We leverage
this property as a unified basis for constructing the concept hierarchy and performing concept selection. To
construct a semantic hierarchy, we first compute class-level embeddings up; by averaging the CLIP image
embeddings of all instances belonging to class i. We then apply agglomerative clustering with Ward’s
linkage (Ward Jr, |1963)) to the resulting centroids M = {1, ..., p||}, yielding a binary tree represented by
a linkage matrix Z € RULI=1X4 The hierarchy T is built in a bottom-up manner by iteratively merging node
pairs (vp,ve) with the smallest merge distance in Z. Overly deep trees can cause an exponential growth in
node count, fragmenting the concept space into small subspaces and yielding weakly separated nodes near the
leaves. We mitigate this with distance-based pruning, removing nodes whose merge distances
fall below the t-th percentile of all distances in 7, producing a multi-branch hierarchy with
fewer, broader internal nodes. Alternatively, node separability can be measured by the classification
accuracy of a Linear Discriminant Analysis (LDA) fitted on its samples, pruning nodes whose scores fall
below a threshold.

Semantic annotation: We annotate internal nodes via breadth-first traversal using LLM prompts. For
each non-leaf node, we generate descriptive labels by prompting an LLM with the leaf classes in its subtree,
producing hierarchical summaries. Since tree structures vary with VLM backbones and pruning thresholds,
manual review may be applied to ensure the selected backbone is well-suited to the target domain, as different
VLMs are trained on different data and exhibit varying strengths across tasks. In practice, widely-used
VLMs (e.g., CLIP ViT-B/32) produce semantically coherent hierarchies for common domains
such as general object or action recognition; manual intervention is primarily needed for
specialized domains where off-the-shelf VLMs may lack sufficient coverage (see Appendix |A.1)).

3.3 Concept selection and distribution

Following prior works (Yan et al., |2023; [Yang et al.| |2023)), we leverage LLMs to generate candidate concepts
for each class, enhancing visual and hierarchical grounding by including image samples and hierarchical
context in the prompt. For each internal node v, we aggregate all candidate concepts from the leaf classes
under that node to form its concept set. We preprocess this aggregated set by discarding concepts that contain
class names and eliminating semantically redundant concepts (see Appendix and . The resulting
filtered concepts &, = {€y1,--.,€pn, } are embedded via the text encoder @ into a matrix C, € R™*%. To
evaluate concept relevance for node v, we compute the cosine similarity between all training image features
Z = ®;(X) € R"*? and the concept embeddings C,:

S, =2C,) € R™™, (2)

where Z and C, denote the fy-normalized rows of Z and C,, respectively. For large-scale datasets,
computing S, over all n samples can be prohibitive. Since the goal is concept selection rather
than model training, a representative subset suffices. We therefore apply stratified sampling by
grouping samples by class and randomly drawing a balanced subset from each class to bound
the total samples (e.g., nmax = 15,000) while ensuring sufficient samples per class (e.g., 30) for
reliable estimation. We then perform concept selection for each internal node v using Lasso-regularized
multi-class logistic regression. Let W € R™ Il denote the weight matrix and y; = I[y; = [] the class

indicator. We optimize:
Ll n |L]

] . T .
mwl/n l_zliz:;‘c(yllawl Sz)+/\l_zll|VVl||17 (3)

where s; is the i-th row of S,. Each concept e, ; receives an importance score I; = Ziill |[Wi;], and the top r

concepts with highest I; are selected to form the final set C},. To determine r, we adopt a hybrid allocation

Under review as submission to TMLR

strategy based on the node child count and the average concept share per node B (see Appendix [A.4)):
r= max(a |Ch(v)| + (1 — @) |B], rmin), (4)

where « € [0,1] and 1y, are adjusted based on tree balance, preventing any node from being
underrepresented or overburdened with concepts. For simplicity, we omit the superscript r in C7
hereafter.

3.4 Model architecture and training

CFM replaces the flat bottleneck layer with a hierarchy of bottleneck nodes, each equipped with selected
concepts and trainable weights. This enables a differentiable decision process that propagates class probabilities
along the concept-driven hierarchy. Each internal node v is parameterized by two matrices:

C, e R™4 W, e R™*™, (5)

where C, represents concept embeddings pre-selected for node v, and W,, denotes trainable weights for these
concepts, which model the local branching decisions at each node.

Temperature-scaled transitions: Each node receives a normalized image embedding Z = ®;(z)/||®(z)||2
as input. It first projects the embedding onto the pre-selected concept matrix C, € R™*d (as defined in
Section , obtaining concept activations. These activations are then transformed by the learned local
concept weight matrix W, € R™*™ where m = |Ch(v)| is the number of child nodes, yielding the transition
probabilities to the child nodes. To control the sharpness of branching decisions, each node also learns a
temperature parameter T, € R*. The transition probability from node v to one of its children v; is computed

as: ~
(2Cy.)m)
J

5 (6)

Pu—w, () = softmax <

In contrast to CBMs, which connect input embeddings to all concepts globally, CFMs associate each node
with a local subset of concepts, thereby enabling parallel computation across nodes with no significant increase
in computational overhead (see detailed complexity analysis in Appendix |C.2]).

Path probability aggregation: The class probability corresponds to the probability of reaching leaf node
l € L from the root node vy, computed recursively along the path (v,):

pv0—>l(x) = H Po—w, (:U) - by, (7)

(v—=wv;)em(vo,l)
where b; € R is a learnable bias term calibrating path-specific confidence. Final predictions use:

9(x) = arg max Pug—1(T). (8)

Training objective: We freeze the CLIP image encoder ®; and optimize the tree parameters {W,,T,, b}
by minimizing the negative log-likelihood of ground-truth class probabilities:

1
'C:_W Z Ingvoﬁy(x)a (9)
(w,y)€D
where py,—y(2) is the probability of the hierarchical decision path from the root vy to the leaf node

corresponding to the true class y.

4 Theoretical Analysis of Concept Usage in CFMs

We provide a theoretical analysis of CFMs, focusing on how they utilize concepts differently from flat CBMs.
Our analysis examines two scenarios: when models use random concepts, which are unrelated to the prediction

Under review as submission to TMLR

task (either sampled i.i.d. from the unit sphere in theory or drawn from a general English dictionary in
experiments); and when both models use curated semantic concepts, which are semantically related to the
target task (e.g., “has wings” for birds). Let (z,y) ~ D be the data distribution, and let z = ®;(z) € R?
denote the CLIP image embedding. We assume a total concept budget of R vectors for both CBM and CFM.

CBM. A flat CBM uses a single concept matrix C' € RE*? to compute logits s = 2C", followed by
classification § = arg max;(sW);.

CFM. A CFM constructs a tree with m internal nodes. Each node v is assigned a subset of r’ concepts from
a total of R available concepts, where the expected number of concepts per node satisfies ' ~ R/m. Each
node also contains local branching weights W,. During inference, each input traverses a root-to-leaf path
m(x) = (v1,...,ve) of expected length ¢ = E[¢] < log, m, where b denotes the average branching factor of the
tree.

4.1 Information-Leakage Barrier of Hierarchical Bottlenecks

Proposition 4.1 (Leakage Resistance). Let the image embeddings Z = {(z;,y:)}, C R x [|L]] be
linearly separable across |L| classes. Using random concept vectors:

(i) CBM. Separability is still preserved with high probability once the total concept count satisfies
R =Q(d).

(it) CFM. To keep every internal node separable, each node must receive v’ = Q(d) concepts, giving a
total requirement R = Q(md) to ensure global separability, i.e., a factor m larger than the flat CBM.

Interpretation. A flat bottleneck leaks all d dimensions at once, so £2(d) random projections suffice to
reconstruct the decision boundary to preserve accuracy. In a hierarchical structure, however, each of the m
internal nodes handles a different local classification subproblem. Since random projections do not capture
specific properties of the data, a small set of random concepts cannot reliably separate subproblems. Thus,
each node requires its own set of Q(d) random concepts, resulting in a total of Q(md) concepts to ensure
global separability. Moreover, as m increases under a fixed concept budget R, each node receives fewer
concepts, reducing concept sharing compared to a CBM, which shares all R concepts in a single layer.
Distributing concepts across more nodes naturally enforces concept isolation: each predicted class relies only
on concepts along its decision path, increasing concept sparsity and mitigating information leakage (see proofs

in Appendix [C.1J).
4.2 Semantic Efficiency of Hierarchical Decision Paths

Proposition 4.2 (Semantic Concept Sparsity via Hierarchical Structure). Assume that for each internal
node there exists a small concept subset of size ' that linearly separates its child clusters with high probability.
If the global budget R is distributed so that each node receives at least this r', then:

(i) The resulting CEM can achieve comparable training accuracy to a flat CBM that uses all R concepts
at once.

(i) The number of concepts contributing to a single prediction is at most r', where v’ = R/m and ¢
is the root-to-leaf path length. For a balanced tree, { =~ log, m, so the expected concept usage per
prediction is O(% log, m), compared to O(R) for the flat model.

Interpretation. Assuming that the tree hierarchy reflects the natural semantic hierarchy of the data, each
internal node only needs to separate its own (smaller) set of child clusters, which simplifies the local separation
task and allows each node to use only a modest subset of concepts (r’ < R) instead of all R concepts. For a
single prediction, only the concepts along the root-to-leaf decision path are used. Thus, the expected number
of concepts per prediction is at most ¢r’. In practice, this is much less than R, since irrelevant concepts
(outside the decision path) are structurally isolated. Mathematically, the upper bound O(% log, m) shows

Under review as submission to TMLR

that the ratio bgTbm is less than 1 for any m > 1 and b > 1, and satisfies lim,, oo lognblm = 0. Thus, as the
hierarchy becomes more granular (i.e., as m increases), the number of used concepts per prediction decreases
rapidly, promoting greater concept sparsity and reducing the risk of information leakage.

Why accuracy need not drop. When the hierarchy is semantically coherent—e.g., constructed via
hierarchical clustering of CLIP embeddings, with nodes of low separability pruned—each internal node
handles a simpler “few-way” sub-problem. The target class only consults concepts within its decision path;
other concepts structurally do not activate for the prediction. A handful of curated semantic concepts can be
shared by all leaf classes under the same node, supporting accurate decisions. In contrast, random concepts
lack semantic alignment and cannot be effectively reused by its associated classes.

Semantic Utility Metric. To complement the above analysis, we introduce the Semantic Improvement
over Random Concepts (SIR) metric to quantify the role of semantic concepts in mitigating information
leakage. SIR measures the relative accuracy gain when replacing random concepts with curated semantic
ones under the same concept budget:

A= aCCsem — aCCrand (X 100(70)7 (10)

aCCrand

where acCger, and accrang denote model accuracy with semantic and random concept sets, respectively. A
high A indicates strong reliance on task-relevant features, while a low or zero value suggests that predictions
can be replicated with uninformative concepts—indicating potential leakage.

5 Experiments

To empirically validate our theoretical claims in Propositions [{.1] and [4:2] we conduct experiments examining
the two scenarios analyzed in our theory: using non-semantic random concepts and curated semantic concepts.
We further perform ablation studies to assess the contribution of individual components within CFMs,
visualize and interpret the decision-making process, and discuss broader implications and limitations.

5.1 Setup

Datasets. We conduct our evaluations on five image classification benchmarks: CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), UCF-101 (Soomro et all 2012), CUB-200 (Wah et al [2011), and TinyIm-
ageNet (Le & Yang, |2015). These datasets span a range of semantic granularity and domain complexity.
Specifically, CIFAR-10 contains 10 general object classes, CIFAR-100 and UCF-101 include 100 classes
each (with CIFAR-100 focused on common objects and UCF-101 on action scenes), and both CUB-200 and
TinyImageNet contain 200 fine-grained categories, with the former targeting bird species classification and the
latter composed of small-scale versions of ImageNet classes. Additional experiments on ImageNet-1K

are provided in Appendix

General settings. Unless otherwise specified, all models use the CLIP ViT-B/32 backbone outputting
512-dimensional embeddings. We train with Adam (Ir=0.01, batch size=128) using ReduceLROnPlateau
(learning rate halved on validation loss plateaus) and early stopping with a 20% validation split. Training
terminates upon validation stagnation, retaining the best checkpoint. For controlled experiments, CFMs are
pruned to four internal nodes with 3—4 layers in depth (see Appendix for details).

5.2 Scenario 1: How do CFM and CBM perform under random, non-semantic concepts?

Settings. We systematically compare CFM and CBM on CIFAR-10 using random (non-semantic) concepts,
and include a linear probe model (Radford et al.l [2021]) as an upper bound of the training accuracy (trained
directly on CLIP image embeddings without interpretability constraints). Random concepts are generated
by sampling dictionary phrases (see Appendix . Our experiments examine: (A) accuracy as the total
concept budget R increases, with both models constrained to the same R; (B) accuracy when CFM receives
R concepts per node (i.e., R X 4 concepts in total), compared to CBM with R; (C) varying the number of

Under review as submission to TMLR

A. CFM vs. CBM (Budget R) B. CFM vs. CBM (Budget R x m vs. R)

oo [g v ~/' FITETITTTTTTTTT - PPTTTPPrrrreTrrrerFrrPee g
~ 80 80 |
X 4
> 70 70 |
v
£ 60 60 J'
H
g f
& 50 50 |
i
o a0 . Linear Probe 40 | ---+ Linear Probe

30 —&— CFM (total) 30 —8— CFM (per Node)

CBM CBM
20 20
100 200 300 400 500 100 200 300 400 500
Number of Total Concepts Number of Bottleneck Concepts
C. CFM: Pruning (R = 60) D. CBM: Sparsity (R = 60)

%0 20
- 80
o
é 80
- 70
v
© 60
5 70
v
& 50
-
0 60

40

@

s0 30

20
1 2 3 a 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of Inner Nodes Elastic Net Regularization A

Figure 3: Information Leakage with Random Concepts. (A) Accuracy of CFM and CBM as total
concept budget R increases (same R for both). (B) Accuracy when CFM receives R concepts per node
(R x m total), compared to CBM with R. (C) Effect of the number of internal nodes on CFM accuracy at
R =60. (D) Impact of Elastic Net regularization on CBM accuracy at R = 60. All experiments are repeated
three times with different random seeds. Detailed numerical results are provided in Appendix @

internal nodes in CFM under a fixed R = 60; and (D) varying the sparsity regularization strength A in CBM
(implemented via Elastic Net from |Zou & Hastie| (2005) with L1 ratio a = 0.9) under a fixed R = 60.

Results. In (A), CBM accuracy rises quickly with R, reaching 90% with only 64 concepts and approaching
the linear probe baseline as R approaches the embedding dimension, consistent with Proposition i). In
contrast, CFM achieves only 75% under the same budget, reflecting its structural resistance to information
leakage from random concepts. In (B), when CFM’s total budget is increased to R X 4, its accuracy curve
closely tracks that of CBM, consistent with Proposition ii), which states that achieving global separability
in CFM requires scaling the total concept count with the number of internal nodes. In (C), reducing the
number of internal nodes by pruning relaxes the structural sparsity constraints, increasing accuracy as more
concepts are shared per node and information isolation is weakened. The complete unpruned binary tree
represents the case of most strict concept isolation. In (D), increasing sparsity regularization in CBM generally
reduces accuracy by limiting the number of effective concepts, analogous to the structural sparsity imposed
by CFM, although sparsity regularization cannot structurally prevent misuse of concepts from other classes.
Notably, sparsity regularization can similarly be applied to CFM to control concept usage (see Appendix [B.3)).
Overall, these results confirm that CBMs with a flat structure are prone to information leakage, while CFMs
provide a structural barrier that limits accuracy gains from random concepts, consistent with our theoretical
analysis.

5.3 Scenario 2: How do CFM and CBM perform under curated semantic concepts?

Settings. We compare CFM and CBM using curated semantic concepts, with the linear probe again serving
as a non-interpretable baseline. For CBMs, we include two representative models: PCBM (Yuksekgonul
et al., |2022)), which retrieves predefined concepts from ConceptNet (since the original PCBM lacks concept

Under review as submission to TMLR

selection, we implement it by ranking concepts based on ConceptNet edge weights and selecting the top-r most
relevant), and Labo (Yang et all [2023), which uses LLMs to generate and select task-specific concepts. To
quantify the utility of semantic concepts, we further compare each semantic model to its random counterpart:
CBM (Random) and CFM (Random), where semantic concepts are replaced with random ones. For fair
comparison, CFM uses the same candidate concept set as Labo, and all models are trained without sparsity
regularization. We conduct experiments on all five datasets, keeping the total concept budget identical
across models. Specifically, the total concept budget is set to two concepts per class for each dataset, except
for CIFAR-10, which uses a fixed budget of 60 concepts. This yields 60, 200, 202, and 400 concepts for
CIFAR-10, CIFAR-100, UCF-101, and CUB-200/TinyImageNet, respectively. For CFMs, we fine-tune the
pruning threshold and concept allocation ratio to obtain exactly four internal nodes with suitable concept
distribution. Hyperparameters for Labo and PCBM are also optimized on each dataset (see Appendix .
Additional experiments comparing CFM and PCBM with sparsity regularization are provided
in Appendix

Metrics. In addition to accuracy, we report NEC (the Number of Effective Concepts) proposed by [Srivastava
et al.|(2024), which quantifies the average number of concepts used to predict each class. We also report
the Semantic Improvement over Random Concepts (SIR), which measures the accuracy gain achieved by
semantic concepts relative to random concepts.

Results. Consistent with Proposition CFMs achieve comparable accuracy to CBMs (PCBM and Labo)
under the same concept budget, while using far fewer effective concepts (see Table . For example, on
CIFAR-10, CFMs reach 91.59% accuracy with only 7 effective concepts, compared to Labo
(90.93%) and PCBM (91.15%), both using around 57. On TinyImageNet, CFMs achieve 70.79%
accuracy with 92 effective concepts, outperforming Labo (69.86%) and achieving comparable
results to PCBM (71.07%), both using over 360. This efficiency stems from structural constraints
that limit each prediction to the concepts along its root-to-leaf path, resulting in much lower average concept
usage per prediction. As a result, CFMs show substantially higher SIR across all datasets, for
instance, 19.78 on CIFAR-10 versus 1.94 for Labo, with similar gains on TinyImageNet and
other benchmarks. This structural sparsity constraint also reduces information leakage, as predictions
depend on a smaller, path-specific subset of concepts rather than the entire pool. Additionally, CFMs’ much
lower accuracy with random concepts (e.g., 76.46% on CIFAR-10 vs. CBM’s 89.20%) highlights their reliance
on meaningful semantic concepts. When the concept budget is limited, CFMs consistently match CBM
accuracy by prioritizing semantic utility.

Table 1: Comparison of various methods across five benchmark datasets. We report the number of effective
concepts (NEC), classification accuracy (Acc), and semantic improvement over random concepts (SIR).
Results are reported as mean over 3 runs. Bold values highlight the best in each column (excluding linear
probe). Full results with standard deviations are provided in Appendix

CIFAR-10 CIFAR-100 UCF101 CUB200 TinyImageNet
NEC Acc SIR NEC Acc SIR NEC Acc SIR NEC Acc SIR NEC Acc SIR

Linear Probe N/A 9459 N/A N/A 7753 N/A N/A 9500 N/A N/A 71.68 N/A N/A 7525 N/A
CBM (Random) 56.80 89.20 0 184.20 68.50 0 187.31 79.15 0 344.19 52.23 0 362.34 68.78 0
CFM (Random) 6.90 76.46 0 54.24 62.00 0 44.99 72.76 0 104.61 47.08 0 89.83 64.89 0

Method

PCBM 56.80 91.15 2.19 18399 68.98 0.70 N/A N/A N/A N/A N/A N/A 362.01 71.07 3.32
Labo 57.73 90.93 1.94 184.33 7098 3.62 190.60 84.62 6.91 35792 65.13 24.70 369.36 69.86 1.57
CFM (Ours) 6.90 91.59 19.78 55.02 72.29 16.61 4580 84.60 16.27 109.34 65.68 39.50 92.12 70.79 9.09

5.4 Ablation Study

Effect of tree hierarchy on performance. To validate the effectiveness of our CLIP-induced hierarchy
generation strategy, we compare it against two alternative approaches: (1) Random, which generate the
hierarchy by randomly clustering the classes, and (2) NBDT (Weights), following [Wan et al.| (2020)), which
generate the hierarchy by clustering the final-layer weights (each row of the final-layer weight matrix
corresponds to a class representative) in the trained linear probe model (see Appendix . As shown in
Table 2] our approach achieves higher accuracy on four out of five datasets, with particularly strong gains

10

Under review as submission to TMLR

on UCF-101 (+3.16% vs. Weights) and CIFAR-10 (+1.26%). By contrast, the random baseline consistently
ranks last, highlighting the importance of semantic coherence in hierarchy construction. The CLIP-induced
hierarchy underperforms on CUB-200, likely due to the fine-grained nature of bird-species classification, which
challenges CLIP’s general-purpose embeddings.

Figure [f] shows that, when the total concept budget is fixed, increasing tree depth reduces accuracy. This is
because the number of internal nodes grows exponentially with depth, so each node receives fewer concepts,
weakening local separability and accumulating errors along the decision path (see Table [4| for further evidence).
Pruning the internal nodes mitigates this effect by allocating more concepts per node and improving accuracy.
The number of internal nodes thus acts as a structural sparsity constraint: deeper trees promote interpretability
through sparser, more traceable decision paths, but risk degrading accuracy if concepts or the CLIP backbone
are not sufficiently strong. In practice, tree pruning serves as a sparsity hyperparameter that requires tuning.

100

. . —eo—o—o —e— CIFAR10
- — 90
Table 2: Accuracy (.%) comparison among tl.lree hierarchy UCF101
construction strategies: Random, NBDT (Weights), and our 5 8° —s— CUB200
o
CLIP-induced approach. Each method builds tree hierarchies % 7°
v
differently before concept selection. Bold values denote the £ 60
highest accuracy per dataset. g
40
Method CIFAR-10 CIFAR-100 UCF101 CUB200 TinylmageNet 30
20
Random 90.82 69.97 81.53 60.44 60.35 1 2 3 4 5 6 7 8 9 10 11
NBDT 91.00 71.13 82.28 66.24 70.84 Depth

Ours 92.26 72.16 85.44 65.79 71.24

Figure 4: Impact of tree depth pruning

Evaluation of concept selection strategies. We compare our Lasso regression-based concept selection
method against four baselines (see more detail in Appendix : random selection, CLIP similarity
maximization, concept embedding orthogonality, and submodular optimization (Yang et al. [2023]). As Table
shows, our method outperforms all alternatives, achieving 92.26% on CIFAR-10 (vs. 87.18% for submodular)
and 65.79% on CUB-200 (vs. 61.63% for orthogonality). The poor performance of similarity-based selection
(83.79% on CIFAR-10) suggests that naively prioritizing concept-image relevance leads to redundant concepts,
while orthogonality over-constrains the concept space. Submodular optimization, which greedily selects
discriminative and diverse concepts, outperforms both approaches. Nonetheless, our method better balances
diversity and discriminative strength, yielding compact yet semantically complementary concept sets.

Impact of model architecture design choices. Table [4| ablates CFM’s core components. Removing
the concept matrix (w/o Concept Matriz), which approximates the NBDT design, nearly matches Linear
Probe’s accuracy (94.67% vs. 94.75% on CIFAR-10), indicating the hierarchy itself contributes minimally to
accuracy loss - the primary limitation stems from insufficient concepts across nodes in deeper hierarchies.
Path calibration contributes measurably to performance (81.72% vs. 85.44% on UCF101 without it). Node
temperature scaling contributes most to fine-grained tasks (62.62% — 65.79% on CUB-200), moderating
error propagation in deep hierarchies. Adding a hierarchical auxiliary loss slightly degrades performance
(91.13% vs. 92.26%), consistent with the observations by Wan et al.| (2020) that over-supervision at each
node disrupts path probability learning (see Appendix [A.6)).

5.5 Visualization and interpretation of concept-driven decision paths

We provide qualitative examples comparing the decision paths and activated concepts of CFMs and CBMs.
The top part of Fig. [5] shows an example of a “cat” from CIFAR-10. The CLIP-induced hierarchy in CFM
first separates categories into “Animal” and “Vehicle”, and then further narrows the scope to “Domesticated”
animals. At each stage, CFM uses the current node’s selected concepts to determine the transition probabilities
to child nodes (i.e., the next concept subspaces), effectively routing the prediction and structurally isolating
concepts outside decision paths. For the cat sample, CFM uses “facial markings” and “fur texture” to identify
the image as an animal, then leverages “whisker pads” and “pointed ears” to rule out frogs, birds and deer,
and finally relies on “sensory whiskers” and “rounded facial whisker pads” to distinguish cat from similar

11

Under review as submission to TMLR

Table 4: Ablation study of the model architecture.
Accuracy is reported in %. Bold values indicate the
accuracy of our model per dataset.

Table 3: Comparison of concept selection methods
across three benchmark datasets. Bold values high-
light the highest accuracy (Accuracy in %).

Method Variant CIFAR-10 UCF101 CUB200
Method CIFAR-10 UCF101 CUB200
CFM (Ours 92.26 85.44 65.79
Random 81.25 81.79 57.54 . ()
o Linear Probe 94.75 94.52 72.40
Similarity 83.79 80.85 52.08 .
. w/o Concept Matrix 94.67 93.73 72.14
Orthogonality 79.31 77.51 61.63 . .
w/o Path Calibration 91.72 81.72 64.84
Submodular 87.18 83.29 59.71
Lasso (Ours) 92.26 85.44 65.79 w/o Node Temperature 91.82 84.65 62.62
. . . + Hierarchical Loss 91.13 83.78 65.38
Airplane ; Animal (100%) e Domesticated (100%) E— Cat (99%)
i V= facial markings near eyes (0.32) facial whisker pads (0.23) prominent sensory whiskers (0.30)
A bil H g Y P 5 y
Vehicle<Tuto:m e H 6 visible fur texture (0.27) ears pointed backward (0.22) rounded facial whisker pads (0.25)
o 0% T fuc : white rump patch (0.22) white facial markings d (0.18) pronounced snout curvature (0.03)
T Ship N
;>U \ /Frog -
a N 7ttt ettt ettt ettt ettt ettt ettt ettt ettt ettt ittt ittt N
Animal Bird ! o : n i
e 1’(‘)‘0‘“"/: <Deer Horse 0% = facial markings near eyes (0.212) visible ear tufts (0.169) facial whisker pads (0.176) :
\Domesticated— Dog 1% , 8 vehicle body paint (0.151) fur-covered paws (0.145) fur coloration contrast (0.190)
100% Cat 99% ' broad, rounded paw shape (0.193) horizontal slit-shaped pupils in eyes (0.152) side doors (0.169)
Songbirds & Passerines (100%) Colorful & Varied Perching (100%) Belted Kingfisher (99.8%)
(o]
& h
S N
0.00 0.05 010 015 0.20 0.00 005 010 015 020 025 030 0.00 0.05 0.10 0.15 0.20

Figure 5: CFM decision path visualizations. Top: CFM and CBM explanations for a CIFAR-10 “cat” sample.
Bottom: CFM decision path visualizations for selected samples from CUB-200. All models are trained using
the CLIP-ViT-L/14 backbone, and candidate concepts are generated via GPT-4.1-mini. The top 3 activated
concepts per node for CFM and the top 9 activated concepts for CBM are listed.

classes such as dog or horse. In contrast, CBM lacks such structured reasoning and treats all concepts as a
flat set, which may occasionally lead to the misuse of irrelevant concepts for prediction. For instance, in the
same cat example, CBM activates concepts like “vehicle body paint” and “side doors”, which CFM assigns
to the vehicle concept space and are unrelated to animals. This illustrates how CFM structurally isolates
irrelevant concepts, thereby reducing information leakage.

The bottom part of Fig. [f] shows a CFM decision path example from CUB-200. The prediction follows the
LLM-annotated route Songbirds & Passerines — Colorful & Varied Perching — Belted Kingfisher, with
activated concepts at each node reflecting visual attributes of the image. (e.g., “vocal sac”, “blue-gray head”).
These stepwise explanations illustrate how CFM progressively narrows the prediction space, offering additional
intuition and traceability for model decisions. However, CFM can still activate concepts not actually present
in the image (e.g., “orange streaks” for this Belted Kingfisher), even when concept-generation prompts are
enhanced with sample images from the training set. This phenomenon, also noted in prior work
[2023; |Oikarinen et al., 2023), likely arises from CLIP’s reliance on global image-text alignment without
explicit region- or object-level grounding. Leveraging region-aware VLMs or grounded object detectors
let al.| 2022; |Chen et al, 2024) may help mitigate this issue. We provide further qualitative analyses
and extended examples in Appendix B.7}

Under review as submission to TMLR

5.6 Discussion

CFM reconciles accuracy and interpretability by enforcing structured concept utilization through semantically
coherent, hierarchical bottlenecks. In this framework, each internal node is assigned a subset of discriminative
concepts, which are only shared by the leaf classes under that node. This structural constraint localizes
concept usage, ensuring that irrelevant concepts are isolated from class predictions outside the decision path
and thereby effectively mitigating information leakage. As a result, CFM achieves a significantly lower number
of effective concepts per prediction and higher semantic improvement ratios (SIR) compared to flat CBMs.
By anchoring decisions at human-interpretable nodes, prioritizing task-specific concepts, and aggregating
concept-weighted routing, CFM performs stepwise, semantically grounded inference.

Broader impact. Interpretable models should align reasoning processes with human cognitive frameworks.
While traditional CBMs explain predictions through disconnected concept activations, CFM constructs
human-aligned decision hierarchies from semantic embeddings, mirroring structural human reasoning patterns.
By distributing discriminative concepts across LLM-annotated nodes (Sec. and training interpretable
hierarchical decision flows (Sec. , CFMs provide auditable sequential reasoning paths rather than isolated
concept contributions. This structured approach achieves improved semantic utility over CBMs while matching
their accuracy (Table , proving interpretability frameworks can adopt human-like reasoning hierarchies
without sacrificing performance—a critical advancement for high-stakes applications requiring transparent
decision-making.

Limitations and mitigations. Three challenges persist: 1) Interpretability: CFM’s interpretability
fundamentally relies on the quality of visual-language alignment provided by VLMs and the relevance of
LLM-generated concepts. As discussed previously, some concepts are not faithfully grounded in the image and
may reflect generic semantic knowledge rather than concrete visual evidence, which can limit the utility of
explanations. This issue is exacerbated in specialized domains (e.g., medical or satellite imagery)
that differ from web-crawled training data. This highlights the importance of backbone selection
and candidate concept generation as prerequisites for both interpretability and accuracy. 2)
Fized Tree Hierarchy: CFM employs a fixed tree structure, assuming that class relationships are inherently
hierarchical. While this is a common inductive bias in taxonomic classification, it is a strong assumption
that may not hold for all tasks, particularly those lacking clear semantic hierarchies or requiring multiple
overlapping category structures. Extending CFM to support alternative or dynamic relational structures could
enhance its generality and applicability. 3) Generalization: While CFM leverages CLIP’s vision-language
alignment, its reliance on such backbones currently limits its generalizability. Integrating learnable projection
layers (Oikarinen et al., [2023) may enable CFMs to be extended to non-vision-language architectures and
other domains.

6 Conclusion

We proposed the Concept Flow Model (CFM), a hierarchical bottleneck architecture that enforces structural
sparsity in concept-based models by restricting each prediction to a path-specific subset of concepts. Our results
show that CFMs can match the accuracy of flat CBMs under the same concept budget, while substantially
reducing the number of effective concepts per prediction and mitigating information leakage—particularly
by limiting accuracy gains from random, task-irrelevant concepts and increasing reliance on meaningful
semantic ones. These findings indicate that hierarchical bottlenecks may provide a promising direction for
enhancing interpretability without sacrificing predictive performance. Future work will explore adaptive
or dynamic hierarchical structures to increase flexibility and generality, investigate CFM’s
potential as structured context for VLMs to reduce hallucinations, and address limitations in
visual groundedness for more reliable interpretability.

References

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable artificial
intelligence (xai). IFEE access, 6:52138-52160, 2018.

13

Under review as submission to TMLR

Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, and Himabindu Lakkaraju. Interpreting clip
with sparse linear concept embeddings (splice). Advances in Neural Information Processing Systems, 37:
84298-84328, 2024.

Clemens-Alexander Brust and Joachim Denzler. Integrating domain knowledge: using hierarchies to improve
deep classifiers. In Asian conference on pattern recognition, pp. 3—16. Springer, 2019.

Shaofeng Cai, Yao Shu, and Wei Wang. Dynamic routing networks. In proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 3588-3597, 2021.

Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham. Interactive
concept bottleneck models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 5948-5955, 2023.

Hong-You Chen, Zhengfeng Lai, Haotian Zhang, Xinze Wang, Marcin Eichner, Keen You, Meng Cao, Bowen
Zhang, Yinfei Yang, and Zhe Gan. Contrastive localized language-image pre-training. arXiv preprint
arXiv:2410.02746, 2024.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut Neven,
and Hartwig Adam. Large-scale object classification using label relation graphs. In Computer Vision-ECCV
201/: 13th European Conference, Zurich, Switzerland, September 6-12, 201/, Proceedings, Part I 13, pp.
48-64. Springer, 2014.

Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski, Giuseppe
Marra, and Marc Langheinrich. Causal concept graph models: Beyond causal opacity in deep learning.
arXiv preprint arXiw:2405.16507, 2024.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini, Michelan-
gelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro Lio, and Mateja
Jamnik. Concept embedding models: Beyond the accuracy-explainability trade-off. In Advances in Neural
Information Processing Systems (NeurIPS) 35, pp. 2140021413, 2022.

Mateo Espinosa Zarlenga, Katherine M. Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding models. In Advances
in Neural Information Processing Systems (NeurIPS) 36, 2023.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck models.
Adwvances in Neural Information Processing Systems, 35:23386-23397, 2022.

Lijie Hu, Chenyang Ren, Zhengyu Hu, Hongbin Lin, Cheng-Long Wang, Hui Xiong, Jingfeng Zhang, and
Di Wang. Editable concept bottleneck models. arXiv preprint arXiv:2405.15476, 2024.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy
Liang. Concept bottleneck models. In International conference on machine learning, pp. 5338-5348. PMLR,
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 20009.

Neeraj Kumar, Alexander C Berg, Peter N Belhumeur, and Shree K Nayar. Attribute and simile classifiers for
face verification. In 2009 IEEE 12th international conference on computer vision, pp. 365-372. IEEE, 2009.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In 2009 IEEE conference on computer vision and pattern recognition, pp.
951-958. IEEE, 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and pitfalls of
black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

14

Under review as submission to TMLR

Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen, Mateja Jamnik, and Adrian Weller. Do
concept bottleneck models learn as intended? arXiv preprint arXiv:2105.04289, 2021.

George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J Miller. Introduction
to wordnet: An on-line lexical database. International journal of lexicography, 3(4):235-244, 1990.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Specialized
dynamic architectures for efficient inference. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8080-8089, 2018.

Calvin Murdock, Zhen Li, Howard Zhou, and Tom Duerig. Blockout: Dynamic model selection for hierarchical
deep networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2583-2591, 2016.

Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck models.
arXiv preprint arXiv:2304.06129, 2023.

Enrico Parisini, Tapabrata Chakraborti, Chris Harbron, Ben D MacArthur, and Christopher RS Banerji.
Leakage and interpretability in concept-based models. arXiv preprint arXiv:2504.14094, 2025.

Federico Pittino, Vesna Dimitrievska, and Rudolf Heer. Hierarchical concept bottleneck models for vision
and their application to explainable fine classification and tracking. Engineering Applications of Artificial
Intelligence, 118:105674, 2023. doi: 10.1016/j.engappai.2022.105674.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

Angelos Ragkousis and Sonali Parbhoo. Tree-based leakage inspection and control in concept bottleneck
models. arXiv preprint arXiw:2410.06352, 2024.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7263-7271, 2017.

David M. Rodriguez, Manuel P. Cuéllar, and Diego P. Morales. On the fusion of soft-decision-trees and
concept-based models. Applied Soft Computing, 160:111632, 2024. doi: 10.1016/j.as0c.2024.111632.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206-215, 2019.

Simon Schrodi, Julian Schur, Max Argus, and Thomas Brox. Concept bottleneck models without predefined
concepts. arXiv preprint arXiv:2407.03921, 2024.

Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, and Yuwang Wang. Incremental
residual concept bottleneck models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11030-11040, 2024.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action classes from
videos in the wild. Center for Research in Computer Vision, 2(11):1-7, 2012.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of general
knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Divyansh Srivastava, Ge Yan, and Lily Weng. Vlg-cbm: Training concept bottleneck models with vision-
language guidance. Advances in Neural Information Processing Systems, 37:79057-79094, 2024.

Adam Stein, Aaditya Naik, Yinjun Wu, Mayur Naik, and Eric Wong. Towards compositionality in concept
learning. arXiv preprint arXiv:2406.18534, 2024.

David Steinmann, Wolfgang Stammer, Felix Friedrich, and Kristian Kersting. Learning to intervene on
concept bottlenecks. arXiv preprint arXiv:2308.13453, 2023.

15

Under review as submission to TMLR

Ao Sun, Yuanyuan Yuan, Pingchuan Ma, and Shuai Wang. Eliminating information leakage in hard concept
bottleneck models with supervised, hierarchical concept learning. arXiv preprint arXiv:2402.05945, 2024.

Moritz Vandenhirtz, Sonia Laguna, Ri¢ards Marcinkevics, and Julia E. Vogt. Stochastic concept bottleneck
models. In Advances in Neural Information Processing Systems (NeurIPS) 2024, 2024.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah Adel Bargal,
and Joseph E Gonzalez. Nbdt: Neural-backed decision trees. arXiv preprint arXiv:2004.00221, 2020.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical
association, 58(301):236-244, 1963.

An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu, William Yang Wang, Jingbo Shang,
and Julian McAuley. Learning concise and descriptive attributes for visual recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3090-3100, 2023.

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark Yatskar.
Language in a bottle: Language model guided concept bottlenecks for interpretable image classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19187-19197,
2023.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv preprint
arXiw:2205.15480, 2022.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Luowei Zhou,
Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pretraining. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 16793-16803, 2022.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301-320, 2005.

A Implementation Details

A.1 Tree hierarchy extraction

Tree generation. We implement multiple strategies to generate the decision tree structure 7"

e Data-induced tree: We first compute class centroids by averaging CLIP image embeddings of
training instances per class. Then, we apply hierarchical clustering (Ward’s linkage (Ward Jr| [1963))
on these centroids to obtain the linkage matrix Z that defines the merge structure.

o Weights-induced tree: Instead of computing class centroids from data, we use the learned linear
classifier weights from a trained linear probe as the class representatives, and perform hierarchical
clustering on them.

o« Random tree: We generate entirely random vectors (matching the dimensionality of the class
centroids) and perform hierarchical clustering on these vectors to create a purely random hierarchy.

After obtaining Z, we build the tree bottom-up. Each merge in Z creates a new internal node by combining
two child nodes. To avoid excessive merging of semantically distinct classes, we prune internal nodes whose
merge distances fall below a pruning threshold 7, defined as a specific percentile (e.g., the 30th percentile) of
all distances in Z. This pruning step produces a multi-branch hierarchy with internal nodes representing
semantically coherent groups. For controlled experiments comparing with other CBMs, we prune the tree
hierarchy using a threshold 7, set to 0.6 for CIFAR-10, 0.96 for CIFAR-100, 0.98 for CUB-200 and Tiny

16

Under review as submission to TMLR

ImageNet, and 0.96 for UCF101, in order to produce a tree with exactly four internal nodes and a maximum
depth of four.

The tree is implemented using a TreeNode structure, maintaining references to children, parent, node classes,
and computed centroids. We ensure structural consistency by post-order traversal pruning and update sibling
relationships and levels for downstream processing.

Tree annotation. We annotate internal nodes to improve semantic interpretability. This process involves:

e Prompt construction: For each non-leaf node, we collect the set of leaf class names in its subtree.
We design a prompt that asks a large language model (LLM) to summarize the set into concise
cluster names. The prompt format is as follows:

You are an experienced taxonomist analyzing the dataset {dataset_name}.

Given {num_clusters} clusters, each containing the following classes:

{Cluster 0: [classO, classl, ...], Cluster 1: [...1, ...}

Your task is to identify common characteristics and assign a short, clear,
exclusive name to each cluster.

Return the result as JSON: { ’cluster_0’: ’name0O’, ’cluster_1’: ’namel’, ... 1}

e LLM querying: We use either GPT-4.1 from OpenAl (by default) or alternative LLMs (e.g.,
DeepSeek) to generate names. Responses are parsed to ensure valid JSON format and semantic
consistency. We attempt multiple retries (set to 5 by default) if the output parsing fails.

« Node naming: Each internal node assigns its generated name to its immediate children, thereby
incrementally annotating the hierarchy during breadth-first traversal.

A.2 Candidate concept generation

Across the experiments, we generate three types of concepts: random concepts for non-semantic baselines,
existing concepts from Labo (Yang et al., |2023)) to enable controlled comparisons between CFM and prior
CBMs, and LLM-generated concepts for visualization and interpretation of CFMs.

Random concepts. To establish a random baseline, we generate a large pool of purely random phrases
independent of the dataset or hierarchy structure.

The random concept generation process proceeds as follows:

e Word list collection: We first download an English word list containing approximately 500,000
unique words from a public repository[ﬂ

o Phrase construction: We randomly sample phrases by concatenating between 1 and 5 randomly
selected words. Each phrase forms a simple noun-like structure (e.g., river bright stone, glowing
arc monument), introducing linguistic randomness.

o Storage: We generate a fixed number (e.g., 30,000) of such random phrases and store them in a
JSON file for reuse across experiments. Each phrase is indexed by a unique integer key.

e Phrase sampling during training: During training or evaluation, random phrases are drawn
from the pre-generated pool to simulate random concept sets.

This random phrase generation pipeline provides a controlled method to assess the model’s robustness against
semantically meaningless features, serving as a baseline when evaluating the effectiveness of selected concepts
from the existing or LLM-generated concept pool.

Thttps://raw.githubusercontent .com/dwyl/english-words/master/words.txt

17

https://raw.githubusercontent.com/dwyl/english-words/master/words.txt

Under review as submission to TMLR

Existing concepts. We reuse pre-existing LLM-generated concepts to ensure a fair baseline model
comparison. Specifically, we leverage the concepts provided by LaBo (Yang et al., [2023), which are publicly
availabld?

The concept loading process proceeds as follows:

e Concept file retrieval: For each dataset, we access the corresponding JSON file containing class-
to-concept mappings, where each class is associated with a list of LLM-generated visual concepts.

e Concept extraction: For each internal node, we iterate through its leaf classes and collect all
concepts associated with the classes from the pre-loaded mappings.

This procedure enables experiments using high-quality, curated concept sets without requiring costly LLM
queries.

LLM-generated concepts We generate candidate concepts per leaf class and only aggregate them to
internal nodes afterwards. Concretely, we first run a per-class concept discovery stage and then construct
node-level candidate pools by unioning concepts from descendant leaves.

o Per-class discovery (multimodal prompts). For each leaf class ¢, we sample up to
max_images_per_class training images and group them into batches of size images_per_prompt
(discarding groups smaller than min_images_per_group). Each request to the LLM attaches the
image batch (as base64-encoded PNGs) before a textual prompt that includes: the target class
name, its parent-chain, its sibling classes, and the set of concepts already discovered for ¢ (to
discourage repetition). The prompt also enforces constraints on the number of parent-consistent and
sibling-distinguishing traits and a maximum phrase length.

o LLM querying and parsing. We query an OpenAlI chat model (default: GPT-4.1-mini, configurable
via model_name) with constant backoff and at most max_retry_attempts. The model returns short
noun phrases; we parse the response line-wise, strip numbering, enforce a max_words_per_concept
limit, and keep only novel items relative to the per-class memory set. We iterate image batches until
reaching max_concepts_per_class or exhausting data, with an api_call_delay between calls.

e Caching and resumption. Concepts discovered for each class are saved incrementally to a JSON
file (<dataset>_<backbone>_11lm_concepts.json). When resume is enabled, previously completed
classes are skipped and generation continues for the remaining classes.

« Bottom-up aggregation at internal nodes. After per-class discovery, we traverse internal nodes
in a bottom-up order and construct each node’s candidate pool by aggregating the concepts of its
descendant leaf classes. We also retain the originating class index for each concept to preserve the
linkage between concepts and classes. No additional LLM calls are made at this stage.

This two-stage design grounds concepts in real images for each class while leveraging hierarchical context
(parents and siblings) to promote class-specificity and sibling contrast. The subsequent bottom-up aggrega-
tion yields node-local candidate pools without extra LLM cost, supporting fine-grained classification and
interpretable, hierarchy-aware decisions.

A.3 Concept preprocessing

Before using LLM-generated candidate concepts for concept selection, we apply two preprocessing steps to
ensure quality and semantic diversity:

%https://github.com/YueYANG1996/LaBo/tree/main/datasets

18

https://github.com/YueYANG1996/LaBo/tree/main/datasets

Under review as submission to TMLR

Removal of concepts containing class names. To prevent data leakage and trivial shortcuts, we filter
out candidate concepts that contain any class names or substrings thereof. For each candidate concept ¢, we
perform a case-insensitive regular expression search against all class names. Concepts matching any class
name pattern are discarded.

Removal of semantically redundant concepts. To encourage concept diversity, we eliminate highly
similar concepts within each node. Specifically, we:

e Encode all candidate concepts into CLIP text embeddings using the backbone model.
e Normalize all embeddings and compute pairwise cosine similarities.

e For each concept, we remove subsequent concepts whose cosine similarity exceeds a predefined
threshold 6 (We set § = 0.9 for all experiments).

This redundancy removal is performed in a greedy, batch-efficient manner to minimize memory usage. We
prioritize keeping earlier concepts when conflicts arise and explicitly free unused tensors to reduce CPU
memory overhead.

Overall, this two-stage cleaning process ensures that the remaining candidate concepts for each internal node
are both distinct and informative, leading to better semantic coverage and improving interpretability in later
concept selection stages.

A.4 Concept distribution

To determine the concept budget r, for each internal node v, we employ a hybrid allocation strategy that
combines a fixed base share with an adjustment based on the node’s child count:

ry = max(a[Child(v)| + (1 —a)|B|, Tmin), v € Ving. (11)

Here, B = % denotes the mean (base) share when N concepts are distributed across m internal nodes. The
coefficients « € [0,1] and (1 — «) balance the influence of the child-weighted term and the uniform baseline,
respectively. 7y, enforces a minimum number of concepts allocated per node. Further implementation details
are provided in the supplementary code.

Hyper-parameters.

o «: weight of the child-count term (default 0.2).

e Tmin: Minimum number of concepts per node (default 1).

We fix rpin = 1 for all experiments. The child-weighted coefficient « is tuned from 0 to 1 in increments of 0.1.
The final settings are chosen as follows: a = 0.6 for CIFAR-10, CIFAR-100, and Tiny ImageNet; o = 0.9 for
UCF-101; and o = 0.8 for CUB-200.

A.5 Concept selection

After generating and preprocessing candidate concepts for each internal node, we apply a concept selection
step to choose a compact subset of informative concepts. The selection process is organized as follows:

Multi-class data preparation. For each internal node, we collect training examples corresponding to the
child classes of that node. We construct a multi-class prediction task where the goal is to predict the child
class from instance features, enabling quantitative evaluation of concept quality.

19

Under review as submission to TMLR

Selection strategies. We implement five different strategies to select a subset of concepts:

« Lasso selection: We represent each sample as a vector of cosine similarities to candidate concept
embeddings. We then apply ¢;-penalized logistic regression (Lasso) with the following settings for all
experiments: penalty=’11’, solver=’1iblinear’, multi_class=’ovr’, and max_iter=1000. The
resulting sparse model identifies a compact set of concepts that are predictive of child classes. We
select the top-r ranked concepts, where r is the desired number of concepts per node.

e Similarity selection: For each concept, we compute its average cosine similarity to all training
samples. Concepts with the highest average similarity scores are selected.

e Orthogonality selection: We use a facility location-based submodular optimization approach to
select the top-r concepts that are maximally diverse (i.e., mutually orthogonal in embedding space).

« Random selection: Concepts are randomly shuffled and the top-r concepts are selected as a
baseline.

¢ Submodular selection: We use a mutual information-augmented submodular optimization method,
balancing concept relevance and diversity. This approach follows the procedure outlined in LaBo (Yang
et all |2023) and operates by selecting concepts that maximize a mixture of informativeness and
diversity scores.

A.6 Hierarchical loss

We add a hierarchical auxiliary loss to supervise routing decisions at internal nodes of the tree. At each
internal node, the model predicts a probability distribution over its children based on the input embedding.
We apply a cross-entropy loss between the predicted distribution and the ground-truth child node, determined
by the path leading to the correct leaf class. The hierarchical loss is accumulated along the path from
the root to the leaf and is added to the main classification loss during training. This auxiliary supervision
encourages more accurate intermediate decisions but can slightly degrade overall performance, consistent
with observations from prior work (Wan et al., [2020).

20

Under review as submission to TMLR

B Experiment details

B.1 Dataset statistics

Table [5] summarizes the key statistics of the datasets used in our experiments, including the number of
classes and the number of samples in the training, validation, and test sets. For datasets without predefined
validation splits, we randomly split the training set into 80% for training and 20% for validation.

Table 5: Dataset statistics.

Dataset # Classes Train Validation Test
CIFAR-10 10 40,000 10,000 10,000
CIFAR-100 100 40,000 10,000 10,000
CUB-200-2011 200 4,795 1,199 5,794
Tiny ImageNet 200 80,000 20,000 10,000
UCF101 (processed) 101 7,639 1,898 3,783

e CIFAR-10 and CIFAR-100 have predefined 50,000 training and 10,000 test images. We split the
original training set into 80% training and 20% validation.

« CUB-200-2011 consists of 11,788 images across 200 bird species, with a standard split of 5,994
training and 5,794 test images. We split the training set into 80% training and 20% validation.

e Tiny ImageNet provides 100,000 training images and 10,000 test images across 200 classes. We
split the original training set into 80% training and 20% validation.

e UCF101 refers to the processed version released by [Yang et al.| (2023) based on mid-frames from
videos, available at https://drive.google.com/uc?id=10Jqome3vtUA2keJkNanAiFpgbyC9Hc20.
We split the training set into 80% training and 20% validation.

References:

e CIFAR-10 and CIFAR-100: https://www.cs.toronto.edu/~kriz/cifar.html
e« CUB-200-2011: https://www.vision.caltech.edu/datasets/cub_200_2011/
o Tiny ImageNet: https://www.kaggle.com/c/tiny-imagenet

« UCF101 (processed version): https://drive.google.com/uc?id=
10Jqome3vtUA2keJkNanAiFpgbyCO9Hc20

B.2 Experiment settings

Our experiments are conducted on a system equipped with Intel Xeon E5-2640 v4 CPUs (20 cores, 40 threads)
operating at 2.40 GHz, 503 GiB of RAM, and an NVIDIA RTX A6000 GPU with approximately 49 GiB of
VRAM. All data are processed using the CLIP ViT-B/32 (Radford et al., 2021 backbone (unless otherwise
specified) and cached to accelerate model training. Two worker threads are used for data processing. For
all models, we train only the linear layers based on the cached, featurized data. Constructing a Concept
Flow Model, including hierarchy generation, concept selection, and training, takes between 0.1 and 5 hours
depending on the dataset. All hyperparameter settings are provided in Sec. [A] with additional details for
Linear Probe, PCBM, and Labo in the supplementary code and YAML configuration files.We do not explicitly
include NBDT(Wan et al., |2020]) as a baseline for comparison, as it was not designed to support concept-level
explanations. However, our ablation study in Sec. which removes the concept matrix, results in a model
that is approximately equivalent to NBDT and achieves performance comparable to the non-interpretable
linear probe baseline.

21

https://drive.google.com/uc?id=10Jqome3vtUA2keJkNanAiFpgbyC9Hc2O
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.kaggle.com/c/tiny-imagenet
https://drive.google.com/uc?id=10Jqome3vtUA2keJkNanAiFpgbyC9Hc2O
https://drive.google.com/uc?id=10Jqome3vtUA2keJkNanAiFpgbyC9Hc2O

Under review as submission to TMLR

Training setup. All models are trained using the Adam optimizer with an initial learning rate of 0.01. We
use a mini-batch size of 128 (unless otherwise specified) and train for up to 200 epochs with early stopping
based on validation loss. If the validation loss does not improve by at least 0.0001 for 5 consecutive epochs,
training is terminated early. The learning rate is reduced by a factor of 0.5 if the validation loss plateaus for
3 epochs, following a ReduceLROnPlateau schedule.

All experiments are implemented in PyTorch and executed on CUDA-enabled devices. Random seeds are fixed
across data splits, concept processing and model initialization to ensure reproducibility. Concept generation,
selection, training, and evaluation pipelines are fully automated and configurable via YAML configuration
files.

B.3 Experiment with Elastic Net regularization

100 100
80 80
g 60 g 60
© ©
A -
3 3
v v
v v
< 40 < 40
- -
3 3
= =
20 === Linear Probe 20 === Linear Probe
CBM CBM
== CFM (per node) = CFM (total)
[} 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Sparsity Sparsity
(a) Accuracy vs. per-node sparsity (b) Accuracy vs. total sparsity

Figure 6: Impact of Elastic Net regularization-induced sparsity on accuracy. (Left) Accuracy trends
for the first experimental group, where CFM (4000 total concepts, 1000 per node) is initialized with four
times more random concepts than CBM (1000 total concepts). As the number of effective concepts per
node (CFM) or layer (CBM) is progressively reduced, both models exhibit similar accuracy trends. (Right)
Accuracy trends for the second experimental group, where CBM and CFM are initialized with the same total
number of random concepts (4000).

Previous works (Srivastava et al., [2024; [Yuksekgonul et al.,|2022|) have applied Elastic Net regularization (Zou
& Hastie, |2005)—which combines ¢; and /5 penalties—to the concept-to-class linear layer in concept-based
models to control the number of effective concepts and improve robustness. However, as noted by |Srivastava,
et al.| (2024), tuning the regularization strength to target a specific number of effective concepts can be
labor-intensive and dataset-dependent. For this reason, we omit Elastic Net regularization in our controlled
experiments (Sec. and instead directly control the number of concepts.

Nonetheless, we conduct additional experiments here to validate that Elastic Net regularization can achieve
similar effects. Specifically, we train CBMs and CFMs on CIFAR-10 using purely random concepts, applying
Elastic Net regularization to induce the sparsity of the linear layers.

Following [Yuksekgonul et al.| (2022)), we define the regularization objective as:

A
N.K

Qw),

where N, is the number of concepts, K is the number of classes, A controls regularization strength, and Q(w)
is the Elastic Net penalty:
QUw) = afwli + (1 - a)|w]3.

We fix the mixing ratio a = 0.9 to emphasize sparsity through ¢; regularization. We consider two experimental
groups: (1) CBM is initialized with 1000 concepts, and CFM is initialized with 1000 concepts per internal

22

Under review as submission to TMLR

node (resulting in 4000 total concepts across 4 nodes); (2) CBM is initialized with 4000 concepts, while
CFM maintains 1000 concepts per node (4000 total concepts). In both setups, we measure sparsity as the
proportion of near-zero weights (Jw;| < 1072) in the concept weight matrices. We vary the regularization
strength A\ across 20 logarithmically spaced values between Api, = 0.01 and Apax = 20.0 to achieve a range
of target sparsity levels for comparison.

Figure |§| (left) shows the results for the first experimental group. As the number of effective concepts decreases
(i.e., sparsity increases), the accuracy of both CBM and CFM declines in a similar manner, mirroring the
trends observed when directly reducing/increasing the number of concepts (see Fig.|3). In contrast, Figure |§|
(right) presents the second experimental group, where CBM and CFM are initialized with the same total
number of concepts (4000). In this setting, CFM experiences an earlier and sharper accuracy drop as sparsity
increases. This is because the smaller number of random concepts per node in CFM limits each node’s
discriminative capacity, making it harder to maintain high classification accuracy compared to CBM.

For convenience, we omit Elastic Net regularization in the main paper’s controlled experiments to enable
precise control over concept count and facilitate comparison with Labo and PCBM. However, in practical
applications, we recommend using FElastic Net regularization in CFM, particularly when a node contains a
large number of concepts (e.g., CUB dataset with 100 concepts per node).

B.4 Detailed Experimental Results for Scenario 1

Table 6: Detailed results for Figure |3| All values are accuracy (%) reported as mean + std over three runs.

(a) Fixed total budget R (b) Fixed bottleneck concepts

R CFM CBM R CFM CBM
8 30.11+3.77 63.46+3.95 2 30.11£3.77 30.79+2.98
16 41.90+5.15 72.02+2.01 4 41.90 £5.15 42.20 +4.98
32 60.76+0.48 84.01 £0.55 8 60.76 £0.48 56.14 +0.06
64 75.95+3.68 89.78£0.26 16 75.95+3.68 76.86+2.73
128 86.30+0.78 91.26 £0.10 32 86.30+0.78 85.49+£0.86
256 88.944+1.74 92.25+0.12 64 88.94+1.74 89.68+£0.06
512 90.394+1.41 92.63+0.06 128 90.39 +£1.41 91.04 +£0.07
256 90.63+£1.86 92.25+0.12
512 90.33£1.51 92.63 £+ 0.06
(¢) CFM pruning (R = 60) (d) CBM sparsity (R = 60)
Inner Nodes Accuracy A Accuracy

1 88.41 £0.78 0.1 84.53+0.90

2 85.95 + 0.88 0.2 81.37+1.46

3 80.76 + 1.41 0.3 75.84+1.33

4 71.86 £ 3.96 0.4 74.00+0.29

5 71.76 £ 3.30 0.5 70.02+1.31

6 67.33 +£4.03 0.6 56.36 £13.07

7 61.97 +£ 1.75 0.7 56.02+9.35

8 61.88 £+ 2.65 0.8 3729+4.73

9 54.05 £ 1.56 0.9 38.75+9.42

23

Under review as submission to TMLR

B.5 Detailed Experimental Results for Scenario 2

Table 7: Full experimental results with standard deviations over 3 runs. NEC: number of effective concepts;
Acc: classification accuracy (%); SIR: semantic improvement over random concepts (%).

Dataset Method NEC Acc (%) SIR (%)
Linear Probe N/A 94.5940.16 N/A
CBM (Random) 56.80+0.82 89.20+1.18 0
CFM (Random) 6.90+0.00 76.46+0.82 0

CIFAR-10 PCBM 56.8040.52 91.1540.10 2.19
Labo 57.73+0.15 90.93+0.12 1.94
CFM (Ours) 6.90+0.10 91.59+0.38 19.78
Linear Probe N/A 77.53+£0.34 N/A
CBM (Random) 184.20+£0.72 68.50+1.32 0
CFM (Random) 54.24+10.12 62.00+1.11 0

CIFAR-100 PCBM 183.9940.13 68.98+1.69 0.70
Labo 184.3340.51 70.98+0.67 3.62
CFM (Ours) 55.02+8.36 72.291+0.02 16.61
Linear Probe N/A 95.0040.38 N/A
CBM (Random) 187.31+1.90 79.15+1.38 0
CFM (Random) 44.99+1.79 72.76+2.23 0

UcFk10l PCBM N/A N/A N/A
Labo 190.60+0.84 84.62+0.24 6.91
CFM (Ours) 45.80+1.25 84.60+0.21 16.27
Linear Probe N/A 71.6840.60 N/A
CBM (Random) 344.19+8.49 52.23+2.00 0
CFM (Random) 104.61412.47 47.08+£2.22 0

CUB200 PCBM N/A N/A N/A
Labo 357.92+0.77 65.13+0.34 24.70
CFM (Ours) 109.34+13.13 65.68+0.51 39.50
Linear Probe N/A 75.254+0.16 N/A
CBM (Random) 362.34+3.24 68.78+0.71 0

TinvImaeeNet CFM (Random) 89.83+0.16 64.89+0.59 0

Y g PCBM 362.01+0.43 71.07+0.31 3.32

Labo 369.36+0.57 69.86+0.34 1.57
CFM (Ours) 92.12+4+4.71 70.791+0.28 9.09

B.6 Comparison of CFM and PCBM with Sparsity Regularization

We conduct additional experiments comparing CFM and PCBM with and without sparsity regularization.
While the main experiments in Section [5| disable sparsity regularization to isolate the effect of CFM’s
structural design from regularization-induced sparsity, we demonstrate here that CFM’s advantages persist,
when sparsity regularization is applied to both methods.

Experimental Setup. We compare PCBM and CFM on CIFAR-10 under two conditions: (1) without
sparsity regularization, (2) with sparsity regularization at matched NEC levels of 5 and 3. Following
the original PCBM implementation (Yuksekgonul et al., [2022)), we set the L1 ratio to 0.99 and tune the
regularization strength A to achieve the target NEC values. This methodology follows VLG-CBM (Srivastava,
et al., 2024)), which emphasizes that fair comparison requires matching effective concept counts across methods.

Results. Table [8] presents the results. Without sparsity regularization, CFM achieves comparable accuracy
to PCBM (91.68% vs. 91.36%) while using substantially fewer effective concepts (7 vs. 57). When sparsity
regularization is applied to match NEC values, CFM significantly outperforms PCBM: at NEC=5, CFM

24

Under review as submission to TMLR

achieves 90.66% accuracy compared to PCBM’s 85.85% (+4.81%); at NEC=3, CFM maintains 90.61%
accuracy while PCBM drops to 84.41% (+6.20%).

Table 8: Comparison of PCBM and CFM with and without sparsity regularization on CIFAR-10. For
experiments with regularization, A is tuned to achieve matched NEC values. Results demonstrate that CFM’s
structural sparsity complements sparsity regularization effectively.

Method Sparsity Reg. NEC Accuracy (%) A

PCBM X 57 91.36 —
CFM X 7 91.68 —
PCBM 4) 85.85 0.8
CFM v 5 90.66 0.02
PCBM v 3 84.41 1.3
CFM v 3 90.61 0.1

These results demonstrate three key findings: (1) without sparsity regularization, CFM achieves comparable
accuracy with substantially fewer effective concepts, validating Proposition (2) with sparsity regularization
at matched NEC levels, CFM significantly outperforms PCBM, indicating that structural sparsity provides
benefits beyond what regularization alone can achieve; and (3) CFM’s structural sparsity and sparsity
regularization can be effectively combined. CFM requires much smaller A values to achieve the same NEC,
suggesting that its hierarchical structure already enforces substantial concept isolation.

B.7 Qualitative Analysis of Decision Paths

To complement the quantitative evaluation in Section [5] we present qualitative analyses of CFM decision
paths. We select four samples across three datasets to illustrate both successful and unsuccessful predictions:
three correctly classified cases demonstrating different levels of concept-image correspondence, and one failure
case to examine CFM’s diagnostic capabilities. All models use the CLIP ViT-L/14 backbone with candidate
concepts generated by GPT-4.1-mini.

Case-by-Case Observations. Table [J]illustrates how CFM produces traceable decision paths, where each
prediction follows a unique root-to-leaf trajectory through localized concept subsets.

(a) Bowling. With only two transitions, the model routes from “Root” to “Sports and Athletic Events”
(99.99%) using motion-related concepts such as “ball trajectory on lane” (0.25), then to “bowling” (99.91%)
via task-specific concepts including “ten-pin setup” (0.30) and “bowler’s side-on stance” (0.21). However,
“colored cue ball markings” (0.16)—which refers to billiards rather than bowling—illustrates that not all
activated concepts are semantically correct, even in successful predictions.

(b) Painted Bunting. The three-level hierarchy progressively refines the prediction: generic bird features
(“songbird vocal sac presence”, “songbird wing feather pattern”) at the first level, visual characteristics
(“large stout bill”, “glossy black back feathers”) at the second, and species-level attributes at the leaf. The
final transition activates two concepts, i.e., “iridescent green wing coverts” and “iridescent golden-green wing
coverts”, both referencing green coloration. While painted buntings do have greenish back feathers, the most
visually prominent features in Figure (blue head, red breast) are not captured by the selected concepts.

(¢) Parking Meter (Failure Case). This misclassification illustrates how CFM’s decision path can expose
prediction uncertainty. At the second transition, the model shows only 69.24% confidence for “Everyday
Objects & Apparel” versus 30.76% for “Structures & Vehicles”, which is a notably uncertain split. The
concepts activated throughout the path (“rows of stop knobs”, “tactical utility belt”, “graduated fluid
chamber”) show little semantic correspondence to the input image. The resulting path probability of 68.69%
is clearly lower than the correctly classified samples before. TinylmageNet’s low resolution (64x64) may
further limit CLIP’s ability to extract discriminative visual features.

25

Under review as submission to TMLR

(a) Bowling (UCF-101): Correct (b) Painted Bunting (CUB-200): Correct

(c) Reel (TinyImageNet): Misclassified as Parking Meter (d) Clean and Jerk (UCF-101): Correct

Figure 7: Input samples for qualitative analysis. We analyze CFM decision paths for four cases across
three datasets. Detailed decision paths with concept activations are provided in Table E}

(d) Clean and Jerk. The decision path transitions through “Personal Actions and Instrument Play” —
“Physical Activities” — “clean and jerk”. Upper-level concepts exhibit grounding issues: “standing musician
posture” and “child-sized cleaning tool” do not correspond to the image. The latter may arise from spurious
linguistic correlation with “clean” in the class name. In contrast, leaf-level concepts such as “weight plates
visible on barbell” (0.28) and “weightlifting platform mat” (0.19) directly match salient visual elements. In
this case, accurate prediction occurred despite poorly aligned upper-level concepts, suggesting that leaf-level
concept quality may be more critical for final classification.

Observations on Interpretability. These examples highlight both the utility and limitations of CFM’s
decision paths.

Traceability. CFM’s stepwise structure makes prediction reasoning explicit. In the parking meter failure case,
the uncertain routing at the second transition (69.24% vs. 30.76%) and the semantically misaligned concepts
provide interpretable signals of an unreliable prediction. This contrasts with flat CBMs, where all concepts
contribute to a single linear combination, making it harder to identify which semantic distinctions caused an
error.

Concept alignment limitations. Even in correctly classified samples, some activated concepts are semantically
incorrect (“colored cue ball markings” for bowling) or fail to capture visually salient features (green wing
coverts for a bird with prominent blue and red coloring). These observations align with limitations of

26

Under review as submission to TMLR

Table 9: Decision paths and concept activations for samples in Figure |7l Each row shows a transition,
the branch probability, and the top activated concepts with weights (up to 3 per transition). Unlike flat
CBMs that expose all concepts to every class prediction, CFM restricts each transition to a localized concept

subset. Path Prob. denotes the cumulative product of transition probabilities.

Sample Transition Prob. Top Activated Concepts (weight)
ball trajectory on lane (0.25)
(a) Bowling Root — Sports and Athletic Events 99.99% spherical ball kicked by player (0.19)
(UCF-101) rider’s legs bent at knees (0.18)
Path Prob: 99.90% ten-pin setup (0.30)
Sports and Athletic Events — bowling 99.91% bowler’s side-on stance (0.21)
colored cue ball markings (0.16)
songbird vocal sac presence (0.20)
Root — Songbirds & Passerines 100.00% songbird wing feather pattern (0.14)
(b) Painted Bunting bright chestnut throat (0.14)
CUB-200 S :
() Songbirds & Passerines — large stout bill (0.22)
Path Prob: 98.96% Colorful and Varied Perching Birds 98.99% glossy black ba'Lck feathers (0.21)
glossy black wings and back (0.18)
Colorful and Varied Perching Birds 99.97% iridescent green wing coverts (0.16)
— painted bunting ’ iridescent golden-green wing coverts (0.16)
rows of stop knobs (0.41)
Root — Objects & Structures 100.00% series of tall vertical piers (0.39)
(c) Parking Meter waist-level fit (0.36)
(TinyImageNet) Objects & Structures — tactical utility belt (0.22)
Pred: reel Everyday Objects & Apparel 69.24% graduated fluid chamber (0.18)
Path Prob: 68.69% (vs. Structures & Vehicles 30.76%) side-tied bottom strings (0.17)
designed for manual operation (0.43)
Everyday Objects & Apparel — reel 99.21% stick extending lengthwise (0.31)
tapered cooking depth (0.24)
Root — standing musician posture (0.16)
Personal Actions and Instrument Play 98.85% padded weightlifting bench support (0.15)
child-sized cleaning tool (0.15)
(d) Clean and Jerk - - -
(UCF-101) Personal Actions and Instrument Play w§nst—‘1evel prop ma.mpulamf)n (0.15)
—» Physical Activities 100.00% climbing-specific grip technique (0.15)
Path Prob: 98.77% climbing shoes with rubber soles (0.14)
weight plates visible on barbell (0.28)
Physical Activities — clean and jerk 99.92% weightlifting platform mat (0.19)

weightlifting barbell with weighted plates (0.18)

CLIP-based concept alignment noted in prior work (Oikarinen et al., 2023; |Yang et al.; |2023)), indicating that
concept pool quality remains important for explanation fidelity regardless of the model architecture.

B.8 ImageNet-1K Experiments
To validate the scalability of CFM to large-scale datasets, we conduct experiments on ImageNet-1K, which
contains 1000 classes and over 1.2 million training images.

Scalability via Stratified Sampling. The computational bottleneck arises from computing the similarity
matrix S, € R"*™ and solving Lasso regression over all n samples during concept selection. For ImageNet-1K,
processing all training samples is prohibitive. We address this via stratified sampling: grouping samples by class
and drawing a balanced subset with n,.x = 15,000 samples. Since concept selection requires representative
samples rather than exhaustive coverage, this preserves class structure while remaining tractable regardless
of dataset size.

27

Under review as submission to TMLR

Experimental Setup. We use CLIP ViT-B/32 as the backbone (512-dimensional embeddings) with a
total budget of 1000 concepts (one per class). CFM is configured with 5 internal nodes and 3 levels. All other
settings follow Section 5.1. We report mean and standard deviation over 3 runs with different random seeds.

Results. Table [10| summarizes the results. CFM achieves competitive accuracy (72.88%) with significantly
fewer effective concepts (339 vs. ~860). With 1000 concepts exceeding the 512-dimensional embedding, flat
CBMs exhibit severe information leakage. CBM (Random), PCBM, and Labo all fall within 0.25% of Linear
Probe, with near-zero SIR confirming that random concepts suffice when the concept count exceeds the
embedding dimension. In contrast, CFM limits per-node concepts below the embedding dimension through
its hierarchical structure, yielding substantially higher SIR (4.70%) and validating hierarchical bottlenecks’
resistance to information leakage at scale.

Table 10: Comparison of methods on ImageNet-1K. We report the number of effective concepts (NEC),
classification accuracy (Acc), and semantic improvement over random concepts (SIR). Results are mean +
std over 3 runs. Bold values indicate best performance among concept-based methods.

Method NEC Acc (%) SIR (%)
Linear Probe N/A 73.03 £ 0.63 N/A
CBM (Random) 853.92 + 16.70 72.82 + 0.43 0
CFM (Random) 260.10 £ 1.62 69.61 + 0.23 0
PCBM 860.44 £ 8.18 73.08 £+ 0.76 0.37 £ 1.51
Labo 868.31 £ 0.69 72.86 £+ 0.55 0.06 £ 0.42
CFM (Ours) 339.18 £ 1.12 72.88 + 0.56 4.70 + 0.58

C Theoretical Analysis

C.1 Proofs of Propositions
C.1.1 Setup, conventions, and definitions

Row—vector convention. All feature vectors are treated as row vectors for notational consistency:
z € R4 g0 that zOT € R and (2CT)W € R4 have conforming shapes.

Data and embeddings. We consider a multiclass training set {(z;,y;)}", with z; € R1*4 v, € [K], where
z; = ®y(x;) are fixed image embeddings (the encoder is frozen). The dataset is linearly separable if there
exists U € R?*K such that arg maxy(z;U) = y; for all 4.

Concept matrices and linear bottlenecks. A concept matrix with concepts is C € R™?. For an
input z € R'*4 the (unnormalized) linear bottleneck activations are

s = 2CT e R,
A linear transformation (weight matrix) W € R™4 produces logits sW € R**4.

CBM and CFM. A flat CBM uses a single C' € R"*? and a weight matrix W € RF*X predicting
i = arg maxk(zCTW)k. A CFM builds a rooted tree with internal nodes v € Vi; and leaves L. Each internal
node v has a concept matrix C, € R™*% and a local weight matrix W, € R"™*™v where m, = |Ch(v)|.
Local logits at v are

bo(z) = (2C) Wy € RV,

2Proofs were partially drafted with ChatGPT assistance and verified by the authors.

28

Under review as submission to TMLR

and local transition probabilities are p,_,;(z) = softmax(¢,(z)/T,); with temperature T, > 0. Let b; > 0 be
a leaf bias. The score for leaf [is

P(l | Z) = H pv%v’(z)v and Yy = argr}leaLXP(l | Z)

(v—=v’)em(vo,l)

In the proofs below we set equal leaf biases by = 1 so that path-wise constants cannot alter the global arg max.
(One may still learn b; with a regularizer keeping them nearly equal; this does not affect the structural
results.)

Budget and functional usage. The global concept budget is R =}, Vi, Tv- For a single prediction, let
the traversed root—to—leaf path be m(vg,*) and let j(v) € [m,] be the index of the chosen child at node v
(i.e., the child that the model follows on this input). We define the functional concept usage as the number of
distinct concepts that can influence the selected leaf’s score: for each visited node v, count the rows i € [r,)]
such that the entry W, [i, j(v)] # 0. The total usage is the sum of these row counts over the visited nodes.
(Equivalently: the row support of the column j(v) of W, along the path.)

Random concepts. Unless otherwise stated, “random concepts” means rows of each C' (or C,,) are drawn
i.i.d. from a continuous distribution on the unit sphere in R? and are independent of the data. Such matrices
are in general position; when the row number > d, they are full column rank d almost surely.

Remark on cosine activations If unit-normalized features and concept rows are used in implementation,
we have § = 2C7T H zCTD where D = diag(||C1.]|2,---,||Cr.]l2). The sample-dependent positive
scalar 1/]/z||2 does not change the per-sample class arg max under softmax with any 7' > 0, and the row
normalization of C' can be absorbed by replacing W with D~'W. Hence analyzing the unnormalized zC'T
suffices for classification statements.

C.1.2 Auxiliary lemmas

Lemma C.1 (Span equivalence for a flat bottleneck). Let C € RE*4 gnd s = zCT. If rank(C) = d, then
for any U € R¥™>*X there exists W € REXE such that

sW = zU for all z € R4,
Hence a flat CBM with full-column-rank C can realize any linear classifier in the original embedding space.
Proof. Since rank(C) = d, CT € R4 has full row rank. Let W = C(CTC)~'U. Then CTW = U, and
(zCTW = 2U. O

Lemma C.2 (Per-node span equivalence). Let v be an internal node with concept matriz C, € R™*< and
logits £,(2) = (2 CJ)W,,. If rank(C,) = d, then for any U, € R¥™™v there exists W, such that £,(z) = 2 U,
for all z.

Proof. Apply Lemmawith (C,U) — (Cy,Uy). O
Lemma C.3 (Softmax preserves order under positive scaling). For any a € R1*™ and T > 0, softmax(a/T)
preserves the arg max of a.

Proof. Dividing by T > 0 is strictly monotone; composing with the exponential is strictly monotone; the
softmax preserves the index of the largest coordinate. O

Lemma C.4 (Path dominance at fixed temperature). Fiz by = 1 and temperatures T,, > 0. Consider a
sample z with true leaf I* and path w(vg,). Suppose there exist constants p, A with 0 < A < p < 1 such that
for every internal node v on (v, l*),

vy it (o) (2) > and max py—i(z) < A
Po—j+()() P];é]Jr(v)p —>J()

Then, for every l #1*, we have P(I* | z) > P(l] z).

29

Under review as submission to TMLR

Proof. Let | # I* and let v be the first divergence node between 7(vg,1*) and 7(vg,). Along the shared
prefix, path products coincide. At v', the true/competing factors satisfy p* > p and p~ < A. For the
remaining segments, the competing path product is < 1 while the true path product is > p* for some k > 0
(the number of remaining internal nodes on the true path after v'). Hence

Plz) _ A _A_
P(I*[2) = ptt = p = 7

which proves P(I* | z) > P(l] 2). O

Corollary (from logit margins). If, for every internal node v on 7(vg, I*), the true child has a logit margin
Cy(2) 4 (v) = Lo(2); + 0, for all j # j+(v) and some &, > dmin > 0, and the branching factor is bounded by
My < Mpay, then

1 1
>
1 -+ (mv — 1)676” -1 -+ (mmax — 1)676111in

pv—)j*(v)(z) > =P

and for any j # 5 (v),

pvﬁj(z) < e @)+ ~t(2);) « =0 < e Omin —.)

Thus a sufficient fixed-temperature dominance condition is p > A, i.e.

1

5
> e~ Omin
1+ (Mpax — 1)e9min ’

which holds whenever 0., is large enough relative to mmpax. Applying Lemma yields P(I* | z) > P(l | z)
for all [# [*.

C.1.3 Leakage barrier for random concepts (Proposition

Uniform worst-case guarantee (necessity). To uniformly guarantee that every internal node can realize
any linearly separable local child-partition in R?, it is necessary that v, > d for all v, hence R = Yoy Tw > md.
This statement is independent of how C,, are drawn (random or otherwise).

Proof of Proposition[4.1)(i). Under the random-concept model, if R > d then rank(C) = d almost surely. By
Lemma a flat CBM can replicate any linear separator available in the original space on all inputs z,
hence linear separability (and training accuracy) is preserved. Writing R = (d) reflects the scaling of this
sufficiency. O

Proof of Proposition (#). Suppose some internal node v has r,, < d. Then span(C,) is a strict subspace
of R?. For any choice of W,, the realizable local map at v is

ly(2) = (z:CHYW, = 22U, Ul :=C]W, € RP>m»,

whose columns all lie in span(C,). Hence any locally linearly separable problem at v whose separating
normal u* ¢ span(C,) cannot be implemented by any W,,. Since a uniform guarantee must cover all linearly
separable local problems (i.e., arbitrary normals in R%), it is necessary that span(C,) = R?, which forces
rank(C,) = d and thus r, > d. Applying this to every internal node yields R =)", r, > md. O

C.1.4 Semantic efficiency and sparsity (Proposition

Assumption (semantic local separability). For each internal node v there exists a set of at most r/
concepts whose span linearly separates its m,, child clusters, i.e., there exists U, € R¥*™» with columns in
span(C,) realizing the correct local decision.

30

Under review as submission to TMLR

Proof of Proposition (i). By the assumption, for each node v there exists U, whose columns lie in span(C,).
Hence there is A, € R™*™ such that U, = C,] A,. Taking W, := A, gives £,(z) = (2C])W, = zU,, so the
true child attains a strictly larger local logit than any incorrect child for every training example routed through
v. Since T, > 0 is fixed, Lemma [C.3] preserves this local ordering in probability space. Moreover, by rescaling
W, (nodewise) if necessary, one can enforce uniform bounds p,_,;+)(2) > p and max;z;+) pu—sj(2) < A
with some 0 < A < p < 1 on all visited nodes for the training set (the margins scale linearly with W,).
Applying Lemma[C.4] then yields that, for every training example, the true path probability strictly dominates
any competing path, hence the final arg max returns the true leaf. Therefore the CFM matches the training
accuracy of a flat CBM that uses all R concepts. O

Proof of Proposition (i1). For a given example, only nodes on the traversed path can influence the selected
leaf’s score: concepts at other nodes do not enter the product and therefore have no functional effect. If each
visited node uses at most 7’ concepts—i.e., in the chosen column j(v) of W, there are at most ' nonzero
rows—then the total number of concepts the final score depends on is at most £7’, where £ is the path length.
In an (approximately) balanced tree with average branching factor b > 1, E[{] < log, m. Under an average
allocation 7’ = R/m, we obtain

R R
< = — -
E[USAGE] - logym = O(m log,, m),

to be contrasted with O(R) for a flat CBM that exposes all R concepts at once. O

C.2 Computational Complexity Analysis

We compare CBMs and CFMs under the same concept budget R and we assume modern GPUs can parallelize
independent nodes at the same tree level; different levels are computed sequentially (root — leaves).

Notation. d: CLIP embedding dimension; k: number of classes (leaf nodes); n: number of training samples;
R: total number of concepts; m: number of internal nodes in CFM; b: average branching factor; bpax:
maximum branching factor; £: average root-to-leaf path length; ' = R/m: average number of concepts per
internal node. In a rooted tree with k leaves and m internal nodes, the sum of the numbers of children over
all nodes equals the total number of edges, which is k +m — 1.

C.2.1 Forward Pass Complexity
CBM Complexity.

« Concept projection: 2CT with C € Rf*?: O(Rd)
o Classification: sW with W € REF**: O(Rk)
o Total: O(Rd+ Rk)

CFM Sequential Complexity.

« Concept projections across all internal nodes: Y, |Cy|-d = Rd = O(Rd)
« Local branching multiplications: Y, r’ - |Ch(v)| = £(k+m —1) = O(R+ %’“)

|7m

o Node-wise softmax + probability propagation: touch each edge once = O(k + m)
o Total: O(Rd+ £ + R+ k +m) ~ O(Rd + £& + | 4+ m)

CFM Parallel Complexity (level-wise parallelism). Assuming perfect parallelization across nodes at
the same depth, the per-level cost is O(%i + %b) (concept projections plus local branching). Over ¢ levels
and assembling leaf scores:

O(¢(24 + 22)) + O(tbimas).

m

For d > b, this is well-approximated by O(¢ £2).

31

Under review as submission to TMLR

C.2.2 Comparison Under Different Scenarios

Inference (all-class logits). It is standard to compute all class logits once and take arg max.

« CBM: O(Rd + Rk)

+ CFM (parallel): O(¢(22 4+ £2)) 1 O(£by)

Training (negative log-likelihood). With loss —log py,—y(z), CFM only evaluates the unique path to
the ground-truth leaf y:

CFM (per sample) : (’)(6(% + %)) + O(¢b) (lower-order), CFM (dataset) : O(nﬁ(% + %)).
CBM (all-class logits) remains O (n(Rd + Rk)).
C.2.3 When is CFM faster?
A practical rule from the above expressions:

O(244) 4 e < R+ R

For typical regimes with d > b this simplifies to ¢ % < Rd + Rk, ie., % <1+ g. Thus, once m > ¢ and k
is not tiny, CFM often has an advantage.

Bottlenecks. The path aggregation work in CFM is O(k 4+ m) (each edge touched once), while its parallel
time contribution is O(£byax). Both are much smaller than projection/multiplication terms. The main limiter
for speedups in practice is that many small matrix multiplies may utilize GPUs less efficiently than a few
large ones.
Example. R=512, d=768, k=100, m=>50, b~3, ¢~[logs; 100]=5:

e CBM: Rd+ Rk = 393,216 + 51,200 = 444,416

« CFM (parallel): ¢(£4 4 Bib) ~ 5(7,864 + 31) ~ 39,475 (the extra (byax is negligible here)

o Theoretical speedup = 11.3x (in practice smaller due to kernel efficiency).
Early stopping (inference). CFM can reduce effective work by pruning unlikely branches:

e Confidence thresholding: stop expanding once a path probability exceeds T

e Beam search: keep top-B children per node

These heuristics reduce the effective depth/branching explored and thus the constant factors in the CFM
terms.

32

	Introduction
	Related work
	Method
	Problem setup
	Tree hierarchy extraction
	Concept selection and distribution
	Model architecture and training

	Theoretical Analysis of Concept Usage in CFMs
	Information-Leakage Barrier of Hierarchical Bottlenecks
	Semantic Efficiency of Hierarchical Decision Paths

	Experiments
	Setup
	Scenario 1: How do CFM and CBM perform under random, non-semantic concepts?
	Scenario 2: How do CFM and CBM perform under curated semantic concepts?
	Ablation Study
	Visualization and interpretation of concept-driven decision paths
	Discussion

	Conclusion
	Implementation Details
	Tree hierarchy extraction
	Candidate concept generation
	Concept preprocessing
	Concept distribution
	Concept selection
	Hierarchical loss

	Experiment details
	Dataset statistics
	Experiment settings
	Experiment with Elastic Net regularization
	Detailed Experimental Results for Scenario 1
	Detailed Experimental Results for Scenario 2
	Comparison of CFM and PCBM with Sparsity Regularization
	Qualitative Analysis of Decision Paths
	ImageNet-1K Experiments

	Theoretical Analysis
	Proofs of Propositions
	Setup, conventions, and definitions
	Auxiliary lemmas
	Leakage barrier for random concepts (Proposition 4.1)
	Semantic efficiency and sparsity (Proposition 4.2)

	Computational Complexity Analysis
	Forward Pass Complexity
	Comparison Under Different Scenarios
	When is CFM faster?

