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Abstract
Conditional Semantic Textual Similarity (C-001
STS) introduces specific limiting conditions002
to the traditional Semantic Textual Similarity003
(STS) task, posing challenges for STS models.004
Language models employing cross-encoding005
demonstrate satisfactory performance in STS,006
yet their effectiveness significantly diminishes007
in C-STS. In this work, we argue that the failure008
is due to the fact that the redundant informa-009
tion in the text distracts language models from010
the required condition-relevant information. To011
alleviate this, we propose SElf-Augmentation012
Via SElf-Reweighting (SEAVER), which, based013
solely on models’ internal attention and with-014
out the need for external auxiliary informa-015
tion, adaptively reallocates the model’s atten-016
tion weights by emphasizing the importance of017
condition-relevant tokens. On the C-STS-2023018
test set, SEAVER consistently improves per-019
formance of all million-scale fine-tuning base-020
line models (up to around 3 points), and even021
surpasses performance of billion-scale few-022
shot prompted large language models (such023
as GPT-4). Our code is available at https:024
//github.com/NLP-LEE/SEAVER.025

1 Introduction026

Semantic Textual Similarity (STS) has been a cor-027

nerstone task in natural language processing fields028

for years (Agirre et al., 2014, 2015, 2016; Cer et al.,029

2017; Abdalla et al., 2021), which aims to mea-030

sure the semantic similarity between two sentences.031

With the emergence of pre-trained language models032

(Devlin et al., 2018; Liu et al., 2019; Brown et al.,033

2020; Raffel et al., 2020), the STS task seems to034

have been almost solved. However, STS is an in-035

herently ambiguous task (Wang et al., 2023b), for036

the varying aspects that can influence sentence sim-037

ilarity, unconditionally measuring this similarity is038

irrational and unexplainable. To solve the ambi-039

guity of STS task itself, Deshpande et al. (2023)040

proposed a novel task called Conditional Seman-041

tic Textual Similarity (C-STS), which incorporates042

Vanilla Language Model

SEAVER

Sent. 1: A man with a harness climbing a climbing wall.
Sent. 2: A girl wearing a harness climbs a rock wall.
Cond. : The sex of the person.

The two sentences are Similar.

Sent. 1: A man with a harness climbing a climbing wall.
Sent. 2: A girl wearing a harness climbs a rock wall.
Cond. : The sex of the person.

The two sentences are Dissimilar.

🕶

Figure 1: A straightforward example illustrating the dis-
traction in language models, SEAVER is able to softly
filter out irrelevant information, thereby focusing the
model’s attention on condition-relevant tokens.

specific conditions to highlight fine-grained aspects 043

of interest in sentence pair similarity assessment 044

(as shown in Figure 1), enables a more grounded, 045

precise and multi-faceted evaluation. 046

Given that C-STS introduces additional com- 047

plexity into STS, researchers have explored various 048

mainstream models, attempting to transfer them 049

from STS to C-STS (Liu et al., 2019; Reimers and 050

Gurevych, 2019; Deshpande et al., 2023). How- 051

ever, the results obtained have been less than sat- 052

isfactory. State-of-the-art STS language models 053

(hereafter referred to as STS models), such as Sim- 054

CSE (Gao et al., 2021), achieve only relatively low 055

performance in C-STS even after fine-tuning on 056

the C-STS dataset. More notably, even few-shot 057

prompted large language models perform poorly in 058

C-STS. This prompts us to ask: What causes the 059

state-of-the-art models in STS to fail in C-STS? 060

Previous work confirms that redundant objects 061

in data can distract models, leading to suboptimal 062

performance, a phenomenon widely discussed in 063

the visual domain (Wang et al., 2023a; You et al., 064

2023). However, this issue also exists in the text 065

domain, where pre-trained language models often 066
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Method Encoder Type Additional Part #CM #FF Reweight Application Field
Vanilla LMs (Gao et al., 2021) cross-encoder none 1 1 ✗ text-only
PerceiverIO (Jaegle et al., 2021) cross-encoder cross-attn module 3 1 ✓ multimodal
AbSViT (Shi et al., 2023) bi-encoder feedback network 2 2 ✓ visual & multimodal
SEAVER (Ours) cross-encoder none 1 1 ✓ text-only

Table 1: Comparison of related work. "#CM" and "#FF" represent the number of computational module types
required for a single feedforward pass and the number of feedforward passes needed for one prediction, respectively.

extract excessive potential semantic information067

(Hewitt and Manning, 2019), most of which is ir-068

relevant to the task. The design of STS inherently069

overlooks this issue, but C-STS has prompted a070

rethinking of redundancy in the text domain.071

As shown in Figure 1 (top), the two sen-072

tences displayed differ only in the gender-specific073

aspect (condition-relevant), while all other as-074

pects (condition-irrelevant) are semantically iden-075

tical. However, since the dissimilar but condition-076

relevant aspect occupies a relatively small propor-077

tion within the sentences, the abundance of similar078

but condition-irrelevant aspects vastly exceeds the079

required judgment area restricted by the condition080

in the sentences. Due to the unconditional design081

of STS, the STS models fine-tuned on C-STS still082

tend to largely rely on the excessive similar but083

condition-irrelevant semantic features, ignoring the084

dissimilar but condition-relevant aspects that truly085

require the model’s focus. This leads to their at-086

tention being largely distracted. As a result, the087

models tend to mistakenly perceive the sentences088

as highly similar, and this inclination is difficult to089

eliminate through simple fine-tuning.090

Given the aforementioned observations, we ar-091

gue that the excessive semantic features extracted092

by language models, which, in turn, distracts their093

attention, is the key reason for the failure of STS094

models in C-STS. As similar phenomena have been095

observed in the fields of visual and multimodal, re-096

searchers in these fields attempt to mitigate such097

distractions using reweighting strategies (Jaegle098

et al., 2021; Shi et al., 2023).099

Inspired by the reweighting strategy, we pro-100

pose a novel method that directly extracts the in-101

ternal condition-sentence cross-attention submatri-102

ces, which contain condition-sentence correlations,103

from the STS model. Utilizing these submatrices,104

we construct reweighting matrices to emphasize the105

importance of condition-sentence correlations in106

attention allocation. Considering the preservation107

of the overall semantic integrity, the reweighting108

results serve as an augmentation signal to enhance109

the original output hidden states, explicitly direct- 110

ing the model to focus more on condition-relevant 111

tokens (as shown in Figure 1). Since our proposed 112

method solely utilizes internal attention informa- 113

tion, we have named it SElf-Augmentation Via SElf- 114

Reweighting (SEAVER). 115

Retaining an architecture that is relatively con- 116

sistent with that of the pre-trained language model, 117

SEAVER exhibits the capability to outperform all 118

fine-tuning baselines on the C-STS-2023 test set 119

(Deshpande et al., 2023). Remarkably, with a sig- 120

nificantly smaller parameter scale, it also surpasses 121

the performance of most few-shot prompted large 122

language models, highlighting its significant poten- 123

tial in advancing C-STS measurement. 124

2 Related Work 125

Excessive features extracted by Language Mod- 126

els. There is substantial evidence indicating that 127

throughout the pre-training, language models learn 128

not only contextualized text representations, but 129

also a grasp of grammar (Vig, 2019), syntax (He- 130

witt and Manning, 2019), even commonsense 131

(Davison et al., 2019) and world knowledge 132

(Petroni et al., 2019; Wang et al., 2020). 133

However, the semantic information mentioned 134

above is general-purpose and unconditional. Thus, 135

for C-STS, which emphasize the conditional con- 136

straints on sentences and focus on more fine- 137

grained aspects, the excessive information can, in 138

turn, distract the language model’s attention. 139

Conditional Reweighted Feedforward. Tasks 140

similar to C-STS (Deshpande et al., 2023) find 141

more discussions in vision and multimodal fields 142

(Deng et al., 2009; Carrasco, 2011; Li, 2014; Antol 143

et al., 2015). In these contexts, a specific condition 144

is essential for directing the model’s focus towards 145

objects that are relevant to the given condition. 146

Previous work employing such methods has 147

yielded effective results. PerceiverIO (Jaegle et al., 148

2021) introduced multiple cross-attention modules 149

to compute the relevance to reweight the output 150
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Figure 2: Self-Reweighting flow (from left to right). (i) Self-Extraction: extract attention submatrix, which represents
the interaction between the sentence and the condition. (ii) Output Reweighting: compute attention reallocation
matrices, serving to reweight the original output hidden states of the sentence and the condition, respectively, then
concatenate them, culminating in the acquisition of a self-reweighted output hidden state.

tokens, which were directly used for prediction.151

Conversely, AbSViT (Shi et al., 2023) proposed152

a feedback mechanism to feed the relevance com-153

puted during the first feedforward phase back to the154

preceding modules, then the second feedforward155

were conducted for prediction.156

Moreover, these methods only apply reweight-157

ing to visual features, and the textual component158

(if present in the task) is often represented only in a159

short-form indicative manner and does not partici-160

pate in reweighting. Due to the inherent differences161

in information density between textual and visual162

data (He et al., 2022), such reweighting strategies163

for visual features do not meet the requirements164

of C-STS. As shown in Table 1, inspired by previ-165

ous work, we design a reweighting strategy better166

suited for C-STS, enabling a more efficient comput-167

ing flow and a more integrated computing structure.168

3 Method169

This section starts with Self-Reweighting, which170

directly extracts condition-sentence cross-attention171

submatrices to reweight the outputs (Section 3.1),172

then we use the reweighted outputs to enhance the173

original outputs in a specific proportion (Section174

3.2), namely Self-Augmentation.175

3.1 Self-Reweighting176

As is well known, when utilizing cross-encoding,177

we compute the attention of the concatenated sen-178

tence pair and the condition, which actually encap-179

sulates multi-faceted information, encompassing180

both the self-attention of each input item and the181

cross-attention among input items.182

Based on such observations, unlike previous at-183

tempts to introduce external auxiliary information184

or computational modules (Jaegle et al., 2021; Shi 185

et al., 2023), we designed a novel method to con- 186

struct the reweighting matrix directly using the in- 187

ternal attention in the model. As shown in Fig- 188

ure 2, to emphasize the condition-relevant infor- 189

mation, we specifically extract the cross-attention 190

between the sentences and the conditions from 191

the whole attention matrix. Then we divide them 192

into two distinct aspects of attention, namely Sen- 193

tence2Condition Attention (SCAttn) and Condi- 194

tion2Sentence Attention (CSAttn), respectively. 195

Here, SCAttn ∈ Rls×lc and CSAttn ∈ Rlc×ls , 196

where ls indicates the length of the concatenated 197

sentence pair, and lc indicates the condition length. 198

We use the extracted SCAttn as the condition- 199

guided signal for sentences and CSAttn as the 200

sentence-guided signal for conditions. Utilizing 201

these, we calculate their similarities to construct 202

the reweighting matrices for sentences and condi- 203

tions, respectively. This reallocates attention by in- 204

tegrating sentence and condition information with 205

each other, which are computed as 206

WS = softmax(SCAttn ·CSAttn) (1) 207

WC = softmax(CSAttn · SCAttn), (2) 208

where WS ∈ Rls×ls indicates the reweighting ma- 209

trix for sentences and WC ∈ Rlc×lc indicates the 210

reweighting matrix for conditions. 211

Applying the obtained reweighting matrices WS 212

and WC , we perform Self-Reweighting on the trun- 213

cated model outputs, which can be computed as 214

ROS = WS ·O[0 : (ls − 1)] (3) 215

ROC = WC ·O[ls : (ls + lc)], (4) 216

where O ∈ Rl×d indicates the last hidden state of 217

the language model, which we subsequently refer 218
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to as the original output in the following text. l and219

d represent the length of the concatenated input220

(comprising the sentence pair and the condition)221

and the dimension of the language model’s hidden222

state, respectively. Here we represent the i-th token223

of sentence k (k ∈ {1, 2}) as t(i)k . ROS ∈ Rls×d224

and ROC ∈ Rlc×d represent the reweighted output225

of the sentence pair and the condition, respectively.226

After acquiring the reweighted outputs for both227

sentences and conditions, we then concatenate228

them to form the concatenated reweighted outputs229

RO ∈ Rl×d, where RO indicates the concate-230

nated reweighted output, which is of the same231

size with the original output O. Then, we uti-232

lize the reweighted (attention reallocated) output233

RO as an augmentation signal to perform the Self-234

Augmentation as described in Section 3.2.235

Furthermore, it is important to note that the236

reweighting matrices for attention reallocation are237

derived directly from the attention matrices re-238

turned by the last layer of the language model.239

Since this does not introduce an external informa-240

tion, we refer to this process as Self-Reweighting.241

3.2 Self-Augmentation242

We consider the multi-head self-attention mech-243

anism of the language model, which ultimately244

yields H attention matrices, where H is the number245

of attention heads. Here, we refer to the reweighted246

output obtained after applying the reweighting ma-247

trices constructed from the attention matrix re-248

turned by the i-th attention head as ROi. Fol-249

lowing a method similar to that used in Transform-250

ers for processing outputs from multiple attention251

heads (Vaswani et al., 2017), we concatenate these252

H reweighted outputs. Subsequently, they are pro-253

jected through a projection matrix to match the254

dimension of a single reweighted output, which255

can be computed as256

RO = [RO1;RO2; ...;ROH ] ·Wo, (5)257

where Wo ∈ RHd×d indicates the projection ma-258

trix. To be more specific, the RO here indicates259

the projected reweighted output. Each ROi is com-260

puted through Section 3.1, where it should be noted261

that the RO in Section 3.1 denotes the case for a262

single attention head.263

We utilize the final reweighted output RO as264

an augmentation signal, aimed at enhancing parts265

of the original output O where there is a signif-266

icant semantic association between the sentence267
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Figure 3: Overall architecture of our proposed SEAVER.
A self-augmented output is derived through the addi-
tion of the self-reweighted output to the original output
(scaled by a factor of α). This self-augmented output
is subsequently fed into a simple regressor (a single-
hidden-layer MLP), predicting the semantic similarity.

pair and the condition. To achieve this, we perform 268

a weighted addition of the augmentation signal 269

RO with the original output O. This results in the 270

self-augmented output, which is then utilized for 271

predicting similarity, which can be computed as 272

AO = RO+ αO, (6) 273

where AO ∈ Rl×d indicates the self-augmented 274

output and α ≥ 0 denotes the hyperparameter that 275

controls the ratio between the weight of reweighted 276

output RO and the original output O, which is 277

discussed in detail in Section 4.2. 278

The overall architecture of the model is as de- 279

picted in Figure 3, where the final regressor is a 280

single-hidden-layer MLP structure for scoring. 281

4 Experiments 282

In this section, we first demonstrate the attention re- 283

allocation effect of SEAVER (Section 4.1). Subse- 284

quently, we provide a detailed quantitative analysis 285

to discuss the improvements provided by SEAVER 286

(Section 4.2). Finally, we present separate ablation 287

studies for the Self-Reweighting (Section 4.3) and 288

Self-Augmentation (Section 4.4) in SEAVER. 289

Dataset. In this study, we employ C-STS-2023 290

dataset collected by Deshpande et al. (2023) for 291

training and testing, which consists of quadru- 292

ples, formatted as (sentence1, sentence2, 293
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Sentence 1 Sentence 2 Condition Output
A boy is in midair doing a skate-
board trick at a skate park while
two women and a toddler walk
behind him.

A boy in yellow pants and a
blue shirt is rollerblading on the
side of his black skates.

The type of skating.
w/o: 4.00
w/ : 1.46
Label: 1.00

Two people are near a wooden
building wearing backpacks.

A couple of people working
around a pile of rocks.

The number of people.
w/o: 2.60
w/ : 4.62
Label: 5.00

Table 2: Two cases from the C-STS-2023 validation set. "Output" refers to the predicted and the ground-truth
similarity, where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed SEAVER. More cases are available in Appendix A.1.

condition, label). In which label repre-294

sents the level of similarity between sentence1295

and sentence2 under condition, converted296

into a Likert scale (Likert, 1932) with values rang-297

ing from 1 to 5, which is common with semantic298

textual similarity tasks (Agirre et al., 2013).299

Experimental Setup. We conduct a comparative300

analysis between various baselines and our pro-301

posed SEAVER, which can be categorized into:302

(i) Fine-tuning baselines, which are fine-tuned303

on the entire training partition. We select304

RoBERTa (Liu et al., 2019) and SimCSE305

(Gao et al., 2021) as our language model306

baselines, encompassing both the base and307

large scales. Additionally, we have con-308

sidered top-notch works that possess design309

principles analogous to SEAVER, as detailed310

in Section 2, as baseline models. These in-311

clude AbS-LM and PerceiverIO (Jaegle et al.,312

2021), where AbS-LM represents a modified313

AbSViT (Shi et al., 2023) for C-STS, with its314

ViT backbone replaced by RoBERTa and Sim-315

CSE (denoted as AbS-RoBERTa and AbS-316

SimCSE, respectively). For PerceiverIO, we317

selected the version of the model pre-trained318

exclusively for text tasks.319

(ii) Prompting baselines, which refer to general-320

purpose large language models, are recog-321

nized for their few-shot learning capabilities.322

We select Flan-T5 (Wei et al., 2021), GPT-323

J (Wang and Komatsuzaki, 2021), GPT-3.5324

(Brown et al., 2020), and GPT-4 (Achiam325

et al., 2023) as our baselines.326

It is important to note that due to observed vari-327

ances in experimental results across different mod-328

els of GPUs, to ensure reproducibility, all exper-329

iments were conducted on a single RTX A5000.330

More details are available in Appendix A.2.331

4.1 Dilution Effect and SEAVER Mitigation 332

In Table 2, the predictions from the baseline model 333

are higher and lower in comparison to the ground- 334

truth, respectively, while those from SEAVER align 335

more closely with the ground-truth. 336

To elucidate the attention allocation mechanism 337

of the baseline model in C-STS, and to understand 338

the reasons behind the baseline model’s prediction 339

failures as well as the success of SEAVER. As 340

illustrated in Figure 4, we extracted and averaged 341

the attention matrices from the last layer of the 342

baseline model and the Self-Reweighting weights 343

for the sentence part in SEAVER. 344

Since the input sequence consists of concate- 345

nated sentence and condition, SEAVER includes 346

separate reweighting matrices that affect both the 347

sentence and the condition respectively. How- 348

ever, considering that the condition itself serves 349

to impose constraints on the sentence. In this sec- 350

tion, to more intuitively understand how SEAVER 351

reweights the sentence based on the condition, we 352

only display the reweighting matrix that acts on the 353

sentence part (Figure 4 (right)). 354

In Figure 4 (left), it is observable that in the 355

baseline model, the required Region of Interest 356

(RoI) does not receive additional attention. We 357

also observed that the required RoI occupies only 358

a small proportion within the sentence, with the 359

remaining parts involved in attention computation 360

predominantly consisting of numerous condition- 361

irrelevant tokens, which, after being normalized 362

by the softmax function, dilute the impact of 363

condition-relevant features on the final prediction. 364

We have named this the Dilution Effect. 365

After applying our proposed SEAVER method, 366

we observe from Figure 4 (right) that the reweight- 367

ing matrix exhibits distinct emphasized regions 368

(darker in color) and suppressed areas (lighter in 369

color). This refocuses attention on the condition- 370
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Figure 4: Average attention matrix (left: obtained from the baseline model RoBERTa-base) and Reweighting
matrix specifically for sentence parts’ attention reallocation (right: obtained from SEAVER) of the first-row case
presented in Table 2. The darker the color, the larger the score. The words on the horizontal and vertical axes are
complete words formed by concatenating the tokens at corresponding positions. We have outlined the attention
regions involved. An enlarged version can be find in Appendix A.1 for a clearer display.

relevant tokens. For instance, for the first case in371

Table 2, the emphasized regions of the reweighting372

matrix make the model concentrate more on to-373

kens related to the type of skating, such374

as skateboard and rollerblading. Conse-375

quently, compared to the baseline model, applying376

SAVER successfully reallocates more attention to377

the condition-relevant aspects, mitigating distrac-378

tions within the model.379

4.2 Quantitative Results and Analysis380

We initially conduct fine-tuning experiments using381

the entire training set of the C-STS-2023 dataset.382

The quantitative results are shown in Table 3. More383

details are available in Appendix A.3.384

In Table 3, RoBERTa has been fine-tuned di-385

rectly on the C-STS-2023 dataset following pre-386

training. In contrast, before being fine-tuned on387

the C-STS-2023 dataset, SimCSE has already been388

fine-tuned on unconditional STS datasets. It’s ob-389

servable that our proposed SEAVER can bring sta-390

ble performance improvements to these two base-391

line language models of different scales.392

Furthermore, we also compared the performance393

of SEAVER with that of novel related works pos-394

sessing analogous design principles on the C-STS395

task (AbS-LM and PerceiverIO). The results indi-396

cate that the two approaches, analogous in design397

to ours, performed poorly on the C-STS task, even398

falling significantly short of the performance of399

vanilla language models. The reasons for this un-400

derperformance are as follows:401

Model #Param. Spear. ↑ Pears. ↑
PerceiverIO 203M 1.26 1.32

RoBERTa 125M 39.07 39.05
AbS-RoBERTa 139M 8.58 8.04
SEAVER RoBERTa 132M 41.36 41.05
RoBERTa 355M 40.40 40.78
AbS-RoBERTa 406M -3.48 -1.84
SEAVER RoBERTa 372M 43.45 43.60
SimCSE 125M 38.56 39.00
AbS-SimCSE 139M 6.47 6.28
SEAVER SimCSE 132M 39.59 39.30
SimCSE 355M 42.28 42.40
AbS-SimCSE 406M 9.55 9.20
SEAVER SimCSE 372M 43.83 43.81

Table 3: Fine-tuning results in Spearman and Pearson
correlation (scaled by 100) on the C-STS-2023 test set.
Highlighted rows indicate optimal performance with the
best-configured α within a series.

Intrusive reweighting strategy disrupts the ca- 402

pability for attention allocation. AbS-LM re- 403

tains parts of the original Language Model (LM) 404

and introduces feedback information in an intru- 405

sive manner (i.e., directly reweighting the value 406

part of attention in LMs based on the similarity 407

between condition embeddings and extracted fea- 408

tures). However, this intrusive feedback method 409

not only introduces a significant number of addi- 410

tional parameters, leading to training instability, but 411

also disrupts the internal information of pre-trained 412

LMs, resulting in failure on the C-STS task. 413
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Simple cross-attention modules struggle to meet414

the demands of C-STS. Although PerceiverIO415

introduces cross-attention modules more in line416

with the C-STS task setting compared to Vanilla417

LMs, it lacks the powerful semantic understanding418

inherent to pre-trained language models, thereby419

only performing superficial similarity measure-420

ments on texts without capturing deeper semantic421

information, which is crucial for C-STS.422

In contrast to these methods, SEAVER utilizes423

a residual connection-style non-intrusive approach424

to reallocate attention by emphasizing the inter-425

nal condition-relevant information within its atten-426

tion matrices, thereby focusing more on condition-427

relevant aspects. This results in a minimal increase428

in parameters without introducing any additional429

cross-attention modules, further validating the ef-430

fectiveness and efficiency of SEAVER.431

Model 0-shot ↑ 2-shot ↑ 4-shot ↑
Flan-T5-base 11.3 9.1 10.7
Flan-T5-large 11.1 12.3 12.8
GPT-J 7.4 1.1 2.0
GPT-3.5 15.0 16.6 15.5
GPT-4 39.3 42.6 43.6

Our fine-tuned model (w/ the best performance)
†SEAVER SimCSE (372M) 43.8

Table 4: Zero-shot and few-shot prompted results on
the C-STS-2023 test set using Spearman’s correlation.
† indicates fine-tuning on the entire training set.

Additionally, we compared the performance432

of SEAVER with that of zero-shot and few-shot433

prompted large language models on the C-STS-434

2023 test set. The performance of the zero-shot435

and few-shot prompted large language models, as436

presented in Table 4, represent the best results ob-437

tained after prompting using various prompts as438

applied by Deshpande et al. (2023).439

As shown in Table 4, it is evident that despite a440

substantial difference in the number of parameters441

between our selected model (372M) and large lan-442

guage models such as GPT-J (6B), GPT-3.5 (175B),443

and GPT-4 (even larger than GPT-3.5), the best per-444

formance of SEAVER, still surpasses the optimal445

performance achieved by large language models.446

Furthermore, as the process of zero-shot and few-447

shot prompting in large language models also con-448

stitutes cross-encoding, this further confirms the449

superiority of SEAVER in cross-encoding models.450

4.3 Self-Reweighting Impact Analysis 451

Given that Self-Reweighting extracts the condition- 452

sentence cross-attention submatrices, we now com- 453

mence with the random selection of two non- 454

overlapping submatrices from the attention ma- 455

trix to further confirm the effectiveness of Self- 456

Reweighting. These submatrices, similar to those 457

in the Self-Reweighting configuration, are symmet- 458

rically positioned relative to the main diagonal of 459

the attention matrix, and are utilized as the weights 460

for reweighting, a process we have termed Random- 461

Augmentation, which yielded the following results: 462

Model #Param. Spear. ↑ Pears. ↑
RoBERTa 125M 39.07 39.05
+Rand-Aug w/o orig. 132M 38.00 37.57
+Rand-Aug w/ 1*orig. 132M 37.78 37.56
+Rand-Aug w/ 2*orig. 132M 37.48 37.26
+Rand-Aug w/ 3*orig. 132M 35.00 35.48

RoBERTa 355M 40.40 40.78
+Rand-Aug w/o orig. 372M 40.93 40.83
+Rand-Aug w/ 1*orig. 372M 38.86 38.91
+Rand-Aug w/ 2*orig. 372M 40.83 40.95
+Rand-Aug w/ 3*orig. 372M 40.41 40.26

SimCSE 125M 38.56 39.00
+Rand-Aug w/o orig. 132M 37.37 37.11
+Rand-Aug w/ 1*orig. 132M 37.52 37.08
+Rand-Aug w/ 2*orig. 132M 37.39 37.43
+Rand-Aug w/ 3*orig. 132M 37.86 37.96

SimCSE 355M 42.28 42.40
+Rand-Aug w/o orig. 372M 41.16 41.01
+Rand-Aug w/ 1*orig. 372M 40.08 39.79
+Rand-Aug w/ 2*orig. 372M 43.07 43.12
+Rand-Aug w/ 3*orig. 372M 42.60 42.75

Table 5: Fine-tuning results of Random-Augmentation
on the C-STS-2023 test set. Highlighted rows indi-
cate declined performance within a series. "+Rand-
Aug w/ α*orig." denotes the addition of the Random-
Reweighting signal to the original output (scaled by a
factor of α), and “w/o” is equivalent to α = 0.

From Table 5, it can be observed that Random- 463

Augmentation does not enhance the performance 464

of the language model on the C-STS task in the ma- 465

jority of cases. However, in some instances, slight 466

improvements over the baseline were observed, at- 467

tributable to four primary reasons: 468

(i) The introduction of additional parameters (al- 469

beit minimal) allowed for minor gains. The 470

inclusion of new parameters in the model can 471

subtly enhance its performance by providing 472

more flexibility in adapting to the data. 473
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Figure 5: Spearman’s correlation of SEAVER under different settings of α. The red dashed line represents the
performance of the corresponding fine-tuning baseline language model. Detailed values can be found in Table 7.

(ii) The randomly sampled submatrices inevitably474

encompass parts of the condition-sentence475

cross-attention submatrices from the atten-476

tion matrix. Therefore, compared to the un-477

enhanced baseline model, this inclusion also478

contributes to a partial gain.479

(iii) As α increases, the proportion of the origi-480

nal signals extracted by the language model481

is amplified, thereby diminishing the impact482

of the Random-Augmentation signal. A de-483

tailed discussion regarding the impact of α is484

provided in Section 4.4.485

(iv) Random-Augmentation introduces a certain486

amount of noise into the fine-tuning process.487

Several studies (Zhang et al., 2020; Wu et al.,488

2022) have indicated that the introduction of489

such noise can reduce the gap between pre-490

training and fine-tuning tasks, thereby having491

a positive impact on fine-tuning.492

Nevertheless, it is evident that these gains do493

not match the improvements afforded by SEAVER494

of extracting specific cross-attention submatrices495

through Self-Reweighting. This further corrob-496

orates the effectiveness of the Self-Reweighting497

strategy’s intuitively designed rationale and also498

demonstrates that the improvements introduced by499

SEAVER are not merely the result of increased500

parameters and training perturbations.501

4.4 Self-Augmentation Ratio Analysis502

To explore optimal performance of SEAVER, we503

configured 4 different Self-Augmentation Ratios α504

on various versions of SEAVER as shown in Figure505

5. It is clear that there exists an easily identifiable,506

optimal configuration of α that enables the best507

synergy between the model’s original output and508

the augmentation signal, ensuring that SEAVER509

consistently outperforms the baseline model.510

Additionally, to analyse the impact of α. As511

specified in Equation 6, a larger α increases the512

proportion of the original output’s influence on the 513

final prediction. When α = 0, the final prediction 514

relies solely on the augmentation signal. As α → 515

+∞, it depends exclusively on the original output 516

(degenerates to the baseline model). 517

It can be observed that the optimal configura- 518

tion of α is not zero in most cases, confirming that, 519

in addition to directly condition-relevant features, 520

the preservation of the overall semantics, which is 521

largely provided by the original output, also plays 522

a crucial role. Therefore, this is the rationale for 523

using the Self-Reweighting output as an augmenta- 524

tion signal to the original output, rather than as the 525

sole component utilized for prediction. 526

Meanwhile, the optimal configuration of α varies 527

across models of different scales and training meth- 528

ods. We note that α represents a form of trade-off 529

between the model’s intrinsic sentence understand- 530

ing ability and the degree of need for attention 531

reallocation. Models with stronger sentence under- 532

standing, such as RoBERTa-large, typically require 533

a larger α value compared to RoBERTa-base, i.e. 534

models with higher intrinsic sentence understand- 535

ing have less need for attention reallocation through 536

the Self-Reweighting output to mitigate distraction. 537

More details are available in Appendix A.4. 538

5 Conclusion 539

In this work, we argue that the reason for the sub- 540

par performance of language models in C-STS 541

is attributed to the dilution effect: The excessive 542

general-purpose but condition-irrelevant features 543

distract language models’ attention from the spe- 544

cific, condition-relevant features that occupy a rel- 545

atively small proportion in the sentence. How- 546

ever, mitigating this distraction through mere fine- 547

tuning is challenging. To address this, we propose 548

SEAVER, which reallocates the model’s attention 549

weights based on specific conditions using its inter- 550

nal information. On the C-STS-2023 test set, our 551

method outperforms all types of baseline models. 552
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Limitations553

Although the application of SEAVER can bring554

stable performance improvements to models us-555

ing cross-encoding, proving its feasibility, due to556

concerns about the method’s complexity, SEAVER557

only involves extracting relevant attention scores558

from the last layer of the language model and calcu-559

lating the semantic correlation between sentences560

and conditions. This results in the extracted rele-561

vance reflecting more on the independent semantic562

features of the last layer, which does not signifi-563

cantly enhance performance.564

In this study, experiments have demonstrated565

that small models applying our proposed method566

can achieve performance surpassing that of few-567

shot prompted large language models. However,568

due to limitations in computational resources, we569

did not apply our method to larger scale models.570

Future work can focus on the comprehensive571

utilization of semantic relevance captured in other572

layers of the model, as well as that of the last layer573

and other layers. Furthermore, the adoption of a574

learned adaptive approach to make models focus575

more on condition-relevant semantic features of576

each layer can be considered. This would enable577

adaptive amplification of a certain number of se-578

mantic features according to the complexity of dif-579

ferent sentences, thereby achieving more efficiency580

and satisfactory performance improvements. Ad-581

ditionally, future work should consider extending582

this method to larger scale models to explore more583

of the method’s potential.584

Ethical Considerations585

It is widely acknowledged that language models586

are capable of generating predictions that exhibit587

bias. This issue becomes especially pronounced588

when the input sentences possess sensitive charac-589

teristics. While strategies such as data cleaning can590

alleviate these problems, they do not offer a com-591

plete solution. In light of some potential issues, this592

study advocates for usage under research purposes.593

Appropriate care should thus be taken when apply-594

ing such approaches for any non-research purpose595

(e.g. in user-oriented applications).596

In this study, our use of existing artifacts is597

consistent with their intended purposes. All the598

datasets and models used in this work are publicly599

available. RoBERTa-* models have MIT license1.600

1https://choosealicense.com/licenses/
mit

Flan-T5-* and PerceiverIO models have Apache- 601

2.0 license2. The remaining open-source models 602

and datasets used, due to the lack of explicit licens- 603

ing declarations, have all been credited with their 604

sources in Appendix A.2 in this paper. 605
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A Appendix787

A.1 Dilution Effect and SEAVER Mitigation788

Additional cases, along with their corresponding at-789

tention matrices and Self-Reweighting weights, are790

provided in Table 8 and Figure 6, respectively. This791

enables a broader and deeper understanding of the792

dilution effect and SEAVER alleviation mentioned793

in Section 4.1. An enlarged version of Figure 4 can794

be find in Figure 7 and Figure 8.795

It must be reiterated that the Self-Reweighting796

weights computed here reflect the reallocation of797

different features’ intensities. That is, to enhance798

condition-relevant features and suppress condition-799

irrelevant features, it is necessary to adjust the in-800

tensity of the original features. Therefore, in the801

Self-Reweighting weights, there may be instances802

where the weights of features that are supposed803

to be enhanced are not as salient. This can occur804

not only due to the intrinsic learning quality of the805

model but also because the original intensity of806

certain features is already relatively strong, thus807

requiring less enhancement, and vice versa.808

A.2 Implementation Details809

The hyperparameter settings shown in Table 6 were810

determined to yield the best performance when811

evaluating our proposed SEAVER on the C-STS-812

2023 validation set. To maintain higher consistency813

with the baseline proposed by Deshpande et al.814

(2023), and to maximize the reproducibility of our815

experimental results, we set the torch seed to 42 in816

all our experiments.817

As mentioned by Deshpande et al. (2023), the818

C-STS-2023 dataset used in this paper comprises819

a training set (11,342 examples), a validation set820

(2,834 examples), and a test set (4,732 examples),821

all consisting of English sentence examples.822

All pre-trained parameters of the language mod-823

els involved in the experiments are directly avail-824

able on Hugging Face: RoBERTa-base3, RoBERTa-825

large4, SimCSE-base5, SimCSE-large6, and826

PerceiverIO7. In Table 3, we mention AbS-LM,827

which is a variant based on the AbSViT model828

3https://huggingface.co/FacebookAI/ro
berta-base

4https://huggingface.co/FacebookAI/ro
berta-large

5https://huggingface.co/princeton-nlp
/sup-simcse-roberta-base

6https://huggingface.co/princeton-nlp
/sup-simcse-roberta-large

7https://huggingface.co/deepmind/lang
uage-perceiver

that substitutes the ViT backbone with a language 829

model. The original AbSViT model has also been 830

made open source8. For GPT-3.5 and GPT-4, con- 831

sistent with the experimental setup described by 832

Deshpande et al. (2023), the related test results 833

were obtained using the OpenAI API with the 834

static model versions gpt-3.5-turbo-0301 835

and gpt-4-0314 during the experiments. 836

Configuration Base Large
Batch Size 64 64
Learning Rate 3e-5 1e-5
Weight Decay 0.1 0.1
Seed 42 42
Loss MSE MSE

Table 6: Hyperparameter sweep done for C-STS-2023
validation set for our proposed Self-Augmentation mod-
els. "Base" and "Large" represent the scale of our pro-
posed Self-Augmentation models.

Model #Param. Spear. ↑ Pears. ↑
RoBERTa (Deshpande et al., 2023) 125M 39.07 39.05
SEAVER RoBERTa w/o orig. 132M 41.36 41.05
SEAVER RoBERTa w/ 1*orig. 132M 39.93 39.83
SEAVER RoBERTa w/ 2*orig. 132M 40.44 40.35
SEAVER RoBERTa w/ 3*orig. 132M 38.83 38.91

RoBERTa (Deshpande et al., 2023) 355M 40.40 40.78
SEAVER RoBERTa w/o orig. 372M 43.16 43.20
SEAVER RoBERTa w/ 1*orig. 372M 40.69 40.56
SEAVER RoBERTa w/ 2*orig. 372M 43.45 43.60
SEAVER RoBERTa w/ 3*orig. 372M 39.35 39.28

SimCSE (Deshpande et al., 2023) 125M 38.56 39.00
SEAVER SimCSE w/o orig. 132M 37.16 36.92
SEAVER SimCSE w/ 1*orig. 132M 38.48 38.08
SEAVER SimCSE w/ 2*orig. 132M 39.59 39.30
SEAVER SimCSE w/ 3*orig. 132M 39.18 39.24

SimCSE (Deshpande et al., 2023) 355M 42.28 42.40
SEAVER SimCSE w/o orig. 372M 43.06 43.01
SEAVER SimCSE w/ 1*orig. 372M 42.47 42.52
SEAVER SimCSE w/ 2*orig. 372M 43.70 43.47
SEAVER SimCSE w/ 3*orig. 372M 43.83 43.81

Table 7: Fine-tuning results in Spearman and Pearson
correlation (scaled by 100) on the C-STS-2023 test set.
Bold rows indicate the highest performance achieved
within the same model and scale. "SEAVER [MODEL
NAME] w/ α*orig." denotes the addition of the Self-
Augmentation signal to the original output (scaled by a
factor of α), and “w/o” is equivalent to α = 0.

A.3 Model Parameter Discussion 837

In Table 3 and Table 7, we can observe that the 838

parameter count of SEAVER has increased slightly 839

8https://github.com/bfshi/AbSViT
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compared to the similar scale baseline, the appli-840

cation of our method results in an increase of 7M841

training parameters for base scale models and842

17M for large scale models. This translates to843

our proposed method introducing 1.056 and 1.047844

times the number of parameters of the fine-tuning845

baseline language model for base and large846

scales, respectively. This increase is due to the847

application of a projection matrix that maps the848

concatenated multi-head vector dimensions back849

to the model dimension (the slight increase in pa-850

rameters corresponds to the introduction of this851

projection matrix).852

However, since no external auxiliary informa-853

tion is introduced and the transformation is applied854

only to the information originally extracted by the855

model, our proposed SEAVER still maintains a rel-856

atively high degree of consistency with the original857

baseline model. And the increase in parameter858

count due to our approach has a negligible im-859

pact on training time and resource consumption.860

This consistency makes integrating our method861

into practice exceptionally efficient and convenient,862

eliminating the need for significant alterations to863

the existing structures and training methodologies864

of pre-trained language models.865

As a supplement to the main body, in Table 7,866

we set the range of the scaling factor α in Eq. 6867

from 0 to 3, to observe the impact on the overall868

model performance under different ratios of the869

Self-Augmentation signal combined with the origi-870

nal output.871

As RoBERTa has not been fine-tuned on872

other STS datasets, it largely retains the general-873

purposed feature extraction capability acquired dur-874

ing pre-training. Therefore, for RoBERTa-base875

(125M), solely using the Self-Augmentation sig-876

nal for prediction (i.e., setting α to 0) can yield877

its optimal result. Introducing varying degrees878

of the original output may, to some extent, im-879

pair this, leading to suboptimal performance. Con-880

versely, the RoBERTa-large (355M), compared to881

RoBERTa-base, further enhances its feature ex-882

traction ability. With the increased depth of ex-883

tracted features, some features suppressed in the884

Self-Augmentation signal can positively influence885

the prediction (due to increased learned seman-886

tic complexity; intuitively, some features may ap-887

pear condition-irrelevant individually but become888

condition-relevant in combination), thus introduc-889

ing a certain degree of the original output (i.e.,890

setting α to 2) can achieve its optimal result. 891

While SimCSE has already been fine-tuned on 892

unconditional STS datasets, we believe this slightly 893

impairs the model’s ability to extract general fea- 894

tures. However, SimCSE also acquires effective 895

task-specific features for measuring sentence sim- 896

ilarity. There exists a certain trade-off between 897

the negative and positive impacts brought by fine- 898

tuning on the unconditional STS datasets. Intu- 899

itively, we suspect this is related to the model’s 900

scale. The SimCSE-base (125M) is more likely 901

to be negatively influenced by fine-tuning on the 902

unconditional STS datasets compared to SimCSE- 903

large (255M), resulting in the optimal performance 904

of SimCSE-base being lower than that of the same 905

scaled RoBERTa. In contrast, SimCSE-large seems 906

to gain more positive benefits than negative impacts 907

from the unconditional STS fine-tuning process, 908

thereby further enhancing its capability to extract 909

semantic features and achieving higher optimal per- 910

formance. 911

A.4 Self-Augmentation Ratio Analysis 912

We provide a more detailed trend analysis in this 913

section. As shown in Figure 5, both the base 914

and large scales of the RoBERTa model exhib- 915

ited similar trends: a significant decrease in perfor- 916

mance upon the initial introduction of the original 917

output, followed by a pattern of first increasing and 918

then continuing to decrease as α increases. 919

However, a distinction between the base and 920

large scales of the RoBERTa model is observed 921

in the performance peak upon increasing the degree 922

of the original output’s inclusion: the large scale 923

of RoBERTa surpasses the performance of using 924

solely the Self-Augmentation signal for prediction, 925

whereas the base scale does not. 926

The base scale SimCSE model shows a trend 927

where performance continuously grows to a peak 928

and then declines as α increases. The performance 929

trend of the large scale SimCSE model is similar 930

to that of RoBERTa, but the peak performance ap- 931

pears to be shifted to the right. It is also observable 932

that at this point, the performance improvement has 933

begun to converge. 934

We can also observe from Figure 5 that the best 935

configuration of α varies across models of different 936

scales and training methodologies. This variation 937

is due to differences in the intrinsic sentence under- 938

standing capabilities and preferences of each model. 939

Models with weaker sentence understanding, such 940
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as RoBERTa (pre-training + C-STS fine-tuning),941

typically require a smaller α value compared to942

SimCSE (pre-training + STS fine-tuning + C-STS943

fine-tuning) when both models are of the same944

scale. This indicates a greater need for a higher pro-945

portion of Self-Reweighting output, which serves946

primarily as a supplementary and modulatory sig-947

nal, to facilitate attention reallocation. Models with948

higher intrinsic sentence comprehension have less949

need for attention reallocation through the Self-950

Reweighting output to mitigate distraction.951

However, it is important to emphasize that the952

role of Self-Reweighting output in facilitating at-953

tention reallocation is still crucial even in models954

with stronger sentence understanding capabilities.955

This is evident as the model performance degrades956

to that of the corresponding baseline models when957

α → +∞.958
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Sentence 1 Sentence 2 Condition Output

Two martial artists com-
pete before a referee and
onlookers.

Two people are fighting
in full protective gear
and helmets.

The number of partic-
ipants.

w/o: 2.90
w/ : 4.61
Label: 5.00

A man in a black wet-
suit rides a surfboard on
a wave.

Surfer in black wetsuit
falling off his board into
the water.

The color of cloth-
ing.

w/o: 2.75
w/ : 4.75
Label: 5.00

A man dressed in red
dives for a shuttlecock
with a racket on a court.

A Japanese man in a
red shirt, at the olympics
playing tennis.

The name of the
color.

w/o: 2.35
w/ : 4.08
Label: 5.00

At a rodeo and a cowboy
is riding a bull and other
men are standing by.

A man dressed as a cow-
boy walks away from a
brown horse.

The type of animals.
w/o: 3.35
w/ : 1.54
Label: 1.00

A youth on a skateboard
is doing flips and tricks
over a metal bar.

Young kid in a blue shirt
is doing a trick on his
rollerblades.

What the person is
wearing on their feet.

w/o: 3.07
w/ : 1.28
Label: 1.00

A man with a blue har-
ness climbing a climb-
ing wall.

A young girl wearing a
safety harness climbs a
rock wall.

The sex of the per-
son.

w/o: 3.37
w/ : 1.66
Label: 1.00

A guy in red shirt is
rock-clibbing on a dan-
gerous mountain wall.

A man in a red jacket
mountain climbing an
icy rock mountain.

The color of cloth-
ing.

w/o: 2.18
w/ : 4.12
Label: 5.00

A brown and white dog
running fast in a fenced
yard.

A dog is running while
catching a tennis ball in
its mouth.

The action.
w/o: 2.73
w/ : 4.47
Label: 5.00

A boy wearing a green
shirt rides a scooter
down the sidewalk.

A little boy in a green
jacket is crying on his
tricycle.

The color of the
clothing.

w/o: 2.25
w/ : 4.10
Label: 5.00

A woman in an over-
sized black shirt plays a
black and red guitar in a
musky room.

A bass player girl, who
is performing at a con-
cert one of the bands
songs.

The sex of the musi-
cian.

w/o: 2.58
w/ : 4.20
Label: 5.00

Table 8: 10 additional cases from the C-STS-2023 validation set. "Output" refers to the predicted and the ground-
truth similarity, where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed SEAVER (based on RoBERTa-base).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6: Average attention matrix (left: obtained from the baseline model) and Self-Reweighting weight (right:
obtained from our proposed SEAVER) of each row case ((a) for the first row, (b) for the second row, etc) presented
in Table 8. The darker the color, the larger the corresponding value.
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Figure 7: An enlarged version of Figure 4 (left), which is provided for a clearer display of tokens and attention
details.
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Figure 8: An enlarged version of Figure 4 (right), which is provided for a clearer display of tokens and attention
details.
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